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ABSTRACT

We present a lightweighted neural PDE representation to discover the hidden
structure and predict the solution of different nonlinear PDEs. Our key idea is
to leverage the prior of “translational similarity” of numerical PDE differential
operators to drastically reduce the scale of learning model and training data. We
implemented three central network components, including a neural functional
convolution operator, a Picard forward iterative procedure, and an adjoint backward
gradient calculator. Our novel paradigm fully leverages the multifaceted priors that
stem from the sparse and smooth nature of the physical PDE solution manifold
and the various mature numerical techniques such as adjoint solver, linearization,
and iterative procedure to accelerate the computation. We demonstrate the efficacy
of our method by robustly discovering the model and accurately predicting the
solutions of various types of PDEs with small-scale networks and training sets.
We highlight that all the PDE examples we showed were trained with up to 8 data
samples and within 325 network parameters.

1 INTRODUCTION

(1+ )

Problem definition We aim to devise a learning paradigm to solve the
inverse PDE identification problem. By observing a small data set in the
PDE’s solution space with an unknown form of equations, we want to
generate an effective neural representation that can precisely reconstruct
the hidden structure of the target PDE system. This neural representation
will further facilitate the prediction of the PDE solution with different
boundary conditions. The right inset figure shows a typical example of
our target problem: by observing a small part (4 samples in the figure) of
the solution space of a nonlinear PDE system F(x) = b, without knowing
its analytical equations, our neural representation will depict the hidden
differential operators underpinning F (e.g., to represent the unknown
differential operator∇ · (1 + x2)∇ by training the model on the solution of∇ · (1 + x2)∇x = b.

Challenges to solve The nonlinearity and the curse of dimensionality of the target PDE’s solution
manifold are the two main challenges for the design of a high-performance neural discretization. An
effective neural representation of a PDE system plays an essential role to solve these challenges. In
retrospect, the design of neural PDE representations has been evolving from the raw, unstructured
networks (e.g., by direct end-to-end data fitting) to various structured ones with proper mathematical
priors embedded. Examples include the residual-based loss function (e.g., physics-informed networks
Raissi et al., 2020; Lu et al., 2019; Raissi et al., 2019), learnable convolution kernels (e.g., PDE-Nets
Long et al., 2018a;b; 2019), and hybrid of numerical stencils and MLP layers (e.g., see Amos
& Kolter, 2017; Pakravan et al., 2020; Geng et al., 2020; Stevens & Colonius, 2020). Following
this line of research, we aim to devise a lightweighted neural PDE representation that fuses the
mathematical equation’s essential structure, the numerical solvers’ computational efficiency, and
the neural networks’ expressive power. In particular, we want to aggressively reduce the scale of
both model parameters and training data to some extremal extent, while extending the scope of the
targeted PDE systems to a broad range, encompassing equations that are both linear and nonlinear,
both steady-state and dynamic.
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Translational similarity of differential operators Our neural
PDE representation design is motivated by the historical successes
of the various sparse, iterative numerical solvers in solving non-
linear PDEs over the past decades. The key observation we have
made is that the efficacy of a classical numerical PDE solver relies
on the translational similarity of its discretized, local differential
operators. Namely, the form of a differential operator can be written
as a functional C(x,p) with respect to the the PDE unknown x and
the local position p, which is showed in the right inset figure. For example, for a linear Poisson
system ∇ · ∇x = b, C is a constant function; for a linear Poisson system with embedded boundary
conditions, C is a function of position p; for a nonlinear PDE∇· (1 +x2)∇x = b, C is a function of
PDE unknown x (or both x and p if it has embedded boundaries). For most numerical PDEs, these
local functional operators can be parameterized and built on-the-fly within the solver iterations. Such
operators’ locality further inspired the design of a variety of computationally efficient PDE solvers,
among which the most famous one is the matrix-free scheme that has been used widely in solving
large-scale physical systems on GPU. These local procedures for stencil creation have demonstrated
their extreme performance in accommodating PDE solvers. From a machine learning perspective,
these “translational similar” differential operators resemble the concept of convolution operators that
function as the cornerstone to embed the “translational invariant” priors into neural networks ( see
LeCun et al., 1995; 1998).

Method overview In this work, we leverage the PDE differential operators’ “translational
similarity” in a reverse manner by devising a local neural representation that can uncover and
describe the global structure of the target PDE. At the heart of our approach lies in a differential
procedure to simultaneously describe the spatial coupling and the temporal evolution of a local data
point. Such procedure is implemented as a parameterized micro network, which is embedded in
our iterative solving architecture, to learn the numerical process of converging from an initial guess
to a final steady state for a PDE solution. We name these embedded micro networks “functional
convolutions,” for two reasons. First, fitting the parameters of these local embedded networks amounts
to the exploration of the optimal function that best describes the observed solution of the unknown
nonlinear PDE within a functional space. Second, the local differential operators that span this
functional space can be treated as numerically employing convolution kernels Hsieh et al. (2018);
Lin et al. (2013). Based on these functional convolutions, we are able to devise a learning framework
by embedding the micro network architecture within an iterative procedure to 1) backwardly learn
the underpinning, spatially varying structures of a nonlinear PDE system by iteratively applying
the adjoint linear solvers and 2) forwardly predict the steady states of a PDE system by partially
observing data samples of its equilibrium. We show that our model can simultaneously discover
structures and predict solutions for different types of nonlinear PDEs. We particularly focus on
solving elliptic boundary value problems that were less explored in the current literature.

2 MOTIVATING EXAMPLE: FORWARD NUMERICAL PDE

Naming convention We first show a motivating example to demonstrate the standard process of a
forward numerical PDE solver. We take the simplest Poisson equation with Dirichlet boundary
conditions as an example. The mathematical equation of a Poisson system can be written as
∇ · ∇x = b for x ∈ Ω, with x as the PDE unknowns, b as the right-hand side, and Ω as the
problem’s domain. The boundary conditions are enforced in a Dirichlet way (by assigning values
directly) as x = x̂ on the domain boundary, with x̂ as the specified boundary values. To create a
discretized, numerical system to solve the equation, we use the symbol p to denote the position
within the domain. The numerical solution of the PDE amounts to seeking an unknown function
x(p) that can specify the value of x in an arbitrary position p within Ω.

Linear PDE As shown in Figure 1, we illustrate how to solve the Poisson system using a finite-
difference method. We first subdivide the domain into n cell (segment intervals in 1D and squares
in 2D) with the cell size of ∆p. Taking the 2D case for example, we can derive the discretized
Poisson equation by approximating the Laplacian operator on each grid cell using the central finite
difference method (−xi−1,j − xi+1,j + 4xi,j − xi,j−1 − xi,j+1)/∆p2 = bi,j .The discretization of
each cell forms one row in the linear system, and the combination of all the rows (cells) forms a sparse
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Figure 1: Schematic illustration to numerically solve the Poisson equation.
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Figure 2: Forward data flow in a neural Picard solver to predict the solutions of a non-linear PDE.

linear system Ax = b to solve. For a linear Poisson system, each row of A can be translated into
a convolutional stencil instantiated with constant parameters, e.g., (-1,2,1) in 1D and (-1,-1,4,-1,-1)
in 2D. This convolution perspective can be used to accelerate the numerical solver by maintaining
a “conceptual” A matrix without storing the redundant matrix element values in memory (we refer
the readers to the matrix-free method Carey & Jiang (1986) for more details). This matrix-free
nature indicates an extremely concise representation of a numerical Poisson system (i.e., the matrix
A)—using a 1× 3 or 3× 3 convolution kernel with fixed values. We use the symbol C to denote
the convolutional representation of A. For a linear system, C is independent from the values of p
and x.

Nonlinear PDE and Picard interation The nonlinear case of the Poisson system is a bit compli-
cated. We can still use the matrix-free representation to describe a nonlinear Poisson system, but
the parameters of this convolutional stencil now depends on both the local position p and the local
unknown p(x). This dependency is nonlinear and therefore we cannot find the solution by solving
a single Ax = b. Here we present an iterative scheme—the Picard method—to solve a numerical
nonlinear PDE system. (see Picard, 1893; Bai, 2010) Let’s consider the nonlinear Poisson equation
as: ∇ · α(x)∇x = b for x ∈ Ω and Dirichlet boundary conditions on the boundary. The source of
nonlinearity in this PDE includes the coefficient α(x) which is dependent on the solution of x, e.g.,
α(x) = 1 + x2. A simple and effective fixed-point procedure to discretize and solve the nonlinear
Poisson equation, named Picard iteration, can be sketched as follows:

while: |xn − xn−1| > ε

xn+1 = A−1(xn)b,
(1)

with the matrix A representing the current discretized nonlinear Laplacian operator approximated by
the value of unknowns from the previous iteration. The key idea is to employ a linear approximation
of a nonlinear problem and enforce such approximation iteratively to evolve to a steady state (see
Figure 2). To uncover the underlying structure of A, which can evolve both spatially and temporally,
we make a prior assumption that A can be described by a kernel function C(x(p),p). Such
prior applies to most of the elliptic PDE systems where the spatial terms can be expressed as the
combination of one or several differential operators. From a numerical perspective, C describes the
local discretized interaction between an element and its neighbours. It amounts to a function that
returns all the non-zero elements for each row i in A (think of A in a matrix-free way).
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Figure 3: Overview: To obtain the solution of A(x, θ)x = b, we first generate a random initial
guess x0. Then in each iteration step i, we apply the functional convolution C on xi to obtain the
convolution kernels A(xi, θ). We obtain xi+1 by solving A(xi, θ)x = b. We repeat this process to
obtain a converged solution.

3 METHOD: BACKWARD NEURAL PDE

Overview In this section, we present our neural PDE design motivated by the forward Picard solver
with convolutional representation of the nonlinear system. Our framework consists of three key
components: the neural representation of the convolution operator, the embedded Picard forward
iterative solver, and the adjoint backward derivatives. The key idea is to differentiate the forward
nonlinear Picard solver and build the neural representation for its sparse linearization step. This
differentiation is implemented by our functional convolution scheme on the linearization level and
the adjoint Picard for the nonlinear iterations.

3.1 FUNCTIONAL CONVOLUTION

In a conventional ML method, C can be approximated by the combination of a set of kernels Long
et al. (2018a) or by solving a deconvolution problem Xu et al. (2014); Jin et al. (2017); Zhang
et al. (2017). However, these strategies do not suit our scenario, where the instant linear effects of
the system should be approximated by extracting the nonlinear effects of C. A natural choice to
approximate this spatially-and-temporally varying kernel function is to devise a neural network, which
takes the form of C(x(p),p, θ), with θ as the network parameters. Numerically, the global matrix
A can be fully parameterized by C(x(p),p, θ) by assuming the fact that C is a non-weight-shared
convolution operator in the spatial domain. As illustrated in Figure 3, such neural network can be
further incorporated into a conventional nonlinear Picard solver to obtain the forward steady-state
solution by solving the linear system A(xn, θ)xn+1 = b(xn), where a black-box sparse linear solver
can be used as in a conventional simulation program. The formal definition of functional convolution
written in the kernel way is

A(x(pi), θ) =
∑

pj∈N (pi)

[C(x(N (pi)),N (pi), θ)]e(pj) (2)

where A(x(pi), θ) is the ith row of matrix A, N (pi) is the neighboring positions of pi, x(N (pi))
is all the neighboring elements (all channels) around the position pi and e(pj) is the unit vector
representing the jth column in A.

To specify the 2D example, equation (2) has the following form

A(xm,n), θ) =

1∑
i=−1

1∑
j=−1

[C(N (xm,n), θ)]i,jem+i,n+j (3)

where xm,n is the element that lies in row m, column n of the feature map. The input N (xm,n) =
{xm+i,n+j for i, j = −1, 0, 1} is the flatten vector of neighboring elements of pixel xm,n. After a
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simple neural network C with parameters θ, we obtain the output C(N (xm,n), θ), which is a vector
with the same length of N (xm,n).

3.2 ADJOINT DERIVATIVES

To train our functional convolution operator in an end-to-end fashion, we calculate the derivatives of
the loss function L regarding the network parameters θ following the chain rule. For a neural PDE
with n layers for the outer Picard loop (see Figure 3), we can calculate the sensitivity ∂L/∂θ as:

∂L

∂θ
=

∂L

∂xn

∂xn
∂θ

+
∂L

∂xn

∂xn
∂xn−1

∂xn−1

∂θ
+ · · ·+ ∂L

∂xn

∂xn
∂xn−1

· · · ∂x2

∂x1

∂x1

∂θ
(4)

For layer i that maps from xi → xi+1 by solving A(xi, θ)xi+1 = b, we can express its backward
derivative yi as

yi =
∂xi+1

∂xi
= −A−1(xi, θ)

∂A(xi, θ)

∂xi
xi+1, (5)

which can be solved by two linear systems, including a forward equation and a backward adjoint
equation:

A(xi, θ)xi+1 = b (6a)

A(xi, θ)yi =
∂A(xi, θ)

∂xi
xi+1 (6b)

Similarly, we can get ∂L/∂θ as:

zi =
∂xi+1

∂θ
= −A−1(xi, θ)

∂A(xi, θ)

∂xi
xi+1 (7)

which can be calculated by solving one additional adjoint linear system:

A(xi, θ)zi =
∂A(xi, θ)

∂θ
xi+1 (8)

Algorithm 1 Backward derivative of
a nonlinear PDE boundary value problem

Input: x1, b, C, L
Output: ∂L/∂θ

//Forward linearization:
for i = 0→ N − 1 do

Solve A(xi, θ)xi+1 = b;
end for
//Backward adjoint:
for i = N − 2→ 1 do

Solve adjoints (6b) and (7) for ∂xi+1/∂θ
∂L/∂θ + = (∂L/∂xi+1)(∂xi+1/∂θ)

end for

To calculate the terms ∂A/∂xi and
∂A/∂θ in the chain, we take advantage
of the sparse nature of A by calculat-
ing ∂C/∂xi and ∂C/∂θ first and then
distribute their values into the non-zero
entries of the global matrix. Because
C(x(p),p, θ) is a functional convolution
operator represented by a standard neural
network, its derivatives regarding the first-
layer input x and the parameters θ can
be calculated in a straightforward way by
the auto-differentiation mechanism. The
overall algorithm is summarized as in Al-
gorithm 1.

4 NETWORK ARCHITECTURE AND DATA TRAINING

The network we use in this study is summarized in Table 2. We use a hybrid method of IpOpt
Wächter (2009) and Adam optimizer to optimize the parameters int the neural networks. Despite
its fast converging rate, IpOpt optimizer typically converges to a local minimum or fail to converge
due to a bad initialization. By introducing the hybrid optimization method, we are able to solve the
problem. The optimized parameters from IpOpt are then oscillated and refined by Adam optimizer
for a certain number of iterations. In case that the loss not converge, we then use the optimized
parameters from Adam as the initial guess to warm-start the IpOpt and repeat this IpOpt-Adam
process until the loss converges to the tolerance. For the Adam optimizer, we set the parameters to
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be learning rate = 1e− 3, β1 = 0.9, β2 = 0.999, ε = 1e− 8. We compare the performance of
our hybrid optimization method with Adam and a typical SGDM method in solving the 1D Poisson
problem in Figure 6. The results show that the hybrid method not only obtains a faster converging
rate, but also converges to an extremely small loss compared with other methods.

5 RESULTS

We test the efficacy of our method by using it to fit a set of PDEs, ranging from the standard linear
Poisson’s problem to highly nonlinear temporally evolving PDEs. We build our neural network
architecture by implementing both the differentiable Picard iterations and a simple fully-connected
network in C++ 17. The training process for all the examples was run on an i7-8665 four-core
desktop. The PDE and boundary conditions, sample size, and test results were summarized in Table 2
in Appendix.

5.1 1D EXAMPLES

Constant kernels We first test our framework by fitting the underlying structure of a standard 1D
Poisson problem ∇ · ∇x = b with Dirichlet boundary conditions. Here the target true solution is set
to be x = (ap)2, with p as the spatial coordinate of the data sample and a as a coefficient that varies
for different data sample. The training dataset consists of four sample points, observed from the two
solutions of the equations parameterized with different values of a and boundary conditions. The
4-size training data is sampled on a 128× 1 grid with two layers of picard network. After training,
we run 16 PDE tests with varying a and boundary conditions and obtain an averaged MSE loss as
8.3e-20. The predicted solutions in all 16 test cases match the analytical curves with the maximum
MSE 1.5e-14, as shown in in Figure 9a.

Next, we test the same framework on another two Poisson problems. The first problem is∇ ·∇x = 0
with Neumann boundary conditions which does not have an analytical solution (see Figure 9b). The
prediction results from our model are shown in Figure 9b with an averaged MSE 5.0e-29. The other
problem is with the target solution as x = sin(ap). The results are shown in Figure 4 with the 9.8e-4
MSE loss compared with the true solution.

Stability test with noisy input We further conduct a stability test by adding noise values to the
setting of the 1D constant kernel experiments. The training dataset consists of two sample points,
observed from the two noisy solutions of the equations. We test our framework with various scales
of noise from [−.1, .1] to [−.35, .35] with step size of .05 with respect to the extreme values in the
target solution. The training data is sampled on a 32× 1 grid with two layers of picard network. We
compare our framework with denoised solutions in Figure 10. The figure shows the framework can
automatically obtain precise solution even though our framework cannot access accurate solutions
during the training procedure.

Spatially varying coefficients Next we test our model by predicting the solutions of a Poisson
PDE with spatially varying coefficients. The PDE has the analytical formula∇ · (1 + |πp|)∇x = 0,
with p as the spatial coordinate of the data sample. We build the training dataset by solving the
equation with randomly set boundary conditions on a 32× 1 grid. The data sample size is 4 and each
data sample has the full observation of the solution space. The input of the network is the current
values of x and the sample positions p. We show that our model can precisely uncover the distribution
of the hidden latent space behind the Laplacian operator with spatially varying coefficients by fitting
a functional convolution operator that predicts the solutions of the PDE in the forward process (see
Figure 3). The average MSE loss is 1.3e-06 for this case.

Non-linear equations In this example, we demonstrate the ability of our neural PDE solver by
solving a non-linear PDE with the form: ∇ · (1 + |x|+ sin(|x| ∗ .001))∇x = 0 Dirichlet boundary
conditions are set on the two endpoints of the domain. The training dataset is generated by solving
the PDE with standard Picard iterations. The number of the neural PDE network layers is set to be
5. We employ 4 solution samples on a 32 × 1 discretization for training. As shown in Figure 11,
our model can precisely uncover the hidden nonlinear structures of the PDE kernel and predicts the
numerical solution by employing the learned functional convolution through the Picard iterations.
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5.2 2D EXAMPLES

Poisson equation We then expand our model to solve 2D problems. Similarly, we start from
employing our model to predict the solutions for two standard 2D Poisson problems ∇ · ∇x = b
with Dirichlet boundary conditions, whose target true solutions are set to be x = (apu)3 + ap2

v and
x = sin(apu + apv) respectively. Here pu and pv refer to the x axis and y axis coordinates of the
data sample. We use 4-size data samples, which are sampled on a 32*32 grid, to train the neural
network in both cases. To evaluate, we run 16 test cases for both the two problems and the results are
shown in Figure 4. We obtain an averaged MSE loss at 5.4e-14 for the first problem and 3.7e-3 for
the second problem.

Helmholtz equation In this example, we test our model’s performance by predicting the solution
of Helmholtz equation∇ · ∇x + x = 0. We set two different types of varying Dirichlet boundary
conditions for this problem, one as x = −a/(p2

u+p2
v) and another as x = a∗sin((0.02pu+0.02pv))

with a varies across the data. We use 4 data sample with respect to two types of boundary conditions
with varying coefficients to train the neural network. For each type of boundary conditions, the
training data is sampled on a 32 × 32 grid in two different domains respectively. The results are
exhibited in Figure 5. In predicting solution,we achieve an averaged MSE of 5.25e-27 and 9.3e-29 in
the two specific domains of the first type and For 3.5e-25 and 3.9e-18 for the second type.

Wave equation In this example, we demonstrate the ability of our Neural PDE solver by solving
a time-dependent wave equation: ∇ · ∇x = ∂2x

∂t2 We use a standard finite difference method to
generate the training data, which is 6-size data sample with each training sample indicating the target
solution at the nth time step (1 < n < 6). Our model is trained to map x from the n− 1 frame to
the n frame. The training data is sampled on a 49× 49 grid with a source of x = sin(60(n ∗ dt))
at the center of the grid, where dt is the time interval. With this observation of previous frames
of a time-related wave function, our model is able to predict the following frames. The model’s
performance is tested by predicting the following 42 frames after the first 6 training frames. The
training data and the predicting results are showed in Figure 13 and Figure 14. With an average MSE
loss of 6.9e-4, we show that our model can precisely uncover the intrinsic structures of the kernel
with sparse observation and can predict the numerical solution of it in a period of time.

Navier-Stokes equation We further demonstrate our model’s ability in solving the Navier-Stokes
equation:

∂~x

∂t
+ ~x · ∇~x+∇p = ~f ∇ · ~x = 0 (9)

where, ~x stands for the velocity of the fluid, p indicates the pressure and f the body force. In each
time step, our model is trained to accomplish the projection step which has a form of Poisson equation
through the finite difference discretization method. The 6-size training data is sampled on a 32× 32
grid with a fluid source in the left bottom corner of the domain, and the model is tested for 50 frames.
The training data and the predicting results are showed in Figure12. With an averaged MSE loss of
4.09e-5, we show that our model can precisely uncover the intrinsic structures of the projection step
in solving the Navier-stokes equation with sparse observation.

5.3 COMPARISON WITH OTHER METHODS

We compare our framework with a CNN baseline and PINN Lu et al. (2019).

Comparison with CNN baseline We evaluate our functional convolution model by comparing its
performance with other naive convolutional neural network (CNN) structures in solving two typical
problems targeted in this study: 1) 1D Poisson problem and 2) 2D time-dependent wave equation. To
solve the 1D Poisson equation, we set up the CNN baseline structure as a 5-layer network consisting
of three 1D convolution layers with a ReLU layer in between each two. The 2D time-dependent wave
equation is specified by Equation∇ · ∇x = ∂2x

∂t2 . The CNN baseline structure is a 5-layer network,
which is described in Table 1. Figure 7 shows the results. The figure shows that our framework
converges fast and reduce the loss dramatically compared with the baseline. The details of the
experiment could be found in Section B.1 in Appendix.
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(d) (e) (f)

(a)

Figure 4: Test cases of 1D and 2D Poisson equations. (a)Test cases for predicting a sine function.
(d)Test cases for predicting a sine function with 10% noise. (b-f)Test cases in predicting the 2D
Poisson equation with analytical solution (b,c) x = sin(a ∗ pu + a ∗ pv), (e,f) x = (apu)3 + ap2

v .

Figure 5: Test cases to predict the solution of a 2D Helmholtz equation with different boundary
conditions in different domains. Right figures show the top view of the solution.

Comparison with PINN We compare our framework with PINN Lu et al. (2019) in the setting of
Helmholtz equation system. Specifically, the comparison is conducted with the Helmholtz equation
∇ · ∇x + x = 0. The comparison uses the Dirichlet boundary of x = −1/(p2

u + p2
v). Both our

framework and PINN are trained and tested on a 32× 32 grid. Figure 8 shows the prediction results
for PINN and our framework. Our framework achieves MSE of 6.05e− 15, while PINN achieves
MSE of 1.66e− 6. The details of this experiment could be found in Section B.2 in Appendix.

6 RELATED WORKS

PDE networks Long et al. (2018a; 2019) explore using neural networks to solve the Partial
differential equations (PDEs). Li & Shi (2017) formulate the ResNet as a control problem of PDEs on
manifold. Raissi et al. (2019) embeds physical priors in neural networks to solve the nonlinear PDEs.
Han et al. (2018) handles general high-dimensional parabolic PDEs. Brunton et al. (2020) gives an
overview of neural networks in turbulence applications. Wu et al. (2020) train generative adversarial
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networks to model chaotic dynamical systems. Han et al. (2016) solves high-dimensional stochastic
control problems based on Monte-Carlo sampling. Raissi (2018) approximate a deterministic function
of time and space by a deep neural network for backward stochastic differential equations with random
terminal condition to be satisfied. Wang et al. (2019) first propose to use reinforcement learning (RL)
to aid the process of solving the conservation laws. Jagtap et al. (2020b) propose a neural network on
discrete domains for nonlinear conservation laws. Jagtap et al. (2020a) employ adaptive activation
functions to solve PDEs and approximate smooth and discontinuous functions. Pang et al. (2019)
combines neural networks and Gaussian process to solve PDEs.

Prior-embedded neural simulators Many recent learning physics works are based on building
networks to describe interactions among objects or components (see Battaglia et al. (2018) for a
survey). The pioneering works done by Battaglia et al. (2016) and Chang et al. (2017) predict different
particle dynamics such as N-body by learning the pairwise interactions. Following this, the interaction
networks are enhanced by a graph network by Kipf et al. (2017) for different applications. Specialized
hierarchical representations by Mrowca et al. (2018), residual corrections by Ajay et al. (2018),
propagation mechanisms by Li et al. (2019), linear transitions by Li et al. (2020) were employed
to reason various physical systems. On another front, modeling neural networks under a dynamic
system’s perspective has drawn increasingly attention. In 2018 Chen et al. (2018) solves the neural
networks as ordinary differential equations (ODEs).

7 CONCLUSION

In this paper, we introduced neural PDE, a machine learning approach to learn the intrinsic properties
of PDEs by learning and employing a novel functional convolution and adjoint equations to enable
the end-to-end training. Our model resents strong robustness against the arbitrary noise. The main
limitation of our work is that we assume the PDE systems are sparse. That is, the relation is restricted
locally. To enable the constrain in larger area, one can enlarge the kernel size, but this can potentially
cost much more computation and memory. For the future applications, we plan to apply the method to
solve real-world 3D applications, such as incompressible fluids and nonlinear soft materials. We also
plan to scale up the system by leveraging the sparse iterative linear solver for solving the linearized
PDEs in each iteration.
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A ABLATION TESTS

The neural networks are trained by a hybrid method of IpOpt and Adam optimizer. Here we
demonstrate our hybrid optimizer’s capability to outperform a typical Adam optimizer and a typical
SGDM optimizer, which is shown in Figure 6.

B COMPARISON WITH OTHER METHODS

B.1 COMPARISON WITH NAIVE CNN STRUCTURE

We evaluate our functional convolution model by comparing its performance with other naive
convolutional neural network structures in solving two typical problems targeted in this study. For
the first case to solve the 1D Poisson equation, we set up the baseline structure as a 5-layer network
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Figure 6: Training our model to predict the solution for the 1D Poisson problem∇ · ∇x = 0 using
different optimization methods. The IpOpt+Adam optimizer stops at early converge with the total
loss of 8.5e-25.

consisting of three 1D convolution layers with a ReLU layer in between each two. The second
problem is the 2D time-dependent wave equation specified by Equation∇ ·∇x = ∂2x

∂t2 . The baseline
for this problem is also set to be a 5-layer network, which is described in Table 1. For each of the
baselines, the input is set to be the right hand side value and the output is the predicted solution. The
results are shown in Figure 7, which demonstrates that our functional convolution model outperforms
the naive convolutional neural network both in accuracy and converging rate.

(a) (b)

Figure 7: comparison between predictions from Naive CNN networks and our model to predict the
solution for (a) the 1D Poisson problem∇ · ∇x = 0 and (b) the time-dependent wave equation.

B.2 COMPARISON WITH PINN

We compare our framework with PINN Lu et al. (2019) in the setting of Helmholtz equation system.
Both models are trained and tested in 32× 32 grid. Figure 8 shows the prediction results for PINN
and our framework.

C 1D EXAMPLES

C.1 1D POISSON EXAMPLE

We employ our functional convolutional model with the aim to solve typical 1D Poisson problems
with constant kernels, the testing results of which are shown in Figure 9.
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(a) (b)

Figure 8: Comparison with PINN. Figure (a) shows the predicted value of PINN with MSE of 1.66e-6.
Figure (b) shows the predicted value of our framework with MSE of 6.05e-15.

(a) (b)

Figure 9: Two test cases for predicting the solution of a 1D Poisson equation ∇ · ∇x = b with (a)
target solution x = (ap)2 and (b) b = 0. The dots represent the predicted values and the curves
indicate the true values.

C.2 1D STABILITY TEST WITH NOISY INPUT

We conduct a stability test by adding noise values to the setting of the 1D constant kernel experiments.
We test our framework with various scales of noise from [−.1, .1] to [−.35, .35] with step size of .05
with respect to the extreme values in the target solution. We compare our framework with denoised
solutions in Figure 10. The figure shows the framework can automatically obtain precise solution
even though our framework cannot access accurate solutions during the training procedure.

C.3 1D SPATIAL VARYING AND NONLINEAR EXAMPLE

We also train the model to predict the solution of∇ · (1 + |πp|)∇x = 0 and∇ · (1 + |x|+ sin(|x| ∗
.001))∇x = 0. The results are shown in Figure 11.

C.4 2D NAVIER STOKES EXAMPLE

The 6-size training data is sampled on a 32× 32 grid with a fluid source in the left bottom corner of
the domain, and the model is tested for 50 frames. The functional convolution network is set to be
3× 6× 6× 6× 6× 3. We show the ground truth by a typical fluid solver, our prediction, and the
absolute error between the two of Frame 1, 25, and 50 in Figure 12.
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(noise=0.15)
(noise=0.35)

(noise=0.35)

(c)

(b)(a)

(d)

Figure 10: Figure (a) and (b) show two testing cases with noise of .15 and .35 with respect to
the extreme values in the same target solutions. The MSE errors of the 16 testing cases for them
are 0.0005 and 0.0274. Figure (c) shows one training sample with noise. Figure (d) shows the
relationship between the noise in the observation and testing MSE.

Figure 11: Test cases for predicting the numerical solution of an unknown Poisson PDE. The left
figure shows function domain of all tests to predict the Poisson PDE with with spatially varying
coefficients. The right figure shows tests to predict the solution of a nonlinear PDE specified by
∇ · (1 + |x|+ sin(|x| ∗ .001))∇x = 0.

D WAVE EQUATION

Figure 13 shows the training data of the wave equation. Figure 14 shows the predicted solution of
time dependent wave equation.
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Figure 12: 2D Navier Stokes example shows the ground truth by a typical fluid solver, our prediction,
and the absolute error.

frame=3frame=1 frame=5

(a) (b) (c)

Figure 13: The training data to solve the time-dependent wave equation specified by Equation
∇ ·∇x = ∂2x

∂t2 . (a-c) The target solution at timestep 1, 3, 5, with top view and 3D view. The equation
is solved in domain = [0, 1]× [0, 1], here we only show the plots in [0.2, 0.8]× [0.2, 0.8].

E DETAILS ON NEURAL NETWORK STRUCTURES

We show the details of the naive CNN structures in Table 1 which are trained as baseline compared to
our convolution model. We also refer readers to Table 2 for the details of neural network structure
and training parameters across different examples.
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frame=12frame=6 frame=18 frame=24

frame=36frame=30 frame=42 frame=48

(b)(a) (c) (d)

Figure 14: The predicted solution of the time-dependent wave equation. (a-h) The predicted solution
at timestep 6, 12, 18, 24, 30, 36, 42, 48 with top view and 3D view. The equation is solved in
domain = [0, 1]× [0, 1], here we only show the plots in [0.2, 0.8]× [0.2, 0.8].

Table 1: Naive CNN baselines

Baseline neural network structure grid # training
smaples

1D CNN structure cnn1d(in=1,out=1,kernel=3), ReLU,
cnn(in=1,out=1,kernel=3),ReLU,
cnn1d(in=1,out=1,kernel=3)

16× 1 4

2D CNN structure cnn1d(in=1,out=2,kernel=3), ReLU,
cnn(in=2,out=2,kernel=3),ReLU,
cnn1d(in=2,out=1,kernel=3)

20×20 8
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Table 2: Neural network structure and training parameters

Equation Dimension Network # Parameters #
Training
sample

# Test
sample

Test MSE

∇ · ∇x = b with target solution
x = (ap)2

128× 1 3× 4× 4× 3 31 4 16 8.3e-20

∇ · ∇x = 0 32× 1 3× 4× 4× 3 31 4 16 5.0e-29
∇ · ∇x = b with target solution
x = sin(ap)

32× 1 3× 4× 4× 3 31 2 16 9.8e-4

∇ · ∇x = b with target solution
x = sin(ap) with noise

32× 1 3× 4× 4× 3 31 2 16 from 5e-4 to 2.7e-2

∇ · (1 + |πp|)∇x = 0 32× 1 6×6×6×6×6×3 108 4 16 1.3e-6
∇ · (1 + |x| + sin(|x| ∗
.001))∇x = 0

32× 1 3× 6× 6× 3 45 4 16 2.1e-5

∇ · ∇x = b with target solution
x = (apu)3 + ap2v

32× 32 3×14×14×14×
14× 3

325 4 16 5.4e-14

∇ · ∇x = b with target solution
x = sin(apu + apv)

32× 32 3×10×10×10×
10× 10× 10× 3

293 4 16 3.7e-3

∇ · ∇x + x = 0 with boundary
x = a/(p2u + p2v)

32× 32 3×5×5×5×5×3 68 4 16 5.3e-27

∇ · ∇x + x = 0 with bound-
ary, x = a ∗ sin((0.02pu +
0.02pv))

32× 32 3×5×5×5×5×3 68 4 16 9.3e-29

∇ · ∇x = ∂2x
∂t2

with center
source x = sin(60(n ∗ dt))

49× 49 3×5×5×5×5×3 68 6 42 6.9e-4

∂~x
∂t + ~x∇~x+ µ∆~x+∇p = ~f 32× 32 3×6×6×6×6×3 87 6 50 4.09e-5
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