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Abstract

Generating high-quality textual adversarial ex-001
amples is critical for investigating the pitfalls002
of natural language processing (NLP) models003
and further promoting their robustness. Exist-004
ing attacks are usually realized through word-005
level or sentence-level perturbations, which ei-006
ther limit the perturbation space or sacrifices007
fluency and textual quality, both affecting the008
attack effectiveness. In this paper, we pro-009
pose PLAT that generates adversarial samples010
through phrase-level perturbations. PLAT first011
extracts the vulnerable phrases as attack tar-012
gets by a syntactic parser, and then perturbs013
them by a pretrained blank-infilling model.014
Such flexible perturbation design substantially015
expands the search space for more effective016
attacks without introducing too many modifi-017
cations, and meanwhile maintains the textual018
fluency and grammaticality via contextualized019
generation using surrounding texts. Moreover,020
we develop a label-preservation filter leverag-021
ing the likelihoods of language models fine-022
tuned on each class to rule out those pertur-023
bations that potentially alter the original class024
label for humans. Extensive experiments and025
human evaluation demonstrate that PLAT has026
a superior attack efficiency as well as a better027
label consistency than strong baselines.028

1 Introduction029

Despite the widespread success of deep learning030

in natural language processing (NLP) applications,031

a variety of works (Wallace et al., 2019; Jia et al.,032

2019; Cheng et al., 2019) discovered that neural033

networks can be easily fooled to produce incorrect034

predictions, when its input text is modified by035

adversarial attacks that do not necessarily alter036

human predictions and the true meaning of the037

original text. Through the lens of adversarial at-038

tacks, we can allocate the weakness of models and039

in turn improve their reliability and robustness (Jia040

and Liang, 2017; Belinkov and Bisk, 2018).041

Flat Iron Steak was prepared 

very well. Good chain restaurant 

with predictably good service … 

Flat Iron Steak was {very good, excellent, fresh and 

delicious, ...}. Good chain restaurant with {a great 

deal of, lots of, consistently, ...} good service … 

Original Text

Adversarial Text

Extract phrases, 

then attack with 

phrase-level 

perturbations

Positive!

Negative!

Figure 1: In PLAT, we extract phrases from the original
text as attack targets, then use a blank-infilling model
to obtain perturbation candidates and generate effective
adversarial texts. Note that both target phrases and per-
turbations may contain one or multiple tokens.

However, generating high-quality adversarial 042

texts is nontrivial due to the discrete nature of hu- 043

man language and its rigorous linguistic structures. 044

While many efforts of previous works have been 045

taken to generate word-level perturbations (Ren 046

et al., 2019; Alzantot et al., 2018; Jin et al., 2020; 047

Li et al., 2020; Garg and Ramakrishnan, 2020; Li 048

et al., 2021) for the sake of simplicity, their attacks 049

are restricted to independent perturbations on sin- 050

gle words and thus cannot produce richer and more 051

diverse forms of adversarial examples. To expand 052

the search space for attacks, sentence-level attacks 053

have been explored (Iyyer et al., 2018; Wang et al., 054

2020b,a) such as using paraphrasing, but their tex- 055

tual quality is usually poor due to insufficient con- 056

trols or constraints on the structure and meanings 057

of the generated texts. 058

To generate controllable high-quality textual ad- 059

versarial examples, we propose a new phrase-level 060

attack, PLAT, which can explore more diverse and 061

flexible forms of perturbations than single word 062

perturbations. Our model is able to produce phrase- 063

level perturbations with a high success rate and 064
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preserve the textual similarity in a more control-065

lable manner. As illustrated in Figure 1, with the066

help of constituency parsing, PLAT first detects067

and extracts the most vulnerable phrases from the068

text to the victim model as the attack targets. To069

maintain textual fluency and grammaticality, PLAT070

perturbs these phrases through a contextualized071

blank-infilling procedure by a pretrained language072

model. Compared to existing textual adversarial073

attacks, PLAT can produce more efficient and ef-074

fective attacks by searching in a larger space of075

phrase-level perturbation. Meanwhile, PLAT deli-076

cately controls the amount of modifications so the077

textual meaning of the original texts can still be078

faithfully preserved after attacks.079

Moreover, the success of attacks can be trivial if080

allowed to arbitrarily distort the ground-truth label081

or key contents. Hence, a valid attack is required082

to not change the ground-truth label predicted by083

humans. However, the semantic similarity filters084

widely used in existing works (Jin et al., 2020; Li085

et al., 2020) perform unsatisfactorily in preserving086

the textual meaning and even flip the gold labels,087

according to a recent study (Morris et al., 2020).088

To this end, we develop a label-preservation fil-089

ter to maintain class-dependent properties such as090

sentiments. It is built upon the comparison of like-091

lihoods of language models finetuned on different092

classes’ data. Thereby, it selects the attacks that093

can easily fool the victim model but hardly alter094

the original labels.Our contributions in this paper095

are threefold:096

• We propose a phrase-level textual adversarial at-097

tack that employs contextualized blank-infilling to098

generate high-quality phrase perturbations. It ex-099

pands the perturbation space of word-level attacks100

and thus can produce more effective attacks with-101

out notably hurting the fluency and grammaticality.102

• We introduce a novel label-preservation filter,103

which is more reliable than the widely used seman-104

tic similarity filters on generating valid adversarial105

examples.106

• Extensive experiments demonstrate the effective-107

ness of PLAT on multiple text classification and nat-108

ural language inference tasks, hence presenting a109

new robustness challenge to existing NLP models.110

2 Methodology111

In this section, we first formulate the problem of112

phrase-level textual adversarial attack. Then we113

elaborate on how PLAT chooses phrase candidates114

to attack and how to adversarially perturb them. 115

Finally, we discuss strategies to select the most 116

effective perturbations with label preservation. 117

2.1 Problem Definition 118

We focus on generating textual adversarial exam- 119

ples for classification tasks. Given a textual se- 120

quence x = x1x2 . . . xn with a specific attribute 121

label y and a victim model F (assume F (x) = y) 122

to attack, our goal is to generate an adversarial sam- 123

ple x′ by perturbing x. A valid adversarial example 124

x′ can successfully trigger a wrong prediction of 125

the victim model, i.e. F (x′) 6= y, while the hu- 126

man judgement on x′ should stay unaltered as y. 127

To achieve this goal, x′ needs to be sufficiently 128

similar to x with reasonable fluency and correct 129

grammaticality. 130

2.2 Phrase-level Attack 131

Phrase candidates. Given a sequence x, PLAT 132

allocates candidates of phrases to attack from the 133

syntactic tree extracted by a language parser (e.g., 134

Stanford Parser, etc.). The model first traverses all 135

constituents (nodes) in the syntactic tree in a top- 136

down manner. If a node is identified as a phrase, 137

i.e. tagged as NP, VP, etc., the text piece in x asso- 138

ciated with all nodes in the subtree that is rooted at 139

the current node, will be regarded as an attacking 140

candidate. For more controllable attacks, we set a 141

maximum depth of syntactic subtree d to restrict 142

the length of candidate phrases so the modification 143

to x is limited, hence resulting in more valid adver- 144

sarial samples. Thereby, PLAT allocates a set of 145

candidate phrases in the form of A = {(a, i, j)}, 146

where i and j are the indices of the leftest and 147

rightest token of a phrase a from x. 148

Phrase importance. To produce more efficient 149

attacks against the victim model F (e.g., finetuned 150

BERT (Devlin et al., 2019)), PLAT only perturbs 151

the phrases candidates important to the predic- 152

tion (Jin et al., 2020; Ren et al., 2019). Specifically, 153

we consider to replace a phrase {(a, i, j)} in x 154

with a series of special symbol [MASK]1 with 155

the same length as a, which results in x̃ = 156

x1 . . . xi−1, [MASK] . . . [MASK], xj+1 . . . xn. 157

The importance for phrase a is measured by 158

I(a) = PF (y | x)− PF (y | x̃), 159

1We empirically found this is better than single-mask re-
placement.
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where PF (y|·) is the probability of the ground truth160

label y predicted by F given the input text. Larger161

I(a) indicates that the phrase a has more signif-162

icant contribution to the prediction of y. PLAT163

manipulates each target phrase in candidate sets164

A by following an descending order of their im-165

portance scores. So more effective phrase-level166

perturbations are applied earlier for achieving min-167

imum modifications to x.168

Phrase perturbations. To generate phrase-level169

adversarial perturbations, PLAT performs a blank-170

infilling procedure on each target phrase. Specif-171

ically, PLAT first replaces a target phrase a ∈ A172

with a blank from index i to j, i.e.,173

x̃\a = x1, . . . , xi−1, , xj+1, . . . , xn.174

Then a pretrained blank-infilling language model,175

e.g., BART (Lewis et al., 2020) or T5 (Raffel176

et al.), takes x̃\a as the input and fills a phrase177

b = z1 . . . zm into the blank conditioned on sur-178

rounding context, i.e.,179

x̃b = x1 . . . xi−1, z1 . . . zm, xj+1 . . . xn.180

In contrast to paraphrasing each phrase indepen-181

dently, such contextualized infilling procedure can182

produce more fluent and grammatically correct per-183

turbations fitting into the rest context.184

For attacking each target phrase, PLAT sam-185

ples N candidates of perturbed phases B = {b}186

with varying lengths. During the generation, PLAT187

tends to sample tokens of higher probability at ev-188

ery step so that the outputs are more fluent and189

grammatical with the surrounding context. We190

keep the maximum length of perturbations not191

greater than the length of original phrases plus a192

threshold l (e.g., |b| ≤ |a|+ l). The most effective193

perturbation in B is then selected to replace the tar-194

get phrase a, resulting in a perturbed text x̃b (§2.3).195

We apply the above phrase perturbation sequen-196

tially to all target phrases from A2 until (1) a valid197

adversarial sample x(t) is found when perturbing198

the tth target phrase (i.e., F (x(t)) 6= y); or (2) the199

maximum number of perturbations T is reached.200

We summarize the above procedure in Algorithm 1.201

2.3 Label Preservation and Effective202

Perturbation.203

Label preservation filter. Although existing204

works (Jin et al., 2020; Chen et al., 2021) usu-205

2If a phrase b is perturbed, phrases that overlap b in the
remaining phrases of A will be ignored.

Algorithm 1 Adversarial Attack by PLAT

1: Input: Original text x, the gold label y, victim
model F , maximum number of perturbation T ,
importance score I , class likelihood ratio R,
effectiveness filter score S.

2: Output: An adversarial example x′

3: Extract phrase candidates from x to form set
A

4: x(0) ← x
5: for 1 ≤ t ≤ T do
6: a← target phrase with highest I in A
7: B ← set of phrases perturbations generated

by blank-infilling x̃
(t−1)
\a

8: B ← filtering B by R(x(t−1),b′, y) < δ
9: if B = ∅ then x(t) = x(t−1), continue

10: end if
11: b← argmax

b′∈B
S(x(t−1),b′)

12: x(t) ← x̃
(t−1)
b (replace a with b in x(t−1))

13: if F (x(t)) 6= y then return x(t)

14: end if
15: end for
16: return NONE

ally employ a semantic similarity constraint (e.g., 206

USE (Cer et al., 2018)) to encourage the validity 207

of adversarial samples, it has been observed that 208

such constraint is unreliable to preserve the textual 209

meaning (Morris et al., 2020). Moreover, existing 210

approaches rarely preserve class-dependent con- 211

tents, e.g., sentiments, and might produce invalid 212

adversarial examples with human-predicted labels 213

flipped. Such a drawback is commonly observed in 214

our human evaluation in §3.3. 215

To retain the class-related characteristics 216

most critical to classification tasks, inspired 217

by Malmi et al., 2020, PLAT directly filters 218

phrase perturbations using likelihoods provided 219

by class-conditioned masked language models 220

(CMLMs). Specifically, given a sequence x̃b = 221

x1, . . . , xi−1, z1, . . . , zm, xj+1, . . . , xn, the class- 222

conditioned likelihood of the adversarially per- 223

turbed phrase b = z1, . . . , zm for phrase (a, i, j) 224

in x can be calculated as 225

L(x,b, y) =
m∏
k=1

PCMLM

(
zk | x̃b\zk ; Θy

)
. 226

Here, m is the length of b, x̃b\zk is x̃b with token 227

zk masked, PCMLM is the likelihood of zk given 228

x̃b\zk , which is produced by a class-conditioned 229
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masked language model Θy conditioned on class y.230

The conditional language model is first initialized231

as a pretrained model and then finetuned with the232

pretraining objective on all data belonging to the233

text’s class from the dataset. Therefore, a larger234

likelihood indicates that b is more likely to match235

the corresponding class distribution given the sur-236

rounding context3.237

To avoid label flipping of human prediction, the238

phrase perturbations should enjoy a higher likeli-239

hood on the original class’s distribution but a lower240

likelihood on other classes. This property can be241

measured by the following likelihood ratio:242

R(x,b, y) = L(x,b, y)/ max
ỹ∈Y,ỹ 6=y

L(x,b, ỹ),243

where Y denotes the set of all classes in the task. A244

higher likelihood ratio suggests the perturbation is245

more correlated to the original label in contrast to246

other labels. For better label preservation, the com-247

mitted phrase perturbations are required to have248

a likelihood ratio larger than certain threshold δ,249

i.e. R(x,b, y) ≥ δ for b ∈ B. As shown in §3.3,250

our method outperforms other baselines on label-251

preservation.252

Selection of the most effective perturbation.253

To generate x′ with sufficient global textual-254

similarity to x, PLAT selects target phrases of255

length smaller than d and restricts their perturba-256

tions’ lengths to be smaller than d+ l. Moreover,257

PLAT aims at utilizing minimum perturbations to258

perform effective adversarial attacks so the textual259

similarity can be preserved. Minimum perturba-260

tions can in return help maintain reasonable fluency261

and grammaticality of the generated texts.262

To achieve the above goals, PLAT selects the263

most effective phrase perturbation at each step as264

the one that minimizes the probability of the gold265

label y predicted by F . We use a score to measure266

each phrase b in terms of how likely it can success-267

fully fool the model, i.e. the negative probability of268

the gold label y for the original x associated with269

the perturbation b, i.e.,270

S(x,b) = −PF (y | x̃b).271

When attacking a target phrase, PLAT only chooses272

one phrase perturbation b ∈ B with the highest273

score. The resulted perturbed-sequence is retained274

3In practice, we partition the whole text into multiple sen-
tences and the likelihood PCMLM for a phrase b is calculated
locally using its corresponding sentence.

and then used as the initial sequence for the next 275

time of perturbation. 276

2.4 Discussion 277

A primary novelty of PLAT is the phrase-level per- 278

turbation. Compared to the widely studied word- 279

level perturbations (Ren et al., 2019; Jin et al., 2020; 280

Li et al., 2021) that can only independently perturb 281

a single word every time, PLAT can perturb a text 282

span of varying lengths by replacing it with phrases 283

of possibly unequal lengths. Hence, it produces 284

a more flexible attack by searching it in a larger 285

perturbation space. Although the textual phrase- 286

level attack has been studied by a concurrent work 287

MAYA (Chen et al., 2021), there are several critical 288

differences of PLAT, i.e., 289

(1) The phrase-level attack by PLAT is a more gen- 290

eral attack model that covers both word-level and 291

phrase-level perturbations in one framework, while 292

MAYA builds separate sub-modules for different 293

levels of perturbations. 294

(2) PLAT adopts a blank-infilling strategy and 295

leverages language models to generate phrase per- 296

turbations in a context-aware manner, leading to 297

more fluent and grammatical adversarial examples. 298

On the contrary, MAYA applies paraphrasing to 299

each constituent target separately without taking its 300

surrounding context information into account. 301

(3) PLAT applies several constraints and filters to 302

the phrase perturbations for more controllable at- 303

tacks and better preservation of the original textual 304

and label information, while MAYA has no such 305

restrictions and its generated perturbations can in- 306

troduce arbitrary distortions to the original text. 307

3 Experiments 308

In this section, we first elaborate on the experimen- 309

tal settings and implementation details of PLAT as 310

well as the comparisons to several baselines in §3.1. 311

We then introduce the datasets and evaluation de- 312

signs in §3.2. At the end, we summarize the main 313

results in §3.3. 314

3.1 Setup 315

The implementation details are given as follows: 316

• We use pretrained BARTbase (Lewis et al., 2020) 317

as the language model for blank-infilling to gen- 318

erate phrase perturbations. We sample N = 5000 319

candidates by Top-K sampling (Fan et al., 2018) as 320

the phrase set B, while set d = 4, l = 3 for each 321

target phrase. In sections §4.1, We also report the 322
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Dataset Avg. Len #Classes Train Test Acc

Yelp 130 2 560k 38k 91.8%
AG News 46 4 120k 7.6k 94.6%

MNLI 23/11 3 392k 9.8k 83.9%
QNLI 11/31 2 105k 5.4k 91.4%

Table 1: Statistics of datasets and the performance of
victim models on each dataset.

performance when using different language mod-323

els.324

• We use finetuned RoBERTabase (Liu et al., 2019)325

to calculate the class-conditioned likelihood for326

label-preserving filters. On each dataset, the model327

is further finetuned to optimize the pretraining ob-328

jective on each sequence with a prepending special329

label token. We set threshold δ = 1 for the filtering.330

• The victim model F is an MLP classifier based331

on BERTbase (Devlin et al., 2019). It takes the332

representation of [CLS] token for prediction and is333

fine-tuned on the target datasets in advance.334

Baselines. We compare PLAT with three state-335

of-the-art textual adversarial attack models4:336

• Textfooler (Jin et al., 2020): a word-level attack337

model, which replaces tokens with their synonyms338

via counter-fitting word embeddings (Mrkšić et al.,339

2016). USE (Cer et al., 2018) distance is used340

to select adversarial texts preserving the semantic341

similarity.342

• CLARE (Li et al., 2021): instead of token re-343

placement only, CLARE considers three word-344

level perturbations, replace, insert, and merge. Pre-345

trained masked language models are used to gen-346

erate perturbations and a USE semantic similarity347

filter is applied.348

• MAYA (Chen et al., 2021): a multi-granularity349

model that attacks the input using two separate350

modules for word replacement and constituent para-351

phrasing. It employs the embedding of Sentence-352

BERT (Reimers and Gurevych, 2019) for semantic353

similarity preservation.354

3.2 Datasets and Evaluation355

Datasets. We investigate the following datasets356

for text classification and natural language infer-357

ence tasks in our experiments. The statistics and358

performance of the victim models evaluated on359

each dataset are reported in Table 1.360

• Yelp Reviews (Zhang et al., 2016): a binary sen-361

timent classification dataset containing restaurant362

reviews as samples.363

4All results are obtained by running their released code.

• AG News (Zhang et al., 2016): a news articles 364

classification dataset covering four classes: World, 365

Sport, Business, and Science and Technology. 366

• MNLI (Williams et al., 2018): a natural language 367

inference dataset, where each sample contains a 368

pair of sentences whose relationship is labeled as 369

entailment, neutral, or contradiction. We use the 370

matched test set here. 371

• QNLI (Wang et al., 2018): a natural language 372

inference dataset based on the question answering 373

corpus SQuAD (Rajpurkar et al., 2016). Each sam- 374

ple contains a context and a question labeled as 375

entailed or not entailed. 376

All attacks will be conducted on 1000 instances 377

randomly drawn from test sets. For tasks on a pair 378

of sentences, we attack the longer sentence. 379

Evaluation metrics. We evaluate models using 380

the following automatic metrics: 381

• Attack success rate (ASR): the percentage of 382

successful adversarial attacks that trigger wrong 383

predictions of the victim model. 384

• Editing distance (DIS) (Navarro, 2001): the nor- 385

malized Levenshtein distance that measures the 386

minimum amount of word editing required to trans- 387

form the original text to the adversarial one. It 388

measures the modification rate of an adversarial 389

sample. 390

• BLEU (Papineni et al., 2002): the BLEU score 391

between an adversarial sample and its correspond- 392

ing original sample is used to measure their n-gram 393

overlap (textual similarity). 394

• Perplexity (PPL): a pretrained GPT2base (Rad- 395

ford et al., b) is used to calculate the PPL of adver- 396

sarial texts, which reflects the fluency as suggested 397

by (Kann et al., 2018; Zang et al., 2020a). 398

• Grammar error (GER): Following Zang et al., 399

2020b, we employ LanguageTool 5 to calculate 400

the average number of grammar errors newly intro- 401

duced by adversarial samples. 402

We only evaluate the last four metrics on the suc- 403

cessful attacks against the victim model. 404

3.3 Main Results 405

Table 2 summarizes the main experimental and 406

comparison results. Overall, PLAT consistently 407

achieves better attack success rate and perplexity 408

performance across all datasets. We attribute this 409

to the flexible phrase-level perturbations generated 410

using contextual information. Compared with a 411

5https://www.languagetool.org/
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Dataset Yelp (PPL = 51.5) AG News (PPL = 62.8)

Model ASR↑ DIS↓ BLEU↑ PPL↓ GER↓ ASR↑ DIS↓ BLEU↑ PPL↓ GER↓

Textfooler 94.5 0.11 0.80 101.1 0.73 65.5 0.29 0.52 339.0 1.43
CLARE 97.3 0.07 0.88 65.2 0.08 68.0 0.09 0.86 97.2 -0.03
MAYA 97.0 0.43 0.44 78.9 5.23 94.2 0.64 0.25 168.6 4.30
PLAT 98.4 0.17 0.78 56.8 0.33 95.7 0.34 0.58 80.3 0.58

Dataset MNLI (PPL = 60.9) QNLI (PPL = 46.0)

Model ASR↑ DIS↓ BLEU↑ PPL↓ GER↓ ASR↑ DIS↓ BLEU↑ PPL↓ GER↓

Textfooler 58.6 0.15 0.71 159.0 0.67 57.8 0.19 0.63 164.5 0.62
CLARE 86.2 0.10 0.82 82.7 0.09 82.6 0.15 0.74 75.9 0.03
MAYA 92.8 0.40 0.49 104.7 2.20 78.6 0.40 0.48 101.4 2.90
PLAT 96.6 0.20 0.74 62.1 0.23 92.4 0.25 0.68 51.3 0.06

Table 2: Adversarial attack performance of PLAT and baselines on four datasets, in terms of attack success rate
(ASR), editing distance (DIS), BLEU, perplexity (PPL), and increased grammar errors(GER). Bold values indicate
the best performance for each metric. ↓(↑) indicates the higher (lower) the better. Note that phrase-level attacks
naturally introduce more modifications than word-level attacks so they are not directly comparable on DIS and
BLEU metrics in the table.

Metric PLAT equal CLARE

Meaning preservation 39.8 \ 33.3
Label preservation 77.1 \ 49.8
Fluency and grammaticality 33.1 32.3 34.6

Metric PLAT equal MAYA

Meaning preservation 39.8 \ 30.2
Label preservation 77.1 \ 53.5
Fluency and grammaticality 45.0 29.0 26.0

Table 3: Human evaluation performance in percentage
on the Yelp dataset.

phrase-level model MAYA, our method is signif-412

icantly better on modification rates, BLEU, and413

grammar scores. Hence, despite not using seman-414

tic similarity constraints, PLAT is more control-415

lable than MAYA as we confine the modification416

ranges and generate perturbations by contextual417

blank-infilling. While word-level attacks naturally418

introduce fewer perturbations and thus have better419

textual similarity and grammaticality, its perturba-420

tion space is small and results in lower success421

rates. On the contrary, PLAT achieves the high-422

est success rate while on the par with word-level423

attacks on textual similarity and grammaticality,424

hence achieving a sweet spot among all metrics.425

Human evaluation. We further conduct human426

evaluations on Yelp dataset with 100 randomly427

selected successful attacks produced by PLAT,428

CLARE, and MAYA. We evaluate these attacks in429

three aspects: (1) Meaning preservation: whether430

the attacks preserve the original meaning or not;431

(2) Label preservation: whether the modifications432

contradict the original sentiment or not; (3) We433

evaluate fluency and grammaticality via pairwise434

Yelp AG News MNLI QNLLI

1st NP / 39.9% NP / 53.7% NP / 57.6% NP / 58.6%
2nd ADJP / 17.5 % NNP / 27.0% PP / 12.4% NNP / 16.4%
3rd VP / 16.6% PP / 9.5% NNP / 27.1% PP / 13.4%

Table 4: Top-3 phrase tags of attack phrases and their
percentages on different datasets by PLAT.

comparison: for each instance, we pair PLAT’s at- 435

tack with one by CLARE or MAYA. The human 436

annotators are asked to either select the better one 437

or rate them as equal. We average 6 responses for 438

each sample. More details are in Appendix D. 439

As shown in Table 3, PLAT significantly out- 440

performs CLARE and MAYA in terms of label 441

consistency, i.e., 77.1% vs. 49.8%(CLARE) or 442

53.5%(MAYA). This demonstrates the benefit of 443

our proposed label-preservation filter using class- 444

conditional likelihoods. It’s worth noting that all 445

models struggle on preserving the textual mean- 446

ing and less than 40% of samples can retrain their 447

original meaning. This is consistent with Morris 448

et al., 2020 in that semantic similarity metrics fail 449

to maintain the actual meaning. On the fluency and 450

grammaticality, PLAT is comparable to CLARE 451

but is much better than MAYA (45% vs. 26%), 452

since our context-aware blank-infilling is superior 453

to paraphrasing each text piece independently. Fi- 454

nally, Table 5 compares adversarial attacks crafted 455

by our model and other baselines. More case stud- 456

ies are provided in Appendix B. 457

Vulnerable phrase types. We also analyze the 458

three mostly attacked phrase types on each dataset. 459

As shown in Table 4, noun phrases (NP) are the 460

most vulnerable phrases over all datasets (more 461
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Yelp (Negative) The quality of the food has really plummeted over the past year. We use to love coming her to get
the creamy clam chowder, not its watery and gross.

TextFooler (Positive) The quality of the food has really engulfed over the past year. We use to love coming her to get the
creamy clam chowder, not its watery and gross.

CLARE (Positive) The quality of the food has really soared over the past year . We use to love coming her to get the
creamy clam chowder, not its watery and gross.

MAYA (Positive) The quality of the food has really last year was a big one for the fall. We use to love coming her
to get the creamy clam chowder, not its watery and gross.

PLAT (Positive) The quality of the food has also somewhat plummeted over the past year. We use to love coming
her to get the creamy clam chowder, not its watery and gross.

Table 5: Adversarial examples generated by different models on Yelp dataset, perturbations are colored.

Module ASR↑ DIS↓ BLEU↑ PPL↓ GER↓

PLAT 98.4 0.17 0.78 56.8 0.33

w/o PHRASE-LEVEL 97.7 0.08 0.85 69.0 0.14
w ALL CONSTITUENTS 98.2 0.16 0.79 58.1 0.29
BERTbase likelihood 98.5 0.17 0.78 56.8 0.30

T5base infilling 98.4 0.16 0.79 61.4 0.41
GPT-2small infilling 98.7 0.16 0.79 61.4 0.42

Table 6: Results of the ablation study on Yelp dataset.

than 50% on three datasets), while preposition462

phrases (PP) and proper noun phrases (NNP) are463

also commonly vulnerable.464

4 Analysis465

In this section, we conduct detailed analyses of466

PLAT, including ablation study (§4.1), discussion467

of controllability in blank infilling (§4.2), and ro-468

bust defense model attacks (§4.3).469

4.1 Ablation Study470

We evaluate the effectiveness of each key compo-471

nent in PLAT based on the 1,000 random Yelp sam-472

ples §3.2. We first study the phrase-level perturba-473

tion by replacing it with the word-level replacement474

used in Textfooler (w/o PHRASE-LEVEL). As Ta-475

ble 6 shows, phrase-level perturbation has a larger476

attack search space which leads to better attack477

success rate and perplexity. It also shows that at-478

tacking the constituents that are labeled as phrases479

is more effective than attacking all possible con-480

stituents. This is probably because phrases contain481

more critical and clear information to attack in clas-482

sification tasks. In addition, we have not observed483

a significant difference between using BERTbase484

and RoBERTabase for class-conditioned likelihood485

calculation, probably due to their similar architec-486

tures and shared knowledge. Finally, we comparing487

different blank-infilling methods using pretrained488

BARTbase (PLAT), pretrained T5base (Raffel et al.)489

and finetuned GPT-2small (Donahue et al., 2020).490
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Figure 2: ASR, GER, DIS and PPL results by control-
ling different candidates numbers N in PLAT.
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Figure 3: DIS and BLEU results by varying depth re-
strictions d (upper) and length increments l (bottom).

Empirically, BARTbase achieves the best overall 491

performance. 492

4.2 Sensitivity and Controllability Analysis 493

In this section, we investigate how the outputs can 494

be controlled by hyper-parameters in PLAT on Yelp 495

dataset. We first study how the generated samples 496

can be impacted by varying the candidate number 497

N in blank-infilling. As shown in Figure 2, the 498

success rate (ASR) increases with the increase of 499

N but starts to saturate when N ≥ 500, while the 500

grammar errors (GER) stay quite consistent. Mean- 501

while, the edit distance (DIS) drops significantly 502

but the perplexity (PPL) only increases slightly 503

when N increases. Based on these observations, 504

we choose N = 5000 in our experiments for the 505

best trade-off among these aspects. 506
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Method ASR↑ DIS↓ BLEU↑ PPL↓ GER↓

TextFooler 64.2 0.23 0.59 185.5 1.39
CLARE 92.5 0.12 0.81 76.1 0.15
MAYA 98.6 0.57 0.33 82.1 3.51
PLAT 99.2 0.28 0.67 55.7 0.39

Table 7: Results of PLAT and baselines attacking the
robust defense model TAVAT on Yelp dataset.

In addition, we explore how the syntactic tree507

depth d in target phrases and the incremental length508

l for perturbed phrases can affect the modification509

degree. In Figure 3, with the increase of d or l,510

more modifications are introduced and the textual511

similarity decreases, which undermines the validity512

of adversarial samples, as larger d and l augment513

the attacking space with longer but unnecessary514

perturbations. Hence, we choose relatively small515

d and l to ensure the attack is more controllable.516

Note that both d and l exhibit a slight impact on517

the success rate (Detailed results in Appendix C).518

4.3 Attacking Robust Defense Model519

In this section, we examine whether existing ro-520

bust defense models can defend PLAT attack521

which is beyond word-level perturbations. We522

apply a robust BERTbase defense model trained523

via TAVAT (Li and Qiu, 2021) to defense the at-524

tacks from PLAT and baseline models, which is525

designed for word-level attacks. Comparing Ta-526

ble 7 with Table 2, both the editing distance and527

BLEU get worse when attacking the defense model,528

showing that the defense model is harder to attack.529

Meanwhile, two word-level attacks have a signifi-530

cant attack success rate drop, e.g., 94.5% to 64.2%531

on TextFooler. On the contrary, PLAT still can532

achieve the best 99.2% attack rate with sufficient533

textual similarity and grammar errors, outperform-534

ing MAYA on every aspect. This suggests that535

PLAT raises a new robustness issue on current de-536

fense models.537

5 Related Work538

Textual Adversarial Attack Growing interest539

is devoted to generating textual adversarial sam-540

ples via perturbation at various levels. Some541

early works use misspelling tokens in character-542

level (Liang et al., 2018; Ebrahimi et al., 2018; Li543

et al., 2019), but they can be easily defended by544

spell checking tools (Pruthi et al., 2019; Zhou et al.,545

2019; Jones et al., 2020). Recent mainstream of546

studies try to misguide models via word-level per-547

turbations, e.g., synonym/semantic neighbor sub-548

stitution (Alzantot et al., 2018; Jin et al., 2020; Ren 549

et al., 2019; Zhang et al., 2019), replacement by 550

masked language models (Li et al., 2020; Zhang 551

et al., 2019), or combing operations like insertion 552

and merge (Li et al., 2021). These methods usu- 553

ally attempt to preserve the semantic similarity for 554

better fluency and grammaticality, but their pertur- 555

bations are limited to independent single words. 556

Sentence-level attacks have also been studied to 557

generate new texts via paraphrasing or GAN-based 558

generation (Iyyer et al., 2018; Wang et al., 2020b; 559

Zou et al., 2020; Wang et al., 2020a), but their 560

drastic modifications on the text structure make 561

it harder to maintain a satisfactory textual quality. 562

Very recently, phrase-level perturbations are consid- 563

ered in evaluating syntactic parsing (Zheng et al., 564

2020), or involved in a multi-granularity textual 565

attack model (Chen et al., 2021) MAYA. Unlike 566

MAYA, PLAT only focuses on unified phrase-level 567

attacks, which require simpler and fewer modifica- 568

tions while benefiting better performance. 569

Blank Infilling Large-scale pretrained language 570

models such as BERT (Devlin et al., 2019) and 571

RoBERTa (Liu et al., 2019) have shown their ca- 572

pability of filling masked single tokens (Wang and 573

Cho, 2019; Ghazvininejad et al., 2019) but they can- 574

not handle variable-length masks. Although autore- 575

gressive generative models such as GPT (Radford 576

et al., a,b) can produce output with arbitrary length, 577

they only condition information from a single di- 578

rection. To enable GPT models to fill in blanks, 579

Donahue et al. proposed to finetune them with se- 580

quences concatenating manually-masked texts and 581

missing texts. Recently, autoencoder-decoder mod- 582

els such as T5 (Raffel et al.) and BART (Lewis 583

et al., 2020) trained using infilling losses make it 584

possible to fill the blanks within the context in a 585

more flexible form (Shen et al., 2020). 586

6 Conclusion 587

We present a new phrase-level textual adversarial 588

attack, PLAT, which produces richer and higher- 589

quality phrase-level perturbations than the widely 590

studied word-level attacks. It utilizes contextual- 591

ized blank-infilling to generate perturbations by a 592

pretrained language model and thus well preserves 593

the textual similarity, fluency, and grammaticality. 594

We additionally develop a label-preservation filter 595

to keep the ground-truth labels intact. Extensive 596

experiments show the effectiveness of PLAT and its 597

advantages over baselines on different NLP tasks. 598
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A Implementation Details814

A.1 Details of PLAT815

Basic infrastructure We use PyTorch as the816

backbone of our implementation, along with817

Huggingface-Transformers6 for the implementa-818

tion of victim models and likelihood estimation819

models, while Fairseq for the implementation of820

blank-infilling model BART7. We list the hyperpa-821

rameters used in our model in Table 8, all of them822

are determined empirically based on both attack823

success rate and textual quality. It takes about 160824

minutes to generate 100 adversarial samples on825

Yelp dataset using PLAT on a single NVIDIA GTX826

1080 Ti GPU.827

Select phrase candidates. We use the parser828

from Stanford CoreNLP 8 toolkit for the syntac-829

tic tree parsing. We consider parsed nodes with the830

syntactic tags in Table 9 as the possible root node831

of a phrase.832

Depth restriction of phrase syntactic tree d 4
Length incremental restriction for substitutions l 3

Maximum perturbation number T 11
Likelihood ratio filter threshold δ 1

Substitution candidates number N 5000

Table 8: All hyperparameters used in PLAT.

Tags ADJP, ADVP, CONJP, NP, NNP, PP, QP, VP,
WHADJP, WHADVP, WHNP, WHVP

Table 9: Syntactic tags that will be selected as the root
of a phrase.

Blank filling with language model. In our de-833

fault setting, we use directly apply the original834

BARTbase model 9 with 6 encoder and decoder835

layers and 140M parameters. During infilling, the836

target phrase a will be replaced with a special sym-837

bol “<mask>”, then the model will fill this blank838

with variable-length context. The Top-k sampling839

strategy is used during generation, where we set840

k = 50 and repeat this procedure several times841

to collect enough phrase substitution candidates.842

Since BARTbase implement blank filling via re-843

constructing the whole sentence, where the text844

excluding the blank part after filling may not be the845

6https://github.com/huggingface/
transformers

7https://github.com/pytorch/fairseq
8https://stanfordnlp.github.io/

CoreNLP/
9https://dl.fbaipublicfiles.com/

fairseq/models/bart.base.tar.gz

same as the original one, we simply retain the filled 846

texts with the same texts excluding the blank. 847

In the variations with other blank-infilling mod- 848

els, we use GPT-2small model 10 with 124M param- 849

eters or T5base model 11 with 220M parameters, 850

both have 12 layers. Since the original GPT-2small 851

model is not suitable for blank infilling, we enable 852

GPT-2 model to implement this task by finetuing 853

on Yelp training corpus using method proposed by 854

Donahue et al., running the code provide by the 855

authors 12. 856

Dataset PPL before PPL after

Yelp 11.44 6.29
AG News 9.33 3.64

MNLI 6.16 3.74
QNLI 5.14 5.00

Table 10: Perplexities of our finetuned masked lan-
guage models for likelihood estimation, before and af-
ter fine-tuning on the validation set of each dataset
(prepending our predefined special label token).

Models for calculating likelihood. We apply 857

RoBERTabase13 model fine-tuned on the corre- 858

sponding training set of each attack dataset in this 859

stage, which has 12 layers and 125M parameter. 860

Then we fine-tune the label-conditioned masked 861

language models on different datasets as follows to 862

make them better fit the specific domain. 863

• Classification datasets (Yelp, AG News): Since 864

each sample is usually long, we split a sample into 865

several short sentences as the input for fine-tuning. 866

To avoid the conditions that some short sentences 867

may be irrelevant or contradict the overall label 868

y, we employ a classifier to make predictions on 869

these sentences and only remain sentences with the 870

confidence value of y higher than 0.99. Such a sen- 871

tence along with the special label token “<Label>” 872

corresponding to the overall label y will form a 873

new sample for fine-tuning, whose input format is 874

“<Label> Sentence”. 875

• NLI datasets (MNLI, QNLI): samples in these 876

datasets are usually a pair of short sentences, so 877

we will not split them. The input format for these 878

datasets is “<Label> SentenceA </s> </s> Sen- 879

tenceB”, where “</s></s>” is the separation sym- 880

bol in RoBERTa. 881

Then we will randomly mask some tokens in these 882

10https://huggingface.co/gpt2
11https://huggingface.co/t5-base
12https://github.com/chrisdonahue/ilm
13https://huggingface.co/roberta-base
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samples to fine-tune a masked language model con-883

ditioned on labels, the batch size is 8, and the learn-884

ing rate is 5e−5 with AdamW optimizer. The PPL885

before and after fine-tuning is shown in Table 10,886

demonstrating the effectiveness of this procedure.887

When predicting the likelihood of a perturbation,888

we will concatenate the label of the original sample889

with the masked perturbed sequence as the input,890

similar to samples in fine-tuning. When attacking891

Yelp and AG News datasets, we also only use the892

sub-sentence containing the perturbation, rather893

than the whole text.894

Metrics. To obtain the editing distance (DIS)895

metric, we utilize the open-source tool14 to cal-896

culate it in token-level, i.e. how many words need897

to be edited to transform a text into another one898

and then normalized by the text length. In addi-899

tion, we employ Toolkit in NLTK15 to calculate900

BLEU metrics between adversarial samples and901

the corresponding original samples.902

A.2 Details of Victim Models903

BERT models. All BERT victim models are904

based on BERTbase
16, which contains 110M pa-905

rameters with 12 layers. A linear layer is added906

for classification, which takes the representation of907

“[CLS]” token in the head of a sequence as the input.908

We then fine-tune victim models on each dataset909

using batch size 32 and the learning rate 1e−4 for910

3 epochs. The model with the best performance911

after each epoch on the corresponding dev set will912

be saved and used as the victim model F on each913

dataset.914

Train robust models using TAVAT. The robust915

models are also based on BERTbase with a linear916

layer added for classification. We finetune the917

model using an adversarial training method TAVAT918

proposed by Li and Qiu which is a token-level gra-919

dient accumulation of perturbations, by running920

code provided by the authors 17 with all default921

hyper-parameters. During finetuning, perturbations922

guided by gradient are applied to the embedding923

space and models are trained using these perturbed924

data.925

14https://github.com/roy-ht/
editdistance

15https://www.nltk.org/_modules/nltk/
translate/bleu_score.html

16https://huggingface.co/
bert-base-uncased

17https://github.com/LinyangLee/
Token-Aware-VAT

A.3 Details of baseline MAYA 926

MAYA has three variants: MAYA, MAYAπ and 927

MAYAbt. We select MAYA as our baseline since 928

overall it obtains the best attack success rate and 929

perplexity performance. 930

A.4 Possible Limitations of Our Model 931

The label-preservation filter in our PLAT model uti- 932

lizes label-conditioned masked language models, 933

which need to be fine-tuned on a labeled corpus 934

with sufficient data. Therefore, the performance 935

of PLAT may drop on datasets that have limited 936

number of labeled samples. In addition, it takes 937

about 1 minute for our model to generate one ad- 938

versarial sample using BERT as the victim model, 939

so PLAT is not applicable for conditions with low 940

computational resources. 941

B Additional Qualitative Samples 942

We introduce some additional adversarial samples 943

generated by our PLAT model, along with three 944

baselines, TextFooler, CLARE, MAYA, on four 945

datasets, Yelp, AG News, MNLI, QNLI, in Ta- 946

ble 11, Table 12, and Table 13. 947
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Yelp (Positive) Excellent food at this out of the way place. Portions very large and fresh. I want to try everything
on the menu. Plan to go back every weekend until I’ve tried all menu items. Coffee was also
delicious and friendly servers

TextFooler (Negative) Outstanding foods at this out of the way place. Portions very large and mild. I want to dabbled
whatsoever on the menu. Plan to go back all monday until I’ve attempted all menu items. Coffee
was also peachy and friendly servers

CLARE (Negative) Incredible food at this out of control place. Portions plentiful and plentiful. I want to try something
on the menu. Plan to go back mid weekend until I’ve tried all menu items . Coffee was fairly
comforting and friendly servers

MAYA (Negative) The food at this out of the way place . Portions very large and expensive. I want to try everything
on the menu. Plan to go back every weekend until I’ve tried all menu items. Coffee was also
cheap and friendly servers

PLAT (Negative) I had nothing but fun at this out of the way place. Portions very large and fresh. I want to try
everything on the menu. Plan to go back every weekend until I’ve tried all menu items. Coffee
was also delicious and friendly servers.

Yelp (Positive) I love this place. I love everything there except the kabsa rice but that’s just me. Burgers are good.
They pile on the veggies. Owner is nice. Freshly made food always has my mouth watering .

TextFooler (Negative) I aime this place. I love everything there except the kabsa rice but that’s just me. Burgers are
good. They pile on the veggies. Owner is nice. Freshly made food always has my mouth watering.

CLARE (Negative) I hate this place. I love everything there except the kabsa rice but that’s just me. Burgers are good.
They pile on the veggies. Owner is nice. Freshly made food always has my mouth watering.

MAYA (Negative) I know this place. I love everything there except the kabsa rice but that’ s just me. Burgers are
good. They pile on the veggies. Owner is nice. Freshly made food always has my mouth watering.

PLAT (Negative) I can’t recommend Aptopia enough. I love everything there except the kabsa rice but that’s just
me. Burgers are good. They pile on the veggies. Owner is nice. Freshly made food always has my
mouth watering.

AG News (Sci-tech) Scientists Discover Ganymede has a Lumpy Interior. Jet Propulsion Lab–Scientists have discov-
ered irregular lumps beneath the icy surface of Jupiter’s largest moon, Ganymede. These irregular
masses may be rock formations, supported by Ganymede’s icy shell for billions of years...

TextFooler (World) Researchers Unmask Deimos has a Lumpy Indoors. Jet Rotor Laboratories–Searchers have
discovered irregular clods into the icy surface of Juniper’s largest moon, Jupiter. These irregular
masses maggio be rock formations, contributions by Enceladus’s icy shell for billions of years...

CLARE (Business) Scientists Know Ganymede has a Lumpy Interior . Credit Jet Propulsion Lab– Featured Scientists
have discovered irregular lumps beneath the icy surface of Jupiter ’s largest moon , Ganymede .
These irregular masses may be rock formations , supported by Ganymede ’s icy shell for billions
of years ...

MAYA (World) Scientists Discover Ganymed has a Lumpy Interior. Scientists have discovered irregular lumps
under the icy surface of jupiter’s largest moon.. These irregular masses may be rock formations,
supported by ganymede’s icy shell for billions of years...

PLAT (World) Scientists Discover Ganymede has a Lumpy Interior. JPL-Caltech STOCKHOLM–Scientists
have discovered irregular lumps beneath the icy surface of Jupiter’s largest moon, Ganymede.
These irregular masses may be rock formations, supported by Ganymede’s icy shell for billions of
years...

AG News (Sport) Giddy Phelps Touches Gold for First Time. Michael Phelps won the gold medal in the 400
individual medley and set a world record in a time of 4 minutes 8. 26 seconds.

Textfooler (World) Dazzled Phelps Hits Gold for Premiere Time. Michael Phelps won the gold trophy in the 400
personal medley and set a world record in a hours of 4 record 8. 26 seconds.

CLARE (World) Giddy Phelps Touches Gold for First Time. Michael Phelps won the gold medal in the 400
individual medley and set a world record in a time of 4 minutes 8 ...

MAYA (World) Giddy Phelps Touches Gold for First Time. Michael Phelps the gold medal in the 400 individual
medley was won by him in a world record time of 4 minutes 8 seconds..

PLAT (World) Swimmers: Phelps Touches Gold for First Time. Michael Phelps won the gold medal in the 400
individual medley and set a world record in a time of 4 minutes 8.26 seconds.

Table 11: Adversarial examples generated by different models on Yelp and AG News dataset, perturbations are
colored.
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MNLI
(Neutral)

Premise The last politician to propose making driving more expensive was Al Gore, who fought
to include a small energy tax–which would have included gasoline–in the Clinton administration’s
1993 economic plan.
Hypothesis Al Gore is still making proposals for making driving more expensive.

TextFooler
(Contradiction)

Premise The last policies to propose making driving more expensive was Al Gore, who fought to
include a small energy tax–which would have included gasoline–in the Clinton administration’s
1993 economic plan.
Hypothesis Al Gore is still making proposals for making driving more expensive.

CLARE
(Contradiction)

Premise The last politician to propose making driving more expensive was Al Gore, who moved
to include a small energy tax–which would have included gasoline–in the Clinton administration’s
1993 economic plan.
Hypothesis Al Gore is still making proposals for making driving more expensive.

MAYA
(Contradiction)

Premise The last politician propose to make driving more expensive was AI Gore , who fought to
include a small energy tax–which would have included gasoline–in the clinton administration’s
1993 economic plan .
Hypothesis Al Gore is still making proposals for making driving more expensive.

PLAT
(Contradiction)

Premise The last politician to propose making driving more expensive was his predecessor Senator
Al Gore, who fought to include a small energy tax–which would have included gasoline–in the
Clinton administration’s 1993 economic plan.
Hypothesis Al Gore is still making proposals for making driving more expensive.

MNLI
(Entailment)

Premise So uh but but uh it runs fine all you have it’s just very thirsty if I just keep the oil in it
seems to be okay but you know that’s a sign that I’m going to have to do something sooner or later
Hypothesis It runs well, but I think I might have to do some work on it.

TextFooler
(Neutral)

Premise So uh but but uh it runs fine all you have it’s just very thirsty if I just keep the petroleum
in it seems to be okay but you know that’s a sign that I’m going to have to do nothings shortly or
later
Hypothesis It runs well, but I think I might have to do some work on it.

CLARE
(Neutral)

Premise So uh but but uh it runs fine all you have it’s just very thirsty if I just drink the oil in it
seems to be okay but you know that’s a sign that I’m going to have to do nothing sooner or later
Hypothesis It runs well, but I think I might have to do some work on it.

MAYA
(Neutral)

Premise So uh but but uh it runs fine all you have it’s just very thirsty if it seems to be okay , but
i’m going to have to do something soon or later.
Hypothesis It runs well, but I think I might have to do some work on it.

PLAT
(Neutral)

Premise So uh but but uh it runs fine all you have it’s just very thirsty if I just keep it that’s all
I got in it seems to be okay but you know that’s a sign that I’m going to have to do something
sooner or later
Hypothesis It runs well, but I think I might have to do some work on it.

Table 12: Adversarial examples generated by different models on MNLI dataset, perturbations are colored.
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QNLI
(Entailment)

Premise What are some of the sets or ideals most school systems follow?
Hypothesis Such choices include curriculum, organizational models, design of the physical
learning spaces (e.g. classrooms), student-teacher interactions, methods of assessment, class size,
educational activities, and more.

TextFooler
(Not Entailment)

Premise What are some of the sets or ideals most school systems follow?
Hypothesis Such choices include curriculum, organizes storyboards, design of the tangible
learning spaces (e.g. classrooms), student-teacher interactions, methods of assessment, class size,
educational activities, and more.

CLARE
(Not Entailment)

Premise What are some of the sets or ideals most school systems follow?
Hypothesis Such choices affect curriculum, organizational models, design of the physical learn-
ing spaces (e.g. classrooms), student-teacher interactions, methods of assessment, class size,
educational activities, and more.

MAYA
(Not Entailment)

Premise What are some of the sets or ideals most school systems follow ?
Hypothesis Such choices the design of the physical learning spaces should include curriculum,
organizational models, and methods of assessment.., and class size.., and educational activities..

PLAT
(Not Entailment)

Premise What are some of the sets or ideals most school systems follow ?
Hypothesis Such choices include curriculum, use of a teacher’s manual , design of the physical
learning spaces (e.g. classrooms), student-teacher interactions, methods of assessment, class size,
educational activities, and more.

QNLI
(Entailment)

Premise What to the migrating birds usually follow?
Hypothesis These routes typically follow mountain ranges or coastlines, sometimes rivers, and
may take advantage of updrafts and other wind patterns or avoid geographical barriers such as
large stretches of open water.

Textfooler
(Not Entailment)

Premise What to the migrating birds usually follow?
Hypothesis These routes seldom follow colina telemetry or coastlines, sometimes rivers , and
may take advantage of updrafts and other wind diagrams or avoid spatial separating such as large
stretches of commencement water.

CLARE
(Not Entailment)

Premise What to the migrating birds usually follow?
Hypothesis These routes cannot follow continental ranges or coastlines, connect rivers , and may
take advantage of updrafts and other wind patterns or avoid geographical barriers such as large
stretches of open water.

MAYA
(Not Entailment)

Premise What to the migrating birds usually follow?
Hypothesis These lines typically connect mountain ranges or coastlines, sometimes rivers, and
may take advantage of updrafts and other wind patterns or avoid geographical barriers such as
large stretches of open water.

PLAT
(Not Entailment)

Premise What to the migrating birds usually follow ?
Hypothesis These routes typically take advantages from larger mountain ranges or coastlines,
sometimes rivers, and may take advantage of updrafts and other wind patterns or avoid geographi-
cal barriers such as large stretches of open water.

Table 13: Adversarial examples generated by different models on QNLI dataset, perturbations are colored.
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C Additional Results948

We list the full results of §4.2 about controllable949

ability on Yelp dataset in Table 14, Table 15, and950

Table 16, for the effects of candidate number N951

during infilling, syntactic tree depth restriction for952

phrase candidates d and length incremental restric-953

tion for substitution l on our PLAT model, respec-954

tively. It can be found that all N , d, and l can con-955

trol the performance of PLAT in different aspects.956

Surprisingly, the grammar error decreases while d957

is increasing. We attribute this to the fact that the958

modification range of the phrase is extended as d959

increases, such that the infilling text is less likely to960

be essentially conditioned on the surrounding con-961

text and fewer grammar errors occur at the boards962

between blanks and rest texts.963

We also test the effects of different likelihood964

ratio threshold on Yelp dataset, which is illustrated965

in Figure 4. A larger threshold δ may result in a966

lower attack success rate, more modifications, and967

a worse textual quality.968

N ASR↑ DIS↓ BLEU↑ PPL↓ GER↓

10 38.8 0.28 0.66 55.7 0.23
30 71.2 0.30 0.63 54.2 0.28
50 83.7 0.30 0.63 53.6 0.33
100 92.2 0.28 0.66 54.0 0.37
500 97.6 0.22 0.73 56.0 0.33
1000 98.1 0.20 0.75 56.2 0.33
2500 98.3 0.18 0.77 56.6 0.32
5000 98.4 0.17 0.78 56.8 0.33
1000 98.5 0.16 0.79 57.3 0.29

Table 14: The performance of PLAT with varying can-
didate number N during infilling.

d ASR↑ DIS↓ BLEU↑ PPL↓ GER↓

2 27.4 0.16 0.79 60.6 0.33
4 98.4 0.17 0.78 56.8 0.33
6 98.8 0.18 0.78 55.7 0.25
10 98.5 0.20 0.76 55.9 0.23
25 98.7 0.22 0.74 55.8 0.19

Table 15: The performance of PLAT with varying
depth restriction d when selecting phrase candidates.

l ASR↑ DIS↓ BLEU↑ PPL↓ GER↓

2 98.4 0.17 0.78 58.5 0.32
3 98.4 0.17 0.78 56.8 0.33
6 98.6 0.19 0.77 54.2 0.37
10 99.2 0.21 0.76 55.4 0.45
15 99.0 0.22 0.75 52.0 0.42

Table 16: The performance of PLAT with varying sub-
stitution length incremental restriction l when selecting
phrase candidates.
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Figure 4: The performance of PLAT on Yelp dataset
using different likelihood ratio threshold in label-
preservation filter, in terms of all 5 metrics.

D Details of Human Evaluation 969

We conducted our human evaluation via Google 970

Forms on a total 60 non-expert volunteer annotators. 971

Each annotator was asked to rate for 10 sets of ex- 972

amples, where each set contains one original sam- 973

ple and three corresponding adversarial samples 974

generated by PLAT, CLARE, and MAYA respec- 975

tively. We show the screenshot of our instructions 976

and examples in Figure 5, Figure 6, and Figure 7, 977

where the perturbed parts are in bold font. We de- 978

scribed how will we use these collected data in the 979

invitations for annotators, and they must agree on 980

this usage before evaluation. All collected data go 981

without personal information in our experiments. 982

16



Figure 5: The instruction and an example of meaning
preservation task in human evaluation.

Figure 6: The instruction and an example of label
preservation task in human evaluation.

Figure 7: The instruction and an example of fluency
and grammaticality comparison task in human evalua-
tion.
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