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Abstract

Neural collapse provides an elegant mathemat-
ical characterization of learned last-layer repre-
sentations, also known as features, and classifier
weights within deep classification models. The
result not only provides insights into deep models
but also catalyzes the development of new tech-
niques for improving them. However, most of
the existing empirical and theoretical studies into
neural collapse center around scenarios where
the number of classes is small relative to the di-
mensionality of the feature space. This paper
introduces a generalization of neural collapse to
encompass scenarios where the number of classes
surpasses the dimension of feature space, which
broadly occurs for language models, information
retrieval systems, and face recognition applica-
tions. A key technical contribution is the introduc-
tion of the concept of softmax code, defined as a
collection of points that maximizes the minimum
one-vs-rest margin, to describe the arrangement of
class-mean features. We provide empirical study
to verify the prevalence of generalized neural col-
lapse in practical deep neural networks. Moreover,
we provide theoretical study to show that the gen-
eralized neural collapse provably occurs under an
unconstrained feature model with spherical con-
straint, subject to specific technical conditions on
feature dimension and the number of classes.

1. Introduction
Over the past decade, deep neural networks (DNNs) have
achieved remarkable success across numerous machine
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learning tasks and have significantly enhanced the state-
of-the-art in many practical applications including computer
vision, natural language processing, and information re-
trieval systems. Despite their tremendous success, a com-
prehensive understanding of how DNNs work is still lacking.
Towards demystifying DNNs, the recent work Papyan et al.
(2020); Papyan (2020) examined the last-layer features and
classifier of DNNs and empirically uncovered an intriguing
phenomenon called Neural Collapse (NC), which can be
briefly summarized as the following characteristics:

• Variability Collapse (NC1): Within-class variability of
features collapses to zero.

• Convergence to Simplex ETF (NC2): Class-mean fea-
tures converge to a simplex Equiangular Tight Frame
(ETF), achieving equal lengths, equal pair-wise angles,
and maximal distance in the feature space.

• Self-Duality (NC3): Linear classifiers converge to class-
mean features, up to a global rescaling.

Neural collapse provides a mathematically elegant char-
acterization of learned representations or features in deep
learning based classification models, independent of net-
work architectures, dataset properties, and optimization al-
gorithms. Building on the so-called unconstrained feature
model (Mixon et al., 2020) or the layer-peeled model (Fang
et al., 2021), subsequent research (Zhu et al., 2021; Lu &
Steinerberger, 2020; Ji et al., 2021; Yaras et al.; Wojtowytsch
et al., 2020; Ji et al.; Zhou et al.; Han et al.; Tirer & Bruna,
2022; Zhou et al., 2022a; Poggio & Liao, 2020; Thram-
poulidis et al., 2022; Tirer et al., 2023; Nguyen et al., 2022;
Li et al., 2024) has provided theoretical evidence for the ex-
istence of the NC phenomenon when using a family of loss
functions including cross-entropy (CE) loss, mean-square-
error (MSE) loss and variants of CE loss. Theoretical results
regarding NC not only contribute to a new understanding
of the working of DNNs but also provide inspiration for
developing new techniques to enhance their practical perfor-
mance in various settings, such as imbalanced learning (Xie
et al., 2023; Liu et al., 2023b), transfer learning (Galanti
et al., 2022a; Li et al., 2022; Xie et al., 2022; Galanti et al.,
2022b), continual learning (Yu et al., 2022; Yang et al.,
2023), loss and architecture designs (Chan et al., 2022; Yu
et al., 2020; Zhu et al., 2021; Wang et al., 2024), etc.

However, most of the existing empirical and theoretical stud-
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(a) One-vs-rest distance: Case 1 (b) One-vs-rest distance: Case 2 (c) One-vs-one distance

Figure 1. In Generalized Neural Collapse (GNC), the optimal classifier weight {wk} is a Softmax Code defined from maximizing the
one-vs-rest distance (see Definition 2.1). (a, b) Illustration of the one-vs-rest distance using the example of w1-vs-{w2,w3,w4} distance,
under two configurations of {wk}4k=1 in a two-dimensional space. The distance in Case 1 is larger than that in Case 2. (c) Illustration of
the one-vs-one distance used to define the Tammes problem (see Eq. (8)). We prove GNC under technical conditions on Softmax Code
and Tammes problem (see Section 3).

ies in NC focus on the case that the number of classes is
small relative to the dimension of the feature space. Never-
theless, there are many cases in practice where the number
of classes can be very large, such as

• Person identification (Deng et al., 2019), where each iden-
tity is regarded as one class.

• Language models (Devlin et al., 2018), where the number
of classes equals the vocabulary size1.

• Retrieval systems (Mitra et al., 2018), where each docu-
ment in the dataset represents one class.

• Contrastive learning (Chen et al., 2020a), where each
training data can be regarded as one class.

In such cases, it is usually infeasible to have a feature di-
mension commensurate with the number of classes due to
computational and memory constraints. Therefore, it is
crucial to develop a comprehensive understanding of the
characteristics of learned features in such cases, particularly
with the increasing use of web-scale datasets that have a
vast number of classes.

Contributions. This paper studies the geometric proper-
ties of the learned last-layer features and the classifiers for
the cases where the number of classes can be arbitrarily
large compared to the feature dimension. Motivated by the
use of spherical constraints in learning with a large num-
ber of classes, such as person identification and contrastive
learning, we consider networks trained with spherical con-
straints on the features and classifiers. Our contributions

1Language models are usually trained to classify a token (or a
collection of them) that is either masked in the input (as in BERT
(Devlin et al., 2018)), or the next one following the context (as in
language modeling), or a span of masked tokens in the input (as
in T5 (Raffel et al., 2020)). In such cases, the number of classes
equals the number of all possible tokens, i.e., the vocabulary size.

can be summarized as follows.

• The Arrangement Problem: Generalizing NC to a
Large Number of Classes. In Section 2 we introduce
the generalized NC (GNC) for describing the last-layer
features and classifier. In particular, GNC1 and GNC3
state the same as NC1 and NC3, respectively. GNC2
states that the classifier weight is a Softmax Code, which
generalizes the notion of a simplex ETF and is defined
as the collection of points on the unit hyper-sphere that
maximizes the minimum one-vs-all distance (see Figure 1
(a,b) for an illustration). Empirically, we verify that the
GNC approximately holds in practical DNNs trained with
a small temperature in CE loss. Furthermore, we conduct
theoretical study in Section 3 to show that under the un-
constrained features model (UFM) (Mixon et al., 2020;
Fang et al., 2021; Zhu et al., 2021) and with a vanishing
temperature, the global solutions satisfy GNC under tech-
nical conditions on Softmax Code and solutions to the
Tammes problem (Tammes, 1930), the latter defined as
a collection of points on the unit hyper-sphere that maxi-
mizes the minimum one-vs-one distance (see Figure 1(c)
for an illustration).

• The Assignment Problem: Implicit Regularization of
Class Semantic Similarity. Unlike the simplex ETF
(which is used to describe NC2) where the distance be-
tween any pair of vectors is the same, not all pairs in a
Softmax Code are of equal distant when the number of
classes is greater than the feature dimension. This leads
to the “assignment” problem, i.e., the correspondence
between the classes and the weights in a Softmax Code.
In Section 4, we show empirically an implicit regulariza-
tion effect by the semantic similarity of the classes, i.e.,
conceptually similar classes (e.g., Cat and Dog) are often
assigned to closer classifier weights in Softmax Code,
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compared to those that are conceptually dissimilar (e.g.,
Cat and Truck). Moreover, such an implicit regularization
is beneficial, i.e., enforcing other assignments produces
inferior model quality.

• Cost Reduction for Practical Network Training/Fine-
tuning. The universality of alignment between classifier
weights and class means (i.e., GNC3) implies that training
the classifier is unnecessary and the weight can be simply
replaced by the class-mean features. Our experiments in
Section 5 show that such a strategy achieves comparable
performance to classical training methods, and even better
out-of-distribution performance than classical fine-tuning
methods with significantly reduced parameters.

Related work. The recent work Liu et al. (2023a) also intro-
duces a notion of generalized NC for the case of large num-
ber of classes, which predicts equal-spaced features. How-
ever, their work focuses on networks trained with weight de-
cay, for which empirical results in Appendix B.2 and Yaras
et al. (2023) show to not produce equal-length and equal-
spaced features for a relatively large number of classes. Due
to limited space, we refer to Appendix B.2 for the detailed
comparison between different geometric properties of the
learned features and classifiers for the weight decay and
spherical constraints formulations. Moreover, the work Liu
et al. (2023a) relies on a specific choice of kernel function
to describe the uniformity. Instead, we concretely define
GNC2 through the softmax code. When preparing this sub-
mission, we notice a concurrent work Gao et al. (2023)
that provides analysis for generalized NC, but again for
networks trained with weight decay. In addition, Gao et al.
(2023) analyzes gradient flow for the corresponding UFM
with a particular choice of weight decay, while our work
studies the global optimality of the training problem. The
work Zhou et al. (2022a) empirically shows that MSE loss
is inferior to the CE loss when K > d + 1, but no formal
analysis is provided for CE loss. Finally, the global optimal-
ity of the UFM with spherical constraints has been studied
in Lu & Steinerberger (2022); Yaras et al. (2023) but only
for the cases K ≤ d+ 1 or K →∞.

2. Generalized Neural Collapse for A Large
Number of Classes

In this section, we begin by providing a brief overview of
DNNs and introducing notations used in this study in Sec-
tion 2.1. We will also introduce the concept of the UFM
which is used in theoretical study of the subsequent sec-
tion. Next, we introduce the notion of Softmax Code for
describing the distribution of a collection of points on the
unit sphere, which prepares us to present a formal definition
of Generalized Neural Collapse and empirical verification
of its validity in Section 2.2.

2.1. Basics Concepts of DNNs

A DNN classifier aims to learn a feature mapping ϕθ(·) :
RD → Rd with learnable parameters θ that maps from input
x ∈ RD to a deep representation called the feature ϕθ(x) ∈
Rd, and a linear classifier W = [w1 w2 · · · wK ] ∈
Rd×K such that the output (also known as the logits)
ΨΘ(x) = W⊤ϕθ (x) ∈ RK can make a correct prediction.
Here, Θ = {θ,W } represents all the learnable parameters
of the DNN.2

Given a balanced training set {(xk,i,yk)}i∈[n],k∈[K] ⊆
RD×RK , where xk,i is the i-th sample in the k-th class and
yk is the corresponding one-hot label with all zero entries
except for unity in the k-th entry, the network parameters Θ
are typically optimized by minimizing the CE loss

min
Θ

1

nK

K∑
k=1

n∑
i=1

LCE (ΨΘ (xk,i) ,yk, τ) ,

LCE (z,yk, τ) = − log
( exp(zk/τ)∑K

j=1 exp(zj/τ)

)
. (1)

In above, we assume that a spherical constraint is imposed
on the feature and classifier weights and that the logit zk
is divided by the temperature parameter τ . This is a com-
mon practice when dealing with a large number of classes
(Wang et al., 2018b; Chang et al., 2019; Chen et al., 2020a).
Specifically, we enforce {wk, ϕΘ(xk,i)} ⊆ Sd−1 := {a ∈
Rd : ∥a∥2 = 1} for all i ∈ [n] and k ∈ [K]. An alternative
regularization is weight decay on the model parameters Θ,
the effect of which we study in Appendix B.

To simplify the notation, we denote the oblique man-
ifold embedded in Euclidean space by OB(d,K) :={
W ∈ Rd×K | wk ∈ Sd−1, ∀k ∈ [K]

}
. In addition, we

denote the last-layer features centered at their global-mean
features by hk,i := ϕθ(xk,i)−

∑K
k=1

∑n
i=1 ϕθ(xk,i). We

rewrite all the features in a matrix form as

H := [H1 H2 · · · HK ] ∈ Rd×nK ,

with Hk :=
[
hk,1 · · · hk,n

]
∈ Rd×n.

Also we denote by hk := 1
n

∑n
i=1 hk,i the class-mean fea-

ture for each class.

Unconstrained Features Model (UFM). The UFM (Mixon
et al., 2020) or layer-peeled model (Fang et al., 2021),
wherein the last-layer features are treated as free optimiza-
tion variables, are widely used for theoretically understand-
ing the NC phenomena. In this paper, we will consider

2We ignore the bias term in the linear classifier since (i) the
bias term is used to compensate the global mean of the features
and vanishes when the global mean is zero (Papyan et al., 2020;
Zhu et al., 2021), (ii) it is the default setting across a wide range
of applications such as person identification (Wang et al., 2018b;
Deng et al., 2019), contrastive learning (Chen et al., 2020a; He
et al., 2020), etc.
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Figure 2. Illustration of GNC and test accuracy across different temperatures τ in training a ResNet18 on CIFAR100 with d = 10
and K = 100. “Optimal” in the second left figure refers to maxW∈OB(d,K) ρone-vs-rest(W ). Please refer to Appendix B for more details
of the optimization of the one-vs-rest distance.

the following UFM with a spherical constraint on classifier
weights W and unconstrained features H:

min
W ,H

1

nK

K∑
k=1

n∑
i=1

LCE
(
W⊤hk,i,yk, τ

)
(2)

s.t. W ∈ OB(d,K), H ∈ OB(d, nK).

2.2. Generalized Neural Collapse

We start by introducing the notion of softmax code which
will be used for describing GNC.
Definition 2.1 (Softmax Code). Given positive integers d
and K, a softmax code is an arrangement of K points on
a unit sphere of Rd that maximizes the minimal distance
between one point and the convex hull of the others:

max
W∈OB(d,K)

ρone-vs-rest(W ),

ρone-vs-rest(W )
.
= min

k
dist

(
wk, {wj}j∈[K]\k

)
. (3)

In above, the distance between a point v and a set W is
defined as dist(v,W) = infw∈conv(W){∥v −w∥}, where
conv(·) denotes the convex hull of a set.

We now extend NC to the Generalized Neural Collapse
(GNC) that captures the properties of the features and clas-
sifiers at the terminal phase of training. With a vanishing
temperature (i.e., τ → 0), the last-layer features and classi-
fier exhibit the following GNC phenomenon:

• Variability Collapse (GNC1). All features of the same
class collapse to the corresponding class mean. Formally,
as used in (Papyan et al., 2020), the quantity GNC1

.
=

1
K tr

(
ΣWΣ†

B

)
→ 0, where ΣB := 1

K

∑K
k=1 hkh

⊤
k and

ΣW := 1
nK

∑k
k=1

∑n
i=1

(
hk,i − hk

) (
hk,i − hk

)⊤
de-

note the between-class and within-class covariance matri-
ces, respectively.

• Softmax Codes (GNC2). Classifier weights converge
to the softmax code in Definition 2.1. This prop-
erty may be measured by GNC2

.
= ρone-vs-rest(W ) →

maxW∈OB(d,K) ρone-vs-rest(W ).

• Self-Duality (GNC3). Linear classifiers converge to the
class-mean features. Formally, this alignment can be
measured by GNC3

.
= 1

K

∑K
k=1

(
1−w⊤

k hk

)
→ 0.

The main difference between GNC and NC lies in GNC2
/ NC2, which describe the configuration of the classifier
weight W . In NC2, the classifier weights corresponding to
different classes are described as a simplex ETF, which is a
configuration of vectors that have equal pair-wise distance
and that distance is maximized. Such a configuration does
not exist in general when the number of classes is large, i.e.,
K > d+1. GNC2 introduces a new configuration described
by the notion of softmax code. By Definition 2.1, a softmax
code is a configuration where each vector is maximally
separated from all the other points, measured by its distance
to their convex hull. Such a definition is motivated from
theoretical analysis (see Section 3). In particular, it reduces
to simplex ETF when K ≤ d+ 1 (see Theorem 3.3).

Interpretation of Softmax Code. Softmax Code abides
a max-distance interpretation. Specifically, consider the
features {hk,i}k∈[K],i∈[n] from K classes. In multi-class
classification, one commonly used distance (or margin)
measurement is the one-vs-rest (also called one-vs-all or
one-vs-other) distance (Murphy, 2022), i.e., the distance
of class k vis-a-vis other classes. Noting that the distance
between two classes is equivalent to the distance between
the convex hulls of the data from each class (Murphy, 2022),
the distance of class k vis-a-vis other classes is given by
dist({hk,i}i∈[n], {hk′,i}k′∈[K]\k,i∈[n]). From GNC1 and
GNC3 we can rewrite the distance as

dist
(
{hk,i}i∈[n], {hk′,i}k′∈[K]\k,i∈[n]

)
=

dist
(
hk, {hk′}k′∈[K]\k

)
= dist

(
wk, {wk′}k′∈[K]\k

)
.
(4)

By noticing that the rightmost term is minimized in a Soft-
max Code, it follows from GNC2 that the learned features
satisfy that their one-vs-rest distance minimized over all
classes k ∈ [K] is maximized. In other words, measured by
one-vs-rest distance, the learned features are are maximally
separated. Finally, we mention that the separation of classes
may be characterized by other measures of distance as well,
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such as the one-vs-one distance (also known as the sample
margin in (Cao et al., 2019; Zhou et al., 2022b)) which leads
to the well-known Tammes problem, or the distances cap-
tured in the Thomson problems (Thomson, 1904; Hars).We
will discuss this in Section 3.2.

Experimental Verification of GNC. We verify the oc-
curence of GNC by training a ResNet18 (He et al., 2016) for
image classification on the CIFAR100 dataset (Krizhevsky,
2009), and report the results in Figure 2. To simulate the
case of K > d+ 1, we use a modified ResNet18 where the
feature dimension is 10. From Figure 2, we can observe that
both GNC1 and GNC3 converge to 0, and GNC2 converges
towards the spherical code with relatively small temperature
τ . Additionally, selecting a small τ is not only necessary
for achieving GNC, but also for attaining high testing per-
formance. Due to limited space, we present experimental
details and other experiments with different architectures
and datasets in Appendix B. In the next section, we provide
a theoretical justification for GNC under UFM in (2).

3. Theoretical Analysis of GNC
In this section, we provide a theoretical analysis of GNC
under the UFM in (2). We first show in Section 3.1 that un-
der appropriate temperature parameters, the solution to (2)
can be approximated by the solution to a “HardMax” prob-
lem, which is of a simpler form amenable for subsequent
analysis. We then provide a theoretical analysis of GNC in
Section 3.2, by first proving the optimal classifier forms a
Softmax Code (GNC2), and then establishing GNC1 and
GNC3 under technical conditions on Softmax Code and
solutions to the Tammes problem. In addition, we provide
insights for the design of feature dimension d given a num-
ber of classes K by analyzing the upper and lower bound
for the one-vs-rest distance of a Softmax Code. All proofs
can be found in Appendix C.

3.1. Preparation: the Asymptotic CE Loss

Due to the nature of the softmax function which blends
the output vector, analyzing the CE loss can be difficult
even for the unconstrained features model. The previous
work (Yaras et al., 2023) analyzing the case K ≤ d + 1
relies on the simple structure of the global solutions, where
the classifiers form a simplex ETF. However, this approach
cannot be directly applied to the case K > d + 1 due to
the absence of an informative characterization of the global
solution. Motivated by the fact that the temperature τ is
often selected as a small value (τ < 1, e.g., τ = 1/30
in (Wang et al., 2018b)) in practical applications (Wang
et al., 2018b; Chen et al., 2020a), we consider the case of

τ → 0 where the CE loss (2) converges to the “HardMax” 3

problem:

min
W∈OB(d,K)
H∈OB(d,nK)

LHardMax(W ,H), where

LHardMax(W ,H)
.
= max

k∈[K]
max
i∈[n]

max
k′ ̸=k
⟨wk′ −wk,hk,i⟩,

(5)
where ⟨·, ·⟩ denotes the inner-product operator. As the CE
loss (2) may not have unique solutions, to circumvent the
technical issue of defining the limit for uncountable se-
quence of sets (i.e., sets of solutions), by τ → 0 we will
consider a countable sequence, i.e., letting τ = 1/p with
p ∈ Z and p→∞. With this, we have the following result.

Lemma 3.1 (Convergence to the HardMax problem). For
any positive integers K and n, we have

lim sup
τ→0

(
argmin

W∈OB(d,K)
H∈OB(d,nK)

1

nK

K∑
k=1

n∑
i=1

LCE
(
W⊤hk,i,yk, τ

))

⊆ argmin
W∈OB(d,K)
H∈OB(d,nK)

LHardMax(W ,H).

Our goal is not to replace CE with the HardMax function
in practice. Instead, we will analyze the HardMax problem
in (5) to gain insight into the global solutions and the GNC
phenomenon.

3.2. Main Result: Theoretical Analysis of GNC

GNC2 and Softmax Code. Our main result for GNC2 is
the following.

Theorem 3.2 (GNC2). Let (W ⋆,H⋆) be an optimal solu-
tion to (5). Then, it holds that W ⋆ is a Softmax Code,

W ⋆ = argmax
W∈OB(d,K)

ρone-vs-rest(W ). (6)

GNC2 is described by the Softmax Code, which is defined
from an optimization problem (see Definition 2.1). This
optimization problem may not have a closed form solution
in general. Nonetheless, the one-vs-rest distance that is
used to define Softmax Code has a clear geometric meaning,
making an intuitive interpretation of Softmax Code tractable.
Specifically, maximizing the one-vs-rest distance results in
the classifier weight vectors {w⋆

k} to be maximally distant.

3While our main results focus on this asymptotic CE loss with
a small temperature parameter, which may be a potential limitation,
this asymptotic analysis offers several advantages. Firstly, a small
temperature parameter is necessary for achieving a large margin,
as indicated in Figure 2, aligning with common practices across
various applications. Secondly, it provides a profound geometric
interpretation, as discussed in the following parts.
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As shown in Figures 1a and 1b for a simple setting of four
classes in a 2D plane, the weight vectors {wk} that are
uniformly distributed (and hence maximally distant) have a
larger margin than the non-uniform case.

For certain choices of (d,K) the Softmax Code bears a
simple form.

Theorem 3.3. For any positive integers K and d, let W ⋆ ∈
OB(d,K) be a Softmax Code. Then,

• d = 2: {w⋆
k} is uniformly distributed on the unit circle,

i.e., {w⋆
k} = {

(
cos( 2πkK +α), sin( 2πkK +α)

)
} for some

α;
• K ≤ d + 1: {w⋆

k} forms a simplex ETF, i.e., W ⋆ =√
K

K−1P (IK − 1
K 1K1⊤

K) for some orthonomal P ∈
IRd×K;

• d + 1 < K ≤ 2d: ρone-vs-rest(W
⋆) = 1 which can

be achieved when {w⋆
k} are a subset of vertices of a

cross-polytope4;

For the cases of K ≤ d + 1, the optimal W ⋆ from Theo-
rem 3.3 is the same as that of (Lu & Steinerberger, 2022).
However, Theorem 3.3 is an analysis of the HardMax loss
while (Lu & Steinerberger, 2022) analyzed the CE loss.

GNC1 and Within-class Variability Collapse. To establish
the within-class variability collapse property, we require
a technical condition associated with the Softmax Code.
Recall that Softmax Codes are those that maximize the
minimum one-vs-rest distance over all classes. We introduce
rattlers, which are classes that do not attain such a minimum.

Definition 3.4 (Rattler of Softmax Code). Given positive
integers d and K, a rattler associated with a Softmax Code
W SC ∈ OB(d,K) is an index krattler ∈ [K] for which

min
k∈[K]

dist(wSC
k , {wSC

j }j∈[K]\k)

̸=dist(wSC
krattler

, {wSC
j }j∈[K]\krattler).

In other words, rattlers are points in a Softmax Code with no
neighbors at the minimum one-to-rest distance. This notion
is borrowed from the literature of the Tammes Problem
(Cohn, 2022; Wang, 2009), which we will soon discuss in
more detail5.

We are now ready to present the main results for GNC1.

Theorem 3.5 (GNC1). Let (W ⋆,H⋆) be an optimal solu-
tion to (5). For all k that is not a rattler of W ⋆, it holds

4Indeed, any sphere code W that achieves equality in Rankin’s
orthoplex bound (Fickus et al., 2017) maxk ̸=j⟨wk,wj⟩ ≥ 0 is a
softmax code.

5The occurrence of rattlers is rare: Among the 182 pairs of
(d,K) for which the solution to Tammes problem is known, only
31 have rattlers (Cohn, 2022). This has excluded the cases of
d = 2 or K ≤ 2d where there is no rattler. The occurrence of
ratter in Softmax Code may be rare as well.

that

h
⋆

k
.
= h⋆

k,1 = · · · = h⋆
k,n

= PSd−1

(
w⋆

k − P{w⋆
j }j∈[K]\k(w

⋆
k)
)
,

where PW(v)
.
= argminw∈conv(W){∥v − w∥2} denotes

the projection of v on the hypersphere of conv(W).

The following result shows that the requirement in the The-
orem 3.5 that k is not a rattler is satisfied in certain cases.
Theorem 3.6. If d = 2, or K ≤ d+ 1, Softmax Code has
no rattler for all classes.

GNC3 and Self-Duality. To motivate our technical condi-
tions for establishing self-duality, assume that any optimal
solution (W ⋆,H⋆) to (5) satisfies self-duality as well as
GNC1. This implies that

argmin
W∈OB(d,K),H∈OB(d,nK)

LHardMax(W ,H)

= argmin
W∈OB(d,nK)

max
k∈[K]

max
i∈[n]

max
k′ ̸=k
⟨wk′ −wk,wk⟩. (7)

After simplification we may rewrite the optimization prob-
lem on the right hand side equivalently as:

max
W∈OB(d,K)

ρone-vs-one(W ),

ρone-vs-one(W )
.
= min

k∈[K]
min
k′ ̸=k

dist(wk,wk′). (8)

Eq. (8) is the well-known Tammes problem. Geometrically,
the problem asks for a distribution of K points on the unit
sphere of IRd so that the minimum distance between any pair
of points is maximized. The Tammes problem is unsolved
in general, except for certain pairs of (K, d).

Both the Tammes problem and the Softmax Code are prob-
lems of arranging points to be maximally separated on the
unit sphere, with their difference being the specific mea-
sures of separation. Comparing (8) and (3), the Tammes
problem maximizes for all k ∈ [K] the one-vs-one dis-
tance, i.e., mink′ ̸=k dist(wk,wk′), whereas the Softmax
Code maximizes the minimum one-vs-rest distance, i.e.,
dist(wk, {wj}j∈[K]\k). Both one-vs-one distance and one-
vs-rest distances characterize the separation of the weight
vector wk from {wj}j∈[K]\k. As illustrated in Figure 1,
taking k = 1, the former is the distance between w1 and its
closest point in the set {w2,w3,w4}, in this case w2 (see
Figure 1c), whereas the later captures the minimal distance
from w1 to the convex hull of the rest vectors {w1,w2,w3}
(see Figure 1b).

Since the Tammes problem can be derived from the self-
duality constraint on the HardMax problem, it may not be
surprising that the Tammes problem can be used to describe
a condition for establishing self-duality. Specifically, we
have the following result.
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Theorem 3.7 (GNC3). For any K, d such that both Tammes
problem and Softmax Code have no rattler, the following
two statements are equivalent:

• Any optimal solution (W ⋆,H⋆) to (5) satisfies h⋆
k,i =

w∗
k,∀i ∈ [n],∀k ∈ [K];

• The Tammes problem and the Softmax codes are
equivalent, i.e., argmaxW∈OB(d,K) ρone-vs-rest(W ) =
argmaxW∈OB(d,K) ρone-vs-one(W ).

In words, Theorem 3.7 states that GNC3 holds if and only if
the Tammes problem in (8) and the Softmax codes are equiv-
alent. As both the Tammes problem and Softmax Code max-
imize separation between one vector and the others, though
their notions of separation are different, we conjecture that
they are equivalent and share the same optimal solutions.
We prove this conjecture for some special cases and leave
the study for the general case as future work6.

Theorem 3.8. If d = 2, or K ≤ d+1, the Tammes problem
and the Softmax codes are equivalent.

3.3. Insights for Choosing Feature Dimension d Given
Class Number K

Given a class number K, how does the choice of feature
dimension d affect the model performance? Intuitively,
smaller d reduces the separability between classes in a Soft-
max Code. We define this rigorously by providing bounds
for the one-vs-rest distance of a Softmax Code based on d
and K.

Theorem 3.9. Assuming K ≥
√
2π
√
ed and letting Γ(·)

denote the Gamma function, we have

1

2

[√
π

K

Γ
(
d+1
2

)
Γ
(
d
2 + 1

)] 2
d−1

≤ max
W∈OB(d,K)

ρone-vs-rest(W )

≤ 2

[
2
√
π

K

Γ
(
d+1
2

)
Γ
(
d
2

) ] 1
d−1

. (9)

The bounds characterize the separability for K classes in
d-dimensional space. Given the number of classes K and
desired margin ρ, the minimal feature dimension is roughly
an order of log(K2/ρ), showing classes separate easily in
higher dimensions. This also provides a justification for ap-
plications like face classification and self-supervised learn-
ing, where the number of classes (e.g., millions of classes)
could be significantly larger than the dimensionality of the
features (e.g., d = 512).

By conducting experiments on ResNet-50 with varying fea-
ture dimensions for ImageNet classification, we further cor-
roborate the relationship between feature dimension and
network performance in Figure 3. First, we observe that

6We numerically verify the equivalence for all the cases with
d ≤ 100 in Table 1 of (Cohn & Kumar, 2007).

Figure 3. Effect of feature dimension d on (Left y-axis):
ρone-vs-rest(W

⋆) and its upper/lower bounds (in Theorem 3.9), and
(Right y-axis): training and test accuracies on ImageNet.

the curve of the optimal distance is closely aligned with the
curve of testing performance, indicating a strong correlation
between distance and testing accuracy. Moreover, both the
distance and performance curves exhibit a slow (exponen-
tial) decrease as the feature dimension d decreases, which
is consistent with the bounds in Theorem 3.9.

4. The Assignment Problem: An Empirical
Study

Unlike the case d ≥ K − 1 where the optimal classifier
(simplex ETF) has equal angles between any pair of the
classifier weights, when d < K−1, not all pairs of classifier
weights are equally distant with the optimal W (Softmax
Code) predicted in Theorem 3.2. Consequently, this leads to
a “class assignment” problem. To illustrate this, we train a
ResNet18 network with d = 2 on four classes {Automobile,
Cat, Dog, Truck} from CIFAR10 dataset that are selected
due to their clear semantic similarity and discrepancy. In
this case, according to Theorem 3.3, the optimal classifiers
are given by [1, 0], [−1, 0], [0, 1], [0,−1], up to a rotation.
Consequently, there are three distinct class assignments, as
illustrated in Figures 4b to 4d.

When doing standard training, the classifier consistently
converges to the case where Cat and Dog are closer together
across 5 different trials; Figure 4a shows the learned features
(dots) and classifier weights (arrows) in one of such trials.
This demonstrates the implicit algorithmic regularization
in training DNNs, which naturally attracts (semantically)
similar classes and separates dissimilar ones.

We also conduct experiments with the classifier fixed to be
one of the three arrangements, and present the results in
Figures 4b to 4d. Among them, we observe that the case
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(a) Trainable (91.45%) (b) Fixed A1 (91.90%) (c) Fixed A2 (92.13%) (d) Fixed A3 (89.95%)

Figure 4. Assignment of classes to classifier weights for a ResNet18 with 2-dimensional feature space trained on the 4 classes
{Automobile, Cat, Dog, Truck} from CIFAR10. (a) Learned classifier. (b-d) Classifiers fixed to be three different assignments. Test
accuracy is reported in the bracket.

(a) ResNet (b) DenseNet (c) ResNeXt

Figure 5. Comparison of the learning curves (training and testing accuracies) with learned classifiers vs. CMF classifiers trained
with various networks on CIFAR100 dataset and d = 10.

where Cat and Dog are far apart achieves a testing accuracy
of 89.95%, lower than the other two cases with accuracies
of 91.90% and 92.13%. This demonstrates the important
role of class assignment to the generalization of DNNs, and
that the implicit bias of the learned classifier is benign, i.e.,
leads to a more generalizable solutions. A comprehensive
study of this phenomenon is deferred to future work.

5. Implications for Practical Network
Training/Fine-tuning

Since the classifier always converges to a simplex ETF when
K ≤ d + 1, prior work proposes to fix the classifier as a
simplex ETF for reducing training cost (Zhu et al., 2021)
and handling imbalance dataset (Yang et al., 2022). When
K > d+1, the optimal classifier is also known to be a Soft-
max Code according to GNC2. However, the same method
as in prior work may become sub-optimal due to the class
assignment problem (see Section 4). To address this, we in-
troduce the method of class-mean features (CMF) classifiers,
where the classifier weights are set to be the exponential
moving average of the mini-batch class-mean features dur-
ing the training process. This approach is motivated from
GNC3 where the optimal classifier converges to the class-
mean features. We explain the details in Appendix B. As in

prior work, CMF can reduce trainable parameters as well.
For instance, it can reduce 30.91% of total parameters in
a ResNet18 for BUPT-CBFace-50 dataset (Zhang & Deng,
2020). Here, we compare CMF with the standard train-
ing where the classifier is learned together with the feature
mapping, in both training from scratch and fine-tuning.

Training from Scratch. We train a ResNet18 on CIFAR100
by using a learnable classifier or the CMF classifier. The
learning curves in Figure 5 indicate that the approach with
CMF classifier achieves comparable performance to the
classical training protocols.

Fine-tuning. To verify the effectiveness of the CMF classi-
fiers on fine-tuning, we follow the setting in (Kumar et al.,
2022) to measure the performance of the fine-tuned model
on both in-distribution (ID) task (i.e., CIFAR10 (Krizhevsky,
2009)) and OOD task (STL10 (Coates et al., 2011)). We
compare the standard approach that fine-tunes both the clas-
sifier (randomly initialized) and the pre-trained feature map-
ping with our approach (using the CMF classifier). Our
experiments show that the approach with CMF classifier
achieves slightly better ID accuracy (98.00% VS 97.00%)
and a better OOD performance (90.67% VS 87.42%). The
improvement of OOD performance stems from the ability to
align the classifier with the class-means through the entire
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process, which better preserves the OOD property of the pre-
trained model. Our approach also simplifies the two-stage
approach of linearly probing and subsequent full fine-tuning
in (Kumar et al., 2022).

6. Conclusion
In this work, we have introduced generalized neural col-
lapse (GNC) for characterizing learned last-layer features
and classifiers in DNNs under an arbitrary number of classes
and feature dimensions. We empirically validate the GNC
phenomenon on practical DNNs that are trained with a small
temperature in the CE loss and subject to spherical con-
straints on the features and classifiers. Building upon the un-
constrained features model we have proven that GNC holds
under certain technical conditions. GNC could offer valu-
able insights for the design, training, and generalization of
DNNs. For example, the minimal one-vs-rest distance pro-
vides implications for designing feature dimensions when
dealing with a large number of classes. Additionally, we
have leveraged GNC to enhance training efficiency and fine-
tuning performance by fixing the classifier as class-mean
features. Further exploration of GNC in other scenarios,
such as imbalanced learning, is left for future work. It is
also of interest to further study the problem of optimally as-
signing classifiers from Softmax Code for each class, which
could shed light on developing techniques for better classifi-
cation performance.
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Appendix
The organization of the appendix is as follows. Firstly, we introduce some useful results that are utilized throughout the
appendices, and discuss related works on using CE loss with spherical constraints. In Appendix B, we offer comprehensive
information regarding the datasets and computational resources for each figure, along with presenting additional experimental
results on practical datasets. Lastly, in Appendix C, we provide the theoretical proofs for all the theorems mentioned in
Section 3.

A. Basic and Common Practice of Using Spherical Constraints.
A.1. Useful Results

Lemma A.1 (LogSumExp). Let denote x =
[
x1, x2, · · · , xn

]
∈ Rn and the LogSumExp function LSE(x, τ) =

log (
∑n

i=1 exp(xi/τ)). With τ → 0, we have

τLSE(x, τ)→ max
i

xi

In other words, the LogSumExp function is a smooth approximation to the maximum function.

Proof of Lemma A.1. According to the definition of the LogSumExp function, we have

max
i

xi ≤ τLSE(x, τ) ≤ max
i

xi + τ log n

where the first inequality is strict unless n = 1 and the second inequality is strict unless all arguments are equal x1 = x2 =
· · · = xn. Therefore, with τ → 0, τLSE(x, τ)→ maxi xi.

Theorem A.2 (Carathéodory’s theorem (Carathéodory, 1911)). Given w1, . . . ,wK ∈ Rd, if a point v lies in the convex hull
conv({w1, . . . ,wK}) of {w1, . . . ,wK}, then v resides in the convex hull of at most d+1 of the points in {w1, . . . ,wK}.

A.2. Common Practice of Using Spherical Constraints

In cases where the number of classes is larger than the feature dimensions, it is common practice to use a modified version
of CE loss (1) with normalization and a small temperature τ . This approach is prevalent in face recognition, information
retrieval and self-supervised contrastive learning areas. Below we present some representative works.

• Face recognition. AdditiveFace (Wang et al., 2018a), ArcFace (Deng et al., 2019), NormFace (Wang et al., 2017) and
CosFace (Wang et al., 2018b) use the cross entropy loss with the feature and weight normalization and small temperature
parameter. They observe that the feature and weight normalization are necessary since this practice strengthens the
cosine constraint and improves the model’s ability to distinguish between different face classes. For the temperature
values, AdditiveFace (Wang et al., 2018a) uses the temperature τ = 1/30 (in the first sentence of page 3); ArcFace (Deng
et al., 2019) sets τ = 1/64 (in the second paragraph of experiment setting in section 4.2); In the NormFace (Wang
et al., 2017), the authors conduct comprehensive experiments for the effect of temperature across different datasets.
For example, the superior performance is chosen at temperature τ = 1/40 on the LFW dataset in figure 8, which is
also better than CE loss without any normalization. The CosFace (Wang et al., 2018b) sets the temperature parameter
as τ = 1/64 ( “training part” of section 4.1) for CASIA-WebFace and τ = 1/30 also performs well in the practical
implementation [link].

• Information retrieval. (Yi et al., 2019) also uses the modified cross entropy loss when training dual encoders (the
last paragraph in section 3) to learn the representations of query and candidates. They observe that setting a small
temperature value from τ = 0.05 to 0.07 results in the best performance in table 1. Similarly, (Lindgren et al., 2021) also
uses the modified cross entropy loss when training dual encoders in Equation 1 & 2 of section 2.2. It uses a temperature
value of τ = 0.05 for document retrieval (see the “set up the cache loss” in [link]).

• Contrastive learning. SimCLR (Chen et al., 2020a) treats each data sample as a class and computes the cosine
similarity between pairs of positive and negative examples using the normalized inner product of features. It chooses
the inverse temperature between 10 and 20 (which is the inverse of our τ ) in table 5 to obtain the best performance.
Similarly, MoCo (He et al., 2020) sets temperature as τ = 0.07 according to the “technical details” part of section 3.3.
In multi-domains constrative learning, ConVIRT (Zhang et al., 2022) uses normalization and temperature for the CE
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loss to learn contrastive representations between medical image and text (see equation 2 & 3) and chooses τ = 0.01
(in table 4). CLIP (Radford et al., 2021) model applies normalization to both image and text embeddings to ensure
consistent scales(see figure 3), and it initializes the temperature τ = 0.07 (in section 2.5 of page 5).

B. Experiments
In this section, we begin by providing additional details regarding the datasets and the computational resources utilized in
the paper. Specifically, CIFAR10, CIFAR100, and BUPT-CBFace datasets are publicly available for academic purposes
under the MIT license. Additionally, all experiments were conducted on 4xV100 GPU with 32G memory. Furthermore, we
present supplementary experiments and implementation specifics for each figure.

B.1. Implementation details

We present implementation details for results in the paper.

Results in Figure 2. To illustrate the occurrence of the GNC phenomenon in practical multi-class classification problems,
we trained a ResNet18 network (He et al., 2016) on the CIFAR100 dataset (Krizhevsky, 2009) using CE loss with varying
temperature parameters. In this experiment, we set the dimensions of the last-layer features to 10. This is achieved by setting
the number of channels in the second convolutional layer of the last residual block before the classifier layer to be 10. Prior
to training, we applied standard preprocessing techniques, which involved normalizing the images (channel-wise) using
their mean and standard deviation. We also employed standard data augmentation methods. For optimization, we utilized
SGD with a momentum of 0.9 and an initial learning rate of 0.1, which decayed according to the CosineAnnealing over a
span of 200 epochs.

The optimal margin (represented by the dotted line) in the second left subfigure is obtained from numerical optimization of
the Softmax Code problem. According to Theorem 3.2, solving the Softmax Codes is equivalent to solving the ”HardMax”
problem in (5), which is an optimization over both W and H . Thus, we optimize (5) numerically using projected gradient
descent. Likewise, when given W , we find the one-vs-rest distance by optimizing the “HardMax” problem over H . The
equivalence is proved in Lemma C.4 in Appendix C. Consequently, we can use the same projected gradient descent to find
the one-vs-rest distance. In this optimization process, we used an initial learning rate of 0.1 and decreased it by a factor of
10 every 1000 iterations, for a total of 5000 iterations.

Results in Figure 4. To demonstrate the implicit algorithmic regularization in training DNNs, we train a ResNet18
network on four classes Automobile, Cat, Dog, Truck from CIFAR10 dataset. We set the dimensions of the last-layer
features to 2 so that the learned features can be visualized, and we used a temperature parameter of 0.05. We optimized the
networks for a total of 800 epochs using SGD with a momentum of 0.9 and an initial learning rate of 0.1, which is decreased
by a factor of 10 every 200 epochs.

Results in Figure 5. To assess the effectiveness of the proposed CMF (Class Mean Feature) method, we utilized the
ResNet18 architecture (He et al., 2015) as the feature encoder on the CIFAR100 dataset (Krizhevsky, 2009), where we set
the feature dimension to d = 20 and the temperature parameter to τ = 0.1. Since the model can only access a mini-batch
of the dataset for each iteration, it becomes computationally prohibitive to calculate the class-mean features of the entire
dataset. As a solution, we updated the classifier by employing the exponential moving average of the feature class mean,
represented as W (t+1) ← βW (t) + (1− β)H

(t)
. Here, H

(t) ∈ RK×d denotes the class mean feature of the mini-batch
in iteration t, W ∈ RK×d represents the classifier weights, and β ∈ [0, 1) denotes the momentum coefficient (in our
experiment, β = 0.9). We applied the same data preprocessing and augmentation techniques mentioned previously and
employed an initial learning rate of 0.1 with the CosineAnnealing scheduler.

Results in the fine-tuning experiment of Section 5. We fine-tune a pretrained ResNet50 on MoCo v2 (Chen et al., 2020b)
on CIFAR10 (Krizhevsky, 2009). The CIFAR10 test dataset was chosen as the in-distribution (ID) task, while the STL10
dataset (Coates et al., 2011) served as the out-of-distribution (OOD) task. To preprocess the dataset, we resized the images
to 224× 224 using BICUBIC interpolation and normalized them by their mean and standard deviation. Since there is no
“monkey” class in CIFAR10 dataset, we remove the “monkey” class in the STL10 dataset. Additionally, we reassign the
labels of CIFAR10 datasets to the STL10 dataset in order to match the classifier output. For optimization, we employed the
Adam optimizer with a learning rate of 1e− 5 and utilized the CosineAnnealing scheduler. The models are fine-tuned for 5
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epochs with the batch size of 100. We reported the best ID testing accuracy achieved during the fine-tuning process and also
provided the corresponding OOD accuracy.

Results in Figure 6. To visualize the different structures learned under weight decay or spherical constraint, we conducted
experiments in both practical and unconstrained feature model settings. In the practical setting, we trained a ResNet18
network (He et al., 2016) on the first 30 classes of the CIFAR100 dataset (Krizhevsky, 2009) using either weight decay or
spherical constraint with the cross-entropy (CE) loss. For visualization purposes, we set the dimensions of the last-layer
features to 2, and for the spherical constraint, we used a temperature parameter of 70. Prior to training, we applied standard
preprocessing techniques, which included normalizing the images (channel-wise) using their mean and standard deviation.
Additionally, we employed standard data augmentation methods. We optimized the networks for a total of 1600 epochs
using SGD with a momentum of 0.9 and an initial learning rate of 0.1, which decreased by a factor of 10 every 700 epochs.
For the unconstrained feature model setting, we considered only one sample per class and treated the feature (class-mean
features) and weights as free optimization variables. In this case, we initialized the learning rate at 0.1 and decreased it by a
factor of 10 every 1000 iterations, for totaling 5000 iterations. The temperature parameter was set to 0.02 for the spherical
constraint.

Results in Figure 11. To demonstrate the implicit algorithmic regularization in training DNNs, we train a ResNet18
network on four classes Automobile, Cat, Deer, Dog, Horse, Truck from CIFAR10 dataset. We set the dimensions of the
last-layer features to 2 so that the learned features can be visualized, and we used a temperature parameter of 0.2. We
optimized the networks for a total of 600 epochs using SGD with a momentum of 0.9 and an initial learning rate of 0.1,
which is decreased by a factor of 10 every 200 epochs.

B.2. Effect of regularization: Spherical constraint vs. weight decay

Figure 6. Comparison of classifier weights and last-layer features with weight decay (WD) vs spherical constraint (SC) on features
and classifiers. (a) vs (b): Results with a ResNet18 trained on CFIAR100. (c) vs (d): Results with the unconstrained feature model in (10)
and (2), respectively. In all settings, we set K = 30 and d = 2 for visualization; the first K = 30 classes from CIFAR100 dataset are
used to train ResNet18.

We study the features and classifiers of networks trained with weight decay for the case K > d+ 1, and compare with those
obtained with spherical constraint. For the purpose of visualization, we train a ResNet18 with d = 2 on the first K = 30
classes of CIFAR100 and display the learned features and classifiers in Figure 6(a). Below we summarize observations from
Figure 6(a).

• Non-equal length and non-uniform distribution. The vectors of class-mean features {hk} do not have equal length,
and also appear to be not equally spaced when normalized to the unit sphere.

• Self-duality only in direction. The classifiers point towards the same direction as their corresponding class-mean features,
but they have different lengths, and there exists no global scaling to exactly align them. As shown in Figure 7, the ratios
between the lengths of classifier weights and class-mean features vary across different classes. Therefore, there exists no
global scaling to align them exactly.

In contrast, using spherical constraint produces equal-length and uniformly distributed features, as well as aligned classifier
and classifier weights not only in direction but also in length, see Figure 6 (b). Such a result is aligned with GNC. This

15



Generalized Neural Collapse for a Large Number of Classes

observation may explain the common practice of using feature normalization in applications with an extremely large number
of classes (Chen & He, 2021; Wang et al., 2018b), and justify our study of networks trained with sphere constraints in (2)
rather than weight decay as in (Liu et al., 2023a).

We note that the discrepancy between the approaches using weight decay and spherical constraints is not due to the
insufficient expressiveness of the networks. In fact, we also observe different performances in the unconstrained feature
model with spherical constraints as in (2) and with the following regularized form (Zhu et al., 2021; Mixon et al., 2020;
Tirer & Bruna, 2022; Zhou et al., 2022a):

min
W ,H

1

nK

K∑
k=1

n∑
i=1

LCE
(
W⊤hk,i,yk, τ

)
+

λ

2
(∥W ∥2F + ∥H∥2F ), (10)

where λ represents the weight decay parameters. We observe similar phenomena in Figure 6(c, d) as in Figure 6(a, b) that
the weight decay formulation results in features with non-equal lengths, non-uniform distribution, and different lengths than
the classifiers. In the next section, we provide a theoretical justification for GNC under the UFM for Problem (2).

Figure 7. Illustration of the length of the classifier weights and class-mean features in unconstrained feature model (UFM) with weight
decay (WD) form in Figure 6. The ratios between the lengths of classifier weights and class-mean features vary across different classes.

B.3. Additional results on prevalence of GNC

We provide additional evidence on the occurrence of the GNC phenomenon in practical multi-class classification problems.
Towards that, we train ResNet18, DenseNet121, and ResNeXt50 network on the CIFAR100, Tiny-ImageNet and BUPT-
CBFace-50 datasets using CE loss. To illustrate the case where the feature dimension is smaller than the number of classes,
we insert another linear layer before the last-layer classifier and set the dimensions of the features as d = 10 for CIFAR100
and Tiny-ImageNet, and d = 512 for BUPT-CBFace-50.

The results are reported in Figure 8. It can be seen that in all the cases the GNC1, GNC2 and GNC3 measures converge
mostly monotonically as a function of the training epochs towards the values predicted by GNC(i.e., 0 for GNC1 and GNC3
and the objective of Softmax Code for GNC2, see Section 2.2).

Effect of temperature τ . The results on BUPT-CBFace-50 reported in Figure 8 uses a temperature τ = 0.02. To examine
the effect of τ , we conduct experiments with varying τ and report the GNC2 in Figure 9. It can be seen that the GNC2
measure at convergence monotonically increases as τ decreases.

Implementation detail. We choose the temperature τ = 0.1 for CIFAR100 and Tiny-ImageNet and τ = 0.02 for the
BUPT-CBFace-50 dataset. The CIFAR100 dataset consists of 60, 000 32×32 color images in 100 classes and Tiny-ImageNet
contains 100, 000 64×64 color images in 200 classes. The BUPT-CBFace-50 dataset consists of 500, 000 images in 10, 000
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Figure 8. Illustration of GNC and train accuracy across different network architectures on CIFAR100(top), Tiny-ImageNet(middle)
and BUPT-CBFace-50(bottom) datasets. We train the networks on CIFAR100 with d = 10, K = 100, Tiny-ImageNet with
d = 10, K = 200 and BUPT-CBFace-50 with d = 512, K = 10000.

classes and all images are resized to the size of 50× 50. To adapt to the smaller size images, we modify these architectures
by changing the first convolutional layer to have a kernel size of 3, a stride of 1, and a padding size of 1. For our data
augmentation strategy, we employ the random crop with a size of 32 and padding of 4, random horizontal flip with a
probability of 0.5, and random rotation with degrees of 15 to increase the diversity of our training data. Then we normalize
the images (channel-wise) using their mean and standard deviation. For optimization, we utilized SGD with a momentum of
0.9 and an initial learning rate of 0.1, which decayed according to the CosineAnnealing over a span of 200 epochs. The
optimal margin (represented by the dash line) in the second from left column is obtained through numerical optimization of
the Softmax Codes problem.

B.4. The Nearest Centroid Classifier

As the learned features exhibit within-class variability collapse and are maximally distant between classes, the classifier also
converges to the nearest centroid classifier (a.k.a nearest class-center classifier (NCC), where each sample is classified with
the nearest class-mean features), which is termed as NC4 in (Papyan et al., 2020) and exploited in (Galanti et al., 2022b;a;
Rangamani et al., 2023) for studying NC. To evaluate the convergence in terms of NCC accuracy, we use the same setup
as in Figure 2, i.e., train a ResNet18 network on the CIFAR100 dataset with CE loss using different temperatures. We
then classify the features by the NCC. The result is presented in Figure 10. We can observe that with a relatively small
temperature τ , the NCC accuracy converges to 100% and hence the classifier also converges to a NCC.

B.5. Additional results on the effect of assignment problem

We provide additional evidence on the effect of ”class assignment” problem in practical multi-class classification problems.
To illustrate this, we train a ResNet18 network with d = 2 on six classes {Automobile, Cat, Deer, Dog, Horse, Truck}
from CIFAR10 dataset that are selected due to their clear semantic similarity and discrepancy. Consequently, according to
Theorem 3.3, there are fifteen distinct class assignments up to permutation.
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Figure 9. Illustration of GNC2 on BUPT-CBFace-50 dataset across varying and temperatures. We train the networks on BUPT-
CBFace-50 with d = 512, K = 10, 000.

Figure 10. Illustration of NCC training accuracy with different temperatures.

When doing standard training, the classifier consistently converges to the case where Cat-Dog, Automobile-Truck and
Deer-Horse pairs are closer together across 5 different trials; Figure 11(a) shows the learned features (dots) and classifier
weights (arrows) in one of such trials. This demonstrates the implicit algorithmic regularization in training DNNs, which
naturally attracts (semantically) similar classes and separates dissimilar ones.

We also conduct experiments with the classifier fixed to be three of the fifteen arrangements, and present the results in
Figure 11 (b)-(d). Among them, we observe that the case where Cat-Dog, Automobile-Truck and Deer-Horse pairs are far
apart achieves a testing accuracy of 86.37%, which is lower than the other two cases with testing accuracies of 91.60%
and 91.95%. This demonstrates the important role of class assignment to the generalization of DNNs, and that the implicit
bias of the learned classifier is benign, i.e., leads to a more generalizable solutions. Moreover, compared with the case of
four classes in Figure 4, the discrepancy of test accuracy between different assignments increases from 2.18% to 5.58%.
This suggests that as the number of classes grows, the importance of appropriate class assignments becomes increasingly
paramount.

C. Theoretical Proofs
C.1. Proof of Lemma 3.1

We rewrite Lemma 3.1 below for convenience.
Lemma C.1 (Convergence to the “HardMax” problem). For any positive integers K and n, we have

lim sup
τ→0

(
argmin

1

nK

K∑
k=1

n∑
i=1

LCE
(
W⊤hk,i,yk, τ

))
⊆ argminLHardMax(W ,H). (11)

In above, all argmin are taken over W ∈ OB(d,K),H ∈ OB(d, nK).

Proof. Our proof uses the fundamental theorem of Γ-convergence (Braides, 2006) (a.k.a. epi-convergence (Rockafellar &
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Figure 11. Assignment of classes to classifier weights for a ResNet18 with 2-dimensional feature space trained on the 6 classes
{Automobile, Cat, Deer, Dog, Horse, Truck} from CIFAR10. (a) Learned classifier. (b-d) Classifiers fixed to be three different
assignments. Test accuracy is reported in the bracket.
Wets, 2009)). Denote

L0(W ,H, τ)
.
= τ · log

n∑
i=1

K∑
k=1

LCE(W
⊤hk,i,yk, τ), (12)

and let

WH− .
= {(W ,H) ∈ OB(d,K)×OB(d,K) : (wk′ −wk)

⊤hk,i ≤ 0,∀i ∈ [n], k ∈ [K], k′ ∈ [K] \ k}. (13)

By Lemma C.2, the function L0(W ,H, τ) converges uniformly to LHardMax(W ,H) onWH− as ϵ → 0. Combining it
with [Proposition 7.15](Rockafellar & Wets, 2009), we have L0(W ,H, τ) Γ-converges to LHardMax(W ,H) onWH− as
well. By applying [Theorem 2.10](Braides, 2006), we have

lim sup
τ→0

argmin
(W ,H)∈WH−

L0(W ,H, τ) ⊆ argmin
(W ,H)∈WH−

LHardMax(W ,H). (14)

Note that in above, argmin are taken overWH− which is a strict subset of W ∈ OB(d,K),H ∈ OB(d, nK). However,
by Lemma C.3, we know that

argmin
(W ,H)∈WH−

L0(W ,H, τ) = argmin
(W ,H)∈OB(d,K)×OB(d,K)

L0(W ,H, τ), (15)

which holds for all τ sufficiently small. Hence, we have

lim sup
τ→0

argmin
(W ,H)∈OB(d,K)×OB(d,K)

L0(W ,H, τ) ⊆ argmin
(W ,H)∈OB(d,K)×OB(d,K)

LHardMax(W ,H), (16)

which concludes the proof.

Lemma C.2. L0(W ,H, τ) converges uniformly to LHardMax(W ,H) in the domain (W ,H) ∈ WH− as τ → 0.

Proof. Recall from the definition of the CE loss in (1) that

L0(W ,H, τ)
.
= τ · log

n∑
i=1

K∑
k=1

LCE(W
⊤hk,i,yk, τ)

= τ log

n∑
i=1

K∑
k=1

log

1 +
∑

k′∈[K]\k

exp
(
(wk′ −wk)

⊤hk,i/τ
) (17)

Denote αi,k,k′ = (wk′ −wk)
⊤hk,i,∀i ∈ [n], k ∈ [K], k′ ∈ [K] \ k for convenience. Fix any i ∈ [n] and k ∈ [K], by the

property that x
1+x ≤ log(1 + x) ≤ x for all x > −1, we have∑

k′∈[K]\k exp
(αi,k,k′

τ

)
1 +

∑
k′∈[K]\k exp

(αi,k,k′

τ

) ≤ log

1 +
∑

k′∈[K]\k

exp
(αi,k,k′

τ

) ≤ ∑
k′∈[K]\k

exp
(αi,k,k′

τ

)
. (18)
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Note that in the domain (W ,H) ∈ WH− we have αi,k,k′ ≤ 0 for all i, k, k′ ̸= k. It follows trivially from monotonicity of
exponential function that

∑
k′∈[K]\k exp

(αi,k,k′

τ

)
< K − 1 holds for all i, k. Hence, continuing from the inequality above

we have ∑
k′∈[K]\k exp

(αi,k,k′

τ

)
K

≤ log

1 +
∑

k′∈[K]\k

exp
(αi,k,k′

τ

) ≤ ∑
k′∈[K]\k

exp
(αi,k,k′

τ

)
. (19)

Summing over i, k we obtain

∑
i,k

∑
k′∈[K]\k exp

(αi,k,k′

τ

)
K

≤
∑
i,k

log

1 +
∑

k′∈[K]\k

exp
(αi,k,k′

τ

) ≤∑
i,k

∑
k′∈[K]\k

exp
(αi,k,k′

τ

)
, (20)

Using the property of max function we further obtain

maxi,k,k′∈[K]\k exp
(αi,k,k′

τ

)
K

≤
∑
i,k

log

1 +
∑

k′∈[K]\k

exp
(αi,k,k′

τ

)
≤ n ·K · (K − 1) · max

i,k,k′∈[K]\k
exp

(αi,k,k′

τ

)
. (21)

Taking logarithmic on both sides and multiplying all terms by τ we get

max
i,k,k′∈[K]\k

αi,k,k′ − τ logK ≤ L0(W ,H, τ) ≤ τ log(n ·K · (K − 1)) + max
i,k,k′∈[K]\k

αi,k,k′ . (22)

Noting that maxi,k,k′∈[K]\k αi,k,k′ = LHardMax(W ,H), we have

LHardMax(W ,H)− τ logK ≤ L0(W ,H, τ) ≤ τ log(n ·K · (K − 1)) + LHardMax(W ,H). (23)

Hence, for any ϵ > 0, by taking τ0 = ϵ
max{logK,log(n·K·(K−1))} , we have that for any (W ,H) ∈ WH−, we have

|L0(W ,H, τ)− LHardMax(W ,H)| ≤ τ max{logK, log(n ·K · (K − 1))} < ϵ, (24)

for any τ < τ0. That is, L0(W ,H, τ) converges uniformly to LHardMax(W ,H).

Lemma C.3. Given any n,K there exists a constant τ0 such that for any τ < τ0 we have

argmin
(W ,H)∈OB(d,K)×OB(d,K)

L0(W ,H, τ) ∈ WH−. (25)

Proof. Note that for any (W ,H) /∈ OB(d,K) × OB(d,K), there exists ī ∈ [n], k̄ ∈ [K], and k̄′ ∈ [K] \ k̄ such that
(wk̄′ −wk̄)

⊤hk̄,̄i ≥ 0. Hence, we have

L0(W ,H, τ) = τ log

n∑
i=1

K∑
k=1

log

1 +
∑

k′∈[K]\k

exp
(
(wk′ −wk)

⊤hk,i/τ
)

≥ τ log log(1 + exp(wk̄′ −wk̄)
⊤hk̄,̄i/τ) ≥ τ log log(2), ∀τ > 0. (26)

On the other hand, we show that one may construct a (W ∗,H∗) ∈ WH− such that L0(W
∗,H∗, τ) < τ log log(2)

for any small enough τ . Towards that, we take W ∗ to be any matrix in OB(d,K) with distinct columns. Denote
M = maxk ̸=k′⟨w∗

k,w
∗
k′⟩ the inner product of the closest pair of columns from W ∗, which by construction has value
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M < 1. Take hk,i = wk for all k ∈ [K], i ∈ [n]. We have (w∗
k′ −w∗

k)
⊤h∗

k,i ≤ −(1−M), for all i ∈ [n], k ∈ [K], and
k′ ∈ [K] \ k. Plugging this into the definition of L0(W ,H, τ) we have

L0(W
∗,H∗, τ) = τ log

n∑
i=1

K∑
k=1

log

1 +
∑

k′∈[K]\k

exp
(
(w∗

k′ −w∗
k)

⊤h∗
k,i/τ

)
≤ τ log

(
nK log(1 + (K − 1) exp (−1−M

τ
))

)
< τ log log 2, ∀τ < τ0 (27)

for some τ0 > 0 that depends only on M . In above, the last inequality holds because one can always find a τ0 > 0 such that
nK log(1 + (K − 1) exp (− 1−M

τ )) < log 2 for τ < τ0. This implies that any (W ,H) /∈ OB(d,K)×OB(d,K) is not a
minimizer of L0(W ,H, τ) for a sufficiently small τ , which finishes the proof.

Figure 12. Verifying Lemma 3.1 under d = 3 and K = 7.

As depicted in Figure 12, we plot the cosine value of the minimal angle obtained from optimizing the CE loss (blue line) and
the ”HardMax” approach (black line) for different temperature parameters. The figure demonstrates that as the temperature
parameter τ → 0, the blue line converges to the black line, thus validating our proof.

C.2. An important lemma

We present an important lemma which will be used to prove many of the subsequent results.

Lemma C.4 (Optimal Features for Fixed Classifier). For any k ∈ [K], suppose wk /∈ conv({wj}j∈[K]\k), then

min
h∈Sd−1

max
k′ ̸=k
⟨wk′ −wk,h⟩ = −dist(wk, {wj}j∈[K]\k). (28)

In addition, the optimal h is given by

h = PSd−1

(
wk − P{wj}j∈[K]\k(wk)

)
(29)

where PW(v)
.
= argminw∈conv(W){∥v −w∥2} denotes the projection of v on conv(W).

Proof. The proof follows from combining Lemma C.5 and Lemma C.6.

Lemma C.5. Suppose wk /∈ conv({wj}j∈[K]\k). Then

min
h∈Sd−1

max
k′ ̸=k
⟨wk′ −wk,h⟩ ≡ min

∥h∥2≤1
max
k′ ̸=k
⟨wk′ −wk,h⟩ (30)

where ≡ means the two problems are equivalent, i.e., have the same optimal solutions.
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Proof of Lemma C.5. By the separating hyperplane theorem (e.g. [Example 2.20](Boyd & Vandenberghe, 2004)), there
exist a nonzero vector h̄ and b ∈ IR such that maxk′ ̸=k⟨wk′ , h̄⟩ < b and ⟨wk, h̄⟩ > b, i.e., maxk′ ̸=k

〈
wk′ −wk, h̄

〉
< 0.

Let h∗ be any optimal solution to the RHS of (30). Then, it holds that

max
k′ ̸=k
⟨wk′ −wk,h

∗⟩ ≤ max
k′ ̸=k

〈
wk′ −wk,

h̄

∥h̄∥2

〉
< 0.

Hence, it must be the case that ∥h∗∥2 = 1; otherwise, taking h = h∗/∥h∗∥2 gives lower objective for the RHS of (30),
contradicting the optimality of h∗.

Lemma C.6. Suppose wk /∈ conv({wj}j∈[K]\k). Consider the (primal) problem

min
∥h∥2≤1

max
k′ ̸=k
⟨wk′ −wk,h⟩ . (31)

Its dual problem is given by

max
v∈IRd

−∥wk −
∑
k′ ̸=k

vk′wk′∥2 s.t.
∑
k′ ̸=k

vk′ = 1, and vk′ ≥ 0,∀k′ ̸= k. (32)

with zero duality gap. Moreover, for any primal optimal solution h∗ there is a dual optimal solution v∗ and they satisfy

h∗ =
wk −

∑
k′ v∗k′wk′

∥wk −
∑

k′ v∗k′wk′∥2
. (33)

Proof of Lemma C.6. We rewrite the primal problem as

min
∥h∥2≤1,p∈IRd

max
k′ ̸=k

pk′ s.t. pk′ = ⟨wk′ −wk,h⟩ . (34)

Introducing the dual variable v ∈ IRd, the Lagragian function is

L(h,p,v) = max
k′ ̸=k

pk′ −
∑
k′ ̸=k

vk′(pk′ − ⟨wk′ −wk,h⟩), ∥h∥2 ≤ 1. (35)

We now derive the dual problem, defined as

max
v

min
∥h∥2≤1,p∈IRd

max
k′ ̸=k
L(h,p,v) = max

v

min
p

max
k′ ̸=k

pk′ −
∑
k′ ̸=k

vk′pk′

+ min
∥h∥2≤1

〈∑
k′ ̸=k

vk′wk′ −wk,h

〉
= max

v
min

∥h∥2≤1

〈∑
k′ ̸=k

vk′wk′ −wk,h

〉
s.t.
∑
k′ ̸=k

vk′ = 1, vk′ ≥ 0 ∀k′ ̸= k

= max
v
−∥wk −

∑
k′ ̸=k

vk′wk′∥2 s.t.
∑
k′ ̸=k

vk′ = 1, vk′ ≥ 0 ∀k′ ̸= k.

(36)

In above, the second equality follows from the fact that the conjugate (see e.g. (Boyd & Vandenberghe, 2004)) of the
max function is the indicator function of the probability simplex. The third equality uses the assumption that wk /∈
conv({wj}j∈[K]\k), which implies that

∑
k′ ̸=k vk′wk′ −wk ̸= 0 under the simplex constraint of v, hence the optimal h to

the optimization in the second line can be easily obtained as h =
wk−

∑
k′ vk′wk′

∥wk−
∑

k′ vk′wk′∥2
.

Finally, the rest of the claims hold as the primal problem is convex with the Slater’s condition satisfied.

C.3. Proof of Theorem 3.2

Here we prove the following result which is a stronger version of Theorem 3.2.
Theorem C.7. Let (W ⋆,H⋆) be an optimal solution to (5). Then, it holds that W ⋆ is a Softmax Code, i.e.,

W ⋆ ∈ argmax
W∈OB(d,K)

ρone-vs-rest(W ). (37)

Conversely, let W SC be any Softmax Code. Then, there exists a HSC such that (W SC,HSC) is an optimal solution to (5).
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Proof. The proof is divided into two parts.

Any optimal solution to (5) is a Softmax Code. Our proof is based on providing a lower bound on the objective
LHardMax(W ,H). We distinguish two cases in deriving the lower bound.

• W has distinct columns. In this case we use the following bound:

LHardMax(W ,H) = max
k∈[K]

max
i∈[n]

max
k′ ̸=k
⟨wk′ −wk,hk,i⟩

≥ max
k∈[K]

max
i∈[n]

min
h̄k,i∈Sd−1

max
k′ ̸=k
⟨wk′ −wk, h̄k,i⟩ = − min

k∈[K]
dist(wk, {wj}j∈[K]\k). (38)

In above, the first equality follows directly from definition of the HardMax function. The inequality follows trivially
from the property of the min operator. The last equality follows from Lemma C.4, which requires that W has distinct
columns. Continuing on the rightmost term in (38), we have

− min
k∈[K]

dist(wk, {wj}j∈[K]\k) = −ρone-vs-rest(W ) ≥ −ρone-vs-rest(W
SC), (39)

where W SC is any Softmax Code. In above, the equality follows from the definition of the operator ρone-vs-rest(), and
the inequality follows from the definition of the Softmax Code. In particular, by defining Ŵ = W SC and Ĥ as

ĥk,i =
ŵk − proj(ŵk, {ŵj}j∈[K]\k)

∥ŵk − proj(ŵk, {ŵj}j∈[K]\k)∥2
, (40)

all inequalities in (38) and (39) holds with equality by taking W = Ŵ and H = Ĥ , at which we have that
LHardMax(Ŵ , Ĥ) = −ρone-vs-rest(W

SC).

• W does not have distinct columns. Hence, there exists k1, k2 such that k1 ̸= k2 but wk1
= wk2

. We have

LHardMax(W ,H) = max
k∈[K]

max
i∈[n]

max
k′ ̸=k
⟨wk′ −wk,hk,i⟩ ≥ max

i∈[n]
⟨wk2 −wk1 ,hk1,i⟩ = 0. (41)

Combining the above two cases, and by noting that −ρone-vs-rest(W
SC) < 0, we have that (Ŵ , Ĥ) is an optimal solution to

the HardMax problem in (5). Moreover, since (W ∗,H∗) is an optimal solution to the HardMax problem, it must attain the
lower bound, i.e.,

LHardMax(W
∗,H∗) = −ρone-vs-rest(W

SC). (42)

Hence, W ∗ has to attain the equality in (39). By definition, this means that W ∗ is a Softmax Code, which concludes the
proof of this part.

From any Softmax Code we can construct an optimal solution to (5). Let

W SC ∈ argmax
W∈OB(d,K)

ρone-vs-rest(W ) (43)

be any Softmax Code. Moreover, define HSC to be such that

hSC
k,i = argmin

hk∈Sd−1

max
k′ ̸=k
⟨wSC

k′ −wSC
k ,hk⟩,∀k ∈ [K],∀i ∈ [n]. (44)

Note that the following result holds which will be used in the subsequent proof:

W SC ∈ argmax
W∈OB(d,K)

min
k

dist
(
wk, {wj}j∈[K]\k

)
(Definition of Softmax Code)

∈ argmin
W∈OB(d,K)

max
k

min
hk∈Sd−1

max
k′ ̸=k
⟨wk′ −wk,hk⟩. (Lemma C.4)

(45)
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For any (Ŵ , Ĥ), we have

LHardMax(Ŵ , Ĥ) = max
k∈[K]

max
i∈[n]

max
k′ ̸=k
⟨ŵk′ − ŵk, ĥk,i⟩ (Definition of LHardMax)

≥ max
k∈[K]

min
hk∈Sd−1

max
k′ ̸=k
⟨ŵk′ − ŵk,hk⟩

≥ max
k∈[K]

min
hk∈Sd−1

max
k′ ̸=k
⟨wSC

k′ −wSC
k ,hk⟩ (Eq. (45))

= max
k∈[K]

max
i∈[n]

max
k′ ̸=k
⟨wSC

k′ −wSC
k ,hSC

k,i⟩ (Eq. (44))

= LHardMax(W
SC,HSC). (Definition of LHardMax)

(46)

This implies that (W SC,HSC) is an optimal solution to the HardMax problem in (5), which concludes the proof of this part.

C.4. Proof of Theorem 3.3

Theorem C.8. For any positive integers K and d, let W ⋆ ∈ OB(d,K) be a Softmax Code. Then,

• d = 2: {w⋆
k} is uniformly distributed on the unit circle, i.e., {w⋆

k} = {
(
cos( 2πkK + α), sin( 2πkK + α)

)
} for some α;

• K ≤ d+ 1: {w⋆
k} forms a simplex ETF, i.e., W ⋆ =

√
K

K−1P (IK − 1
K 1K1⊤K) for some orthonomal P ∈ IRd×K;

• d+ 1 < K ≤ 2d: mink dist(w
⋆
k, {w⋆

j }j∈[K]\k) = 1 which can be achieved when {w⋆
k} are a subset of vertices of a

cross-polytope;

• K →∞: {w⋆
k} are uniformly distributed on the unite sphere Sd−1;

Proof. We prove the results case by case as follows.

• d = 2: {w⋆
k} are uniformly distributed on the unite sphere of S1.

Denote w⋆
k = [cosα⋆

k, sinα
⋆
k],∀k ∈ [K]. Without loss of generality we may assume that 0 < α⋆

1 < α⋆
2 < . . . < α⋆

K ≤
2π. Define

θ⋆k =

{
α⋆
k+1 − α⋆

k, ∀k ∈ [K − 1]

α⋆
1 − α⋆

K + 2π, k = K.
(47)

For convenience, we also define α⋆
K+1

.
= α⋆

1 and θ⋆K+1
.
= θ⋆1 .

Geometrically, θ⋆k is the angular distance between α⋆
k and α∗

k+1. Moreover, by summing up all terms in (47) over
k ∈ [K] we have ∑

k∈[K]

θ⋆k = 2π. (48)

To prove the theorem we only need to show that θ⋆k = 2π
K for all k ∈ [K], which implies that {w⋆

k} are uniformly
distributed on the unit circle.

We start by noting that the following result holds:

θ⋆k + θ⋆k+1 ≥ 2× 2π

K
, ∀k ∈ [K]. (49)

To see why, let {ŵk = [cos α̂k, sin α̂k]}k∈[K] with α̂k = k×2π
K ,∀k ∈ [K] be a collection of points on the unit circle

that is distributed uniformly. Moreover, define {θ̂k}k∈[K] as

θ̂k =

{
α̂k+1 − α̂k, ∀k ∈ [K − 1]

α̂1 − α̂K + 2π, k = K.
(50)

Since W ⋆ is a Softmax Code, we have

ρone-vs-rest(W
⋆) ≥ ρone-vs-rest(Ŵ ), (51)
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which implies, using the definition of ρone-vs-rest(),

min
k∈[K]

dist(w⋆
k, {w⋆

j }j∈[K]\k) ≥ min
k∈[K]

dist(ŵk, {ŵj}j∈[K]\k). (52)

If there exists a k̄ ∈ [K] such that θ⋆
k̄
+θ⋆

k̄+1
< 2× 2π

K , by noting that θ̂k̄+ θ̂k̄+1 = 2× 2π
K , it is easy to see geometrically

that
dist(w⋆

k̄, {w
⋆
j }j∈[K]\k̄) < dist(ŵk̄, {ŵj}j∈[K]\k̄) = min

k∈[K]
dist(ŵk, {ŵj}j∈[K]\k),

where the last equality follows from the fact that {ŵk}k∈[K] are uniformly distributed. This result contradicts (52),
which implies that (49) holds.

Taking the summation on both sizes of (49) over all k ∈ [K] and divide both sides by 2, we obtain∑
k∈[K]

θ∗k ≥ 2π. (53)

Comparing this with (48), we obtain that the inequality in (49) holds with equality for all k ∈ [K], that is,

θ⋆k + θ⋆k+1 = 2× 2π

K
, ∀k ∈ [K]. (54)

If there exists a k̄ ∈ [K] such that θ⋆
k̄
̸= θ⋆

k̄+1
, then it is easy to see geometrically that

dist(w⋆
k̄, {w

⋆
j }j∈[K]\k̄) < dist(ŵk̄, {ŵj}j∈[K]\k̄) = min

k∈[K]
dist(ŵk, {ŵj}j∈[K]\k),

which contradicts (52). Hence, it follows that θ⋆k = 2π
K for all k ∈ [K].

• K ≤ d+ 1: {w⋆
k} forms a simplex ETF.

We first consider optimal configuration of K unit-length vectors u1, . . . ,uK . Note that

0 ≤

∥∥∥∥∥
K∑

k=1

uk

∥∥∥∥∥
2

2

=
∑
k

∑
k′

⟨uk,uk′⟩ ≤ K +K(K − 1)max
k ̸=k′
⟨uk,uk′⟩,

where the first inequality achieves equality only when
∑K

k=1 uk = 0 and the second inequality becomes equality only
when ⟨uk,uk′⟩ = − 1

K−1 for any k ̸= k′. These two conditions mean that u1, . . . ,uK form a simplex ETF. The above
equation further impleis that

max
k ̸=k′
⟨uk,uk′⟩ ≥ − 1

K − 1
, ∀u1, . . . ,uK ∈ Sd−1, (55)

and the equality holds only when u1, . . . ,uK form a simplex ETF.

We will also need the following result:

1

2

∑
k ̸=k′

∥wk −wk′∥2 = K2 −
∥∥∑

k

uk

∥∥2 ≤ K2, (56)

where the last inequality becomes equality when
∑

k uk = 0.

We now prove the form of the optimal Softmax Code for K ≤ d+ 1. Noting the equivalence between Softmax Code
and the HardMax problem as proved in Theorem 3.2, we will analyze the HardMax problem for this case. Specifically,
note that

K(K − 1)max
k ̸=k′
⟨wk′ −wk,hk⟩ ≥

∑
k ̸=k′

⟨wk′ −wk,hk⟩ =
1

2

∑
k ̸=k′

⟨wk′ −wk,hk − hk′⟩

≥ −1

4

∑
k ̸=k′

∥wk −wk′∥2 − 1

4

∑
k ̸=k′

∥hk − hk′∥2 ≥ −K2,

25



Generalized Neural Collapse for a Large Number of Classes

where the first inequality achieves equality only when ⟨wk′ −wk,hk⟩ = ⟨wj′ −wj ,hj⟩ for any k′ ̸= k, j′ ̸= j, the
second inequality follows from the Cauchy–Schwarz inequality and acheives inequality only when wk′−wk = hk′−hk

for any k′ ̸= k, and the third inequality follows from (56) and achieves equality only when
∑

k wk =
∑

k hk = 0.
Assuming all these conditions hold, then ⟨wk′ −wk,hk⟩ = − K

K−1 , which together with the requirement wk′ −wk =
hk′ − hk implies that

⟨hk′ − hk,hk⟩ = −
K

K − 1
, ⇒ ⟨hk′ ,hk⟩ = −

1

K − 1
,∀k ̸= k′,

which holds only when H forms a simplex ETF according to the derivation for (55). Using the condition wk′ −wk =
hk′ − hk which indicates ⟨wk′ ,wk⟩ = ⟨hk′ ,hk⟩, we can obtain that W is also a simplex ETF, which completes the
proof.

• d+ 1 < K ≤ 2d: ρone-vs-rest(W
⋆) = 1 which can be achieved when {w⋆

k} are some vertices of a cross-polytope.

We first present and prove the following result that establishes an upper bound for ρone-vs-rest(W ) when K ≥ d+ 2.

Lemma C.9. Suppose K ≥ d+ 2, then for any W ∈ OB(d,K), it holds that ρone-vs-rest(W ) ≤ 1, with equality only if
0 ∈ conv(W ), where conv(W ) is the convex hull of {wj}j∈[K].

Proof of Lemma C.9. Let v denote the (unique) point in conv(W ) of minimum l2 norm. By Carathéodory’s theorem,
v resides in the convex hull of d+ 1 of the points in W . Since K ≥ d+ 2 by assumption, there exists k ∈ [K] such
that v ∈ conv({wj}j∈[K]\k) where v is the projection of wk to conv({wj}j∈[K]\k). The result follows by noting the
following two cases.

– Case I: v = 0. Then ρ(W ) ≤ dist(wk, conv({wj}j∈[K]\k)) ≤ ∥wk − v∥2 = ∥wk∥ = 1.

– Case II: v ̸= 0. Since v is the projection of 0 onto conv(W ), the supporting hyperplane at v gives ⟨x,v⟩ ≥ ∥v∥22
for every x ∈ conv(W ). In particular, taking x = wk implies

∥wk − v∥2 = ∥wk∥2 − 2⟨wk,v⟩+ ∥v∥2 ≤ 1− ∥v∥2 < 1,

and so

ρone-vs-rest(W ) ≤ dist(wk, conv({wj}j∈[K]\k)) ≤ ∥wk − v∥ < 1.

According to Lemma C.9, when K ≥ d+2, for any W ∈ OB(d,K), it holds that ρone-vs-rest(W ) ≤ 1. Moreover, when
d+ 2 ≤ K ≤ 2d, we can verify that any sphere code W that achieves equality in Rankin’s orthoplex bound (Fickus
et al., 2017) maxk ̸=j⟨wk,wj⟩ ≥ 0 is a softmax code. In particular, for each k, the point {wj}j∈[K]\k) necessarily
reside in the half space Hk = {w : ⟨w,wk⟩ ≤ 0}, and so

dist(wk, conv({wj}j∈[K]\k)) ≥ dist(wk, Hk) = 1.

By minimizing over k ∈ [K], it follows that ρone-vs-rest(W ) ≥ 1. The previous conclusion (ρone-vs-rest(W ) ≤ 1 always
hols when K ≥ d+ 2) implies that W is a softmax code.

Thus, W ⋆ = {w⋆
k} as some vertices of a cross-polytope is a Softmax Code. In addition, since W ⋆ = {w⋆

k} as some
vertices of a cross-polytope and K ≥ d + 2, we have 0 ∈ conv({w⋆

j }j∈[K]k) for any k, and hence it also holds that
dist(w⋆

k, {w⋆
j }j∈[K]k) = 1. Thus, there is no rattler for this case.

C.5. Proof of Theorem 3.5

Theorem C.10 (GNC1). Let (W ⋆,H⋆) be an optimal solution to (5). For all k that is not a rattler of W ⋆, it holds that

h
⋆

k
.
= h⋆

k,1 = · · · = h⋆
k,n = PSd−1

(
w⋆

k − P{w⋆
j }j∈[K]\k(w

⋆
k)
)
. (57)
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Proof. Let k̄ be any non-rattler of W ∗. We have

−ρone-vs-rest(W
∗) = − min

k∈[K]
dist(w∗

k, {w∗
j }j∈[K]\k) (Definition of ρone-vs-rest())

= −dist(w∗
k̄, {w

∗
j }j∈[K]\k̄) (Definition of rattler)

= min
h∈Sd−1

max
k′ ̸=k̄
⟨w∗

k′ −w∗
k̄,h⟩ (Lemma C.4)

≤ max
i∈[n]

max
k′ ̸=k̄
⟨w∗

k′ −w∗
k̄,h

∗
k̄,i⟩ (Property of max)

≤ max
i∈[n]

max
k∈[K]

max
k′ ̸=k
⟨w∗

k′ −w∗
k,h

∗
k,i⟩ (Property of max)

= LHardMax(W
∗,H∗) (Definition of LHardMax)

= −ρone-vs-rest(W
SC) (Eq. (42))

= −ρone-vs-rest(W
∗) (Theorem 3.2)

(58)

Since the first and last expressions are identical, all inequalities holds with equality. Hence

min
h∈Sd−1

max
k′ ̸=k̄
⟨w∗

k′ −w∗
k̄,h⟩ = max

i∈[n]
max
k′ ̸=k̄
⟨w∗

k′ −w∗
k̄,h

∗
k̄,i⟩. (59)

By Lemma C.4, the optimal h to the optimization problem on the left is unique. Hence, all h∗
k̄,i

, i ∈ [n] must be equal. This
concludes the proof.

C.6. Proof of Theorem 3.7

Proof. ( =⇒ ) Assume that any (W ⋆,H⋆) ∈ argminW∈OB(d,K),H∈OB(d,nK) LHardMax(W ,H) satisfies h⋆
k,i =

w∗
k,∀i ∈ [n],∀k ∈ [K]. We show that the Tammes problem and Softmax code are equivalent. This can be established

trivially from the following two claims, namely,

argmin
W∈OB(d,K)

min
H∈OB(d,nK)

LHardMax(W ,H) = argmax
W∈OB(d,K)

ρone-vs-rest(W ), (60)

and
argmin

W∈OB(d,K)

min
H∈OB(d,nK)

LHardMax(W ,H) = argmax
W∈OB(d,K)

ρone-vs-one(W ). (61)

In the rest of the proof we show that the claims (60) and(61) hold true.

We first establish (60). From Theorem 3.2, any solutions to the HardMax problem is a Softmax Code, i.e.,

argmin
W∈OB(d,K)

min
H∈OB(d,nK)

LHardMax(W ,H) ⊆ argmax
W∈OB(d,K)

ρone-vs-rest(W ). (62)

Conversely, from Theorem C.7, any Softmax Code must also be a solution to the HardMax problem, i.e.,

argmax
W∈OB(d,K)

ρone-vs-rest(W ) ⊆ argmin
W∈OB(d,K)

min
H∈OB(d,nK)

LHardMax(W ,H) (63)

Combining the above two relations we readily obtain (60).

We now establish (61). Let (W ⋆,H⋆) ∈ argminW∈OB(d,K),H∈OB(d,nK) LHardMax(W ,H) be any solution to the Hard-
Max problem, which by our assumption satisfies h⋆

k,i = w∗
k,∀i ∈ [n],∀k ∈ [K]. Using this condition and plugging in the

definition of the HardMax function we obtain

W ∗ ∈ argmin
W∈OB(d,K)

max
k∈[K]

max
k′ ̸=k
⟨wk′ −wk,wk⟩ = argmin

W∈OB(d,K)

max
k∈[K]

max
k′ ̸=k
⟨wk′ ,wk⟩ = argmax

W∈OB(d,K)

ρone-vs-one(W ), (64)

where the first equality uses the fact that wk has unit ℓ2 norm for all k ∈ [K], and the second equality follows trivially from
the definition of ρone-vs-one(). This implies

argmin
W∈OB(d,K)

min
H∈OB(d,nK)

LHardMax(W ,H) ⊆ argmax
W∈OB(d,K)

ρone-vs-one(W ). (65)
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We argue that the converse of the set inclusion above also holds. To see that, let

W Tammes ∈ argmax
W∈OB(d,K)

ρone-vs-one(W )

be any solution to the Tammes problem, and let HTammes ∈ OB(d, nK) be such that hTammes
k,i = wTammes

k ,∀i ∈ [n],∀k ∈ [K].
We have

LHardMax(W
Tammes,HTammes) = max

k∈[K]
max
i∈[n]

max
k′ ̸=k
⟨wTammes

k′ −wTammes
k ,hTammes

k,i ⟩ (Eq. (5))

= max
k∈[K]

max
k′ ̸=k
⟨wTammes

k′ −wTammes
k ,wTammes

k ⟩ (Using hTammes
k,i = wTammes

k )

= max
k∈[K]

max
k′ ̸=k
⟨wTammes

k′ ,wTammes
k ⟩ − 1 (Using ∥wTammes

k ∥2 = 1)

= min
W∈OB(d,K)

max
k∈[K]

max
k′ ̸=k
⟨wk′ ,wk⟩ − 1 (Definition of W Tammes)

= max
k∈[K]

max
k′ ̸=k
⟨w⋆

k′ ,w⋆
k⟩ − 1 (Eq. (64))

= max
k∈[K]

max
k′ ̸=k
⟨w⋆

k′ −w⋆
k,w

⋆
k⟩ (Using ∥w⋆

k∥2 = 1)

= max
k∈[K]

max
i∈[n]

max
k′ ̸=k
⟨w⋆

k′ −w⋆
k,h

⋆
k,i⟩ (Using h⋆

k,i = w⋆
k)

= LHardMax(W
⋆,H⋆).

(66)

This implies that (W Tammes,HTammes) is also a solution to the HardMax problem. Hence,

argmax
W∈OB(d,K)

ρone-vs-one(W ) ⊆ argmin
W∈OB(d,K)

min
H∈OB(d,nK)

LHardMax(W ,H). (67)

Combining (65) and (67) we obtain (61).

(⇐= ) Assume that the Tammes problem and the Softmax Codes are equivalent. Take any optimal solution (W ⋆,H⋆) to
(5), i.e.,

(W ⋆,H⋆) = argmax
W∈OB(d,K),H∈OB(d,nK)

LHardMax(W ,H)

= argmax
W∈OB(d,K),H∈OB(d,nK)

max
k∈[K]

max
i∈[n]

max
k′ ̸=k
⟨wk′ −wk,hk,i⟩. (68)

We show that h⋆
k,i = w∗

k,∀i ∈ [n],∀k ∈ [K].

From Theorem 3.2, W ⋆ is a Softmax Code, i.e.,

W ∗ = argmax
W∈OB(d,K)

min
k∈[K]

dist
(
w⋆

k, {w⋆
j }j∈[K]\k

)
= argmin

W∈OB(d,K)

max
k∈[K]

min
hk∈Sd−1

max
k′ ̸=k
⟨wk′ −wk,hk⟩, (69)

where the second equality follows from Lemma C.4. By the assumption that Softmax Code has no rattler, we know that

min
hk∈Sd−1

max
k′ ̸=k
⟨w⋆

k′ −w⋆
k,hk⟩ (70)

is independent of k ∈ [K]. We now use this result to show that, for any k̄ ∈ [K] and ī ∈ [n] the following result holds:

h∗
k̄,̄i ∈ argmin

hk̄∈Sd−1

max
k′ ̸=k̄
⟨w⋆

k′ −w⋆
k̄,hk̄⟩. (71)

To prove (71) by constructing a contradition, we assume that (71) does not hold, i.e.,

h∗
k̄,̄i /∈ argmin

hk̄∈Sd−1

max
k′ ̸=k̄
⟨w⋆

k′ −w⋆
k̄,hk̄⟩. (72)
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Using (72) we have

LHardMax(W
⋆,H⋆) = max

k∈[K]
max
i∈[n]

max
k′ ̸=k
⟨w⋆

k′ −w⋆
k,h

⋆
k,i⟩ (Definition of LHardMax)

≥ max
k′ ̸=k̄
⟨w⋆

k′ −w⋆
k̄,h

⋆
k̄,̄i⟩ (Property of max)

> min
hk̄∈Sd−1

max
k′ ̸=k̄
⟨w⋆

k′ −w⋆
k̄,hk̄⟩ (Eq. (72))

= min
hk∈Sd−1

max
k′ ̸=k
⟨w⋆

k′ −w⋆
k,hk⟩,∀k ∈ [K] (Eq. (70))

= max
k∈[K]

max
i∈[n]

min
hk,i∈Sd−1

max
k′ ̸=k
⟨w⋆

k′ −w⋆
k,hk,i⟩

= min
H∈Sd−1

max
k∈[K]

max
i∈[n]

max
k′ ̸=k
⟨w⋆

k′ −w⋆
k,hk,i⟩

≥ min
W∈OB(d,K)

min
H∈Sd−1

max
k∈[K]

max
i∈[n]

max
k′ ̸=k
⟨wk′ −wk,hk,i⟩ (Property of max)

= min
W∈OB(d,K)

min
H∈Sd−1

LHardMax(W ,H) (Definition of LHardMax)

= LHardMax(W
⋆,H⋆) (Eq. (68))

(73)

which is a contradiction. Hence, we have proved that (71) holds true. Now, using (71) we have that for any k̄ ∈ [K] and
ī ∈ [n], it holds that

max
k′ ̸=k̄
⟨w⋆

k′ −w⋆
k̄,h

⋆
k̄,̄i⟩ ≤ max

k′ ̸=k̄
⟨w⋆

k′ −w⋆
k̄,w

⋆
k̄⟩

=⇒
(
max
k′ ̸=k̄
⟨w⋆

k′ ,h⋆
k̄,̄i⟩
)
− ⟨w⋆

k̄,h
⋆
k̄,̄i⟩ ≤

(
max
k′ ̸=k̄
⟨w⋆

k′ ,w⋆
k̄⟩
)
− ⟨w⋆

k̄,w
⋆
k̄⟩

=⇒
(
max
k′ ̸=k̄
⟨w⋆

k′ ,h⋆
k̄,̄i⟩
)
≤
(
max
k′ ̸=k̄
⟨w⋆

k′ ,w⋆
k̄⟩
)
+ ⟨w⋆

k̄,h
⋆
k̄,̄i⟩ − 1.

(74)

On the other hand, using the result that Tammes problem and Softmax Code are equivalent, and the fact that W ⋆ is a
Softmax Code, we know that W ⋆ is also a solution to the Tammes problem, i.e.,

W ⋆ = argmin
W∈OB(d,K)

max
k∈[K]

max
k′ ̸=k
⟨wk′ ,wk⟩. (75)

Hence, it must hold that for any k̄ ∈ [K] and ī ∈ [n],

max
k′ ̸=k̄
⟨w⋆

k′ ,w⋆
k̄⟩ ≤ max

k′ ̸=k̄
⟨w⋆

k′ ,h⋆
k̄,̄i⟩. (76)

To see why (76) holds, assume for the purpose of arriving at a contradiction that it does not hold, i.e.,

max
k′ ̸=k̄
⟨w⋆

k′ ,w⋆
k̄⟩ > max

k′ ̸=k̄
⟨w⋆

k′ ,h⋆
k̄,̄i⟩. (77)

Then, consider W 0 ∈ OB(d,K) with w0
k := h⋆

k̄,̄i
for k = k̄, and w0

k := w⋆
k otherwise. It can be verified that

max
k∈[K]

max
k′ ̸=k
⟨w0

k′ ,w0
k⟩ = max

(
max
k′ ̸=k̄
⟨w0

k′ ,w0
k̄⟩, max

{k,k′}⊆[K]\{k̄},k′ ̸=k
⟨w0

k′ ,w0
k⟩
)

= max

(
max
k′ ̸=k̄
⟨w⋆

k′ ,h⋆
k̄,̄i⟩, max

{k,k′}⊆[K]\{k̄},k′ ̸=k
⟨w⋆

k′ ,w⋆
k⟩
)

≤ max

(
max
k′ ̸=k̄
⟨w⋆

k′ ,h⋆
k̄,̄i⟩, max

{k,k′}⊆[K],k′ ̸=k
⟨w⋆

k′ ,w⋆
k⟩
)

≤ max
{k,k′}⊆[K],k′ ̸=k

⟨w⋆
k′ ,w⋆

k⟩ = max
k∈[K]

max
k′ ̸=k
⟨w⋆

k′ ,w⋆
k⟩,

(78)

where the last inequality is obtained from using (77). This implies, using the definition of W ⋆ in (75), that W 0 is also
a solution to the Tammes problem. Moreover, because of (77) it can be seen that w0

k̄
is a rattler, contradicting with the
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assumption that the Tammes problem has no rattlers. Hence, we have proved that (76) holds true. Combining (76) with (74),
we have

max
k′ ̸=k̄
⟨w⋆

k′ ,w⋆
k̄⟩ ≤ max

k′ ̸=k̄
⟨w⋆

k′ ,h⋆
k̄,̄i⟩ ≤

(
max
k′ ̸=k̄
⟨w⋆

k′ ,w⋆
k̄⟩
)
+ ⟨w⋆

k̄,h
⋆
k̄,̄i⟩ − 1, (79)

hence ⟨w⋆
k̄
,h⋆

k̄,̄i
⟩ ≥ 1. Since w⋆

k̄
and h⋆

k̄,̄i
are of unit ℓ2 norm, we have h⋆

k̄,̄i
= w⋆

k̄
, which concludes the proof.

C.7. Proof of Theorem 3.8

The equivalence can be established by noting that the optimal solutions for the Tammes problem for the case d = 2 (Cohn,
2022) and K ≤ d+ 1 (Fickus et al., 2017) are the same as those for the Softmax codes in Theorem 3.3.

C.8. Proof of Theorem 3.9

We first show that one-vs-rest and one-vs-one distances are mutually bounded by each other.
Theorem C.11. For any classifier weights W with normalization ∥wk∥2 = 1,∀ k ∈ [K], the one-vs-rest distance and
one-vs-one distance obey the following relation:

ρ2one-vs-one(W )

2
≤ ρone-vs-rest(W ) ≤ ρone-vs-one(W ). (80)

Proof. On one hand, according to the definitions of the two margins, it is clear that ρone-vs-rest(W ) ≤ ρone-vs-one(W ). On the
other hand, according to Lemma C.4, we have

ρone-vs-rest(W ) = min
k

dist(wk, {wj}j∈[K]\k) = min
k

max
H∈OB(d,K)

(
−max

j ̸=k
⟨wj −wk,hk⟩

)
≥ min

k

(
1−max

j ̸=k
⟨wj ,wk⟩

)
= min

k
min
j ̸=k

∥wj −wk∥2

2

where the first inequality follows by setting hk = wk. The proof is completed by noting that ρ2one-vs-one(W ) =
mink minj ̸=k ∥wj −wk∥2.

Combining this theorem with the existing upper bound (see (Moore, 1974)) and a lower bound (see Lemma C.13) on the
one-vs-one distance, we obtain the following result.
Theorem C.12. Assuming K ≥

√
2π
√
ed and letting Γ(·) denote the Gamma function, we have

1

2

[√
π

K

Γ
(
d+1
2

)
Γ
(
d
2 + 1

)] 2
d−1

≤ max
W∈OB(d,K)

ρone-vs-rest(W ) ≤ 2

[
2
√
π

K

Γ
(
d+1
2

)
Γ
(
d
2

) ] 1
d−1

. (81)

Using the property a1−s < Γ(a+ 1)/Γ(a+ s) < (a+ 1)1−s for any a > 0, s ∈ (0, 1), we can simplify the bounds in (3.9)
to

1

2

 √
π

K
√

d
2 + 1

 2
d−1

≤ max
W∈OB(d,K)

ρone-vs-rest(W ) ≤ 2

2
√

π(d+1
2 )

K


1

d−1

,

Lemma C.13. For any K and d, we have[√
π

K

Γ
(
d+1
2

)
Γ
(
d
2 + 1

)] 1
d−1

≤ max
W∈OB(d,K)

ρone-vs-one(W ). (82)

Proof. We prove the theorem by constructing a Ŵ ∈ OB(d,K) and deriving a lower bound on ρone-vs-one(Ŵ ). Then, this
lower bound is a lower bound for maxW∈OB(d,K) ρone-vs-one(W ) as well owning to the relation

ρone-vs-one(Ŵ ) ≤ max
W∈OB(d,K)

ρone-vs-one(W ). (83)
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The tightness of this lower bound naturally depends on the choice of Ŵ , which we explain below.

Instead of constructing Ŵ directly for a given K, we first consider the construction of a W 0(ρ0) for any given ρ0 > 0.
Later, we will specify a ρ0 and construct a Ŵ from W 0(ρ0). To simplify the notation, we write W 0(ρ0) as W 0.

We construct W 0 using the following procedure from the proof of [Lemma 12](You, 2018):

• Set w0
1 to be an arbitrary vector in Sd−1.

• For any k > 1, take w0
k to be any vector in Sd−1 that satisfies ∥w0

k −w0
k′∥2 > ρ0, for all k′ < k.

• Terminate the process when no such point exists.

It is easy to see that this procedure terminates in finite number of steps; see [Lemma 12](You, 2018) for a rigorous argument.
Assume that the total number of generated vectors is K0. Collect these vectors into the columns of a matrix W 0. By
construction, W 0 has the following property, which will be used later:

ρone-vs-one(W
0) > ρ0. (84)

We now derive a lower bound for K0. First, note that W 0 provides a ρ0-covering of the unit sphere Sd−1. That is, for any
v ∈ Sd−1, there must exist a k ∈ {1, . . . ,K0} such that ∥v −w0

k∥2 ≤ ρ0. Otherwise, there would exist a w ∈ Sd−1 that
satisfies ∥w −w0

k∥2 > ρ0 for all k ≤ K0, contradicting the termination condition in the construction of W 0.

Geometrically, a ρ0-covering is a set of points such that, the union of Euclidean balls of radius ρ0 centered at those points
cover the entire unit sphere. Leveraging this interpretation, we provide a geometric method for bounding the number of
points in a ρ0-covering from below. Concretely, given any w ∈ Sd−1, we denote Sd−1

ρ0
(w) = {v ∈ Sd−1, ∥v −w∥2 ≤ ρ0},

which is the spherical cap centered at w with radius ρ0. Since W 0 provides a ρ0-covering, we have
K0⋃
k=1

Sd−1
ρ0

(w0
k) ⊆ Sd−1 =⇒

K0∑
k=1

σd−1(Sd−1
ρ0

(w0
k)) ≥ σd−1(Sd−1), (85)

where σd−1 denotes the uniform area measure on Sd−1. By noting that σd−1(Sd−1
ρ0

(w0
k)) is independent of k, we obtain

K0 · σd−1(Sd−1
ρ0

(w)) ≥ σd−1(Sd−1), (86)

for an arbitrary choice of w ∈ Sd−1. In above, note that the quantity σd−1(Sd−1
ρ0

(w))/σd−1(Sd−1) is the proportion of the
area of Sd−1 that lies in the spherical cap Sd−1

ρ0
(w). By a geometric argument, [Lemma 9](You, 2018) provides an upper

bound for it which we rewrite here:

σd−1(Sd−1
ρ0

(w))

σd−1(Sd−1)
≤ vd−1

vd

(
ρ0

√
1− ρ20

4

)d−1

. (87)

In above, vd
.
= π

d
2

Γ( d
2+1)

is the volumn of the unit Euclidean ball in Rd. Combining (87) with (86), we obtain a lower bound
on K0 as

K0 ≥
σd−1(Sd−1)

σd−1(Sd−1
ρ0 (w))

≥ vd
vd−1

1(
ρ0

√
1− ρ2

0

4

)d−1
≥ vd

vd−1

1

ρd−1
0

. (88)

We are now ready to construct a Ŵ ∈ OB(d,K). Take

ρ0 =

(
vd

vd−1 ·K

) 1
d−1

. (89)

By using (88) we have K0 ≥ K. Hence, we may construct Ŵ as the set of any K distinct columns of W 0. In particular,
from (83), (84) and (89), we obtain

max
W∈OB(d,K)

ρone-vs-one(W ) ≥ ρone-vs-one(Ŵ ) ≥ ρone-vs-one(W
0) > ρ0 =

(
vd

vd−1 ·K

) 1
d−1

=

[√
π

K

Γ
(
d+1
2

)
Γ
(
d
2 + 1

)] 1
d−1

,

where the second inequality follows trivially from the definition of ρone-vs-one(·).
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