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Abstract
Homophily is a graph property describing the tendency of edges to connect
similar nodes; the opposite is called heterophily. Much effort has been put into
developing efficient methods for learning on heterophilous graphs. However,
there is no universally agreed-upon measure of homophily in the literature. In this
work, we show that commonly used homophily measures have critical drawbacks
preventing the comparison of homophily levels across different datasets. For
this, we formalize desirable properties for a proper homophily measure and
verify which measures satisfy which properties. In particular, we show that a
measure that we call adjusted homophily satisfies more desirable properties than
other popular homophily measures while being rarely used in graph machine
learning literature. Then, we go beyond the homophily–heterophily dichotomy
and propose a new characteristic allowing one to further distinguish different
sorts of heterophily. The proposed label informativeness (LI) characterizes how
much information a neighbor’s label provides about a node’s label. We prove that
this measure satisfies important desirable properties and also observe empirically
that LI better agrees with GNN performance compared to homophily measures.

1 Introduction
In many real-world networks, edges tend to connect similar nodes, this property is usually called
homophily. The opposite is heterophily: e.g., in social networks, fraudsters rarely connect to other
fraudsters. Early research on Graph Neural Networks (GNNs) mainly focused on homophilous
graphs, and recently there have been discussions whether specialized models are needed for the
heterophilous setting [1–6].

To measure the level of homophily, several homophily measures are used in the literature [1–3, 7], but
these measures may significantly disagree with each other. In this work, we address the problem of
how to properly measure the homophily level of a graph. Motivated by recent studies of clustering and
classification performance measures [8, 9], we formalize some desirable properties of a reasonable
homophily measure and check which measures satisfy which properties. Our analysis reveals
that commonly used homophily measures do not satisfy some important properties and cannot be
compared across datasets with different number of classes and class size balance. In contrast, a
measure that we call adjusted homophily (a.k.a. assortativity coefficient) satisfies most of the desirable
properties while being rarely used in graph machine learning literature.

Then, we propose a new graph property called label informativeness (LI) that allows one to distinguish
different heterophily patterns. LI characterizes how much information the neighbor’s label provides
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about the node’s label. We analyze this measure via the same theoretical framework and show
that it satisfies important properties and thus can be compared across different datasets. Moreover,
our experiments on synthetic and semi-synthetic datasets show that LI better agrees with GNN
performance compared to homophily measures. Thus, LI is a useful graph characteristic.

This paper is an extended abstract that briefly describes the main ideas of our work. More details,
proofs, and experiments can be found in the full paper [10].

2 Homophily measures

2.1 Desirable properties for homophily measures

Let us start with the necessary notation. Assume that we are given a simple (without self-loops
and multiple edges) and undirected graph G = (V,E) with nodes V , |V | = n, and edges E. Each
node v ∈ V has a class label yv ∈ {1, . . . , C}. Let nk = |{v : yv = k}| denote the size of k-th
class. By N(v) we denote the neighbors of v in G and by d(v) = |N(v)| the degree of v. Also, let
Dk :=

∑
v : yv=k d(v). Let p(·) denote the empirical distribution of class labels, i.e., p(k) = nk

n . We

also define degree-weighted distribution as p̄(k) =
∑

v : yv=k d(v)

2|E| = Dk

2|E| .

Now, let us propose a list of properties desirable for a good homophily measure.

Maximal agreement. This property requires that perfectly homophilous graphs achieve a constant
upper bound of the measure. Formally, we say that a homophily measure h satisfies maximal
agreement if for any graph G in which yu = yv for all {u, v} ∈ E we have h(G) = cmax. For all
other graphs G, we require h(G) < cmax.

Minimal agreement. We say that a homophily measure h satisfies minimal agreement if h(G) =
cmin for any graph G in which yu ̸= yv for all {u, v} ∈ E. For all other graphs G, we require
h(G) > cmin. In other words, if all edges connect nodes of different classes, we expect to observe a
constant minimal value.

Constant baseline. This property ensures that homophily is not biased towards particular class
size distributions. Intuitively, if the graph structure is independent of labels, we would expect a low
homophily value. Moreover, if we want a measure to be comparable across datasets, we expect the
same low value in all such cases. We formalize this intuition via the so-called configuration model:
take n nodes, assign each node v degree d(v), and randomly pair edge endpoints to obtain a graph.

Definition 1. A homophily measure h has asymptotic constant baseline if for G generated according
to the configuration model and for any ε > 0 with probability 1− o(1) we have |h(G)− cbase| < ε
for some constant cbase as n → ∞.

Empty class tolerance. This condition is required if a homophily measure has to be comparable
across datasets with varying numbers of classes. A measure is tolerant to empty classes if it is defined
and it does not change when we introduce an additional dummy label that is not present in the data.

Monotonicity. We define this property as follows.
Definition 2. A homophily measure is monotone if it is empty class tolerant, increases when
we add an edge between two nodes of the same class (except for perfectly homophilous graphs),
and decreases when we add an edge between two nodes of differen classes (except for perfectly
heterophilous graphs).

As we discuss in [10], alternative definitions of monotonicity can be considered for general homophily
measures. However, Definition 2 naturally aligns with edge-wise measures that we now define. First,
we define a class adjacency matrix C: each element cij denotes the number of edges (u, v) such that
yu = i and yv = j. Since the graph is undirected, the matrix C is symmetric. A homophily measure
is edge-wise if it is a function of the class adjacency matrix. For edge-wise measures, monotonicity
requires an increase when we increment a diagonal element by two and a decrease when we increment
cij and cji by one for i ̸= j.
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2.2 Properties of existing homophily measures

We first discuss the properties of three popular homophily measures. Then, we introduce adjusted
homophily and show that it satisfies many desirable properties.

Edge homophily. Edge homophily [1, 3] is the fraction of edges that connect nodes of the same
class: hedge = |{{u,v}∈E:yu=yv}|

|E| . It satisfies maximal and minimal agreement and is empty class
tolerant and monotone. However, it does not satisfy asymptotic constant baseline, which is a critical
drawback: one can get misleading results in settings with imbalanced classes.

Node homophily. Node homophily [2] computes the fraction of neighbors that have the same class
for all nodes and then averages these values across the nodes: hnode =

1
n

∑
v∈V

|{u∈N(v):yu=yv}|
d(v) .

It satisfies maximal and minimal agreement. It is empty class tolerant, but monotoncity is violated
since adding an edge between two perfectly homophilous nodes does not change the value. Also,
node homophily does not satisfy the asymptotic constant baseline.

Class homophily. Class homophily [7] is another recently proposed measure:

hclass =
1

C − 1

C∑
k=1

[∑
v:yv=k |{u ∈ N(v) : yu = yv}|∑

v:yv=k d(v)
− nk

n

]
+

,

where [x]+ = max{x, 0}. It satisfies maximal agreement with hclass = 1, but minimal agreement is
not satisfied. Class homophily is not empty class tolerant and thus is not monotone. Additionally, it
does not have the asymptotic constant baseline.

Adjusted homophily. Adjusted homophily is obtained by taking edge homophily, subtracting its
expected value, and normalizing by the maximum value:

hadj =
hedge −

∑C
k=1 p̄(k)

2

1−
∑C

k=1 p̄(k)
2

. (1)

This measure is rarely used in graph ML literature, but is known in graph analysis literature as
assortativity coefficient [11]. Our theoretical analysis shows that when used as a homophily measure,
hadj satisfies important desirable properties.
Theorem 1. Adjusted homophily satisfies maximal agreement, asymptotic constant baseline, and
empty class tolerance. The minimal agreement is not satisfied. Moreover, this measure is monotone if
hadj >

∑
i p̄(i)

2∑
i p̄(i)

2+1 and we note that the bound
∑

i p̄(i)
2∑

i p̄(i)
2+1 is always smaller than 0.5. When hadj is

small, counterexamples to monotonicity exist.

While adjusted homophily violates some properties, it still dominates all other measures and is
comparable across different datasets with varying numbers of classes and class size balance. We
recommend using it as a more reliable measure of homophily in further works.

3 Label informativeness
Informative neighbors:

Less informative neighbors:

Since heterophily is the negation of homophily, heterophilous graphs
may have very different connectivity patterns (as shown on the right).
To distinguish such patterns, we define a characteristic measuring
the informativeness of a neighbor’s label for a node’s label.

Formally, assume that we sample an edge (ξ, η) ∈ E (from some
distribution). The class labels of nodes ξ and η are then random
variables yξ and yη. We want to measure the amount of knowledge
the label yη gives for predicting yξ. This can be measured via the
mutual information, which is the reduction of entropy H(yξ) if we
know the value yη: I(yξ, yη) = H(yξ) − H(yξ|yη). To make the obtained quantity comparable
across different datasets, we say that label informativeness is the normalized mutual information of
yξ and yη:

LI := I(yξ, yη)/H(yξ) . (2)

3
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We have LI ∈ [0, 1]. If the label yη allows for unique reconstruction of yξ, then LI = 1. If yξ and yη
are independent, LI = 0.

If the edges are sampled uniformly at random, (2) becomes:

LIedge = −
∑

c1,c2
p(c1, c2) log

p(c1,c2)
p̄(c1)p̄(c2)∑

c p̄(c) log p̄(c)
= 2−

∑
c1,c2

p(c1, c2) log p(c1, c2)∑
c p̄(c) log p̄(c)

,

where p(c1, c2) =
∑

(u,v)∈E
1{yu=c1,yv=c2}

2|E| . For brevity, we further denote LIedge by LI.

To claim that LI is a suitable graph characteristic, we need to show that it is comparable across
different datasets. For this, we need to verify maximal agreement and asymptotic constant baseline.
Recall that LI is upper bounded by one and equals one if and only if the neighbor’s class uniquely
reveals the node’s class. This property can be considered as a direct analog of the maximal agreement
defined in Section 2.1. The following proposition shows that LI satisfies the asymptotic constant
baseline.

Proposition 1. Assume that |E| → ∞ as n → ∞ and that the entropy of p̄(·) is bounded from below
by some constant. Let p̄min = mink p̄(k) and assume that p̄min ≫ C/

√
|E| as n → ∞. Then, for

the random configuration model, we have LI = o(1) with high probability.

Figure 1: Accuracy of GraphSAGE on
synthetic SBM graphs

Additionally, we empirically observe that LI better corre-
lates with GNN performance than homophily. For this, we
generate synthetic graphs via a variant of the stochastic
block model (SBM) [12]. We carefully design parameter
combinations (community-to-community edge probabil-
ities) to obtain various combinations of dataset character-
istics — LI and homophily. Given the class labels, the
features are taken from the four largest classes in the cora
dataset [13–16]. For each obtained graph, we train the
GraphSAGE model [17] and measure its classification
accuracy. Figure 1 shows that the model performance is
much more correlated with LI than with homophily. In
particular, when LI is high, GraphSAGE achieves good
performance even on strongly heterophilous graphs with
negative homophily. We refer to the full paper [10] for the
details and more experiments on various datasets.

In summary, our results show that LI is a meaningful graph characteristic that complements homophily
measures and can be useful for both graph analysis and graph machine learning.

4 Conclusion

In this paper, we discuss how to characterize graph node classification datasets. First, we revisit the
concept of homophily and show that commonly used homophily measures have significant drawbacks.
For this, we formalize properties desirable for a good homophily measure and show which measures
satisfy which properties. We conclude that adjusted homophily is a better measure of homophily
than the ones commonly used in the literature. We recommend using it to estimate and compare
homophily levels of various graphs in future works.

Then, we argue that heterophilous graphs may have very different structural patterns and propose a
new property called label informativeness (LI) that allows one to distinguish them. LI characterizes
how much information a neighbor’s label provides about a node’s label. Similarly to adjusted
homophily, this measure satisfies important properties and thus can be used to compare datasets with
different numbers of classes and class size balance. Through a series of experiments, we show that
LI correlates well with the performance of GNNs.

To conclude, we believe that adjusted homophily and label informativeness will be helpful for
researchers and practitioners as they allow one to easily characterize the connectivity patterns of
graph datasets.
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