
Published in Transactions on Machine Learning Research (05/2023)

Denise: Deep Robust Principal Component Analysis for Pos-
itive Semidefinite Matrices

Calypso Herrera calypso.herrera@math.ethz.ch
Department of Mathematics
ETH Zürich

Florian Krach florian.krach@math.ethz.ch
Department of Mathematics
ETH Zürich

Anastasis Kratsios anastasis.kratsios@unibas.ch
Department Mathematics
McMaster University

Pierre Ruyssen pierrot@google.com
Google Brain
Google Zürich

Josef Teichmann josef.teichmann@math.ethz.ch
Department of Mathematics
ETH Zürich

Reviewed on OpenReview: https: // openreview. net/ forum? id= D45gGvUZp2

Abstract

The robust PCA of covariance matrices plays an essential role when isolating key explana-
tory features. The currently available methods for performing such a low-rank plus sparse
decomposition are matrix specific, meaning, those algorithms must re-run for every new
matrix. Since these algorithms are computationally expensive, it is preferable to learn and
store a function that nearly instantaneously performs this decomposition when evaluated.
Therefore, we introduce Denise, a deep learning-based algorithm for robust PCA of covari-
ance matrices, or more generally, of symmetric positive semidefinite matrices, which learns
precisely such a function. Theoretical guarantees for Denise are provided. These include a
novel universal approximation theorem adapted to our geometric deep learning problem and
convergence to an optimal solution to the learning problem. Our experiments show that
Denise matches state-of-the-art performance in terms of decomposition quality, while being
approximately 2000× faster than the state-of-the-art, principal component pursuit (PCP),
and 200× faster than the current speed-optimized method, fast PCP.

Keywords: Low-rank plus sparse decomposition, positive semidefinite matrices, deep neural networks,
geometric deep learning, universal approximation

1 Introduction

Robust principal component analysis (RPCA) aims to find a low rank subspace that best approximates a data
matrix M which has corrupted entries. It is defined as the problem of decomposing a given matrix M into
the sum of a low rank matrix L, whose column subspace gives the principal components, and a sparse matrix
S, which corresponds to the outliers’ matrix. The standard method via convex optimization has significantly
worse computation time than the singular value decomposition (SVD) (Wright et al., 2009; Xu et al., 2010;

1

https://openreview.net/forum?id=D45gGvUZp2

Published in Transactions on Machine Learning Research (05/2023)

Candes et al., 2011; Chandrasekaran et al., 2010; Hsu et al., 2011; Lin et al., 2011). Recent results developing
efficient algorithms for robust PCA contributed to notably reduce the running time (Rodriguez & Wohlberg,
2013; Netrapalli et al., 2014; Chen & Wainwright, 2015; Yi et al., 2016; Cherapanamjeri et al., 2017).

However, in some cases, it is of utmost importance to instantaneously produce robust low rank approxima-
tions of a given matrix. In particular, in finance we need instantaneously and for long time series of multiple
assets, robust low rank estimates of covariance matrices. For instance, this is the case for high-frequency
trading (Aït-Sahalia et al., 2010; Aït-Sahalia & Xiu, 2017; 2019). Moreover, it is useful to have one proce-
dure applicable to different data that provides such estimates In addition, in applications involving noise,
like covariance matrices in finance, it is important to have a procedure that is insensitive to small noise
perturbations, which is not the case for classical approaches.

Our contribution lies precisely in this area by introducing a nearly instantaneous algorithm for robust PCA
for symmetric positive semidefinite matrices. Specifically, we provide a simple deep learning based algorithm
which ensures continuity with respect to the input matrices, such that small perturbations lead to small
changes in the output. Moreover, when the deep neural network is trained, only an evaluation of it is
needed to decompose any new matrix. Therefore the computation time is negligible, which is an undeniable
advantage in comparison with the classical algorithms. To support our claim, theoretical guarantees are
provided for (i) the expressiveness of our neural network architecture and (ii) convergence to an optimal
solution of the learning problem.

2 Related Work

Let ||M ||ℓ1 =
∑

i,j |Mi,j | denote the ℓ1-norm of the matrix M . For a given λ > 0, the RPCA is formulated
as

min
L,S

rank(L) + λ||S||ℓ1 s.t M = L + S .

Although it is N P-hard, approximate relaxations of this minimization problem can be solved in polynomial
time. The most popular method to solve RPCA is via convex relaxation (Wright et al., 2009; Xu et al., 2010;
Candes et al., 2011; Chandrasekaran et al., 2010; Hsu et al., 2011; Lin et al., 2011). It consists of a nuclear-
norm-regularized matrix approximation which needs a time-consuming full singular value decomposition
(SVD) in each iteration. Let ||M ||∗ =

∑
i |σi(M)| denote the nuclear norm of M , i.e. the sum of the singular

values of M . Then for a given λ > 0, the problem can be formulated as

min
L,S

||L||∗ + λ||S||ℓ1 s.t M = L + S. (1)

The principal component pursuit (PCP) (Candes et al., 2011) is considered as the state-of-the-art technique
and solves (1) by an alternating directions algorithm which is a special case of a more general class of
augmented Lagrange multiplier (ALM) algorithms known as alternating directions methods. The inexact
ALM (IALM) (Lin et al., 2011) is an computationally improved version of the ALM algorithm that reduces
the number of SVDs needed.

As the previous algorithms need time-consuming SVDs in each iteration, several non convex algorithms have
been proposed to solve (1) for a more efficient decomposition of high-dimensional matrices (Rodriguez &
Wohlberg, 2013; Netrapalli et al., 2014; Chen & Wainwright, 2015; Yi et al., 2016; Cherapanamjeri et al.,
2017). In particular, the fast principal component pursuit (FPCP) (Rodriguez & Wohlberg, 2013) is an
alternating minimization algorithm for solving a variation of (1). By incorporating the constraint into the
objective, removing the costly nuclear norm term, and imposing a rank constraint on L, the problem becomes

min
L,S

1
2 ||M − L − S||2F + λ||S||ℓ1 s.t. rank(L) = r .

The authors apply an alternating minimization to solve this equation using a partial SVD. The RPCA via
gradient descent (RPCA-GD) (Yi et al., 2016) solves (1) via a gradient descent method.

Our work is related to the low rank Cholesky factorization, which, among others, is used to solve semidefinite
programs (Burer & Monteiro, 2001; Journée et al., 2008; 2010; Bandeira et al., 2016; De Sa et al., 2014;

2

Published in Transactions on Machine Learning Research (05/2023)

Boumal et al., 2016; Li et al., 2019; Ge et al., 2016). We are not only interested in the low rank approximation,
but in a robust low rank approximation. In that sense, we estimate the low rank approximation of a matrix
which can be corrupted by outliers. Therefore, we are using the ℓ1 norm instead of the Frobenius norm as
it is done in those works.

The closest related works to ours are Song & Shaowei (1997) and (Baes et al., 2019), which both consider
neural network approaches to robust PCA. Only the latter of the two provides optimization guarantees;
there the authors consider the minimization problem

min
U∈Rn×k

∥M − UU⊤∥ℓ1 , (2)

where a neural network parameterization Uθ of the matrix U is optimized with gradient descent to find an
approximate solution for any fixed M . In particular, for every new input M the optimization has to be
repeated. In contrast, we train a neural network on a synthetic training dataset such that the learnt param-
eters can be reused for any unseen matrix M ′. In particular, our learning objective is much more involved,
since we want to find a function that produces good outputs Uθ(M) for all M of a certain distribution, i.e. a
function that generalizes well. While our learning task is more complicated, our method has the advantage
of nearly instantaneous evaluation for any new matrix, once the training is finished, compared to (Baes
et al., 2019), where a new optimization problem needs to be solved whenever the method is applied to a new
matrix M .

Other related problems are matrix factorization (Lee & Seung, 2001; Ding et al., 2010; Trigeorgis et al., 2014;
Kuang et al., 2012), matrix completion (Xue et al., 2017; Nguyen et al., 2018; Sedhain et al., 2015), sparse
coding (Gregor & LeCun, 2010; Ablin et al., 2019), robust subspace tracking (He et al., 2011; Narayanamurthy
& Vaswani, 2018) and anomaly detection (Chalapathy et al., 2017). Solomon et al. (2019) suggested a deep
robust PCA algorithm tailored to clutter suppression in ultrasound, which still depends on applying SVDs
in each layer of their convolutional recurrent neural network. Our work is similar to Gregor & LeCun
(2010) in spirit, since we also train a neural network to perform a complex and otherwise time-consuming
task nearly instantaneously. Our method shares many properties with their encoder, including continuity,
differentiability, and implicit generalization over the distribution of the training set. While their encoder can
only be trained in a supervised manner, relying on classical (and therefore slow) methods to generate labels
for the training set, it is possible to use unsupervised training for our method.

A key component of our approach is the universal approximation capability of the deep neural model im-
plementing Denise. This result is not covered by any of the available universal approximation theorems,
including those for standard feedforward neural networks (Hornik et al., 1989; Barron, 1992; Kidger &
Lyons, 2020) and those concerning non-euclidean geometries (Kratsios & Bilokopytov, 2020). In contrast,
our universal approximation result guarantees that we can generically approximate any function encoding
both the geometric and algebraic structure of the low-rank plus sparse decomposition problem.

3 Denise

We present Denise1, an algorithm that solves the robust PCA for positive semidefinite matrices, using a
deep neural network. The main idea is the following: according to the Cholesky decomposition, a positive
semidefinite symmetric matrix L ∈ Rn×n can be decomposed into L = UU⊤. If U has n rows and r columns,
then the matrix L will be of rank r or less. In order to obtain the desired decomposition M = L + S, we
therefore reduce the problem to finding a matrix U ∈ Rn×r such that S := M − UU⊤ is a sparse matrix, i.e.
a matrix that contains a lot of zero entries. In particular, we define the matrix U = Uθ(M) ∈ Rn×r as the
output of a neural network. Then the natural objective of the training of the neural network is to achieve
sparsity of Sθ(M) := M − Uθ(M)Uθ(M)⊤. A good and widely used approximation of this objective is to
minimize the ℓ1-norm of Sθ(M) as in (2). To achieve this, the neural network can be trained in a supervised
or an unsupervised way, as explained below, depending on the available training dataset. Once Denise is

1The name Denise comes from Deep and Semidefinite.

3

Published in Transactions on Machine Learning Research (05/2023)

trained, we only need to evaluate it in order to find the low rank plus sparse decomposition

M = Uθ(M)Uθ(M)⊤︸ ︷︷ ︸
L

+ M − Uθ(M)Uθ(M)⊤︸ ︷︷ ︸
S

of any new positive semidefinite matrix M . Therefore, Denise considerably outperforms all existing algo-
rithms in terms of speed, as they need to solve an optimization problem for each new matrix.

Moreover, by the construction of L = Uθ(M)Uθ(M)T , we can guarantee the positive semidefiniteness of L.
We note that in practice one may only have access to exogenously manipulated or corrupt (missing data)
covariance or correlation matrices which may cause the loss of their positive semidefiniteness. For example,
an empirical correlation matrix of stock returns, where the correlation between two stock returns is decreased
by the risk manager, may lose its positive semidefiniteness. The issue of non positive semidefiniteness of
correlation matrices in option pricing and risk management is well explained in (Rebonato & Jäckel, 1998).
We refer to Higham & Strabić (2016) for a detailed discussion of this issue. By contrast, most algorithms
do not ensure that L is kept positive semidefinite, which forces them to correct their output at the expense
of their accuracy.

3.1 Supervised Learning

If a training set is available where for each matrix M an optimal decomposition into L + S is known, then
the network can be trained directly to output the correct low rank matrix, by minimizing the supervised loss

Φs(θ) := E
[
||L − Uθ(M)Uθ(M)⊤||ℓ1

]
= E [||S − Sθ(M)||ℓ1] . (3)

where the expectation is taken over matrices drawn from an appropriate data-generating distribution from
which the training data is sampled. We want the difference S − Sθ to be as sparse as possible, therefore we
use the ℓ1-norm, which approximates this objective. Indeed, if this difference is sparse, then also Sθ is, since
the amount of non-zero entries of Sθ is upper bounded by the sum of those of S and S − Sθ. On the other
hand, a small ℓ2-norm of S − Sθ would not imply any upper bound on the non-zero entries of Sθ.

A synthetic dataset of positive semidefinite matrices with known decomposition can be created by simulating
Cholesky factors and sparse matrices (Section 5). Moreover, classical methods can be used to generate labels
for any set of matrices that a user would like to use as training set, in case the synthetic dataset doesn’t
encompass the wanted properties. However, this is not necessarily needed, since unsupervised training can
be used instead.

3.2 Unsupervised Learning

In some applications only the matrix M but no optimal decomposition is known. In this case, the neural
network can be trained by minimizing the unsupervised loss function

Φu(θ) := E
[
||M − Uθ(M)Uθ(M)⊤||ℓ1

]
= E [||Sθ(M)||ℓ1] , (4)

where, as in the supervised case, the expectation is taken over matrices drawn from an appropriate data-
generating distribution from which the training data is sampled.

3.3 Combining Supervised Learning and Unsupervised Finetuning

Often the amount of available training data of a real world dataset is limited. Therefore, we consider the
following training procedure. First, Denise is trained with the supervised loss function on a large synthetic
dataset, where the decomposition is known (Section 5.1). Then the trained network can be finetuned with
the unsupervised loss function on a real world training dataset of matrices, where the optimal decomposition
is unknown. This way, Denise can incorporate the peculiarities of the real world dataset.

4

Published in Transactions on Machine Learning Research (05/2023)

4 Theoretical Guarantees for Denise

We provide theoretical guarantees that on every compact subset of symmetric positive semidefinite matrices,
the function performing the optimal low-rank plus sparse decomposition can be approximated arbitrarily
well by the neural network architecture of Denise. The proofs are presented in Section 6.

4.1 Notation

Let Sn be the set of n-by-n symmetric matrices, Pn ⊂ Sn the subset of positive semidefinite matrices and
Pk,n ⊂ Pn the subset of matrices with rank at most k ≤ n. We consider a matrix M = [Mi,j]i,j ∈ Pn, e.g.,
a covariance matrix. The matrix M is to be decomposed as a sum of a matrix L = [Li,j]i,j ∈ Pk,n of rank
at most k and a sparse matrix S = [Si,j]i,j ∈ Pn. By the Cholesky decomposition (Higham, 2002, Thm
10.9 b), we know that the matrix L can be represented as L = UU⊤, where U = [Ui,j]i,j ∈ Rn×k; thus
M = UU⊤ + S.

Let fθ : Rn(n+1)/2 → Rnk be a feedforward neural network with parameters θ. As the matrix M is symmetric,
the dimension of the input can be reduced from n2 to n(n + 1)/2 by taking the triangular lower matrix of
M . Moreover, we convert the triangular lower matrix to a vector. We combine these two transformations in
the operator h

h : Sn → Rn(n+1)/2, M 7→ (M1,1, M2,1, M2,2, . . . , Mn,1, . . . , Mn,n)⊤ .

Similarly, every vector X of dimension nk can be represented as a n-by-k matrix with the operator g defined
as

g : Rnk → Rn×k, X 7→

 X1 . . . Xk

...
...

X(n−1)k+1 . . . X(n−1)k+k

 .

Using h and g, the matrix U can be expressed as the output of the neural network Uθ(M) = g(fθ (h(M)))
and the low rank matrix can be expressed as Lθ(M) = ρ(fθ (h(M))) for

ρ : Rkn → Pk,n, X 7→ g(X)g(X)⊤.

We assume to have a set Z ⊂ Sn × Pk,n of training sample matrices (M, L), which is equipped with a
probability measure P, i.e. the data-generating distribution. In the supervised case, we assume that L is an
optimal low rank matrix for M , while in the unsupervised case, where L is not used, it can simply be set to
0. For a given training sample (M, L), the supervised and unsupervised loss functions φs, φu : Ω × Z → R
are defined as

φs(θ, M, L) = ∥L − ρ (fθ (h(M)))∥ℓ1
(5)

and
φu(θ, M, L) = ∥M − ρ (fθ (h(M)))∥ℓ1

. (6)

Then, the overall loss functions as defined in (3) and (4) can be expressed for φ ∈ {φs, φu}

Φ(θ) = E(M,L)∼P [φ(θ, M, L)] .

Moreover, the Monte Carlo approximations of these loss functions are given by

Φ̂N (θ) = 1
N

N∑
i=1

φ(θ, Mi, Li), (7)

where (Mi, Li) are i.i.d. samples of P. Denise can be trained using Stochastic Gradient Descent (SGD). A
schematic version of these supervised and unsupervised training schemes is given in the pseudo-Algorithm 1.

5

Published in Transactions on Machine Learning Research (05/2023)

Algorithm 1 Training of Denise
Fix θ0 ∈ Ω, N ∈ N
for j ≥ 0 do

Sample i.i.d. matrices (M1, L1), . . . , (MN , LN) ∼ P
Compute the gradient Gj := 1

N

∑N
i=1 ∇θφ(θj , Mi, Li)

Determine a step-size hj > 0
Set θj+1 = θj − hjGj

end for

4.2 Solution Operator to the Learning Problem

Our first result guarantees that there is a (non-linear) solution operator to (2). Thus, there is an optimal
low rank plus sparse decomposition for Denise to learn.
Theorem 4.1. Fix a Borel probability measure P on Pn and set 0 < ε ≤ 1 . Then:

(i) For every M ∈ Pn, the set of optimizers, argmin
U∈Rn×k

∥M − UUT ∥ℓ1 , is non-empty and every U ∈

argmin
U∈Rn×k

∥M − UUT ∥ℓ1 satisfies

L := UUT ∈ argmin
L∈Pk,n

∥M − L∥ℓ1 .

(ii) There exists a Borel-measurable function f : Pn → Rn×k satisfying for every M ∈ Pn

f(M) ∈ argmin
U∈Rn×k

∥M − UUT ∥ℓ1 .

(iii) There exists a compact Kε ⊆ Pn such that: P(Kε) ≥ 1 − ε and on which f is continuous and we define
the function

f⋆ : Kε ∋ M 7→ f(M)f(M)⊤ ∈ Pk,n. (8)

Theorem 4.1 (iii) guarantees that the map f⋆ is continuous and can be written as the square of a continuous
function f from Kε to Rn×k.

4.3 Novel Universal Approximation Theorem

We introduce a structured subset of Rn×n-valued functions encapsulating the relevant structural prop-
erties of the solution map in (8). We fix a compact X ⊂ Pn. Denise’s ability to optimally
solve (2) is contingent on its ability to uniformly approximate any function in

√
C(X, Pk,n) :={

f ∈ C(X, Pk,n)
∣∣ ∃f̃ ∈ C(X,Rn×k) : f = f̃ f̃⊤ }

.

Unlike C(X,Rn×k), functions in
√

C(X, Pk,n) always output meaningful candidate solutions to (2) since
they are necessarily low-rank, symmetric, and positive semidefinite matrices. Due to this non-Euclidean
structure the next result is not covered by the standard approximation theorems of Hornik et al. (1989)
and Kidger & Lyons (2020). Similarly, every function in

√
C(X, Pk,n) encodes the algebraic property (8);

namely, it admits a point-wise Cholesky-decomposition which is a continuous Rn×k-valued function. Thus,√
C(X, Pk,n) encapsulates more algebraic structure than C(X, Pk,n) does. This algebraic structure puts

approximation in
√

C(X, Pk,n) outside the scope of the purely geometric approximation theorems of Kratsios
& Bilokopytov (2020).

Our next result concerns the universal approximation capabilities in
√

C(X, Pk,n) by the set of all deep neural
models f̂ : Pn → Pk,n with representation f̂ = ρ ◦ fθ ◦ h, where fθ : R

n(n+1)
2 → Rkn is a deep feedforward

network with activation function σ. Denote the set of all such models by N σ
ρ,h.

The width of f̂ ∈ N σ
ρ,h is defined as the width of fθ. The activation function σ defining fθ is required to

satisfy the following condition of Kidger & Lyons (2020).

6

Published in Transactions on Machine Learning Research (05/2023)

Assumption 4.2. The activation function σ ∈ C(R) is non-affine and differentiable at at-least one point
with non-zero derivative at that point.
Theorem 4.3. Let X ⊂ Pn be compact and let σ ∈ C(R) satisfy Assumption 4.2. For each ε > 0, and each
f ∈

√
C(X, Pk,n), there is an f̂ ∈ N σ

g,h of width at-most n(n+2k+1)+4
2 such that:

max
M∈X

∥∥∥f (M) − f̂(M)
∥∥∥

ℓ1
< ε. (9)

Theorems 4.1 and 4.3 imply that N σ
ρ,h can approximate f⋆ with arbitrarily high probability.

Corollary 4.4. Fix a Borel probability measure P on Pn, 0 < ε ≤ 1, and σ satisfying 4.2. Then, there exists
some f̂ ∈ N σ

g,h of width at-most n(n+2k+1)+4
2 such that

max
M∈Kε

∥∥∥f⋆ (M) − f̂(M)
∥∥∥

ℓ1
< ε, (10)

where Kε was defined in Theorem 4.1.

4.4 Convergence of Denise to a Solution Operator of the Supervised Learning Problem

We show that, under the assumption that Denise has identified the optimal weights minimizing the supervised
loss function, it converges to an optimal solution f⋆ of Theorem 4.1 (iii). This convergence is shown both in
terms of the theoretical loss (3) and using its Monte Carlo approximation (7). We therefore operate under
the following assumptions.
Assumption 4.5. We assume to have a compact subset X ⊂ Pn of matrices M such that a continuous
function f : X → Rn×k satisfying

f(M) ∈ argmin
U∈Rn×k

∥M − UUT ∥ℓ1

for all M ∈ X exists. Moreover, we assume that for f⋆(M) := f(M)f(M)⊤, the training set is given by

Z := {(M, L) | M ∈ X, L = f⋆(M)}

and that we consider a probability measure P such that P(Z) = 1.

By Theorem 4.1, we know that such a set X exists. For any D ∈ N let N σ,D
ρ,h ⊂ N σ

ρ,h be the set of neural
networks of depth at most D and let ΘD be the set of all admissible weights for such neural networks.
Theorem 4.6. Assume Assumption 4.5 holds and let f⋆ be as in there. If for every fixed depth D, the
weights θD of f̂θD

∈ N σ,D
ρ,h are chosen such that Φs(θD) is minimal, then ∥f̂θD

−f⋆∥ℓ1 converges to 0 in mean
(L1-norm) as D tends to infinity.

In the following, we assume the size of the neural network D is fixed and we study the convergence of the
Monte Carlo approximation with respect to the number of samples N . Moreover, we show that both types
of convergence can be combined. To do so, we define Θ̃D := {θ ∈ ΘD | |θ|2 ≤ D}, which is a compact
subspace of ΘD. It is straight forward to see that ΘD in Theorem 4.6 can be replaced by Θ̃D. Indeed, if the
needed neural network weights for an ε-approximation have too large norm, then one can increase D until
it is sufficiently big.
Theorem 4.7. Assume Assumption 4.5 holds and let f⋆ be as in there. For every D ∈ N, P-a.s.

Φ̂N
s

N→∞−−−−→ Φs uniformly on Θ̃D.

Let the size of the neural network D be fixed and let θD be as in Theorem 4.6. If for every fixed size N of
the training set, the weights θD,N ∈ Θ̃D are chosen such that Φ̂N

s (θD,N) is minimal, then

Φs(θD,N) N→∞−−−−→ Φs(θD).

In particular, one can define an increasing sequence (ND)D∈N in N such that ∥f̂θD,N
− f⋆∥ℓ1 converges to 0

in mean (L1-norm) as D tends to infinity.

7

Published in Transactions on Machine Learning Research (05/2023)

4.5 Convergence of Denise in the Unsupervised Learning Problem

Finally, we present the analogous results to Theorems 4.6 and 4.7 in the unsupervised setting. The primary
distinction between the supervised and unsupervised settings is that Denise is only guaranteed to converge
to a minimum of the unsupervised loss function (6).
Assumption 4.8. We assume to have a compact subset X̃ ⊂ Pn of matrices M together with a probability
measure P̃ on the set

Z̃ := {(M, L) | M ∈ X̃, L = 0} (11)
that satisfies P̃(Z̃) = 1.

In the unsupervised learning task we cannot guarantee that Denise converges to any specific target function
as we did in Section 4.4. However, we can still show that its output converges to a minimum in terms of the
loss function. Therefore, let us define the minimum

Φmin := inf
f∈

√
C(X̃,Pk,n)

E(M,L)∼P̃[∥M − f(M)∥ℓ1], (12)

for which the following result holds.
Theorem 4.9. Under Assumption 4.8, if for every fixed depth D, the weights θD of f̂θD

∈ N σ,D
ρ,h are chosen

such that Φu(θD) is minimal, then Φu(θD) converges to the minimum Φmin.

Similarly, as in Section 4.4, we can also show the convergence of the Monte Carlo approximation in the
unsupervised setting.
Theorem 4.10. Under Assumption 4.8, for every D ∈ N, P-a.s.

Φ̂N
u

N→∞−−−−→ Φu uniformly on Θ̃D.

Let the size of the neural network D be fixed and let θD be as in Theorem 4.9. If for every fixed size N of
the training set, the weights θD,N ∈ Θ̃D are chosen such that Φ̂N

u (θD,N) is minimal, then

Φu(θD,N) N→∞−−−−→ Φu(θD).

In particular, one can define an increasing sequence (ND)D∈N in N such that Φ̂N
u (θD,ND

) converges to Φmin
as D tends to infinity.

5 Numerical Results

In this sections we provide numerical results of Denise. We first train Denise with the supervised loss function
on a synthetic training dataset and evaluate it on a synthetic test dataset. We also evaluate Denise on a
synthetic test dataset which is generated with a different distribution. Finally, we test Denise on a real
word dataset before and after finetuning with the unsupervised loss function. The source code is avaible at
https://github.com/DeepRPCA/Denise .

5.1 Supervised Training

We create a synthetic dataset in order to train Denise using the Monte Carlo approximation (7) of the
supervised loss function (3). In particular, we construct a collection of n-by-n symmetric positive semidefinite
matrices M that can be written as

M = L0 + S0 (13)
for a known matrix L0 of rank k0 ≤ n and a known matrix S0 of given sparsity s0. By sparsity we mean
the number of zero-valued elements divided by the total number of elements. For example, a sparsity of 0.95
means that 95% of the elements of the matrix are zeros.

To construct a symmetric low rank matrix L0, we first sample nk0 independent standard normal random
variables that we arrange into an n-by-k0 matrix U . Then L0 is defined as UUT .

8

https://github.com/DeepRPCA/Denise

Published in Transactions on Machine Learning Research (05/2023)

To construct a symmetric positive semidefinite sparse matrix S0 we first sample a random pair (i, j) with
1 ≤ i < j ≤ n from an uniform distribution. We then construct an n-by-n matrix S̃0 that has only four non-
zero coefficients: the off-diagonal elements (i, j) and (j, i) are set to a number b drawn uniformly randomly
in [−1, 1], the diagonal elements (i, i) and (j, j) are set to a number a drawn uniformly randomly in [|b|, 1].
An example of a 3 × 3 matrix with (i, j) = (1, 2), b = −0.2 and a = 0.3 is the following:

S̃0 =

 0.3 −0.2 0
−0.2 0.3 0

0 0 0

 .

This way, the matrix S̃0 is positive semidefinite. The matrix S0 is obtained by summing different realizations
S̃

(l)
0 , each corresponding to a different pair (i, j), until the desired sparsity is reached.

With this method, we create a synthetic dataset consisting of 10 million matrices for the training set. Other
possibilities to generate the training set exist. For example, other distributions or different levels of sparsity
can be used. Diversifying the training set can lead to better performance of the trained algorithm.

To implement Denise, we used the machine learning framework Tensorflow (Abadi et al., 2015) with Keras
APIs (Chollet et al., 2015). We have tested several neural network architectures, and settled on a simple
feed-forward neural network of four layers, with a total of 32 × n(n + 1)/2 parameters. Moreover, we have
tested various sizes, sparsities and ranks for the samples of the training set. All results were similar, hence
we only present those using size n = 20, sparsity s0 = 0.95 and rank k0 = 3 in the training set. In this
setting, we trained our model using 16 Google Cloud TPU-v2 hardware accelerators. Training took around
8 hours (90 epochs), at which point loss improvements were negligible.

5.1.1 Evaluation

We create a synthetic test dataset consisting of 10,000 matrices for each of the test settings, using the method
presented in Section 5.1. The synthetic dataset introduced in Section 5.1 is composed of randomly generated
low rank plus sparse matrices of a certain rank and sparsity. Therefore, a network which performs well
on this random test set should also perform well on a real world datasets with the same rank and similar
sparsity. The code to generate the synthetic dataset is deterministic by setting a fixed random seed.

We compare Denise against PCP (Candes et al., 2011), IALM (Lin et al., 2011), FPCP (Rodriguez &
Wohlberg, 2013) and RPCA-GD (Yi et al., 2016). All algorithms are implemented as part of the LRS
matlab library (Sobral et al., 2015; Bouwmans et al., 2016). Evaluation of all the algorithms was done on
the same computer2 for a fair comparison of the inference time.

We compare the rank of the low rank matrix L and the sparsity of the sparse matrix S. We determine
the approximated rank r(L) by the number of eigenvalues of the low-rank L that are larger than ε = 0.01.
Similarly, we determine the approximated sparsity s(L) by proportion of the entries of the sparse matrix S
which are smaller than ε = 0.01 in absolute value.

Moreover, we compare the relative error between the computed low rank matrix L and the low rank matrix L0
(i.e. the low-rank matrix from the synthetic train and test dataset), by rel.error(L, L0) = ||L−L0||F /||L0||F .
Similarly, we compare the relative error between the computed sparse matrix S and the sparse matrix S0,
by rel.error(S, S0) = ||S − S0||F /||S0||F .

To enable a fair comparison between the algorithms, we first ensure that the obtained low-rank matrices L
all have the same rank. While in FPCP, RPCA-GD and Denise the required rank is set, in PCP and IALM
the required rank is depending on the parameter λ. Therefore, we empirically determined λ in order to reach
the same rank. In particular, with λ = 0.56/

√
n for the synthetic dataset and λ = 0.64/

√
n for the real

dataset, we approximately obtain a rank of 3 for matrices L.

In Table 1, we evaluate Denise (trained on the training set with sparsity s0 = 0.95) in 5 test settings with
different sparsity s0 ∈ {0.6, 0.7, 0.8, 0.9, 0.95}. Overall Denise obtains comparable results to the state-of-the-
art algorithms, while significantly outperforming the other algorithms in terms of inference speed once it is

2A machine with 2×Intel Xeon CPU E5-2697 v2 (12 Cores) 2.70GHz and 256 GiB of RAM.

9

Published in Transactions on Machine Learning Research (05/2023)

trained. This is due to the fact that only one forward pass through the neural network of Denise is needed
during evaluation to compute the decomposition. In contrast to this very fast operation, the state-of-the-art
algorithms need to solve an iterative optimization algorithm for each new matrix.

Table 1: Comparison between Denise and state of the art algorithms where L is sampled from a standard
normal distribution. For different given sparsity s(S0) of S0, the output properties are the actual rank r(L)
of the returned matrix L, the sparsity s(S) of the returned matrix S as well as the relative errors rel.error(L)
and rel.error(S). Additionally we report the training (only applicable for Denise) and inference time. Results
are reported as mean (std) computed over all samples of the test sets.

r(L) s(S) rel.error(L) rel.error(S) time
s(S0) Algo train (h) inference (ms)

0.60

PCP 2.94 (0.23) 0.17 (0.02) 0.51 (0.10) 2.45 (0.58) – 73.52 (21.13)
IALM 2.92 (0.27) 0.09 (0.02) 0.64 (0.09) 3.10 (0.67) – 27.88 (2.45)
FPCP 3.00 (0.00) 0.02 (0.01) 0.48 (0.08) 2.32 (0.61) – 16.55 (4.11)

RPCA-GD 3.00 (0.00) 0.02 (0.01) 0.41 (0.17) 1.97 (0.93) – 59.30 (17.52)
Denise 3.00 (0.00) 0.02 (0.01) 0.46 (0.16) 2.17 (0.74) 0 0.05 (0.00)

0.70

PCP 2.98 (0.13) 0.19 (0.02) 0.48 (0.10) 2.63 (0.67) – 92.51 (25.79)
IALM 2.96 (0.19) 0.10 (0.02) 0.63 (0.09) 3.46 (0.77) – 30.57 (2.79)
FPCP 3.00 (0.00) 0.03 (0.01) 0.48 (0.08) 2.63 (0.70) – 10.15 (3.77)

RPCA-GD 3.00 (0.00) 0.03 (0.02) 0.39 (0.18) 2.18 (1.10) – 57.45 (17.52)
Denise 3.00 (0.00) 0.02 (0.01) 0.42 (0.15) 2.26 (0.82) 0 0.05 (0.00)

0.80

PCP 3.00 (0.06) 0.22 (0.03) 0.45 (0.10) 2.93 (0.83) – 98.25 (27.72)
IALM 2.99 (0.11) 0.11 (0.02) 0.62 (0.09) 4.06 (0.95) – 29.47 (2.46)
FPCP 3.00 (0.00) 0.03 (0.02) 0.47 (0.08) 3.11 (0.86) – 10.11 (4.42)

RPCA-GD 3.00 (0.00) 0.04 (0.03) 0.38 (0.19) 2.54 (1.39) – 48.03 (14.37)
Denise 3.00 (0.00) 0.02 (0.01) 0.37 (0.14) 2.38 (0.95) 0 0.05 (0.00)

0.90

PCP 3.00 (0.06) 0.27 (0.05) 0.41 (0.11) 3.65 (1.18) – 122.84 (29.65)
IALM 3.00 (0.08) 0.12 (0.02) 0.61 (0.10) 5.39 (1.33) – 30.47 (2.86)
FPCP 3.00 (0.00) 0.04 (0.02) 0.47 (0.08) 4.19 (1.20) – 16.43 (4.08)

RPCA-GD 3.00 (0.00) 0.09 (0.11) 0.36 (0.21) 3.26 (2.01) – 60.59 (17.04)
Denise 3.00 (0.00) 0.03 (0.01) 0.30 (0.13) 2.61 (1.24) 0 0.05 (0.00)

0.95

PCP 3.02 (0.13) 0.30 (0.07) 0.39 (0.11) 4.84 (1.75) – 124.99 (31.56)
IALM 3.00 (0.08) 0.13 (0.03) 0.60 (0.10) 7.39 (2.02) – 29.67 (2.33)
FPCP 3.00 (0.00) 0.05 (0.02) 0.47 (0.08) 5.77 (1.77) – 16.94 (3.58)

RPCA-GD 3.00 (0.00) 0.17 (0.24) 0.34 (0.22) 4.28 (2.96) – 49.67 (13.86)
Denise 3.00 (0.00) 0.03 (0.02) 0.26 (0.13) 3.12 (1.66) 8 0.05 (0.00)

5.1.2 Evaluation on Differently Generated Synthetic Data

We additionally create 5 synthetic test sets with different sparsity consisting of 10,000 matrices each, using
the method presented in Section 5.1 but with a different distribution. In particular, the low-rank matrices
are generated using the Student’s t-distribution (with parameter k = 5) instead of using the standard normal
distribution. Also in this example, Denise (trained on the original training set with normal distribution and
sparsity s0 = 0.95) achieves similar results, while being nearly instantaneous (Table 2).

Table 2 shows that many of the benchmark robust PCA algorithms struggle to produce decompositions with
a competitive level of sparsity. This is likely because they are designed for general matrices and can have
trouble with the added symmetry and positive definite structure present in this problem, for which Denise
has a specialized inductive bias. For example, the symmetric and positive definiteness of the input matrices
violate the condition of (Candes et al., 2011, Theorem 1.1) which state that the sparse part S of the input
matrix M has uniformly distributed zero entries so that the PCP algorithm can recover the true L + S
decomposition of M .

10

Published in Transactions on Machine Learning Research (05/2023)

Table 2: Comparison between Denise and state of the art algorithms, where L is sampled from a t-
distribution. For different given sparsity s(S0) of S0, the output properties are the actual rank r(L) of
the returned matrix L, the sparsity s(S) of the returned matrix S as well as the relative errors rel.error(L)
and rel.error(S). Since Denise was not trained in any of the tested settings, we only report the inference
time. Results are reported as mean (std) computed over all samples of the test set.

r(L) s(S) rel.error(L) rel.error(S) time (ms)
s(S0) Algo

0.60

PCP 2.97 (0.18) 0.18 (0.02) 0.60 (0.13) 5.16 (3.27) 78.81 (22.54)
IALM 2.95 (0.22) 0.09 (0.02) 0.71 (0.10) 6.04 (3.25) 30.52 (2.23)
FPCP 3.00 (0.03) 0.02 (0.01) 0.48 (0.11) 3.89 (1.39) 11.02 (5.02)

RPCA-GD 3.00 (0.00) 0.02 (0.01) 0.51 (0.20) 4.50 (3.41) 48.81 (14.70)
Denise 3.00 (0.00) 0.01 (0.01) 0.41 (0.20) 3.67 (6.97) 0.05 (0.00)

0.70

PCP 2.99 (0.11) 0.19 (0.02) 0.58 (0.13) 5.73 (3.58) 88.22 (24.77)
IALM 2.98 (0.15) 0.10 (0.02) 0.70 (0.10) 6.81 (3.55) 29.97 (2.28)
FPCP 3.00 (0.03) 0.02 (0.01) 0.48 (0.10) 4.41 (1.53) 16.68 (4.10)

RPCA-GD 3.00 (0.00) 0.02 (0.02) 0.51 (0.20) 5.09 (3.77) 48.47 (14.52)
Denise 3.00 (0.00) 0.01 (0.01) 0.38 (0.20) 3.91 (8.88) 0.05 (0.00)

0.80

PCP 3.00 (0.06) 0.21 (0.03) 0.56 (0.14) 6.64 (4.18) 106.57 (27.99)
IALM 2.99 (0.11) 0.10 (0.02) 0.69 (0.10) 8.05 (4.13) 30.95 (2.85)
FPCP 3.00 (0.03) 0.03 (0.01) 0.48 (0.11) 5.28 (1.87) 10.02 (3.88)

RPCA-GD 3.00 (0.00) 0.03 (0.03) 0.50 (0.21) 6.00 (4.39) 57.42 (17.19)
Denise 3.00 (0.00) 0.02 (0.01) 0.35 (0.20) 4.33 (10.34) 0.05 (0.00)

0.90

PCP 3.01 (0.10) 0.24 (0.04) 0.54 (0.14) 8.81 (6.37) 99.10 (26.59)
IALM 3.00 (0.09) 0.12 (0.02) 0.69 (0.10) 10.89 (6.29) 17.78 (1.69)
FPCP 3.00 (0.03) 0.03 (0.02) 0.47 (0.11) 7.12 (2.57) 10.68 (3.27)

RPCA-GD 3.00 (0.00) 0.05 (0.07) 0.49 (0.22) 8.09 (6.69) 41.67 (13.21)
Denise 3.00 (0.00) 0.02 (0.01) 0.31 (0.21) 5.55 (19.75) 0.05 (0.00)

0.95

PCP 3.03 (0.17) 0.27 (0.06) 0.53 (0.14) 11.83 (8.03) 105.88 (26.74)
IALM 3.01 (0.12) 0.12 (0.03) 0.69 (0.10) 14.83 (7.97) 30.19 (2.18)
FPCP 3.00 (0.02) 0.03 (0.02) 0.47 (0.11) 9.79 (3.77) 10.27 (3.75)

RPCA-GD 3.00 (0.00) 0.08 (0.15) 0.48 (0.23) 10.82 (8.53) 50.14 (14.15)
Denise 3.00 (0.00) 0.02 (0.01) 0.29 (0.20) 6.85 (17.01) 0.05 (0.00)

5.2 A Note on the Computation Time of Denise

While applying the trained Denise algorithm is nearly instantaneous, outperforming all competitors, its
training is very time intensive. Incorporating the training time into the time measurement (normalized
by the test set), i.e. distributing the 8 hours of training time equally to the evaluation of the 10,000
test matrices, yields an evaluation time of 2880 ms per test sample, which is much slower than the other
algorithms. Increasing the test set to the same size as the training set with 10 million samples would decrease
this training-adjusted measurement time to less than 3 ms, outperforming the competitors again. Since this
training-adjusted measurement time is specific to the test set size (which is chosen arbitrarily), we do not
show it in the tables. However, this consideration makes it clear that in cases where only view matrices need
to be decomposed, Denise does not offer a benefit in terms of computation time over the existing methods
if it needs to be trained. On the other hand, if any time improvement at inference is valuable (e.g. in high-
frequency trading), Denise offers the possibility to do the computationally heavy part offline by training it for
all needed combinations of matrix and output low-rank sizes beforehand such that, at inference, only its fast
evaluation time matters. Moreover, if one has to decompose a large number of matrices or if one regularly
needs to decompose matrices of a known size (as would be the case in automated video decomposition tasks
e.g. for traffic cameras), the usage of Denise can provide a helpful speedup. In particular, we propose to use
Denise in cases where its compilation and training can be done offline, leading to a compilation artifact that

11

Published in Transactions on Machine Learning Research (05/2023)

can be used to speed up inference significantly similar to amortized inference (Gershman & Goodman, 2014)
and inference compilation (Le et al., 2017; Harvey et al., 2019).

5.3 Application on S&P500 Stocks Portfolio

We consider a real world dataset of about 1’000 20-by-20 correlation matrices of daily stock returns (on
closing prices), for consecutive trading days, shifted every 5 days, between 1989 and 2019. The considered
stocks belong to the S&P500 and have been sorted by the GICS sectors3. The first 77% of the data is used
as training set and the remaining 23% as test set.

We perform a low-rank plus sparse decomposition of these matrices where we choose the low rank to be equal
to k0 = 3 as we used it in the synthetic case before. This choice can be made by the user depending on their
preference of the number of resulting principle components. Depending on this choice of k0 the supervised
training needs to be done on a corresponding synthetic training set with the same rank k0.

Denise, which was trained on the synthetic dataset with k0 = 3, is once evaluated on the real world test set
before and once after finetuning it on the (real world) training set (Table 3). The finetuning considerable
improves the performance of Denise. Upon inspection we find that Denise offers comparable performance
to the leading fastest robust PCA algorithm, namely FPCP, while executing 30× faster. The synthetic test
dataset is composed of 10,000 matrices, while here the test dataset contains around 200 matrices. This
explains why the computation time of Denise is higher here, as the effort needed to launch the computations
is the same no matter whether 10,000 or 200 matrices are evaluated. If repeating the test set such that it has
again 10,000 samples, Denise achieves the same speed as on the synthetic dataset (0.05 ms). In particular,
Denise has the advantage of becoming (relatively) faster when applied to more samples.

Table 3: Comparison of Denise and Denise with finetuning (FT) to the state of the art algorithms on the
S&P500 dataset’s test set. We report the finetuning (only applicable for Denise) and inference time. Results
are reported as mean (std) computed over all samples of the test set.

Method r(L) s(S) REML = ||M−L||F

||M ||F
FT time (s) inference time (ms)

PCP 2.97 (0.54) 0.33 (0.06) 0.15 (0.04) – 87.09 (0.02)
IALM 2.89 (0.53) 0.31 (0.06) 0.15 (0.04) – 29.11 (0.00)
FPCP 2.99 (0.13) 0.24 (0.08) 0.11 (0.03) – 17.91 (0.02)
RPCA-GD 3.00 (0.07) 0.19 (0.08) 0.22 (0.05) – 61.23 (0.03)
Denise 3.00 (0.00) 0.08 (0.02) 0.18 (0.03) – 0.66 (0.00)
Denise (FT) 3.00 (0.00) 0.15 (0.04) 0.15 (0.04) 45 0.62 (0.00)

5.4 Discussion of the Computational Challenges for Denise

In general, the two main computational challenges in deep learning are high-dimensionality and low-regularity
of the target map. While they often appear together, in our experimental setup the dimension of the problem
is relatively low for deep learning standards not posing an obstruction. However, the learnability of the highly
irregular function performing the robust PCA decomposition truly is a computational challenge shown to be
surmounted by Denise in our experiments.

This can be seen, for example, by examining the optimal approximate rates for ReLU neural networks, when
approximating continuous functions and smooth functions between Euclidean spaces; see Shen et al. (2022)
and Lu et al. (2021), respectively. Consider the case of 400 dimensional inputs, as in the 20 × 20 matrices in
Section 5.3. The former of these optimal approximation theorems guarantees that the uniform approximation

3According to the global industry classification standard: energy , materials , industrials, real estate, consumer discretionary,
consumer staples, health care, financials, information technology, communication services, utilities.

12

Published in Transactions on Machine Learning Research (05/2023)

M

M

M

M

M

L (PCP)

L (IALM)

L (FPCP)

L (RPCA-GD)

L (Denise (FT))

S (PCP)

S (IALM)

S (FPCP)

S (RPCA-GD)

S (Denise (FT))

Figure 1: Decomposition into a low-rank plus a sparse matrix of the correlation matrix of a portfolio of 20
stocks among the S&P500 stocks. The forced rank is set to k = 3. We have ||M − L||F /||M ||F at 0.15 for
PCP, 0.15 for IALM, at 0.11 for FPCP, at 0.22 for RPCA-GD and at 0.15 for Denise. The reconstruction
metric ||M − L − S||F /||M ||F is 0 for all algorithms. The computation times in milliseconds are: 103.24 for
PCP, 28.66 for IALM, 15.20 for FPCP, 58.17 for RPCA-GD and 0.62 for Denise.

13

Published in Transactions on Machine Learning Research (05/2023)

of an α-Hölder continuous target function from a compact subset X ⊂ P20 to Pk,20, to any given precision
ε > 0, requires a network depending on roughly O(1

ε800/α) trainable parameters. The latter one implies
that if this target function is sufficiently smooth the number of parameters determining this network can
be polynomial in 1

ε . The same must be true for Denise, which can be seen by relying on the quantitative
non-Euclidean universal approximation theorem of (Kratsios & Papon, 2022, Theorem 9) instead of the
qualitative version in Kratsios & Bilokopytov (2020) that we used in the proof of Theorem 4.3.

Theorem 4.1 shows that the function performing the robust PCA decomposition, namely f⋆, is highly
irregular and thus difficult to learn. This is because it is not smooth on P20, but only continuous on a
suitable compact set Kε thereof. Therefore, our experiments illustrate that Denise can actually learn this
highly irregular map, which is provably challenging for any deep learning model. Moreover, it does so while
offering competitive performance to any of the state-of-the-art “matrix-wise” algorithms.

6 Proofs

6.1 Proof of Low Rank Recovery via Universal Approximation

Let (Pn, dist(A, B) := ∥A − B∥ℓ1) be the metric space of n×n symmetric positive semidefinite matrices with
real coefficient. Let C(X, Pk,n) be the set of continuous functions from X to Pk,n, given any (non-empty)
subset X ⊂ Pn. Analogously to (Leshno et al., 1993), the set C(X, Pk,n) is made a topological space, by
equipping it with the topology of uniform convergence on compacts, also called compact-convergence, which
is generated by the sub-basic open sets of the form

BK(f, ε) :=
{

g ∈ C(X, Pk,n)

∣∣∣∣ sup
x∈K

∥f(x) − g(x)∥ℓ1 < ε

}
,

where ε > 0, K ⊂ X compact and f ∈ C(X, Pk,n). In this topology, a sequence {fj}j∈N in C(X, Pk,n)
converges to a function f ∈ C(X, Pk,n) if for every non-empty compact subset K ⊆ X and every ε > 0 there
exists some N ∈ N for which

sup
x∈K

∥fj(x) − f(x)∥ℓ1 < ε for all j ≥ N.

This topological space is metrizable. The topology on
√

C(X, Pk,n) is the subspace topology induced by
inclusion in C(X, Pk,n) (see (Munkres, 2000, Chapter 18)).

Proof of Theorem 4.1. For every M ∈ Pn, the map from Rn×k to R defined by U → ∥M − UUT ∥ℓ1 is
continuous, bounded-below by 0, and for each λ > 0 the set{

U ∈ Rn×k : ∥M − UUT ∥ℓ1 ≤ λ
}

, (14)

is compact in Rn×k. Thus, the map U → ∥M − UUT ∥ℓ1 is coercive in the sense of (Focardi, 2012, Definition
2.1). Hence, by (Focardi, 2012, Theorem 2.2), the set

argmin
U∈Rn×k

∥M − UUT ∥ℓ1

is non-empty. Furthermore, by the Cholesky decomposition (Higham, 2002, Theorem 10.9), for every L ∈
Pk,n there exists some U ∈ Rn×k such that L = UU⊤. Since, conversely, for every U ∈ Rn×k the matrix
UU⊤ ∈ Pk,n we obtain (i).

Any given M ∈ Pn is positive semidefinite and therefore e⊤
1 Me1 ≥ 0, where e1 ∈ Rn has entry 1 in its first

component and all other entries equal to 0. Therefore, M1,1 = e⊤
1 Me1 ≥ 0 and in particular,

√
M1,1 ∈ R.

Therefore, the matrix Ũ defined by Ũi,j =
√

M1,1Ii=j=1, where Ii=j=1 = 1 if 1 = i = j and 0 otherwise, is
in Rn×1 ⊆ Rn×k. Moreover, Ũ satisfies ∥Ũ ŨT ∥ℓ1 ≤ ∥M∥ℓ1 . Thus, by the triangle inequality, the set

DM :=
{

U ∈ Rn×k : ∥M − UUT ∥ℓ1 ≤ 2∥M∥ℓ1

}
,

14

Published in Transactions on Machine Learning Research (05/2023)

is non-empty. Furthermore, by (14) it is compact. In summary,

∅ ≠ argmin
U∈DM

∥M − UUT ∥ℓ1 = argmin
U∈Rn×k

∥M − UUT ∥ℓ1 . (15)

Hence f(M), described by condition (ii), is equivalently characterized by

f(M) ∈ argmin
U∈DM

∥M − UUT ∥ℓ1 , for all M ∈ Pn. (16)

The advantage of (16) over condition (ii) is that the set DM , is compact, whereas Rn×k is non-compact.

For any set Z denote its power-set by 2Z . Define the function ϕ by

ϕ : Pn → 2R
n×k

,

M 7→DM .

Next, we show that ϕ is a weakly measurable correspondence in the sense of (Aliprantis & Border,
1999, Definition 18.1). This amounts to showing that for every open subset U ⊆ Rn×k the set Ũ :=
{M ∈ Pn : ϕ(M) ∩ U ̸= ∅} is a Borel subset of Pn.

To this end, define the function

G : Pn × Rn×k → R,

(M, U) 7→ 2∥M∥ℓ1 − ∥M − UUT ∥ℓ1 ,

and let p be the canonical projection Pn ×Rn×k → Pn taking (M, U) to M . Observe that, for any non-empty
open U ⊆ Rn×k we have that

Ũ = p
[
G−1 [[0, ∞)] ∩ (Pn × U)

]
.

Since G is continuous and [0, ∞) is closed in R then G−1[[0, ∞)] is closed. Since both Rn×k and Pn are metric
sub-spaces of Rn2 then they are locally-compact, Hausdorff spaces, with second-countable topology. Thus
(Cohn, 2013, Proposition 7.1.5) implies that the open set Pn × U =

⋃
j∈N Kj where {Kj}j∈N is a collection

of compact subsets of Pn × Rn×k.

Since Pn and Rn×k are σ-compact, i.e. the countable union of compact subsets, Pn ×Rn×k is also σ-compact
by (Willard, 1970, Page 126). Let {Ci}i∈N be a compact cover of Pn × Rn×k. Since Pn × Rn×k is Hausdorff
(as both Pn and Rn×k are), each Ci ∩ G−1[[0, ∞)] is compact and therefore

{
Kj ∩

[
Ci ∩ G−1[[0, ∞)

]}
j,i∈N

is a countable cover of G−1[[0, ∞)] ∩ (X × U) by compact sets. Finally, since p is continuous, and continuous
functions map compacts to compacts,

Ũ =p
[
G−1 [[0, ∞) ∩ (Pn × U)]

]
=p

 ⋃
i,j∈N

[
Ci ∩ G−1[[0, ∞)

]
∩ Kj


=

⋃
i,j∈N

p
[
Ci ∩ G−1[[0, ∞)] ∩ Kj

]
;

hence Ũ is an Fσ subset of Pn and therefore Borel. In particular, for each open subset U ⊆ Rn×k, the
corresponding set Ũ is Borel. Therefore, ϕ is a weakly-measurable correspondence taking non-empty and
compact values in 2Rn×k .

Define, the continuous function
F : Pn × Rn×k → [0, ∞),

(M, U) 7→ ∥M − UUT ∥ℓ1 .

The conditions of the (Aliprantis & Border, 1999, Measurable Maximum Theorem; Theorem 18.19) are met
and therefore there exists a Borel measurable function f from Pn to Rn×k satisfying

f(M) ∈ argmin
U∈DM

∥M − UUT ∥ℓ1 = argmin
U∈Rn×k

∥M − UUT ∥ℓ1 ,

15

Published in Transactions on Machine Learning Research (05/2023)

for every M ∈ Pn. This proves (ii).

Fix a Borel probability measure P on Pn. Since Pn is separable and metrizable then by (Klenke, 2013,
Theorem 13.6) P must be a Radon measure. Moreover, since Rn×k and Pn are locally-compact and second-
countable topological spaces, then, the conditions for Lusin’s theorem (see (Klenke, 2013, Exercise 13.1.3)
for example) are met. Therefore, for every 0 < ε ≤ 1 there exists a compact subset Kε ⊆ Pn satisfying
P (Kε) ≥ 1 − ε and for which f is continuous on Kε. That is, f |Kε ∈ C(Kε,Rn×k). Moreover, since ρ is
continuous, then

f(·)f(·)⊤|Kε
= ρ ◦ f |Kε

∈
√

C(Kε, Pk,n).

This gives (iii).

Proof of Theorem 4.3. Let N σ,narrow
2−1n(n+1),kn denote the collection of deep feed-forward networks in

N σ
2−1n(n+1),kn of width at-most n(n+2k+1)+4

2 . Note that the approximation condition (9) holding for all
ε > 0, and all f ∈

√
C(X, Pk,n) is equivalent to the topological condition {ρ ◦ f̂ ◦ vect : f̂ ∈ N σ,narrow

2−1n(n+1),kn}
is dense in

√
C(X, Pk,n) for the uniform convergence on compacts topology. We establish the later.

Fix a σ ∈ C(R) satisfying condition 4.2. By (Kidger & Lyons, 2020), N σ,narrow
2−1n(n+1),kn is dense

C(Rn(n+1)/2,Rkn) in the topology of uniform convergence on compacts.

Let ϕ := h ◦ ι2 ◦ ι1, where ι1 : X → Pn, ι2 : Pn → Sn are the inclusion maps. Since h, ι2, and ι1 are all
continuous and injective, so is ϕ. Observe that, g is a continuous bijection with continuous inverse. Thus,
(Kratsios & Bilokopytov, 2020, Proposition 3.7) implies that N σ,narrow

2−1n(n+1),kn is dense in C(ϕ(X),Rkn) if and
only if N σ,narrow

g,ϕ ≜ {g ◦ f̂ ◦ ϕ : f̂ ∈ N σ,narrow
2−1n(n+1),kn} is dense in C(X,Rn×k).

Let R : Rn×k ∋ U → UU⊤ ∈ Pk,n. Consider the map R⋆ sending any f ∈ C(X,Rn×k) to the map
R ◦ f ∈

√
C(X, Pk,n). By (Munkres, 2018, Theorem 46.8) the topology of uniform convergence on compacts

on C(X,Rn×k) and C(X, Pk,n) are equal to their respective compact-open topologies (see (Munkres, 2000,
page 285) for the definition) and by (Munkres, 2000, Theorem 46.11) function composition is continuous for
the compact-open topology; whence, R⋆ is continuous. Moreover, by definition, its image is

√
C(X, Pk,n)

and therefore, R⋆ is a continuous surjection as a map from C(X,Rn×k) to
√

C(X, Pk,n). Since continuous
maps send dense subsets of their domain to dense subsets of their image, R⋆

[
N σ,narrow

g,ϕ

]
≜ {R◦g ◦ f̂ ◦ϕ : f̂ ∈

N σ,narrow
2−1n(n+1),kn} ⊂ N σ

ρ,ϕ is dense in
√

C(X, Pk,n). As density is transitive, N σ
ρ,ϕ is dense in

√
C(X, Pk,n).

Proof of Corollary 4.4. By Theorem 4.1 and (8) the map f⋆ : Pn → Pk,n is continuous on Kε. Since Kε

is compact, Theorem 4.3 implies that there exists some f̂ ∈ N σ
ρ,h of width at-most n(n+2k+1)+4

2 satisfying:
maxx∈Kε ∥f⋆(M) − f̂(M)∥ℓ1 < ε.

6.2 Proof of Convergence of Supervised Denise to a Solution Operator of the Learning Problem

Proof of Theorem 4.6. By our assumption on X it follows from Corollary 4.4 that for any ε > 0 there exists
some D and weights θ̃D such that f̂θ̃D

∈ N σ,D
ρ,h and

max
M∈X

∥∥∥f⋆ (M) − f̂θ̃D
(M)

∥∥∥
ℓ1

< ε.

Since expectations are taken with respect to P which is supported on Z and since the weights θD are chosen
to optimize the loss function, we have Φ(θD) ≤ Φ(θ̃D) and hence

Φ(θD) = E(M,L)∼P

[
∥f̂θD

(M) − f⋆(M)∥ℓ1

]
≤ E(M,L)∼P

[
∥f̂θ̃D

(M) − f⋆(M)∥ℓ1

]
≤ ε.

16

Published in Transactions on Machine Learning Research (05/2023)

Hence, we can conclude that for any fixed ε > 0, there exists a D1 > 0 such that for all D > D1, we get

E(M,L)∼P

[
∥f̂θD

(M) − f⋆(M)∥ℓ1

]
≤ ε .

In other words, we have that

E(M,L)∼P

[
∥f̂θD

(M) − f⋆(M)∥ℓ1

]
D→∞−−−−→ 0 ,

which concludes the proof.

6.3 Proof of Convergence of the Monte Carlo Approximation

The following Monte Carlo convergence analysis is based on (Lapeyre & Lelong, 2019, Section 4.3). In
comparison to them, we do not need the additional assumptions that were essential in (Lapeyre & Lelong,
2019, Section 4.3), i.e. that all minimizing neural network weights generate the same neural network output.

6.3.1 Convergence of Optimization Problems

The following lemma is a consequence of (Ledoux & Talagrand, 1991, Corollary 7.10) and (Rubinstein &
Shapiro, 1993, Sec. 2.6, Lemma A1 & Theorem A1 and discussion thereafter).
Lemma 6.1. Let (ξi)i≥1 be a sequence of i.i.d random variables with values in S and h : Rd × S → R be
a measurable function. Assume that a.s., the function θ ∈ Rd 7→ h(θ, ξ1) is continuous and for all C > 0,
E(sup|θ|2≤C |h(θ, ξ1)|) < +∞. Then, a.s. fN : Rd → R, θ 7→ 1

N

∑N
i=1 h(θ, ξi) converges locally uniformly to

the continuous function f : Rd → R, θ 7→ E(h(θ, ξ1)),

lim
N→∞

sup
|θ|2≤C

∣∣∣∣∣ 1
N

N∑
i=1

h(θ, ξi) − E(h(θ, ξ1))

∣∣∣∣∣ = 0 a.s.

Moreover, let the random variables vn = infx∈K fn(x), consider a minimizing sequence (xn)∞
n=0, given by

fn(xn) = infx∈K fn(x) and let v∗ = infx∈K f(x) and K∗ = {x ∈ K : f(x) = v∗}. Then vn → v∗ and
d(xn, K∗) → 0 a.s.

6.3.2 Strong Law of Large Numbers

Let (Mj , Lj)j≥1 be i.i.d. random variables taking values in Z = X × f⋆(X) ⊂ Rn×n × Rn×n =: S. We first
remark that S is a separable Banach space. Moreover, since f⋆(X) is compact as the continuous image of
the compact set X, it is bounded. Hence, there exists a bounded continuous function ι : Rn×n → Rn×n such
that ι|f⋆(X) is the identity. Then we define

h(θ, (Mj , Lj)) := ∥ι(Lj) − f̂θ(Mj)∥ℓ1

where f̂θ ∈ N σ,D
ρ,h is a neural network of depth D with the weights θ.

Lemma 6.2. The following properties are satisfied.

(P1) There exists κ > 0 such that for all Z = (M, L) ∈ Z and θ ∈ Θ̃D we have ∥f̂θ(M)∥ℓ1 ≤ κ.

(P2) Almost-surely the random function θ ∈ Θ̃M 7→ f̂θ is uniformly continuous.

Proof. By definition of the neural networks with sigmoid activation functions (in particular having bounded
outputs), all neural network outputs are bounded in terms of the norm of the network weights, which is
assumed to be bounded, not depending on the norm of the input.

Since the activation functions are continuous, also the neural networks are continuous with respect to their
weights θ, which implies that also θ ∈ Θ̃M 7→ f̂θ is continuous for any fixed input. Since Θ̃M is compact,
this automatically yields uniform continuity almost-surely and therefore finishes the proof of (P2).

17

Published in Transactions on Machine Learning Research (05/2023)

Proof of Theorem 4.7. We apply Lemma 6.1 to the sequence of i.i.d random function h(θ, (Mj , Lj)). With
(P1) of Lemma 6.2 and since ι is bounded we know that also

|h(θ, (Mj , Lj))| ≤ ∥ι(Lj)∥ℓ1 + ∥f̂θ(Mj)∥ℓ1

is bounded for θ ∈ Θ̃D. Hence, there exists some B > 0 such that

E(Mj ,Lj)∼P

[
sup

θ∈Θ̃D

|h(θ, (Mj , Lj))|
]

< B < ∞ (17)

By (P2) of Lemma 6.2, the function θ 7→ h(θ) is continuous. Therefore, we can apply Lemma 6.1, yielding
that almost-surely for N → ∞ the function

θ 7→ 1
N

N∑
j=1

h(θ, (Mj , Lj)) = Φ̂N
s (θ)

converges uniformly on Θ̃M to
θ 7→ EP[h(θ, (M1, L1))] = Φs(θ),

where we used that ι is the identity on f⋆(X).

Let Θmin
M ⊂ ΘD be the subset of weights that minimize Φs. We deduce from Lemma 6.1 that d(θD,N , Θmin

D) →
0 a.s. when N → ∞. Then there exists a sequence (θ̂D,N)N∈N in Θmin

D such that |θD,N − θ̂D,N |2 → 0 a.s. for
N → ∞. The uniform continuity of the random functions θ 7→ f̂θ on Θ̃D implies that |f̂θD,N

−f̂θ̂D,N
|2 → 0 a.s.

when N → ∞. By continuity of ι and the ℓ1-norm this yields |h(θD,N , (M1, L1)) − h(θ̂D,N , (M1, L1))| → 0
a.s. as N → ∞. With (17) we can apply dominated convergence which yields

lim
N→∞

EP

[
|h(θD,N , (M1, L1)) − h(θ̂D,N , (M1, L1))|

]
= 0.

Since for every integrable random variable Z we have 0 ≤ |E[Z]| ≤ E[|Z|] and since θ̂D,N ∈ Θmin
D we can

deduce

lim
N→∞

Φs(θD,N) = lim
N→∞

EP [h(θD,N , (M1, L1))]

= lim
N→∞

EP

[
h(θ̂D,N , (M1, L1))

]
= Φs(θD). (18)

We define N0 := 0 and for every D ∈ N

ND := min
{

N ∈ N | N > ND−1, |Φs(θD,N) − Φs(θD)| ≤ 1
D },

which is possibly due to (18). Then Theorem 4.6 implies that

EP

[
∥f̂θD,ND

(M) − f⋆(M)∥ℓ1

]
= Φs(θD,ND

) ≤ 1
D + Φs(θD) D→∞−−−−→ 0,

which concludes the proof.

6.4 Proof of Convergence of Denise in Unsupervised Learning Task

Proof of Theorem 4.9. Fix ϵ > 0. Let fϵ ∈
√

C(X̃, Pk,n) be such that E(M,L)∼P̃[∥M − fϵ(M)∥ℓ1] < Φmin + ϵ.
From Theorem 4.3 we know that there exists some depth D and weights θ̃D such that the resulting neural
network f̂θ̃D

∈ N σ
g,h satisfies maxM∈X̃ ∥fϵ (M) − f̂θ̃D

(M)∥ℓ1 < ϵ. Since θD ∈ ΘD is chosen to minimise Φu,
we get by triangle inequality

Φu(θD) ≤ Φu(θ̃D) = E(M,L)∼P̃[∥M − f̂θ̃D
(M)∥ℓ1]

≤ E(M,L)∼P̃[∥M − fϵ(M)∥ℓ1] + E(M,L)∼P̃[∥fϵ(M) − f̂θ̃D
(M)∥ℓ1]

≤ Φmin + 2ϵ.

18

Published in Transactions on Machine Learning Research (05/2023)

Since Φu(θD) ≥ Φmin by definition, we have |Φu(θD) − Φmin| ≤ |Φu(θ̃D) − Φmin| ≤ 2ϵ. Using that Φu(θD) is
decreasing in D, we can conclude that |Φu(θD) − Φmin| D→∞−−−−→ 0.

Proof of Theorem 4.10. The first two claims follow analogously as in the proof of Theorem 4.7. Choosing the
sequence ND similarly as in the proof of Theorem 4.7 and combining these first two results and Theorem 4.9
via triangle inequality proves that Φ̂N

u (θD,ND
) converges to Φmin.

7 Discussion

We provide a simple deep learning based algorithm to decompose positive semidefinite matrices into low
rank plus sparse matrices. After the deep neural network was trained, only an evaluation of it is needed to
decompose any new unseen matrix. Therefore, the computation time is negligible, which is an undeniable
advantage in comparison with the classical algorithms. To support our claim, we provided theoretical
guarantees for the recovery of the optimal decomposition. To the best of our knowledge, this is the first time
that neural networks are used to learn the low rank plus sparse decomposition for any unseen matrix. The
obtained results are very promising. We believe that this subject merits to be further investigation for all
online applications where the decomposition must be instantaneous and stable with respect to the inputs.

In future work, Denise’s algorithm can be extended to no longer require M to be positive semidefinite such
that M can be any n × n matrix. This can be achieved by replacing the feature map h with a standard
vectorization operation. Furthermore, Denise’s deep learning architecture can be modified to encode different
structures in L by modifying its output layer. E.g. full-rank matrices can be produced using the output
layer/readout-map described in (Kratsios & Papon, 2022, Section 3.4.2) and examples of other structures
which can be encoded in L by modifying Denise’s output layers can be borrowed from Meyer et al. (2011).

Acknowledgement

We thank Hartmut Maennel, Maximilian Nitzschner, Thorsten Schmidt and Martin Stefanik for valuable re-
marks and helpful discussions. Moreover, the authors would like to acknowledge support for this project from
the Swiss National Science Foundation (SNF grant 179114) and partially funded by the NSERC Discovery
grant (RGPIN-2023-04482).

References
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
qiang Zheng. Tensorflow: Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

Pierre Ablin, Thomas Moreau, Mathurin Massias, and Alexandre Gramfort. Learning step sizes for unfolded
sparse coding. arXiv preprint arXiv:1905.11071, 2019.

Yacine Aït-Sahalia and Dacheng Xiu. Using principal component analysis to estimate a high dimensional
factor model with high-frequency data. Journal of Econometrics, 201(2):384 – 399, 2017. ISSN 0304-4076.

Yacine Aït-Sahalia and Dacheng Xiu. Principal component analysis of high-frequency data. Journal of the
American Statistical Association, 114(525):287–303, 2019.

Yacine Aït-Sahalia, Jianqing Fan, and Dacheng Xiu. High-frequency covariance estimates with noisy and
asynchronous financial data. Journal of the American Statistical Association, 105(492):1504–1517, 2010.

19

Published in Transactions on Machine Learning Research (05/2023)

Charalambos D. Aliprantis and Kim C. Border. Infinite-dimensional analysis. Springer-Verlag, Berlin,
second edition, 1999. ISBN 3-540-65854-8. A hitchhiker’s guide.

Michel Baes, Calypso Herrera, Ariel Neufeld, and Pierre Ruyssen. Low-rank plus sparse decomposition of
covariance matrices using neural network parametrization. arXiv preprint, pp. arXiv:1908.00461, 2019.

Afonso S. Bandeira, Nicolas Boumal, and Vladislav Voroninski. On the low-rank approach for semidefinite
programs arising in synchronization and community detection. In 29th Annual Conference on Learning
Theory, volume 49 of Proceedings of Machine Learning Research, 2016.

Andrew R Barron. Neural net approximation. In Proc. 7th Yale workshop on adaptive and learning systems,
volume 1, pp. 69–72, 1992.

Nicolas Boumal, Vladislav Voroninski, and Afonso S. Bandeira. The non-convex burer–monteiro approach
works on smooth semidefinite programs. In Proceedings of the 30th International Conference on Neural
Information Processing Systems, pp. 2765–2773, 2016.

Thierry Bouwmans, Necdet Serhat Aybat, and El-hadi Zahzah. Handbook of Robust Low-Rank and
Sparse Matrix Decomposition: Applications in Image and Video Processing. 2016. ISBN 1498724620,
9781498724623.

Samuel Burer and Renato D.C. Monteiro. A nonlinear programming algorithm for solving semidefinite
programs via low-rank factorization. Mathematical Programming (series B, 95:2003, 2001.

Emmanuel J. Candes, Xiaodong Li, Yi Ma, and John Wright. Robust principal component analysis? J.
ACM, 58(3):11:1–11:37, June 2011. ISSN 0004-5411.

Raghavendra Chalapathy, Aditya Krishna Menon, and Sanjay Chawla. Robust, deep and inductive anomaly
detection. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
pp. 36–51. Springer, 2017.

V. Chandrasekaran, P. A. Parrilo, and A. S. Willsky. Latent variable graphical model selection via convex
optimization. In 2010 48th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pp. 1610–1613, 2010.

Yudong Chen and Martin J. Wainwright. Fast low-rank estimation by projected gradient descent: General
statistical and algorithmic guarantees. arXiv preprint arXiv:1509.03025, 2015.

Yeshwanth Cherapanamjeri, Kartik Gupta, and Prateek Jain. Nearly optimal robust matrix completion.
In Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pp. 797–805, 2017.

François Chollet et al. Keras, 2015.

Donald L. Cohn. Measure theory. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced
Texts: Basel Textbooks]. Birkhäuser/Springer, New York, second edition, 2013. ISBN 978-1-4614-6955-1;
978-1-4614-6956-8.

Christopher De Sa, Kunle Olukotun, and Christopher Ré. Global convergence of stochastic gradient descent
for some non-convex matrix problems. arXiv preprint arXiv:1411.1134, 2014.

C. H. Q. Ding, T. Li, and M. I. Jordan. Convex and semi-nonnegative matrix factorizations. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 32(1):45–55, 2010.

Matteo Focardi. γ-convergence: a tool to investigate physical phenomena across scales. Mathematical
Methods in the Applied Sciences, 35(14):1613–1658, 2012.

Rong Ge, Jason D. Lee, and Tengyu Ma. Matrix completion has no spurious local minimum. In Proceedings
of the 30th International Conference on Neural Information Processing Systems, pp. 2981–2989, Red Hook,
NY, USA, 2016. Curran Associates Inc. ISBN 9781510838819.

20

Published in Transactions on Machine Learning Research (05/2023)

Samuel Gershman and Noah Goodman. Amortized inference in probabilistic reasoning. In Proceedings of
the annual meeting of the cognitive science society, volume 36, 2014.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceedings of the 27th
international conference on international conference on machine learning, pp. 399–406, 2010.

William Harvey, Andreas Munk, Atılım Güneş Baydin, Alexander Bergholm, and Frank Wood. Attention
for inference compilation. arXiv preprint arXiv:1910.11961, 2019.

Jun He, Laura Balzano, and John Lui. Online robust subspace tracking from partial information. arXiv
preprint arXiv:1109.3827, 2011.

Nicholas J Higham. Accuracy and stability of numerical algorithms, volume 80. Siam, 2002.

Nicholas J. Higham and Nataša Strabić. Bounds for the distance to the nearest correlation matrix. SIAM
Journal on Matrix Analysis and Applications, 37(3):1088–1102, 2016.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359–366, 1989.

D. Hsu, S. M. Kakade, and T. Zhang. Robust matrix decomposition with sparse corruptions. IEEE Trans-
actions on Information Theory, 57(11):7221–7234, 2011.

Michel Journée, Francis Bach, P-A Absil, and Rodolphe Sepulchre. Low-rank optimization for semidefinite
convex problems. arXiv preprint arXiv:0807.4423, 2008.

Michel Journée, Francis Bach, Pierre-Antoine Absil, and Rodolphe Sepulchre. Low-rank optimization on the
cone of positive semidefinite matrices. SIAM Journal on Optimization, 20(5):2327–2351, 2010.

Patrick Kidger and Terry Lyons. Universal approximation with deep narrow networks. In Jacob Abernethy
and Shivani Agarwal (eds.), Proceedings of Thirty Third Conference on Learning Theory, volume 125 of
Proceedings of Machine Learning Research, pp. 2306–2327. PMLR, 09–12 Jul 2020.

Achim Klenke. Probability theory: a comprehensive course. Springer Science & Business Media, 2013.

Anastasis Kratsios and Ievgen Bilokopytov. Non-euclidean universal approximation. Advances in Neural
Information Processing Systems, 2020.

Anastasis Kratsios and Léonie Papon. Universal approximation theorems for differentiable geometric deep
learning. Journal of Machine Learning Research, 23(196):1–73, 2022.

Da Kuang, Chris Ding, and Haesun Park. Symmetric Nonnegative Matrix Factorization for Graph Clustering,
pp. 106–117. 2012.

Bernard Lapeyre and Jérôme Lelong. Neural network regression for bermudan option pricing.
arXiv:1907.06474, 2019.

Tuan Anh Le, Atilim Gunes Baydin, and Frank Wood. Inference compilation and universal probabilistic
programming. In Artificial Intelligence and Statistics, pp. 1338–1348. PMLR, 2017.

Michel Ledoux and Michel Talagrand. Probability in banach spaces. Springer-Verlag, 62:67–69, 1991.

Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix factorization. In Advances in
Neural Information Processing Systems 13, pp. 556–562. 2001.

Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward networks with
a nonpolynomial activation function can approximate any function. Neural networks, 6(6):861–867, 1993.

Qiuwei Li, Zhihui Zhu, and Gongguo Tang. The non-convex geometry of low-rank matrix optimization.
Information and Inference: A Journal of the IMA, 8(1):51–96, 2019.

21

Published in Transactions on Machine Learning Research (05/2023)

Zhouchen Lin, Risheng Liu, and Zhixun Su. Linearized alternating direction method with adaptive penalty
for low-rank representation. In Advances in Neural Information Processing Systems 24, pp. 612–620. 2011.

Jianfeng Lu, Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network approximation for smooth
functions. SIAM J. Math. Anal., 53(5):5465–5506, 2021. ISSN 0036-1410.

Gilles Meyer, Silvère Bonnabel, and Rodolphe Sepulchre. Regression on fixed-rank positive semidefinite
matrices: A riemannian approach. Journal of Machine Learning Research, 12(18):593–625, 2011.

James R. Munkres. Topology. Prentice Hall, Inc., Upper Saddle River, NJ, 2000. ISBN 0-13-181629-2.
Second edition of [MR0464128].

James R Munkres. Elements of algebraic topology. CRC Press, 2018.

Praneeth Narayanamurthy and Namrata Vaswani. Nearly optimal robust subspace tracking. In International
Conference on Machine Learning, pp. 3701–3709. PMLR, 2018.

Praneeth Netrapalli, Niranjan U N, Sujay Sanghavi, Animashree Anandkumar, and Prateek Jain. Non-
convex robust pca. In Advances in Neural Information Processing Systems 27, pp. 1107–1115. 2014.

Duc Minh Nguyen, Evaggelia Tsiligianni, and Nikos Deligiannis. Matrix Factorization via Deep Learning.
pp. arXiv:1812.01478, 2018.

Riccardo Rebonato and Peter Jäckel. The most general methodology for creating a valid correlation matrix
for risk management and option pricing purposes. Journal of Multivariate Analysis, 1998.

Paul Rodriguez and Brendt Wohlberg. Fast principal component pursuit via alternating minimization. pp.
69–73, 2013.

Reuven Y Rubinstein and Alexander Shapiro. Discrete event systems: Sensitivity analysis and stochastic
optimization by the score function method. Wiley, 1993.

Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. Autorec: Autoencoders meet collab-
orative filtering. In Proceedings of the 24th International Conference on World Wide Web, pp. 111–112,
2015.

Zuowei Shen, Haizhao Yang, and Shijun Zhang. Optimal approximation rate of ReLU networks in terms of
width and depth. J. Math. Pures Appl. (9), 157:101–135, 2022. ISSN 0021-7824.

Andrews Sobral, Thierry Bouwmans, and El-hadi Zahzah. Lrslibrary: Low-rank and sparse tools for back-
ground modeling and subtraction in videos. In Robust Low-Rank and Sparse Matrix Decomposition:
Applications in Image and Video Processing. CRC Press, Taylor and Francis Group., 2015.

Oren Solomon, Regev Cohen, Yi Zhang, Yi Yang, Qiong He, Jianwen Luo, Ruud JG van Sloun, and Yonina C
Eldar. Deep unfolded robust pca with application to clutter suppression in ultrasound. IEEE transactions
on medical imaging, 39(4):1051–1063, 2019.

Wang Song and Xia Shaowei. Robust pca based on neural networks. In Proceedings of the 36th IEEE
Conference on Decision and Control, volume 1, pp. 503–508. IEEE, 1997.

George Trigeorgis, Konstantinos Bousmalis, Stefanos Zafeiriou, and Björn W. Schuller. A deep semi-nmf
model for learning hidden representations. In Proceedings of the 31st International Conference on Inter-
national Conference on Machine Learning - Volume 32, pp. II–1692–II–1700, 2014.

Stephen Willard. General topology. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills,
Ont., 1970.

John Wright, Arvind Ganesh, Shankar Rao, Yigang Peng, and Yi Ma. Robust principal component analysis:
Exact recovery of corrupted low-rank matrices via convex optimization. In Advances in Neural Information
Processing Systems 22, pp. 2080–2088. 2009.

22

Published in Transactions on Machine Learning Research (05/2023)

Huan Xu, Constantine Caramanis, and Sujay Sanghavi. Robust pca via outlier pursuit. In Advances in
Neural Information Processing Systems 23, pp. 2496–2504. 2010.

Hong-Jian Xue, Xin-Yu Dai, Jianbing Zhang, Shujian Huang, and Jiajun Chen. Deep matrix factorization
models for recommender systems. In Proceedings of the 26th International Joint Conference on Artificial
Intelligence, IJCAI’17, pp. 3203–3209, 2017.

Xinyang Yi, Dohyung Park, Yudong Chen, and Constantine Caramanis. Fast algorithms for robust pca via
gradient descent. In Advances in Neural Information Processing Systems 29, pp. 4152–4160. 2016.

23

	Introduction
	Related Work
	Denise
	Supervised Learning
	Unsupervised Learning
	Combining Supervised Learning and Unsupervised Finetuning

	Theoretical Guarantees for Denise
	Notation
	Solution Operator to the Learning Problem
	Novel Universal Approximation Theorem
	Convergence of Denise to a Solution Operator of the Supervised Learning Problem
	Convergence of Denise in the Unsupervised Learning Problem

	Numerical Results
	Supervised Training
	Evaluation
	Evaluation on Differently Generated Synthetic Data

	A Note on the Computation Time of Denise
	Application on S&P500 Stocks Portfolio
	Discussion of the Computational Challenges for Denise

	Proofs
	Proof of Low Rank Recovery via Universal Approximation
	Proof of Convergence of Supervised Denise to a Solution Operator of the Learning Problem
	Proof of Convergence of the Monte Carlo Approximation
	Convergence of Optimization Problems
	Strong Law of Large Numbers

	Proof of Convergence of Denise in Unsupervised Learning Task

	Discussion

