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ABSTRACT

Self-supervised learning (SSL) is a powerful paradigm for learning from unlabeled
time-series data. However, popular methods such as masked autoencoders (MAEs)
rely on reconstructing inputs from a fixed, predetermined masking ratio. Instead
of this static design, we propose treating the corruption level as a new degree of
freedom for representation learning, enhancing flexibility and performance. To
achieve this, we introduce the Flow-Guided Neural Operator (FGNO), a novel
framework combining operator learning with flow matching for SSL training. By
leveraging Short-Time Fourier Transform (STFT) to enable computation under
different time resolutions, our approach effectively learns mappings in functional
spaces. We extract a rich hierarchy of features by tapping into different network
layers (l) and flow times (s) that apply varying strengths of noise to the input data.
This enables the extraction of versatile representations, from low-level patterns to
high-level semantics, using a single model adaptable to specific tasks. Unlike prior
generative SSL methods that use noisy inputs during inference, we propose using
clean inputs for representation extraction while learning representations with noise;
this eliminates randomness and boosts accuracy. We evaluate FGNO across three
biomedical domains, where it consistently outperforms established baselines. Our
method yields up to 35% AUROC gains in neural signal decoding (BrainTreeBank),
16% RMSE reductions in skin temperature prediction (DREAMT), and over 20%
improvement in accuracy and macro-F1 on SleepEDF under low-data regimes.
These results highlight FGNO’s robustness to data scarcity and its superior capacity
to learn expressive representations for diverse time-series applications.

1 INTRODUCTION

Time-series data are common across domains such as healthcare (Johnson et al., 2016) and weather
forecasting (Pathak et al., 2022). Learning useful supervised representations from temporal signals
can be challenging when labels are scarce. Thus, self-supervised learning (SSL) has become a
compelling technique, enabling models to exploit large collections of unlabeled time series data. Prior
work adapts ideas from natural language processing and computer vision, such as BERT (Devlin
et al., 2019), masked autoencoders (MAE) (He et al., 2021), and contrastive objectives (Siméoni
et al., 2025). Recently, increasingly capable time-series foundation models (Ansari et al., 2024) and
flow-based generative models (Zhang et al., 2025) have gained significant attention. Although they
focus on forecasting tasks, their SSL abilities are also of considerable interest.

Despite the progress of self-supervised learning in time-series modeling, learning generalizable
representations remains challenging due to the heterogeneous nature of real-world data and the
diversity of downstream tasks. Time-series signals are often recorded at different sampling rates,
and standardizing them through upsampling or downsampling distorts their intrinsic characteristics.
In the DREAMT dataset (Eldele et al., 2024), for instance, wearable device signals are collected at
multiple frequencies ranging from 4 Hz to 200 Hz. Aligning such data requires interpolation and
resampling steps that risk blurring fine-grained events, such as micro-arousals or transient heart rate
variability patterns, thereby contaminating the learned representation space.

In addition to resolution mismatches, downstream tasks often demand representations at different
temporal and semantic scales. Sleep-stage classification relies on local patterns in the length of
seconds, whereas apnea-hypopnea index (AHI) regression requires integrating information across
an entire night. Similar multi-scale demands also arise in other domains: clinical forecasting on
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Figure 1: (a) A common self-supervised learning (SSL) baseline is Masked Autoencoder (MAE) He
et al. (2021), where the input data is randomly masked at a fixed ratio and then fed to encoders and
decoders to reconstruct the clean data. MAE learns useful representations by inpainting the missing
part. (b) We ask if the ratio can vary continuously and propose flow-guided neural operator (FGNO),
which is based on flow matching that progressively transforms noisy inputs, corrupted at level σs (flow
time), to clean data by predicting intermediate velocities. Both methods first transform the time series
data to spectrograms via STFT (short-time Fourier transform) to extract local time-frequency features.
(c) FGNO is pre-trained in a self-supervised manner using the flow-matching objective. FGNO learns
in function space and empirically shows improved performance across different sampling rates of the
input data. (d) After SSL pretraining, representations are probed by training a small classifier for
downstream tasks. Compared with existing generative SSL methods, we use clean input data instead
of noisy data as input and achieve similar performance with no randomness from the noise generation.
(e) FGNO’s performance on sleep/wake classification. A single FGNO model has improved flexibility
with various layer and flow time (l, s) combinations.

MIMIC-III (Johnson et al., 2016) depends on long-term trends in vitals, whereas arrhythmia detection
from electrocardiogram (ECG) relies on millisecond-level waveforms. Despite such needs, most SSL
approaches are optimized for a fixed pretraining objective and yield a single latent representation,
limiting their adaptability across tasks with different temporal windows.

These considerations motivate a unified pretraining framework that preserves the fidelity of multi-
resolution time-series signals while yielding flexible, task-adjustable representations.

Neural operators learn mappings directly in the function space of signals, offering a natural framework
for time-series modeling where data can be viewed as functions over time (Azizzadenesheli et al.,
2024). This approach has achieved state-of-the-art results across various time-series domains,
including forecasting, imputation, and anomaly detection (Li & Yang, 2023). Short-Time Fourier
Transform (STFT) provides an efficient method in signal processing that focuses on local time-
frequency analysis, enabling the extraction of both temporal and spectral features at fine-grained
resolutions while being resolution invariant. However, the integration of STFT into operator learning
remains largely unexplored, which we try to address in this work.

To adapt to tasks of different abstract levels, generative modeling offers a complementary perspective.
Diffusion- and flow-based methods (Ho et al., 2020; Lipman et al., 2023) learn to map simple noise
distributions to complex data distributions and are trained with self-supervised signals. Recent studies
on images suggest that internal representations taken at different noise levels naturally organize
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from low-level textures to high-level semantics, providing a continuous control knob for multi-scale
features (Tang et al., 2023). A concern with these methods, however, is that their inputs are noised at
different noise levels, potentially leading to information loss during downstream tasks.

We propose the Flow-Guided Neural Operator (FGNO, Fig. 1), a self-supervised framework
that pretrains a flow matching model on spectrograms of unlabelled data and extracts task-specific
representations by selecting a network layer l and flow time s (which we treat interchangeably with
noise level). We leverage Short-Time Fourier Transform (STFT) to embed 1D signals into time-
frequency representations that preserve both local and global information with resolution invariance.
We treat features ϕl,s(x) (the hidden states at layer l conditioned on time s for clean input x) as a
hierarchy of representations. After pretraining, we train a probing head (classifier) on top of ϕl,s

while freezing the backbone. This design turns the flow time s into a practical, tunable degree of
freedom that allows users to emphasize fine temporal detail (lower s, shallower l) or higher-level
semantics (higher s, deeper l) with a single pretrained model. Unlike prior generative SSL methods
that use noisy inputs during inference, which may contaminate information, FGNO uses clean inputs
for representation extraction. This enables superior performance with no randomness.

Empirically, we observe that the optimal choice of network layer l and noise level s is task-dependent:
tasks requiring precise local timing benefit from lower noise and earlier layers, whereas tasks relying
on global context prefer higher noise and deeper layers. Selecting (l, s) per task yields consistent
gains over MAE- and contrastive-based baselines, including up to 35% AUROC improvements
on neural signal decoding (BrainTreeBank, Wang et al. (2024a)), 16% RMSE reductions on skin
temperature regression (DREAMT, Wang et al. (2024c)). Moreover, our approach demonstrates
exceptional robustness to data scarcity: on SleepEDF, FGNO maintains 93.5% accuracy and 89.0%
macro-F1 with only 5% labeled data, representing over 20% improvements compared to strong
baselines; on Epilepsy, FGNO achieves 94.1% accuracy and 90.3% macro-F1 under the same setting,
effectively matching the full-data results.

In summary, our contributions are as follows:

• An SSL framework combining flow matching and operator learning for time series. We
pretrain flow matching models on time-frequency representations of 1D signals, generated via
STFT. This enables training at one resolution while generalizing to other resolutions during
downstream tasks, with minimal performance degradation.

• Flow time as a means to control features. We demonstrate that flow time s provides an explicit
and practical control over representation granularity, yielding a rich, multi-level feature hierarchy
by varying the flow time s and network layer l.

• Performance gain with clean input for flow-based representations. During the probing stage
where representations are classified for downstream tasks, we use clean input data instead of noisy
data like prior generative SSL methods. We argue that any potential domain gap can be mitigated
during probing, and ablation studies show superior performance with no randomness.

• Empirical advantage on biomedical benchmarks. FGNO significantly outperforms established
baselines across diverse tasks, including up to 35% AUROC improvement in neural signal decoding,
16% RMSE reductions in skin temperature regression, and strong robustness under data scarcity on
SleepEDF and Epilepsy—maintaining near full-data performance with only 5% labeled data.

2 RELATED WORK

Self-Supervised Learning (SSL) SSL has shown great success in learning representations for
various downstream tasks without labels, with applications to different modalities such as images
(He et al., 2021; Wang et al., 2024b), audio (Gong et al., 2022), and videos (Tong et al., 2022; Gupta
et al., 2024). Masked autoencoding (MAE) is a dominant self-supervised paradigm. For instance,
BrainBERT (Wang et al., 2023) successfully applies this technique to neural time-series data by
training on masked spectrogram representations. Advanced SSL methods for time-series data further
enhance representation performance. Contrastive Predictive Coding (CPC, van den Oord et al. (2019))
uses autoregressive predictions and contrastive losses to maximize mutual information in sequential
data such as physiological signals. TS-TCC (Eldele et al., 2021) employs temporal-contextual
contrasts and augmentations like jittering to improve robustness and generalization. We will compare
with these methods in Section 4.
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Generative Models for SSL Generative models, particularly diffusion and flow matching models,
serve as powerful self-supervised learners, as their denoising objective inherently learns rich, multi-
level data representations (Fuest et al., 2024). Existing work explores generative models and diffusion
models for representation for visual data like images and videos (Fuest et al., 2024; Luo et al., 2023;
Vélez et al., 2025; Tang et al., 2023). A dominant technique is to leverage intermediate activations
from a pre-trained model’s internal layers at various corruption timesteps, creating a feature hierarchy
that spans from low-level textures to high-level semantics. These extracted features are then used to
train lightweight heads for downstream tasks like classification and segmentation. Our work builds on
this foundation but shifts the focus from generation to representation learning. We investigate whether
the flow matching objective can serve as a powerful self-supervised learning tool for time-series data,
enabling the extraction of multi-scale features for downstream discriminative tasks.

Foundation Models for SSL Chronos (Ansari et al., 2024) is an autoregressive model based on
language model architectures. As a foundation model trained on multiple datasets, Chronos achieves
state-of-the-art forecasting results by tokenizing the raw signal and training a GPT-style model. While
most SSLs are non-generative, researchers have started to explore how generative models benefit
SSLs. (Hemmer & Durstewitz, 2025)

Neural Operators Neural operators (Azizzadenesheli et al., 2024; Kovachki et al., 2023) are
deep learning architectures specifically designed to learn mappings between infinite-dimensional
function spaces. Neural operators have empirically achieved good performance for approximating the
numerical solutions to partial differential equations (PDEs) (Kovachki et al., 2023; Li et al., 2024) and
real-world applications such as computational imaging (Jatyani et al., 2025; Wang et al., 2025a;b).
A prominent example is the Fourier Neural Operator (FNO, Li et al. (2020)), which leverages the
Fast Fourier Transform (FFT) to efficiently model global dependencies. In contrast, our approach
utilizes the Short-Time Fourier Transform (STFT), which analyzes signals within local time windows.
This allows the model to capture time-varying frequency information effectively and provides greater
flexibility in handling time series of different durations.

3 METHOD

In this section, we introduce the Flow-Guided Neural Operator (FGNO), a novel framework for
self-supervised representation learning. FGNO leverages the flow matching paradigm (Lipman
et al., 2023) to learn generalizable representations. By constructing mappings in function space via
Fourier-based time-frequency representations (i.e., spectrograms), it functions as a neural operator
capable of generalizing across resolutions. The methodology unfolds in two stages: pre-training with
flow matching, and probing with representation selection.

3.1 SELF-SUPERVISED PRE-TRAINING

Data Embedding The pre-training begins with embedding raw 1D signals into a time-frequency
representation suitable for functional-space learning. To this end, we apply the Short-Time Fourier
Transform (STFT) to convert the input signals x ∈ RT into spectrograms f ∈ CNf×Nt , where Nf

denotes the number of frequency bins and Nt the number of time frames. The STFT is defined as

f(τ, ω) =

∫ ∞

−∞
x(t)w(t− τ)e−jωtdt, (1)

with w(·) as a sliding window function (e.g., Hann window) of length W , hop size H , and τ, ω
indexing time and frequency. We compute the magnitude spectrogram f̄ = |f | as input to our model,
which captures both temporal evolution and local patterns. STFT spectrograms are standard for
preprocessing in speech recognition and audio analysis (Bäckström et al., 2022) but less common in
SSL literature. It is also worth noting that this embedding is resolution-invariant: signals sampled at
different rates can be transformed without resampling, avoiding distortions from interpolation.

Self-Supervised Learning via Flow Matching Once embedded into magnitude spectrograms,
the data functions f̄ ∈ RNf×Nt (sampled from the data distribution ν) are used to pretrain a time-
conditioned neural network uθ(s, g) : [0, 1] × RNf×Nt → RNf×Nt via flow matching (Kerrigan
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et al., 2023). Flow matching provides a simulation-free objective for learning continuous normalizing
flows that map a simple prior distribution (e.g., Gaussian noise) to the complex data distribution ν. In
our self-supervised setup, this objective implicitly learns rich representations by regressing toward a
target vector field that guides the denoising of corrupted inputs.

Specifically, for a given timestep s ∼ U [0, 1], we construct a noisy interpolation g ∼ µf̄ ,s between
the clean data function f̄ and a noise measure π = N (0, C0) as

g = sf̄ + σsz, z ∼ π, (2)

where σs : [0, 1] → R+ is a monotonically increasing variance schedule that controls the noise level
at s. The model uθ(s, g) is trained to approximate the conditional vector field vf̄s (g), i.e. the velocity
pointing from g toward f̄ , via the regression loss

J(θ) = E
s∼U [0,1],f̄∼ν,g∼µf̄

s

[∣∣vf̄s (g)− uθ(s, g)
∣∣2], (3)

with the target field given by

vf̄s (g) =
(σs)

′

σs
(g − sf̄) + f̄ , (4)

where σ′
s(s) denotes the derivative with respect to s. Minimizing J (θ) equips uθ with the ability to

simulate the flow ODE

dg

ds
= uθ(s, g) (5)

that transports noise to data. This setup ensures self-supervision as the objective solely uses the
unlabeled data distribution.

We instantiate uθ as a Transformer conditioned on s via sinusoidal positional embeddings con-
catenated to the input spectrogram channels. The resulting pretrained model encodes multi-
scale dynamics—from coarse structures at low s (high corruption) to local details at high s (low
corruption)—providing a versatile backbone for downstream probing.

3.2 FEATURE EXTRACTION AND PROBING

Feature Extraction with Clean Data After pretraining, we freeze the Transformer weights uθ and
use the model as a feature extractor for downstream tasks. A key challenge here is the distributional
shift between the noisy inputs g encountered during pretraining and the clean, labeled samples
typically available for fine-tuning. Typical generative SSL approaches address this by generating
noisy inputs g at a fixed or sampled timestep s during inference, which introduces randomness and
potential information loss from clean downstream data.

To address this while preserving consistency, we extract representations using clean spectrograms f̄
as input, conditioning on the timestep s via the pretrained time embeddings, with no explicit noise
generation. This deterministic approach yields stable features without randomness or computational
overhead. Although training on noisy data and probing on clean data may introduce a domain gap,
this is effectively mitigated by the lightweight probing head, which adapts the representations during
fine-tuning; our empirical results support this design choice.

Formally, for a clean input spectrogram f̄ and desiredflow time s ∈ [0, 1], the representation at layer
l is obtained as

ϕl,s(f̄) = u
(l)
θ (s, f̄), (6)

where u
(l)
θ denotes the activations at layer l of the frozen model. These ϕl,s form a hierarchy of

features: shallower layers and lower s (higher corruption) capture fine details, while deeper layers
and higher s emphasize abstract semantics.

Representation Selection and Probing The final stage of the FGNO involves training a lightweight
probing head (e.g., a linear classifier or regressor) atop selected representations ϕl,s(f̄), using labeled
data while keeping the backbone uθ frozen.
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Given that the model captures multiple representations, selecting the optimal representation configu-
ration requires an evaluation of features at various layers l and times s. To achieve this, we conduct a
grid search over a discrete set of layers and flow times to find the optimal pair (l∗, s∗) that minimizes
validation loss:

(l∗, s∗) = arg min
l∈L,s∈S

Lval(l, s). (7)

This selection process unlocks FGNO’s full potential, allowing users to tailor feature granularity,
balancing both temporal and semantic information without retraining the pretrained model.

4 EXPERIMENTAL RESULTS

4.1 DATASETS AND SETUP

DREAMT (Wang et al., 2024c) contains synchronized smartwatch and clinical-grade polysomnog-
raphy (PSG) data from 100 participants, many with sleep disorders. For FGNO, a single model
is pre-trained on the smartwatch’s Blood Volume Pulse (BVP) and accelerometer (ACC) signals.
This model’s features are then evaluated on held-out participants for two downstream tasks: a binary
sleep/wake classification and a skin temperature regression.

BrainTree Bank (Wang et al., 2024a) is a large-scale dataset of intracranial neural responses from
10 subjects watching Hollywood movies (43 hours in total). The dataset includes extensive linguistic
annotations of the movie audio, such as transcripts and word onsets. Using a held-out set of subjects
for probing, we evaluate our model on a binary speech presence classification task.

Epileptic Seizure Recognition (Andrzejak et al., 2001) consists of EEG recordings from 500 subjects,
each with 23.6s of brain activity. The original dataset contains five classes, four of which correspond
to non-seizure brain states. To focus more on seizure detection, we merge the four non-seizure classes
into one and treat this as a binary classification problem (seizure vs. non-seizure).

SleepEDF (Goldberger et al., 2000) is a widely used whole-night PSG sleep dataset from PhysioBank.
We use a single EEG channel (Fpz–Cz) sampled at 100 Hz and classify each 30-second epoch into
five classes: Wake, Non-REM sleep stages N1, N2, N3, and Rapid Eye Movement (REM) sleep.

Baseline selection and implementation details are in the Appendix A.

4.2 SLEEP CLASSIFICATION AND SKIN TEMPERATURE PREDICTION WITH DREAMT

Performance at different layers and flow times As shown in Fig. 2, sleep classification accuracy
improves substantially in deeper layers, with layers 3–6 consistently outperforming earlier layers. The
best AUROC is achieved at layer 3 with low noise (s = 0.89). In contrast, skin temperature regression
also favors deeper layers but achieves its lowest RMSE at moderate noise levels (s ∈ [0.22, 0.56]),
highlighting that discrete classification tasks benefit from clean, abstract representations while
continuous regression tasks rely on fine-grained details.

Comparison to baselines From Table 1, FGNO significantly outperforms baselines in both sleep
classification and skin temperature regression. It yields better AUROC compared to the MAE baseline
across the optimal layers. Our peak score (96.4%) also surpasses the gradient boosting approach
(92.6%) reported in DREAMT. Notably, our model achieved this using only raw 1D data, whereas the
DREAMT baseline required additional clinical metadata (Apnea severity score) (Wang et al., 2024c),
highlighting the capability of our self-supervised approach. For skin temperature regression, our best
RMSE substantially improves upon both the MAE baseline (0.734◦C). Overall, the results highlight
FGNO’s ability to leverage both network depth and flow time for highly predictive representations,
whereas MAE is constrained to layer selection alone.

Comparison to a foundation model Time-series foundation models excel in forecasting but may
hold potential for SSL. Thus, we benchmark FGNO against Chronos (Ansari et al., 2024), a T5-based
family of pretrained models that tokenizes raw signals for autoregressive training. For fairness,
we selected a Chronos variant matching FGNO’s parameter count and evaluated it as a feature
extractor using two strategies: last-token hidden states or average pooling over all states. Average
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Figure 2: FGNO’s performance across different layers and flow times on the DREAMT dataset. Left:
Sleep classification AUROC (↑). Right: Skin temperature regression RMSE (↓). A darker color
indicates better performance.

Table 1: Performance comparison on downstream tasks from the BBT and DREAMT datasets. Our
method (FGNO) achieves superior results on both classification (AUROC) and regression (RMSE)
benchmarks compared to baselines.

Task Metric FGNO (Ours) MAE Chronos

BrainTree Bank
Binary Speech Classification AUROC (%) ↑ 88.6 67.2 66.6

DREAMT
Binary Sleep Classification AUROC (%) ↑ 96.5 95.8 96.3
Skin Temperature Regression RMSE (◦C) ↓ 0.600 0.735 0.954

pooling yields Chronos’s best results (96.4% AUROC for sleep classification; 0.954◦C RMSE for
regression), yet FGNO outperforms it narrowly on classification and substantially on regression (37%
improvement). This underscores FGNO’s role in data-efficient SSL for diverse downstream tasks.

4.3 SPEECH CLASSIFICATION WITH BRAINTREEBANK

By optimizing the combination of model layer and feature extraction time s, we observed a clear
performance gradient where our FGNO score improved with both network depth and time, reaching
a maximum of 88.6% AUROC.

Fig. 2 reveals that the optimal score was not achieved at the final layer or time step, but rather at an
intermediate point (layer 4, s ≈ 0.88). This finding demonstrates that the most discriminative features
arise from a specific trade-off in processing depth and time, allowing our approach to significantly
outperform the MAE baseline by identifying the most potent feature representations within the
network.

4.4 ROBUSTNESS UNDER DATA SCARCITY

To evaluate FGNO’s performance in data-scarce scenarios, we designed an experiment where the
pre-training phase utilized most of the available data without labels, after which the downstream
probing head was trained on only 5% of the available labeled data and tested on held-out data. As
shown in Table 2, FGNO achieves state-of-the-art performance on both SleepEDF and Epilepsy
even when only 5% of labeled data is available, outperforming strong baselines. On SleepEDF,
our model maintains an accuracy of 93.5% and a macro-F1 of 89.0%, which is nearly identical to
the performance obtained with 100% of the labeled data (93.9% ACC, 89.1% MF1). Similarly, on
Epilepsy, FGNO achieves 94.1% accuracy and 90.3% MF1 under the 5% setting, matching the results
from the full dataset. These findings highlight the sample efficiency of our approach and suggest that
FGNO is particularly well-suited for real-world biomedical applications, where large-scale labeled
datasets are often scarce.
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Table 2: The table presents accuracy (ACC) and macro F1-score (MF1) for all models evaluated with
both 100% and a scarce 5% of labeled training data. FGNO consistently outperforms other methods,
demonstrating its robustness and data efficiency in low-label regimes. Bold values indicate the best
performance in each column.

Baseline
100% of labeled data 5% of labeled data

SleepEDF Epilepsy SleepEDF Epilepsy
ACC MF1 ACC MF1 ACC MF1 ACC MF1

Random Initialization 35.6 23.8 90.3 81.1 22.8 22.8 75.5 70.5
Supervised 83.4 74.8 96.7 94.5 60.5 54.8 83.4 80.4
SSL-ECG (Sarkar & Etemad, 2022) 74.6 65.4 93.7 95.1 73.4 65.3 92.8 89.0
CPC (van den Oord et al., 2019) 82.8 73.9 96.4 94.4 76.3 70.5 90.2 90.2
SimCLR (Chen et al., 2020) 78.9 68.6 96.1 93.5 64.2 61.9 91.3 89.1
TS-TCC (Eldele et al., 2021) 83.0 73.5 97.2 95.5 77.0 70.9 93.1 93.7
FGNO (ours) 93.9 89.1 94.8 90.3 93.5 89.0 94.1 90.3

4.5 ABLATION STUDY AND ANALYSIS

Clean vs noisy input for probing A key component of our probing framework involves generating
a noisy sample for a given clean input spectrogram f̄ and a desired time s ∈ [0, 1]:

gs = sf̄ + σf̄
s z, where z ∼ N (0, I).

While effective, this step introduces computational overhead during inference. Moreover, its reliance
on a random noise vector z leads to unstable outputs. To investigate a more efficient alternative, we
conducted an ablation study where we bypassed noise generation entirely. Instead of feeding the
model a noisy input gs, we provided the clean spectrogram f directly and supplied the time value s
as an additional conditional embedding (the “Clean Input” method).

Our results, illustrated in Figure 3, show that the Clean Input method yields nearly identical mean
performance to the Noisy Input method. For example, at layer 3 and time s ≈ 0.89, the the Clean
Input Method achieved a maximum score of 96.40% while the Noisy Input method yields 95.86%.
This confirms the model learns to interpret s as the corruption level. We also found that the Noisy
Input method is sensitive to the random noise vector z, exhibiting performance variance across runs
(std of 0.0039 at the same point). In contrast, the Clean Input method is entirely deterministic. This
demonstrates that the clean approach is superior, as it is both more computationally efficient and
provides a more stable, reliable inference pathway.

Figure 3: Sleep classification performance (DREAMT dataset, AUROC, %) comparing a ”Noisy
Input” against a ”Clean Input” method across different model layers. (Left) For a representative
layer, we plot performance as a function of time s ∈ [0, 1]. While both the ”Clean Input” and ”Noisy
Input” methods exhibit the same behavioral trend, the clean input approach yields consistently higher
performance. (Right) At the optimal time s ≈ 0.89, the noisy method exhibits high variance over 10
runs (red-shaded region), while the clean method is deterministic and stable.

Performance across resolutions Because FGNO learns the underlying mapping between functions,
which are the time-frequency representations via STFT rather than a mapping between fixed-size
vectors, it is not inherently constrained to the specific discretization it was trained on. This gives
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Figure 4: On BrainTreeBank speech classification, our FGNO model, pre-trained once on the original
high-resolution data, is evaluated against MAE and Chronos baselines on inputs downsampled by
various factors. FGNO consistently outperforms both baselines and shows remarkable stability across
resolutions, demonstrating the benefit of learning a resolution-agnostic mapping in function space.

our model the theoretical ability to handle time series at varying resolutions. We tested this property
empirically on the BrainTreeBank dataset, which has an original sampling rate of 2048 Hz. We
created lower-resolution versions by downsampling the raw 1D time series before applying the STFT.
This results in spectrograms with fewer frequency bins; to maintain a consistent input tensor shape
for our model, we padded the frequency axis of the downsampled spectrograms with zeros to match
the original resolution. We pre-trained a single FGNO model on the original 2048 Hz data and then
evaluated its robustness by probing its performance on data across a wide range of lower resolutions,
with downsampling factors of 4x, 8x, 12x, 36x, and 48x. To benchmark our function-space approach,
we compare our results against MAE and Chronos, a state-of-the-art time-series foundation model
that operates directly on the raw 1D data by tokenizing signal values. Unlike FGNO, Chronos’s
performance is more directly tied to the sampling rate of the input sequence.

As shown in Figure 4, FGNO consistently achieves higher AUROC scores than both baselines
across all resolutions, maintaining performance above 74% even under extreme downsampling (48×),
whereas MAE drops sharply to around 52% AUROC and Chronos fluctuates around 60%. This result
highlights the benefit of learning a resolution-agnostic mapping in function space, enabling FGNO to
generalize effectively across sampling rates and outperform strong baselines by a large margin.

5 CONCLUSION

In this work, we presented the Flow-Guided Neural Operator (FGNO), a novel self-supervised
learning framework that combines flow matching with neural operators for time-series representation
learning. By embedding signals via Short-Time Fourier Transform (STFT) into resolution-invariant
spectrograms, FGNO preserves multi-scale fidelity without resampling distortions. Our framework
pre-trains a single backbone model on a dataset to extract a rich hierarchy of task-specific representa-
tions. This is achieved by selecting features from an optimal network layer and a specific flow time,
which acts as a continuous control for representation granularity. Furthermore, we demonstrated that
using clean inputs during the probing stage, rather than the noisy inputs common in generative SSL,
yields more stable and expressive features. We empirically evaluate FGNO across several biomedical
time-series datasets. It demonstrates up to a 35% AUROC improvement in neural signal decoding on
BrainTreeBank and a 16% RMSE reduction in skin temperature regression on DREAMT. Critically,
FGNO shows exceptional robustness in low-data regimes, maintaining nearly full-data performance
on both the SleepEDF and Epilepsy datasets with only 5% of labeled data—an improvement of over
20% against strong competitors. Its effectiveness as a neural operator is confirmed by its stable
performance on BrainTreeBank across various downsampling factors, where baselines like MAE and
Chronos degrade significantly.

The main limitation of our approach is the reliance on grid search to find the optimal (l, s) pair,
though it remains computationally efficient during probing. Future work will aim to automate this
selection process, improving efficiency and expanding its applicability to new data modalities. We
envision FGNO as a step toward scalable, adaptable SSL, enabling transformative insights from large
unlabeled time-series datasets.
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A IMPLEMENTATION DETAILS

Training details The pre-trained model is a 6-layer Transformer designed to process the output
of a Short-Time Fourier Transform (STFT). The model’s architecture was specifically configured to
match the STFT output tensor shape: the model’s input dimension of 132 corresponds to the number
of frequency bins, and the sequence length of 21 corresponds to the number of time frames. Other
key hyperparameters include a hidden dimension of 768, 12 attention heads, a feedforward dimension
of 3072, a dropout rate of 0.1, and a learning rate of 0.0001.

Evaluation metrics We evaluated the performance on the two downstream tasks using standard
metrics. For the binary sleep classification task (awake vs. asleep), we used the Area Under the
Receiver Operating Characteristic curve (AUROC). For the skin temperature regression task, we used
Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) to
quantify the model’s predictive accuracy.

B ADDITIONAL RESULTS

Table 3: AUROC (↑) comparison between our model and MAE on DREAMT for sleep classification
task.

Layer Number FGNO (Best AUROC % @ Time) MAE AUROC %
1 94.6 @ s=1.00 95.8
2 94.6 @ s=0.89 95.6
3 96.5 @ s=0.89 95.7
4 95.9 @ s=0.67 95.4
5 96.2 @ s=0.78 95.5
6 96.4 @ s=0.89 95.8

Table 4: Best RMSE (↓) values against MAE on DREAMT for skin temperature regression task.
Layer Number FGNO (Best RMSE °C @ Time) MAE RMSE °C

1 0.743 @ s=0.22 0.790
2 0.691 @ s=0.33 0.775
3 0.656 @ s=0.44 0.735
4 0.625 @ s=0.33 0.782
5 0.619 @ s=0.44 0.738
6 0.600 @ s=0.56 0.744

Table 5: AUROC (↑) comparison at optimal extraction time on BrainTreeBank for speech detection
task.

Layer Number FGNO (Best AUROC % @ Time) MAE AUROC %
1 83.3 @ s=0.778 60.7
2 85.8 @ s=0.778 67.2
3 86.4 @ s=0.778 62.7
4 88.3 @ s=0.889 65.5
5 88.6 @ s=0.889 63.5
6 88.3 @ s=0.889 67.2
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Table 6: Performance comparison on the DREAMT dataset. Our model (FGNO) is compared against
MAE and both Chronos feature extraction methods (Average Pooling and Last Token).
Model Sleep Classification (AUROC ↑) Skin Temp. Regression (RMSE °C ↓)
MAE 95.8% 0.735
Chronos (Avg. Pooling) 96.4% 0.954
Chronos (Last Token) 92.6% 1.081
FGNO (Ours) 96.5% 0.600
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