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Abstract

Principal Components Analysis (PCA) is a dimension-reduction technique widely
used in machine learning and statistics. However, due to the dependence of the
principal components on all the dimensions, the components are notoriously hard to
interpret. Therefore, a variant known as sparse PCA is often preferred. Sparse PCA
learns principal components of the data but enforces that such components must
be sparse. This has applications in diverse fields such as computational biology
and image processing. To learn sparse principal components, it’s well known
that standard PCA will not work, especially in high dimensions, and therefore
algorithms for sparse PCA are often studied as a separate endeavor. Various
algorithms have been proposed for Sparse PCA over the years, but given how
fundamental it is for applications in science, the limits of efficient algorithms
are only partially understood. In this work, we study the limits of the powerful
Sum of Squares (SoS) family of algorithms for Sparse PCA. SoS algorithms have
recently revolutionized robust statistics, leading to breakthrough algorithms for
long-standing open problems in machine learning, such as optimally learning
mixtures of gaussians, robust clustering, robust regression, etc. Moreover, it is
believed to be the optimal robust algorithm for many statistical problems. Therefore,
for sparse PCA, it’s plausible that it can beat simpler algorithms such as diagonal
thresholding that have been traditionally used. In this work, we show that this is not
the case, by exhibiting strong tradeoffs between the number of samples required,
the sparsity and the ambient dimension, for which SoS algorithms, even if allowed
sub-exponential time, will fail to optimally recover the component. Our results
are complemented by known algorithms in literature, thereby painting an almost
complete picture of the behavior of efficient algorithms for sparse PCA. Since SoS
algorithms encapsulate many algorithmic techniques such as spectral or statistical
query algorithms, this solidifies the message that known algorithms are optimal for
sparse PCA. Moreover, our techniques are strong enough to obtain similar tradeoffs
for Tensor PCA, another important higher order variant of PCA with applications
in topic modeling, video processing, etc.

1 Introduction

Principal components analysis (PCA) [62] is a popular data processing and dimension reduction
routine that is widely used. It has numerous applications in Machine Learning, Statistics, Engineering,
Biology, etc. Given a dataset, PCA projects the data to a lower dimensional space spanned by
the principal components. The intuition is that PCA sheds lower order information such as noise
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but importantly preserves much of the intrinsic information present in the data that are needed for
downstream tasks.

However, despite great optimality properties, PCA has its drawbacks. Firstly, because the
principal components are linear combinations of all the original variables, it’s notoriously hard to
interpret them [84]. Secondly, it’s well known that PCA does not yield good estimators in high
dimensional settings [13, 97, 61].

To address these issues, a variant of PCA known as Sparse PCA is often used. Sparse PCA
searches for principal components of the data with the added constraint of sparsity. Concretely,
consider given data v1, v2, . . . , vm 2 Rd. In Sparse PCA, we want to find the top principal component
of the data under the extra constraint that it has sparsity at most k. That is, we want to find a vector
v 2 Rd that maximizes

Pm
i=1hv, vii2 such that kvk0  k.

Sparse PCA has enjoyed applications in a diverse range of fields ranging from medicine, compu-
tational biology, economics, image and signal processing, finance and of course, machine learning
and statistics (e.g. [117, 89, 85, 115, 31, 2]). It’s worth noting that in some of these applications,
other algorithms are also often used to learn statistical models with sparse structure, such as greedy
algorithms (e.g. [60, 81, 59, 124]) and score-based algorithms (e.g. [28, 90, 107]) but in this work,
we focus on the widely used sparse PCA technique. Sparse PCA comes with the important benefit
that the learnt components are easier to interpret. A notable example of this is to recover topics
from documents [32, 95]. Moreover, this has important benefits for algorithmic fairness in machine
learning.

A large volume of research has been devoted to study Sparse PCA and its variants. Algorithms
have been proposed and studied by several works, e.g. [4, 83, 73, 33, 118, 20, 82, 34, 54, 23, 35,
29, 36]. For example, simple variants of PCA such as thresholding on top of standard PCA [61, 29]
work well in certain parameter settings. This leads to the natural question whether more sophisticated
algorithms can do better either for these settings or other parameter settings.

On the other hand, there have been works from the inapproximability perspective as well (e.g.
[20, 54, 23, 73, 35, 118], see Section 3.1 for a more detailed overview) In particular, a lot of these
inapproximability results have relied on various other conjectures, due to the difficulty of proving
unconditional lower bounds. Despite these prior works, exactly understanding the limits of efficient
algorithms to this problem is still an active research area. This is natural considering the importance
of sparse PCA and how fundamental it is to a multitude of applications.

In this work, we focus on the powerful Sum-of-Squares (SoS) family of algorithms [113, 92, 96,
48] based on semidefinite programming relaxations. SoS algorithms have recently revolutionized
robust machine learning, a branch of machine learning where the underlying dataset is noisy, with
the noise being either random or adversarial. Robust machine learning has gotten a lot of attention
in recent years because of its wide variety of use cases in machine learning and other downstream
applications, including safety-critical ones like autonomous driving. For example, there has been a
high volume of practical works in computer vision [114, 47, 121, 50, 112, 122, 42, 76] and speech
recognition [57, 119, 106, 108, 78, 3, 91, 94]. In this important field, SoS has recently lead to
breakthrough algorithms for long-standing open problems [16, 80, 51, 70, 43, 72, 14, 15, 111].
Highlights include

- Robustly learning mixtures of high dimensional Gaussians. This is an extremely important
problem that has been subjected to intense scrutiny, with a long line of work culminating in
[16, 80].

- Efficient algorithms for the fundamental problems of regression [70], moment estimation
[72], clustering [14] and subspace recovery [15] in the presence of outliers. Also known as
robust machine learning, this setting is more akin to real life data which almost always has
outliers or corrupted data.

Moreover, SoS algorithms are believed to be the optimal robust algorithm for many statistical
problems. In a different direction, SoS algorithms have led to the design of fast algorithms for
problems such as tensor decomposition [53, 111].

Put more concretely, SoS algorithms, also known as the SoS hierarchy or the Lasserre hieararchy,
offers a series of convex semidefinite programming (SDP) based relaxations to optimization problems.
Due to its ability to capture a wide variety of algorithmic techniques, it has become a fundamental tool
in algorithms and optimization. It was and still remains an extremely versatile tool for combinatorial
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optimization [46, 9, 49, 102]) but recently, it is being extensively used in Statistics and Machine
Learning (apart from the references above, see also [17, 18, 52, 100]).

Therefore, we ask (also raised by and posed as an open problem in the works [82, 54, 55])
Can Sum-of-Squares algorithms beat known algorithms for Sparse PCA?
In this work, we show that SoS algorithms cannot beat known spectral algorithms, even if

we allow sub-exponential time! Therefore, this suggests that currently used algorithms such as
thresholding or other spectral algorithms are in a sense optimal for this problem.

To prove our results, we will consider random instances of Sparse PCA and show that they are
naturally hard for SoS. In particular, we focus on the Wishart random model of Sparse PCA. This
model is a more natural modeling assumption compared to other random models that have been
studied before, such as the Wigner random model.

Note importantly that our model assumptions only strengthen our results because we are proving
impossibility results. In other words, if SoS algorithms do not work for this restricted version of
sparse PCA, then it will not work for more general models, e.g. with general covariance or multiple
spikes. We now describe the model.

The Wishart model of Sparse PCA, also known as the Spiked Covariance model, was originally
proposed by [61]. In this model, we observe m vectors v1, . . . , vm 2 Rd from the distribution
N (0, Id + �uuT ) where u is a k-sparse unit vector, that is, kuk0  k and we would like to recover
the principal component u. Here, the sparsity of a vector is the number of nonzero entries and � is
known as the signal-to-noise ratio.

As the signal to noise ratio � gets lower, it becomes harder and maybe even impossible to recover
u since the signature left by u in the data becomes fainter. But it’s possible that this may be mitigated
if the number of samples m grows. Therefore, there is a tradeoff between m, d, k and � at play here.
Algorithms proposed earlier have been able to recover u at various regimes. For example, if the
number of samples is really large, namely m � max( d� ,

d
�2 ), then standard PCA will work. But if

this is not the case, we may still be able to recover u by assuming that the sparsity is not too large
compared to the number of samples, namely m � k2

�2 . To do this, we use a variant of standard PCA
known as diagonal thresholding. Similar results have been obtained for various regimes, while some
regimes have resisted attack to algorithms.

Our results here complete the picture by showing that in the regimes that have so far resisted attack
by efficient algorithms, the powerful Sum of Squares algorithms also cannot recover the principal
component. We now state our theorem informally, with the formal statement in Theorem 3.1.

Theorem 1.1. For the Wishart model of Sparse PCA, sub-exponential time SoS algorithms fail to
recover the principal component when the number of samples m ⌧ min( d

�2 ,
k2

�2 ) .

In particular, this theorem resolves an open problem posed by [82] and [54, 55].
In almost all other regimes, algorithms to recover the principal component u exist. We give a

summary of such algorithms in Section 3, captured succinctly in Fig. 1. We say almost all other
regimes because there is one interesting regime, namely d

�2  m  min(d,k)
� marked by light green

in Fig. 1, where we can show that information theoretically, we cannot recover u but it’s possible
to do hypothesis testing of Sparse PCA. That is, in this regime, we can distinguish purely random
unspiked samples from the spiked samples. However, we will not be able to recover the principal
component even if we use an exponential time bruteforce algorithm.

We use our techniques to also obtain strong results for the related Tensor Principal components
analysis (Tensor PCA) problem. Tensor PCA, originally introduced by [110], is a generalization
of PCA to higher order tensors. Formally, given an order k tensor of the form �u⌦k + B where
u 2 Rn is a unit vector and B 2 R[n]k has independent Gaussian entries, we would like to recover
the principal component u. Here, � is known as the signal-to-noise ratio.

Tensor PCA is a remarkably useful statistical and computational technique to exploit higher
order moments of the data. It was originally envisaged to be applied in latent variable modeling
and indeed, it has found multiple applications in this context (e.g. [5, 68, 69, 6]). Here, a tensor
containing statistics of the input data is computed and then it’s decomposed in order to recover the
latent variables. Because of the technique’s versatility, it has gathered a lot of attention in machine
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(a) SNR � � 1

(b) SNR � < 1

Figure 1: Computational barrier diagram for Sparse PCA

learning with applications in topic modeling, video processing, collaborative filtering, community
detection, etc. (see e.g. [56, 7, 110, 5, 6, 38, 79] and references therein.)

For Tensor PCA, similar to sparse PCA, there has been wide interest in the community to study
algorithms (e.g. [11, 22, 52, 53, 110, 125, 120, 67, 8]) as well as approximability and hardness (e.g.
[88, 75, 24, 54], see Section 3.2 for a more detailed overview). It’s worth noting that many of these
hardness results are conditional, that is, they rely on various conjectures, sometimes stronger than
P 6= NP. Moreover, there has been widespread interest from the statistics community as well, e.g.
[58, 98, 77, 26, 27], due to fascinating connections to random matrix theory and statistical physics.

In this work, we study the performance of sub-exponential time Sum of Squares algorithms for
Tensor PCA. Our main result is stated informally below and formally in Theorem 3.2.

Theorem 1.2. For Tensor PCA, sub-exponential time SoS algorithms fail to recover the principal
component when the signal to noise ratio � ⌧ n

k

4 .

In particular, this resolves an open question posed by the works [52, 22, 54, 55].
Therefore, our main contributions can be summarized as follows
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1. Despite the huge breakthroughs achieved by Sum-of-Squares algorithms in recent works on
high dimensional statistics, we show barriers to it for the fundamental problems of Sparse
PCA and Tensor PCA.

2. We achieve optimal tradeoffs compared to known algorithms, thereby painting a full pic-
ture of the computational thresholds of tractable algorithms. This suggests that existing
algorithms are preferrable for PCA and its variants.

3. Prior lower bounds for these problems have either focused on weaker classes of algorithms
or were obtained assuming other hardness conjectures, whereas we prove high degree
sub-exponential time SoS lower bounds without relying on any conjectures.

Acknowledgements and Bibliographic note We thank Sam Hopkins, Pravesh Kothari, Prasad
Raghavendra, Tselil Schramm, David Steurer and Madhur Tulsiani for helpful discussions. We also
thank Sam Hopkins and Pravesh Kothari for assistance in drafting the informal description of the
machinery (Section C). Parts of this work have also appeared in [99, 104].

2 Sum-of-Squares algorithms

The Sum of Squares (SoS) hierarchy is a powerful class of algorithms that utilizes the power of
semidefinite programming for optimization problems, which has achieved breakthrough algorithms
for many problems in machine learning and statistics. In this section, we briefly describe the sum of
squares hierarchy of algorithms. For a more detailed treament with an eye towards applications to
machine learning and statistics, see the ICM survey [102] or the monograph [43].

Given an optimization problem given by a program with polynomial constraints, the SoS
hierarchy of algorithms gives a family of convex relaxations parameterized by an integer known as
its degree. As the degree gets higher, the running time to solve the convex relaxation increases but
on the other hand, the relaxation gets stronger and hence serves as a better algorithm. This offers a
smooth tradeoff between running time and the quality of approximation. In general, we can solve
degree-Dsos SoS in nO(Dsos) time †. Therefore, constant degree SoS corresponds to polynomial time
algorithms which in general translates to efficient algorithms. In this work, we focus on and show
limitations of degree n" SoS which corresponds to subexponential running time.

Suppose we are given multivariate polynomials p, g1, . . . , gm on n variables x1, . . . , xn (denoted
collectively by x) taking real values. Consider the task:

maximize p(x) such that g1(x) = 0, . . . , gm(x) = 0

In general, we could also allow inequality constraints, e.g., gi(x) � 0. In this work, we only
have equality constraints but much of the theory generalizes when we have inequality constraints
instead.

We now formally describe the Sum of Squares hierarchy of algorithms, via the so-called pseudo-
expectation operators.
Definition 2.1 (Pseudo-expectation values). Given multivariate polynomial constraints g1 =
0,. . . ,gm = 0 on n variables x1, . . . , xn, degree Dsos pseudo-expectation values are a linear map Ẽ
from polynomials of x1, . . . , xn of degree at most Dsos to R satisfying the following conditions:

1. Ẽ[1] = 1,

2. Ẽ[f · gi] = 0 for every i 2 [m] and polynomial f such that deg(f · gi)  Dsos.

3. Ẽ[f2] � 0 for every polynomial f such that deg(f2)  Dsos.

Any linear map Ẽ satisfying the above properties is known as a degree Dsos pseudoexpectation
operator satisfying the constraints g1 = 0, . . . , gm = 0.

The intuition behind pseudo-expectation values is that the conditions on the pseudo-expectation
values are conditions that would be satisfied by any actual expectation operator that takes expected
values over a distribution of true optimal solutions, so optimizing over pseudo-expectation values
gives a relaxation of the problem.

†In pathological cases, there may be issues with bit complexity but that will not appear in our settings. For
details, see [93, 101]
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Definition 2.2 (Degree Dsos SoS). The degree Dsos SoS relaxation for the polynomial optimization
problem

maximize p(x) such that g1(x) = 0, . . . , gm(x) = 0

is the program that maximizes Ẽ[p(x)] over all degree Dsos pseudoexpectation operators Ẽ satisfying
the constraints g1 = 0, . . . , gm = 0.

The main advantage is that the SoS relaxation can be efficiently solved via convex programming!
In particular, Item 3 in Definition 2.1 is equivalent to a matrix being positive semidefinite, therefore the
degree Dsos SoS relaxation can be done via semidefinite programming [116]. This meta-algorithm is
known as a degree-Dsos SoS algorithm. This algorithm runs in nO(Dsos) time†. Therefore, constant
degree SoS can be solved in polynomial time. In the next section, we apply SoS on PCA and formally
state our results.

2.1 Related algorithmic techniques

Statistical Query algorithms Statistical query algorithms are another popular restricted class of
algorithms introduced by [66]. In this model, for a given data distribution, we are allowed to query
expected value of functions. Concretely, for a dataset D on Rn, we have access to it via an oracle that
given as query a function f : Rn ! [�1, 1] returns Ex⇠D f(x) up to some additive adversarial error.
SQ algorithms capture a broad class of algorithms in statistics and machine learning and have been
used to study information-computation tradeoffs [109, 40, 30]. There has also been significant work
trying to understand the limits of SQ algorithms (e.g. [40, 41, 34]). Formally, SQ algorithms and
SoS are in general incomparable. However, the recent work [25] showed that under mild conditions,
low-degree polynomial algorithms (defined next) and statistical query algorithms have equivalent
power. But also, under these conditions, it’s easy to see that SoS is a more powerful algorithm
than low degree algorithms and hence, SoS algorithms are stronger than statistical query algorithms.
Therefore, SoS lower bounds as shown in this work give strictly stronger evidence of hardness than
SQ lower bounds.

Low degree polynomial algorithms In statistics, a hypothesis testing problem is a problem where
the input is sampled from one of two distributions and we would like to identify which distribution it
was sampled from. In this setting, a low degree polynomial algorithm is to compare the expectation
of a low-degree polynomial to try and distinguish the two distributions. This method has been used to
conjecture hardness thresholds for various problems [54, 55, 75]. However, under mild conditions,
the SoS hierarchy of algorithms is more powerful than low degree polynomial algorithms [54] and
therefore potentially yields better algorithms. Therefore, the SoS lower bounds shown in this work
are stronger than low degree polynomial lower bounds as well.

3 Lower bounds for Sparse Principal Components Analysis

In this section, we will state our main results for Sparse PCA and Tensor PCA.

3.1 Sparse PCA

We recall the setting of the Wishart model of Sparse PCA: We are given v1, . . . , vm 2 Rd sampled
from N (0, Id + �uuT ) where u is a k-sparse unit vector and we wish to recover u.

We will further assume that the entries of u are in {� 1p
k
, 0, 1p

k
} chosen such that the sparsity

is k (and hence, the norm is 1). Note importantly that this assumption is only strengthening our
result: If SoS cannot solve this problem even for this specific u, it cannot do any better for the general
problem with arbitrary u.

Let the vectors from the given dataset be v1, . . . , vm. Let them form the rows of a matrix
S 2 Rm⇥d. Let ⌃ = 1

m

Pm
i=1 viv

T
i be the sample covariance matrix. Then the standard PCA

objective is to maximize xT⌃x and recover x =
p
ku. Therefore, the sparse PCA problem can be

rephrased as

maximize
m

k
· xT⌃x =

1

k

mX

i=1

hx, vii2 such that x3
i = xi for all i  d and

dX

i=1

x2
i = k
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where the program variables are x1, . . . , xd. The constraint x3
i = xi enforces that the entries of x are

in {�1, 0, 1} and along with these constraints, the last condition
Pd

i=1 x
2
i = k enforces k-sparsity.

Now, we will consider the series of convex relaxations for Sparse PCA obtained by SoS algo-
rithms. In particular, we will consider SoS degree of d" for a small constant " > 0. Note that this
corresponds to SoS algorithms of subexponential running time in the input size dO(1).

Our main result states that for choices of m below a certain threshold, when the vectors
v1, . . . , vm are sampled from the unspiked standard Gaussian N (0, Id), then sub-exponential time
SoS algorithms will have optimal value at least m + m�. This is also the optimal value of the
objective in the case when the vectors v1, . . . , vm are indeed sampled from the spiked Gaus-
sian N (0, Id + �uuT ) and x =

p
ku. Therefore, SoS is unable to distinguish N (0, Id) from

N (0, Id + �uuT ) and hence cannot solve sparse PCA. Formally,

Theorem 3.1. For all sufficiently small constants " > 0, suppose m  d1�"

�2 ,m  k2�"

�2 , and for
some A > 0, dA  k  d1�A",

p
�p
k

 d�A", then for an absolute constant C > 0, with high
probability over a random m⇥ d input matrix S with Gaussian entries, the sub-exponential time SoS
algorithm of degree dC" for sparse PCA has optimal value at least m+m�� o(1).

In other words, sub-exponential time SoS cannot certify that for a random dataset with Gaussian
entries, there is no unit vector u with k nonzero entries and m · uT⌃u ⇡ m +m�. The proof of
Theorem 3.1 is deferred to the appendix.

A few remarks are in order.

1. Note here that m+m� is approximately the value of the objective when the input vectors
v1, . . . , vm are indeed sampled from the spiked model N (0, Id + �uuT ) and x =

p
ku.

Therefore, sub-exponential time SoS is unable to distinguish a completely random distribu-
tion from the spiked distribution and hence is unable to solve sparse PCA.

2. The constant A can be thought of as ⇡ 0 and it appears for technical reasons, to ensure that
we have sufficient decay in our bounds (see Remark K.8). In particular, most values of k,�
fall under the conditions of the theorem.

Informally, our main result says that when m ⌧ min
⇣

d
�2 ,

k2

�2

⌘
, then subexponential time SoS

cannot recover the principal component u. This is the content of Theorem 1.1.

Prior work on algorithms Due to its widespread importance, a tremendous amount of work has
been devoted to obtaining algorithms for sparse PCA, both theoretically and practically, [4, 83, 73,
33, 118, 20, 82, 34, 54, 23, 35, 29, 36] to cite a few.

We now place our result in the context of known algorithms for Sparse PCA and explain why it
offers tight tradeoffs between approximability and inapproximability. Between this work and prior
works, we completely understand the parameter regimes where sparse PCA is easy or conjectured
to be hard up to polylogarithmic factors. In Fig. 1a and Fig. 1b, we assign the different parameter
regimes into the following categories.

- Diagonal thresholding: In this regime, Diagonal thresholding [61, 4] recovers the sparse
vector. Covariance thresholding [73, 33] and SoS algorithms [37] can also be used in this
regime. The benefits of these alternate algorithms are that covariance thresholding has better
dependence on logarithmic factors and SoS algorithms works in the presence of adversarial
errors.

- Vanilla PCA: Vanilla PCA (i.e. standard PCA) can recover the vector, i.e. we do not need to
use the fact that the vector is sparse (see e.g. [21, 37]).

- Spectral: An efficient spectral algorithm recovers the sparse vector (see e.g. [37]).
- Can test but not recover: A simple spectral algorithm can solve the hypothesis testing version

of Sparse PCA but it is information theoretically impossible to recover the sparse vector [37,
Appendix E].

- Hard: A regime where it is conjectured to be hard for algorithms to recover the sparse
principal component. We discuss this in more detail below.
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In Fig. 1a and Fig. 1b, the regimes corresponding to Diagonal thresholding, Vanilla PCA and
Spectral are dark green, while the regimes corresponding to Spectral* and Hard are light green and
red respectively.

Prior work on hardness Prior works have explored statistical query lower bounds [25], basic SDP
lower bounds [73], reductions from conjectured hard problems [21, 20, 23, 44, 118], lower bounds
via the low-degree conjecture [35, 37], lower bounds via statistical physics [35, 12], etc. We note
that similar threshold behaviors as us have been predicted by [37], but importantly, they assume a
conjecture known as the low-degree likelihood conjecture. Similarly, many of these other lower
bounds rely on various conjectures. To put in context, the low-degree likelihood conjecture is a
stronger assumption than P 6= NP. In contrast, our results are unconditional and do not assume any
conjectures.

Compared to these other lower bounds, there have only been two prior works on lower bounds
against SoS algorithms [73, 21, 82] which are only for degree 2 and degree 4 SoS. In particular,
degree 2 SoS lower bounds have been studied in [73, 21] although they don’t state it this way. And
[82] obtained degree 4 SoS lower bounds but they were very lossy, i.e. they hold for a strict subset
of the Hard regime m ⌧ k2

�2 and m ⌧ d
�2 . Moreover, the ideas used in these prior works do not

generalize for higher degrees. The lack of other SoS lower bounds can be attributed to the difficulty
in proving such lower bounds. In this paper, we vastly strengthen these known results and show
almost-tight lower bounds for SoS algorithms of degree d" which correspond to sub-exponential
running time dd

O(")

. We note that SoS algorithms get stronger as the degree increases, therefore
our results immediately imply these prior results and even in the special case of degree 4 SoS, we
improve the known lossy bounds. In summary, Theorem 3.1 subsumes all these earlier known results
and is a vast improvement over prior known SoS lower bounds which provides compelling evidence
for the hardness of Sparse PCA in this parameter range.

The work [54] also states SoS lower bounds for Sparse PCA but it differs from our work in three
important aspects. First, they handle the related but qualitatively different Wigner model of Sparse
PCA. Their techniques fail for the Wishart model of Sparse PCA, which is more natural in practice.
We overcome this shortcoming and work with the Wishart model. We emphasize that their techniques
are insufficient to handle this generality and overcoming this is far from being a mere technicality.
On the other hand, our techniques can easily recover their results. Second, while they sketch a high
level proof overview for their lower bound, they don’t give a proof. On the other hand, our proofs
are fully explicit. Finally, they assume the input distribution has entries in {±1}, that is, they work
with the ±1 variant of PCA. On the other hand, we work with the more realistic setting where the
distribution is N (0, 1). Again, our techniques can easily recover their results as well.

3.2 Tensor PCA

We will now state our main result for Tensor PCA. Let k � 2 be an integer. We are given an order k
tensor A of the form A = �u⌦k +B where u 2 Rn is a unit vector and B 2 R[n]k has independent
Gaussian entries and we would like to recover the principal component u. Tensor PCA can be
rephrased by the program

maximize hA, x⌦ki = hA, x⌦ . . .⌦ x| {z }
k times

i such that
nX

i=1

x2
i = 1

where the program variables are x1, . . . , xn. The principal component u will then just be the returned
solution x. We will again consider sub-exponential time SoS algorithms, in particular degree n" SoS,
for this problem. This is sub-exponential time because the input size is nO(1).

We then show that if the signal to noise ratio � is below a certain threshold, then sub-exponential
time SoS for the unspiked input A ⇠ N (0, I[n]k) will have optimal value close to �, which is also
the optimal objective value in the spiked case when A = �u⌦k +B,B ⇠ N (0, I[n]k) and x = u. In
other words, SoS cannot distinguish the unspiked and spiked distributions and hence cannot recover
the principal component u.

Theorem 3.2. Let k � 2 be an integer. For all sufficiently small " > 0, if �  n
k

4�", for an absolute
constant C > 0, with high probability over a random tensor A ⇠ N (0, I[n]k), the sub-exponential
time SoS algorithm of degree nC" for Tensor PCA has optimal value at least �� o(1).
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Therefore, sub-exponential time SoS cannot certify that for a random tensor A ⇠ N (0, I[n]k),
there is no unit vector u such that hA, u⌦ . . .⌦ u| {z }

k times

i ⇡ �. The proof of Theorem 3.2 is deferred to the

appendix.
We again remark that when the tensor A is actually sampled from the spiked model A =

�u⌦k +B, the optimal objective value is approximately � when x = u. Therefore, this shows that
sub-exponential time SoS algorithms cannot solve Tensor PCA.

Informally, the theorem says that when the signal to noise ratio � ⌧ n
k

4 , SoS algorithms cannot
solve Tensor PCA, as stated in Theorem 1.2.

Prior work Algorithms for Tensor PCA have been studied in the works [11, 22, 52, 53, 110,
125, 120, 67, 8]. It was shown in [22] that the degree q SoS algorithm certifies an upper bound
of 2O(k)(n·polylog(n))k/4

qk/4�1/2 for the Tensor PCA problem. When q = n" this gives an upper bound of

n
k

4�O("). Therefore, our result is tight, giving insight into the computational threshold for Tensor
PCA.

Lower bounds for Tensor PCA have been studied in various forms including statistical query
lower bounds [25, 39], reductions from conjectured hard problems [123, 24], lower bounds from
the low-degree conjecture [54, 55, 75], evidence based on the landscape behavior [10, 88], etc.
Compared to a lot of these works which rely on various conjectures, we remark that our lower bounds
are unconditional and do not rely on any conjectures.

In [54], similar to Sparse PCA, they state a similar theorem for a different variant of Tensor
PCA. However, they do not give a proof whereas we give explicit proofs. In particular, they state
their result without proof for the ±1 variant of Tensor PCA whereas we work with the more realistic
setting where the distribution is N (0, 1). We remark that their techniques do not recover our results
but on the other hand, our techniques can recover theirs.

4 Related work

As stated in their respective sections, there have been some prior works on (degree at most 4) SoS
lower bounds on Sparse and Tensor PCA and various other lower bounds that have mostly relied
on various hardness conjectures, some of which are stronger than P 6= NP . The lack of results on
higher degree SoS, compared to other models, can be attributed to the difficulty of proving such lower
bounds, which we undertake in this work.

Sum of Squares lower bounds have been obtained for various problems of interest, such as
Sherrington-Kirkpatrick Hamiltonian [45, 74, 63, 104], Maximum Cut [87], Maximum Independent
Set [64, 104], Constraint Satisfaction Problems [71], Densest k-Subgraph [65], etc. The techniques
used in this work are closely related to the work [19] which proved Sum of Squares lower bounds
for a problem known as Planted Clique. Some of the ideas and techniques we employ in this work,
namely pseudo-calibration and graph matrices have also appeared in other works [87, 103, 45, 1, 64,
105, 63, 65]. It’s plausible that our generalized techniques could be applied to other high dimensional
statistical problems, which we leave for future work.

5 Conclusion

In this work, we show sub-exponential time lower bounds for the powerful Sum-of-Squares algorithms
for Sparse PCA and Tensor PCA. With the evergrowing research into better algorithms for Sparse PCA
[4, 83, 73, 33, 118, 20, 82, 34, 54, 23, 35, 36] and Tensor PCA [11, 22, 52, 53, 110, 125, 120, 67, 8],
combined with the recent breakthrough of Sum of Squares algorithms in statistics [16, 80, 51, 70, 43,
72, 14, 15, 111], it’s therefore an important goal to understand whether Sum of Squares algorithms
can beat state of the art algorithms for these problems.

In this work, we answer this negatively and show that even sub-exponential time SoS algorithms
cannot do much better than relatively simpler algorithms. In particular, we settle open problems raised
by [82, 54, 55, 52, 22]. Our work does not handle exponential time ⌦(n) degree SoS so analyzing
these algorithms is a potential future direction. Another important direction is to understand the limits
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of powerful algorithms such as SoS for other statistical problems of importance, such as mixture
modeling or clustering. For algorithm designers, our results illustrates the intrinsic difficulty of PCA
problems and sheds light on information-computation gaps exhibited by PCA. For practitioners, this
result provides strong evidence that existing algorithms work relatively well.
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[31] H. Chun and S. Keleş. Expression quantitative trait loci mapping with multivariate sparse
partial least squares regression. Genetics, 182(1):79–90, 2009.

[32] A. d’Aspremont, L. Ghaoui, M. Jordan, and G. Lanckriet. A direct formulation for sparse
pca using semidefinite programming. Advances in neural information processing systems, 17,
2004.

[33] Y. Deshpande and A. Montanari. Sparse pca via covariance thresholding. The Journal of
Machine Learning Research, 17(1):4913–4953, 2016.

[34] I. Diakonikolas, D. M. Kane, and A. Stewart. Statistical query lower bounds for robust
estimation of high-dimensional gaussians and gaussian mixtures. In 2017 IEEE 58th Annual
Symposium on Foundations of Computer Science (FOCS), pages 73–84. IEEE, 2017.

[35] Y. Ding, D. Kunisky, A. S. Wein, and A. S. Bandeira. Subexponential-time algorithms for
sparse pca. arXiv preprint arXiv:1907.11635, 2019.

[36] T. d’Orsi, P. K. Kothari, G. Novikov, and D. Steurer. Sparse pca: algorithms, adversarial
perturbations and certificates. In 2020 IEEE 61st Annual Symposium on Foundations of
Computer Science (FOCS), pages 553–564. IEEE, 2020.

[37] T. d’Orsi, P. K. Kothari, G. Novikov, and D. Steurer. Sparse pca: Algorithms, adversarial
perturbations and certificates. In 2020 IEEE 61st Annual Symposium on Foundations of
Computer Science (FOCS), 2020.

[38] O. Duchenne, F. Bach, I.-S. Kweon, and J. Ponce. A tensor-based algorithm for high-order
graph matching. IEEE transactions on pattern analysis and machine intelligence, 33(12):
2383–2395, 2011.

11



[39] R. Dudeja and D. Hsu. Statistical query lower bounds for tensor pca. Journal of Machine
Learning Research, 22(83):1–51, 2021.

[40] V. Feldman, E. Grigorescu, L. Reyzin, S. S. Vempala, and Y. Xiao. Statistical algorithms and a
lower bound for detecting planted cliques. Journal of the ACM (JACM), 64(2):1–37, 2017.

[41] V. Feldman, W. Perkins, and S. Vempala. On the complexity of random satisfiability problems
with planted solutions. SIAM Journal on Computing, 47(4):1294–1338, 2018.

[42] V. Fischer, M. C. Kumar, J. H. Metzen, and T. Brox. Adversarial examples for semantic image
segmentation. arXiv preprint arXiv:1703.01101, 2017.

[43] N. Fleming, P. Kothari, and T. Pitassi. Semialgebraic Proofs and Efficient Algorithm Design.
2019.

[44] C. Gao, Z. Ma, and H. H. Zhou. Sparse cca: Adaptive estimation and computational barriers.
The Annals of Statistics, 45(5):2074–2101, 2017.

[45] M. Ghosh, F. G. Jeronimo, C. Jones, A. Potechin, and G. Rajendran. Sum-of-squares lower
bounds for Sherrington-Kirkpatrick via Planted Affine Planes. In 2020 IEEE 61st Annual
Symposium on Foundations of Computer Science (FOCS), 2020.

[46] M. Goemans and D. Williamson. Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–1145, 1995.
Preliminary version in Proc. of STOC’94.

[47] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.

[48] D. Grigoriev. Complexity of positivstellensatz proofs for the knapsack. computational
complexity, 10(2):139–154, 2001.

[49] V. Guruswami and A. K. Sinop. Lasserre hierarchy, higher eigenvalues, and approximation
schemes for graph partitioning and quadratic integer programming with psd objectives. In
FOCS, pages 482–491, 2011.

[50] D. Hendrycks, K. Zhao, S. Basart, J. Steinhardt, and D. Song. Natural adversarial examples.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 15262–15271, 2021.

[51] S. B. Hopkins. Mean estimation with sub-gaussian rates in polynomial time. The Annals of
Statistics, 48(2):1193–1213, 2020.

[52] S. B. Hopkins, J. Shi, and D. Steurer. Tensor principal component analysis via sum-of-squares
proofs. In Conference on Learning Theory, pages 956–1006, 2015.

[53] S. B. Hopkins, T. Schramm, J. Shi, and D. Steurer. Fast spectral algorithms from sum-of-
squares proofs: tensor decomposition and planted sparse vectors. In Proceedings of the
forty-eighth annual ACM symposium on Theory of Computing, pages 178–191, 2016.

[54] S. B. Hopkins, P. K. Kothari, A. Potechin, P. Raghavendra, T. Schramm, and D. Steurer.
The power of sum-of-squares for detecting hidden structures. In 2017 IEEE 58th Annual
Symposium on Foundations of Computer Science (FOCS), pages 720–731. IEEE, 2017.

[55] S. B. K. Hopkins. Statistical inference and the sum of squares method. 2018.

[56] D. Hsu, S. M. Kakade, and T. Zhang. A spectral algorithm for learning hidden markov models.
Journal of Computer and System Sciences, 78(5):1460–1480, 2012.

[57] W.-N. Hsu, A. Sriram, A. Baevski, T. Likhomanenko, Q. Xu, V. Pratap, J. Kahn, A. Lee,
R. Collobert, G. Synnaeve, et al. Robust wav2vec 2.0: Analyzing domain shift in self-
supervised pre-training. arXiv preprint arXiv:2104.01027, 2021.

[58] A. Jagannath, P. Lopatto, and L. Miolane. Statistical thresholds for tensor pca. The Annals of
Applied Probability, 30(4):1910–1933, 2020.

12



[59] A. Jalali, C. Johnson, and P. Ravikumar. On learning discrete graphical models using greedy
methods. Advances in Neural Information Processing Systems, 24, 2011.

[60] C. Johnson, A. Jalali, and P. Ravikumar. High-dimensional sparse inverse covariance estimation
using greedy methods. In Artificial Intelligence and Statistics, pages 574–582. PMLR, 2012.

[61] I. M. Johnstone and A. Y. Lu. Sparse principal components analysis. arXiv preprint
arXiv:0901.4392, 2009.

[62] I. T. Joliffe and B. Morgan. Principal component analysis and exploratory factor analysis.
Statistical methods in medical research, 1(1):69–95, 1992.

[63] C. Jones. Symmetrized fourier analysis of convex relaxations for combinatorial optimization
problems. 2022.

[64] C. Jones, A. Potechin, G. Rajendran, M. Tulsiani, and J. Xu. Sum-of-squares lower bounds for
sparse independent set. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 406–416. IEEE, 2022.

[65] C. Jones, A. Potechin, G. Rajendran, and J. Xu. Sum-of-squares lower bounds for densest
k-subgraph. 2023.

[66] M. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM
(JACM), 45(6):983–1006, 1998.

[67] C. Kim, A. S. Bandeira, and M. X. Goemans. Community detection in hypergraphs, spiked
tensor models, and sum-of-squares. In 2017 International Conference on Sampling Theory
and Applications (SampTA), pages 124–128. IEEE, 2017.

[68] B. Kivva, G. Rajendran, P. Ravikumar, and B. Aragam. Learning latent causal graphs via
mixture oracles. Advances in Neural Information Processing Systems, 34, 2021.

[69] B. Kivva, G. Rajendran, P. Ravikumar, and B. Aragam. Identifiability of deep generative
models under mixture priors without auxiliary information. arXiv preprint arXiv:2206.10044,
2022.

[70] A. Klivans, P. K. Kothari, and R. Meka. Efficient algorithms for outlier-robust regression. In
Conference On Learning Theory, pages 1420–1430. PMLR, 2018.

[71] P. Kothari, R. Mori, R. O’Donnell, and D. Witmer. Sum of squares lower bounds for refuting
any CSP. 2017.

[72] P. K. Kothari and D. Steurer. Outlier-robust moment-estimation via sum-of-squares. arXiv
preprint arXiv:1711.11581, 2017.

[73] R. Krauthgamer, B. Nadler, D. Vilenchik, et al. Do semidefinite relaxations solve sparse pca
up to the information limit? The Annals of Statistics, 43(3):1300–1322, 2015.

[74] D. Kunisky. Positivity-preserving extensions of sum-of-squares pseudomoments over the
hypercube. arXiv preprint arXiv:2009.07269, 2020.

[75] D. Kunisky, A. S. Wein, and A. S. Bandeira. Notes on computational hardness of hypothesis
testing: Predictions using the low-degree likelihood ratio. arXiv preprint arXiv:1907.11636,
2019.

[76] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial machine learning at scale. arXiv
preprint arXiv:1611.01236, 2016.

[77] T. Lesieur, L. Miolane, M. Lelarge, F. Krzakala, and L. Zdeborová. Statistical and computa-
tional phase transitions in spiked tensor estimation. In 2017 IEEE International Symposium on
Information Theory (ISIT), pages 511–515. IEEE, 2017.

[78] J. Li, L. Deng, R. Haeb-Umbach, and Y. Gong. Robust automatic speech recognition: a bridge
to practical applications. 2015.

13



[79] N. Li and B. Li. Tensor completion for on-board compression of hyperspectral images. In
2010 IEEE International Conference on Image Processing, pages 517–520. IEEE, 2010.

[80] A. Liu and A. Moitra. Settling the robust learnability of mixtures of gaussians. In Proceedings
of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 518–531, 2021.

[81] J. Liu, J. Ye, and R. Fujimaki. Forward-backward greedy algorithms for general convex smooth
functions over a cardinality constraint. In International Conference on Machine Learning,
pages 503–511. PMLR, 2014.

[82] T. Ma and A. Wigderson. Sum-of-squares lower bounds for sparse pca. In Advances in Neural
Information Processing Systems, pages 1612–1620, 2015.

[83] Z. Ma. Sparse principal component analysis and iterative thresholding. The Annals of Statistics,
41(2):772–801, 2013.

[84] M. W. Mahoney and P. Drineas. Cur matrix decompositions for improved data analysis.
Proceedings of the National Academy of Sciences, 106(3):697–702, 2009.

[85] A. Majumdar. Image compression by sparse pca coding in curvelet domain. Signal, image
and video processing, 3(1):27–34, 2009.

[86] D. Medarametla and A. Potechin. Bounds on the norms of uniform low degree graph matrices.
RANDOM, 2016.

[87] S. Mohanty, P. Raghavendra, and J. Xu. Lifting sum-of-squares lower bounds: degree-2
to degree-4. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, pages 840–853, 2020.

[88] A. Montanari, D. Reichman, and O. Zeitouni. On the limitation of spectral methods: From the
gaussian hidden clique problem to rank-one perturbations of gaussian tensors. Advances in
Neural Information Processing Systems, 28, 2015.

[89] N. Naikal, A. Y. Yang, and S. S. Sastry. Informative feature selection for object recognition
via sparse pca. In 2011 International Conference on Computer Vision, pages 818–825. IEEE,
2011.

[90] P. Nandy, A. Hauser, and M. H. Maathuis. High-dimensional consistency in score-based and
hybrid structure learning. The Annals of Statistics, 46(6A):3151–3183, 2018.

[91] P. Neekhara, S. Hussain, P. Pandey, S. Dubnov, J. McAuley, and F. Koushanfar. Universal
adversarial perturbations for speech recognition systems. arXiv preprint arXiv:1905.03828,
2019.

[92] Y. Nesterov. Squared functional systems and optimization problems. In High performance
optimization, pages 405–440. Springer, 2000.

[93] R. O’Donnell. Sos is not obviously automatizable, even approximately. In 8th Innovations in
Theoretical Computer Science Conference (ITCS 2017). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2017.

[94] R. Olivier and B. Raj. Recent improvements of asr models in the face of adversarial attacks.
arXiv preprint arXiv:2203.16536, 2022.

[95] D. Papailiopoulos, A. Dimakis, and S. Korokythakis. Sparse pca through low-rank approxima-
tions. In International Conference on Machine Learning, pages 747–755. PMLR, 2013.

[96] P. A. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in
robustness and optimization. PhD thesis, California Institute of Technology, 2000.

[97] D. Paul. Asymptotics of sample eigenstructure for a large dimensional spiked covariance
model. Statistica Sinica, pages 1617–1642, 2007.

[98] A. Perry, A. S. Wein, and A. S. Bandeira. Statistical limits of spiked tensor models. arXiv
preprint arXiv:1612.07728, 2016.

14



[99] A. Potechin and G. Rajendran. Machinery for proving sum-of-squares lower bounds on
certification problems. arXiv preprint arXiv:2011.04253, 2020.

[100] A. Potechin and D. Steurer. Exact tensor completion with sum-of-squares. arXiv preprint
arXiv:1702.06237, 2017.

[101] P. Raghavendra and B. Weitz. On the bit complexity of sum-of-squares proofs. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[102] P. Raghavendra, S. Rao, and T. Schramm. Strongly refuting random csps below the spec-
tral threshold. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pages 121–131, 2017.

[103] G. Rajendran. Combinatorial Optimization via the Sum of Squares hierarchy. 2018.

[104] G. Rajendran. Nonlinear random matrices and applications to the sum of squares hierarchy.
2022.

[105] G. Rajendran and M. Tulsiani. Concentration of polynomial random matrices via efron-stein
inequalities. arXiv preprint arXiv:2209.02655, 2022.

[106] G. Rajendran and W. Zou. Analyzing robustness of end-to-end neural models for automatic
speech recognition. arXiv preprint arXiv:2208.08509, 2022.

[107] G. Rajendran, B. Kivva, M. Gao, and B. Aragam. Structure learning in polynomial time:
Greedy algorithms, bregman information, and exponential families. Advances in Neural
Information Processing Systems, 34:18660–18672, 2021.

[108] M. Ravanelli, J. Zhong, S. Pascual, P. Swietojanski, J. Monteiro, J. Trmal, and Y. Bengio.
Multi-task self-supervised learning for robust speech recognition. In ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
6989–6993. IEEE, 2020.

[109] L. Reyzin. Statistical queries and statistical algorithms: Foundations and applications. arXiv
preprint arXiv:2004.00557, 2020.

[110] E. Richard and A. Montanari. A statistical model for tensor pca. In Advances in Neural
Information Processing Systems, pages 2897–2905, 2014.

[111] T. Schramm and D. Steurer. Fast and robust tensor decomposition with applications to
dictionary learning. In Conference on Learning Theory, pages 1760–1793. PMLR, 2017.

[112] N. Sebe and M. S. Lew. Robust computer vision: Theory and applications, volume 26. Springer
Science & Business Media, 2013.

[113] N. Z. Shor. An approach to obtaining global extremums in polynomial mathematical program-
ming problems. Cybernetics, 23(5):695–700, 1987.

[114] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus.
Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

[115] K. M. Tan, A. Petersen, and D. Witten. Classification of rna-seq data. In Statistical analysis of
next generation sequencing data, pages 219–246. Springer, 2014.

[116] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM review, 38(1):49–95, 1996.

[117] D. Wang, H. Lu, and M.-H. Yang. Online object tracking with sparse prototypes. IEEE
transactions on image processing, 22(1):314–325, 2012.

[118] T. Wang, Q. Berthet, and R. J. Samworth. Statistical and computational trade-offs in estimation
of sparse principal components. The Annals of Statistics, 44(5):1896–1930, 2016.

[119] Y. Wang, J. Li, H. Wang, Y. Qian, C. Wang, and Y. Wu. Wav2vec-switch: Contrastive
learning from original-noisy speech pairs for robust speech recognition. In ICASSP 2022-2022
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
7097–7101. IEEE, 2022.

15



[120] A. S. Wein, A. El Alaoui, and C. Moore. The kikuchi hierarchy and tensor pca. In 2019 IEEE
60th Annual Symposium on Foundations of Computer Science (FOCS), pages 1446–1468.
IEEE, 2019.

[121] C. Xie, Y. Wu, L. v. d. Maaten, A. L. Yuille, and K. He. Feature denoising for improving
adversarial robustness. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 501–509, 2019.

[122] C. Xie, M. Tan, B. Gong, J. Wang, A. L. Yuille, and Q. V. Le. Adversarial examples improve
image recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 819–828, 2020.

[123] A. Zhang and D. Xia. Tensor svd: Statistical and computational limits. IEEE Transactions on
Information Theory, 64(11):7311–7338, 2018.

[124] T. Zhang. Adaptive forward-backward greedy algorithm for sparse learning with linear models.
Advances in neural information processing systems, 21, 2008.

[125] Q. Zheng and R. Tomioka. Interpolating convex and non-convex tensor decompositions via
the subspace norm. Advances in Neural Information Processing Systems, 28, 2015.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 5.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our work

is purely theoretical and has no significant societal impacts.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3,
Theorem 3.1, Theorem 3.2

(b) Did you include complete proofs of all theoretical results? [Yes] See the supplementary
material.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A] Relevant theoretical
works have been cited.

(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]
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5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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