
Under review as a conference paper at ICLR 2021

R-LATTE: VISUAL CONTROL VIA DEEP REINFORCE-
MENT LEARNING WITH ATTENTION NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Attention mechanisms are generic inductive biases that have played a critical role
in improving the state-of-the-art in supervised learning, unsupervised pre-training
and generative modeling for multiple domains including vision, language and
speech. However, they remain relatively under-explored for neural network ar-
chitectures typically used in reinforcement learning (RL) from high dimensional
inputs such as pixels. In this paper, we propose and study the effectiveness of aug-
menting a simple attention module in the convolutional encoder of an RL agent.
Through experiments on the widely benchmarked DeepMind Control Suite envi-
ronments, we demonstrate that our proposed module can (i) extract interpretable
task-relevant information such as agent locations and movements without the need
for data augmentations or contrastive losses; (ii) significantly improve the sample-
efficiency and final performance of the agents. We hope our simple and effective
approach will serve as a strong baseline for future research incorporating attention
mechanisms in reinforcement learning and control.

1 INTRODUCTION

Attention plays a crucial rule in human cognitive processing: a commonly-accepted hypothesis is
that humans rely on a combination of top-down selection (e.g., zooming into certain parts in our
perception field) and bottom-up disruption (e.g., getting distracted by a novel stimuli) to prioritize
information that is most likely to be important for survival or task completion (Corbetta & Shul-
man L., 2002; Kastner & Ungerleider G., 2000). In machine learning, attention mechanisms for
neural networks have been studied for various purposes in multiple domains, such as computer vi-
sion (Xu et al., 2015; Zhang et al., 2019a), natural language processing (Vaswani et al., 2017; Brown
et al., 2020), and speech recognition (Chorowski et al., 2015; Bahdanau et al., 2016). For example,
Zagoruyko & Komodakis (2017) proposed transferring knowledge between two neural networks by
aligning the activation (attention) maps of one network with the other. Springenberg et al. (2014) and
Selvaraju et al. (2017) proposed a gradient-based method to extract attention maps from neural net-
works for interpretability. Attention also stands behind the success of Transformers (Vaswani et al.,
2017), which uses a self-attention mechanism to model dependencies in long-sequence language
data.

However, attention mechanisms have received relatively little attention in deep reinforcement learn-
ing (RL), even though this generic inductive bias shows the potential to improve the sample-
efficiency of agents, especially from pixel-based environments. More frequently explored directions
in RL from pixels are unsupervised/self-supervised learning (Oord et al., 2018; Srinivas et al., 2020;
Lee et al., 2020; Stooke et al., 2020; Kipf et al., 2020): Jaderberg et al. (2017) introduced unsu-
pervised auxiliary tasks, such as the Pixel Control task. Srinivas et al. (2020) applied contrastive
learning for data-efficient RL and Stooke et al. (2020) further improved the gains using temporal
contrast. Another promising direction has focused on latent variable modeling (Watter et al., 2015;
Zhang et al., 2019b; Hafner et al., 2020; Sekar et al., 2020; Watters et al., 2019): Hafner et al. (2019)
proposed to leverage world-modeling in a latent-space for planning, and Hafner et al. (2020) uti-
lized the latent dynamics model to generate synthetic roll-outs. However, using such representation
learning methods may incurs expensive back-and-forth costs (e.g., hyperparameter tuning). This
motivates our search in a more effective neural network architecture in the convolutional encoder of
an RL agent.

1

Under review as a conference paper at ICLR 2021

In this paper, we propose R-LAtte: Reinforcement Learning with Attention module, a simple yet
effective architecture for encoding image pixels in vision-based RL. In particular, the major compo-
nents of R-LAtte are

• Two-stream encoding: We use two streams of encoders to extract non-attentional and atten-
tional features from the images. We define our attention masks by applying spatial Softmax
to unnormalized saliencies computed by element-wise product between non-attentional and
attentional features. We show that the attentional features contain more task-relevant infor-
mation (e.g., agent movements) while the non-attentional features contain more task-invariant
information (e.g., agent shape).

• Adaptive scaling: Once the attention masks are obtained, they are combined with original
non-attentional features, and then provided to RL agents. Here, to balance the trade-off be-
tween original and attentional features, we introduce a learn-able scaling parameter that is
being optimized jointly with other parameters in the encoder.

We test our architecture on the widely used benchmarks, DeepMind Control Suite environ-
ments (Tassa et al., 2018), to demonstrate that our proposed module can (i) extract interpretable
task-relevant information such as agent locations and movements; (ii) significantly improve the
sample-efficiency and final performance of the agents without the need for data augmentations or
contrastive losses. We also provide results from a detailed ablation study, which shows the contri-
bution of each component to overall performance.

To summarize, the main contributions of this paper are as follows:

• We present R-LAtte, a simple yet effective architecture that can be used in conjunction for
encoding image pixels in vision-based RL.

• We show that significantly improve the sample-efficiency and final performance of the agents
on continuous control tasks from DeepMind Control Suite (Tassa et al., 2018).

2 RELATED WORK

Reinforcement learning from pixels RL on image-inputs has shown to be benefited from rep-
resentation learning methods using contrastive losses (Oord et al., 2018; Srinivas et al., 2020; Lee
et al., 2020; Stooke et al., 2020; Kipf et al., 2020), self-supervised auxiliary task learning (Jader-
berg et al., 2017; Goel et al., 2018; Sekar et al., 2020), and latent variable modeling (Watter et al.,
2015; Zhang et al., 2019b; Hafner et al., 2020; Sekar et al., 2020; Watters et al., 2019). Along with
those successes, Laskin et al. (2020) and Kostrikov et al. (2020) recently showed that proper data
augmentations alone could achieve competitive performance against previous representation learn-
ing methods. Different from existing representation learning and data augmentation methods, we
focus on architecture improvements specific to RL from pixels, which has been largely uncharted
by previous works.

Attention in machine learning Human understand scenes by attending on a local region of the
view and aggregating information over time to form an internal scene representation (Ungerleider
& G, 2000; Rensink, 2000). Inspired by this mechanism, researchers developed attention modules
in neural networks, which directly contributed to lots of recent advances in deep learning especially
on natural language processing and computer vision applications (Vaswani et al., 2017; Bahdanau
et al., 2015; Mnih et al., 2014; Xu et al., 2015). Using attention mechanism in RL from pixels has
also been explored by previous works for various purposes. Zambaldi et al. (2018) proposed self-
attention module for tasks that require strong relational reasoning. Different from their work, we
study a more computationally-efficient attention module on robot control tasks that may or may not
require strong relational reasoning. Choi et al. (2019) is the closest study in terms of the architectural
choice. One main difference is in the objective of the study. Choi et al. (2019) investigate the effect
of attention on Atari games and focus on the exploration aspect, while we focus on improving the
learning of robot controls using the DeepMind Control Suite environments (Tassa et al., 2018).
Levine et al. (2016) also use an attention-like module for robot control tasks. There are several
architectural design differences (e.g., the addition of a residual connection and a Hadamard product),
which we will show are crucial for achieving good performance on control tasks (See Section 5.4).

2

Under review as a conference paper at ICLR 2021

Fu
lly C

o
n

n
ected

Spatial
Softmax

1x1 1x1

...

Stack

Feature Encoder

Attention Block

Figure 1: Illustration of our attention-augmented encoder. First, a stack of three image frames are
passed as input to a sequence of convolutional layers inside feature encoder (blue box). The feature
encoder produces two sets of feature maps: (i) non-attentional features xf with shape C×Hf×Wf ;
(ii) attentional features xg with shape C ×Hf ×Wf . Attention block (orange box) takes in the two
sets of feature maps as input, and outputs an attended copy of xf . Non-attentional and attentional
features are re-weighted and added together via a residual connection.

3 BACKGROUND

Reinforcement learning We formulate visual control task as a partially observable Markov de-
cision process (POMDP; Sutton & Barto 2018; Kaelbling et al. 1998). Formally, at each time step
t, the agent receives a high-dimensional observation ot, which is an indirect representation of the
state st, and chooses an action at based on its policy π. The environment returns a reward rt and
the agent transitions to the next observation ot+1. The return Rt =

∑∞
k=0 γ

krt+k is the total ac-
cumulated rewards from time step t with a discount factor γ ∈ [0, 1). The goal of RL is to learn
a policy π that maximizes the expected return over trajectories. Following the common practice in
DQN (Mnih et al., 2015), the state information from partially observable environments is approx-
imated using stacked input observations, i.e. st in equation 1 is approximated by k consecutive
frames o (typically k = 3): st = (ot, ot−1, ..., ot−k+1)

Soft actor-critic SAC (Haarnoja et al., 2018) is an off-policy actor-critic method based on the
maximum entropy RL framework (Ziebart, 2010), which enhances robustness to noise and encour-
ages exploration by maximizing a weighted objective of the reward and the policy entropy. To update
the parameters, SAC alternates between a soft policy evaluation and a soft policy improvement. At
the policy evaluation step, a soft Q-function, which is modeled as a neural network with parameters
θ, is updated by minimizing the following soft Bellman residual:

LQ(θ) = Eτt∼B
[(
Qθ(st, at)− rt − γEat+1∼πφ

[
Qθ̄(st+1, at+1)− α log πφ(at+1|st+1)

])2]
,

(1)

where τt = (st, at, rt, st+1) is a transition, B is a replay buffer, θ̄ are the delayed parameters, and α
is a temperature parameter. At the soft policy improvement step, the policy π with its parameter φ
is updated by minimizing the following objective:

Lπ(φ) = Est∼B,at∼πφ
[
α log πφ(at|st)−Qθ(st, at)

]
. (2)

Here, the policy is modeled as a Gaussian with mean and diagonal covariance given by neural
networks to handle continuous action spaces. In this paper, unless mentioned otherwise, all policies
are modeled in this way.

4 R-LATTE

In this section, we present R-LAtte: Reinforcement Learning with Attention module, a simple,
yet effective architecture for encoding image pixels in vision-based RL, which typically faces the
challenge of partial observability and high-dimensional inputs. By using an attention mechanism,
our encoder enforces the agent to select and focus on a subset of its perception field. There are two
key components in our architecture (see Figure 1): 1) two-stream encoding, and 2) adaptive scaling.

3

Under review as a conference paper at ICLR 2021

4.1 TWO-STREAM ENCODING FOR ATTENTIONAL FEATURES AND NON-ATTENTIONAL
FEATURES

Our two-stream encoding starts by processing each frame in the observation st =
[ot ot−1 · · · ot−k+1] independently using a shared encoder p. This results in a stacked, encoded
observation s′t = [p(ot) p(ot−1) · · · p(ot−k+1)]. We choose to deviate from the common prac-
tice of stacking the frames together before encoding them using a convolutional encoder together
(e.g., (Mnih et al., 2013; 2015; Kostrikov et al., 2020; Laskin et al., 2020)) since using a shared
encoder for each frame yields better performance in our experiments (See Figure 5 for supporting
experimental results).

With the stacked encoded observations, the two streams start to branch out with two convolutional
encoders, f and g, which encode the stacked observations into non-attentional feature maps xf =
f(s′t) and attentional feature maps xg = g(s′t). Both feature maps xf , xg ∈ RC×H×W have C
channels and H ×W spatial dimensions.

We then use a dot product between these two feature maps to produce the soft attention mask as
follows:

A = Softmax (q(xf)� xg) , (3)

where q is a 1 × 1 convolution and � denotes the element-wise product. Here, the element-wise
product q(xf)� xg accentuates where strong signals come from both feature maps, and suppresses
those otherwise. This accentuation effect is further normalized using a spatial Softmax function to
obtain the soft attention mask.

4.2 ADAPTIVE SCALING

Finally, we use the attention maps A to obtain attentional feature maps x̂f ∈ RC×Hf×Wf , and
provide the agent with a mix of features by adding x̂f back to its original with a residual connection:

x = xf + σ ∗ x̂f where x̂f = h(A� v(xf)), (4)

where * denotes multiplying one scalar value to each channel of features in x̂f ; h, v are two 1 × 1
convolutions, and σ ∈ RC are scalars that define the importance of attentional feature maps. σ are
modeled as learnable network parameters, and get optimized together with other parts of the encoder.
In our experiments, they are initialized to be all zeros, but quickly adapted to different values as the
training proceeds: intuitively, σ controls the amount of non-attentional versus attentional features
for the agent to use, and making σ learnable allows it to adapt to different features as training
proceeds. Ablation set 8(b) provides more experimental results using alternatives to σ-weights that
under-perform using σs, and show this need for dynamically control the two-stream features.

5 EXPERIMENTS

5.1 SETUP

We demonstrate the effectiveness of R-LAtte on a set of challenging visual control tasks from Deep-
Mind Control Suite (Tassa et al., 2018), which are commonly used as benchmarks in previous work
(Srinivas et al. 2020, Laskin et al. 2020, Kostrikov et al. 2020). This benchmark present a vari-
ety of complex tasks including bipedal balance, locomotion, contact forces, and goal-reaching with
both sparse and dense reward signals. For evaluation, we consider two state-of-the-art RL methods:
Dreamer (Kostrikov et al., 2020), a state-of-the-art model-based RL method that utilizes the latent
dynamics model to generate synthetic roll-outs; and DrQ (Kostrikov et al., 2020), a state-of-the-art
model-free RL method that applies data augmentations to SAC (Haarnoja et al., 2018). For our
method, we train an agent using SAC with R-LAtte encoder, which applies the proposed attention
module to the image encoder architecture from SAC-AE (Yarats et al., 2019). We report the learning
curves across three runs on various task domains including Hopper, Finger, Walker, HalfCheetah,
Ball-in-Cup and record the learning curve. The details of architecture and experimental setups are
provided in Appendix B.

4

Under review as a conference paper at ICLR 2021

Figure 2: Performances of DeepMind control suite tasks trained with SAC using different encoder
architectures for pixel inputs. Our attention network (blue curve) significantly outperforms the base-
line encoder, and achieves similar final performance with SAC trained from state inputs.

Figure 3: Learning curves on DeepMind control suite. The solid line and shaded regions represent
the mean and standard deviation, respectively, across three runs. Our attention network alone, with-
out any representation learning, world model fitting, or data augmentation techniques, performs on
par with the state-of-the-art methods.

5.2 MAIN RESULTS

Comparison with other encoder architectures for pixel input. We first compare our attention-
augmented encoder with a 4-layer (each contains 32 filters) convolution encoder from SAC-
AE (Yarats et al., 2019), which is standardized in recent works (Srinivas et al. 2020, Laskin et al.
2020, Kostrikov et al. 2020). For both ours and baseline (denoted by SAC:Pixel), we train agents
using SAC without representation learning and data augmentation in order to verify the gains from
architecture. Figure 1 shows that our method significantly outperforms SAC:Pixel in terms of both
sample-efficiency and final performance. In particular, our method matches the performance of
agents trained with state inputs (denoted by State:SAC), which clearly shows the benefits of atten-
tion module in RL from pixels.

Comparative evaluation. In Figure 3, we compare the performance of our method with the state-of-
the-art DrQ and Dreamer. One can note that our attention network can perform on par with the state-
of-the-art methods without any representation learning, world model fitting, or data augmentation
techniques. We remark that our method has lower variance compared to other baselines in almost
all environments.

5.3 ANALYSIS

Supervised setting. To further verify the effectiveness of the attention module, we test our architec-
ture on an offline supervised learning task. Specifically, we collect replay buffer from a well-train
agent that achieves around 1000 average reward and optimize the policy with the attention module

5

Under review as a conference paper at ICLR 2021

Figure 4: Behaviour cloning performance comparison of our architecture (w/ Attention Module) and
the architecture used in RAD (Laskin et al., 2020) (w/o Attention Module). Additionally, we use
random cropping data augmentation when training the network with the RAD architecture. Since
our architecture have additional encoders that add more parameters, we also include a wider version
of the architecture used in RAD (Filter Size = 64) that has more parameters than our architecture
(Filter Size = 32) for comparison. Even with random cropping, the architecture used in RAD under-
performs our architecture. See more details of the offline experimental setup in Appendix A.

Attention
block

Stack

F
ea

tu
re

 e
n

co
d

er

Time

Figure 5: Visualization of outputs from the proposed attention module. Our agent demonstrates a
selective feature-extraction scheme that pays more attention to the most relevant locations for each
chosen action.

using the behaviour cloning objective (see equation 5 in Appendix A). We compare the validation
performance of our architecture against the architecture used in RAD (Laskin et al., 2020) (see Fig-
ure 4). Our architecture outperforms the baseline consistently on walker walk task with a faster
convergence rate and a better final performance.

Visualize attention. To understand the effects of our attention module, we visualize its outputs
in Figure 5. First, we remark that two streams of feature outputs, xf (blue box) and xg (red box)
extract very different information from sample input sources, and the attended output x̂f (green box)
highlights the activated locations in both features. Also, as shown in the final combined features
xf + σ ∗ x̂f (yellow box), we find that agent is able to consistently locate itself, captures body
movements, and ignores task-irrelevant information in the perception field such as background or
floor patterns. Over a course of actions taken, the agent also dynamically changes its attention focus
(highlighted by the attention maps) in an interpretable manner, e.g., paying extra attention to its knee
joint when taking a stride.

5.4 ABLATION STUDIES

The performance gain presented in the above section comes solely from our attention-augmented
neural network architecture for encoding pixel images. Here, to provide further insights and jus-
tifications for our design, we provide a set of ablation studies on the proposed encoder’s major

6

Under review as a conference paper at ICLR 2021

(a) Illustration of the stack-then-
encode architecture

(b) Performance comparison between the ablation and our original encoder

Figure 6: We evaluate the ablation encoder p′ on a subset of visual control tasks, and demonstrate
that, although the original shallow encoder p uses a smaller capacity, it outperforms the ablation
encoder consistently across the tested domains.

components. For each ablation, we report the average and standard deviation of learning curves
from three ramdom seeds.

6 ABLATION ON THE ARCHITECTURE FOR SHARED ENCODER MODULE g

Shared-encoder p. As described in section 4.1, inside our convolutional feature encoder module,
we use both a shared encoder p and two parallel encoders f and g. In our implementation, p is a
shallow, one-layer convolution that, in contrast to common practices of stacking and then encoding
consecutive image frames, first encodes each time-step’s image observation separately, then stack
the features together afterwards. In our implementation, we use a one-layer convolution that, takes
in 3 channels (for RGB input) and outputs 10 channels, such that stacking three encoded frames
will give 30 total feature channels. For ablations, we swap this convolution layer with a bigger
filter size: for a stack of 3 frames, it takes in 9 input channels and output 30. With other parts of
the architecture kept the same, we test this stack-then-encode layer on Walker-walk, as shown in
Figure 6. With increased filter size, this ablation encoder effectively has a bigger capacity, but as the
performance gap suggests, this does not work as well as using a smaller layer, which preserves the
temporal changes between consecutive frames.

(a) Performance comparison between the ablation attention block and our main architecture

(b) Illustration for the ablation attention blocks that use
only one Hadamard product

Figure 7: Ablation illustrations and learning curves on Walker-walk, Cheetah-run, Finger-spin and
Hopper-stand.

7

Under review as a conference paper at ICLR 2021

(a) Illustration of two alternative ways of
combining xf and x̂f

(b) Learning curves

Figure 8: (a) Illustration of direction addition and concatenation, as alternatives to the adaptive scal-
ing method used in our main architecture. (b) Performance comparison between using the ablation
combination methods and adaptive scaling using σ.

Hadamard products inside the attention block. Given two inputs xf and xg as described in
section 4.1, the attention module performs Hadamard product twice, and applies a spatial Softmax
function in between. The first Hadamard product can be seen as an element-wise masking of one
feature array with another, and the second product is an “attending” step that utilizes the attention
maps produced by the spatial Softmax, which we can verify through visualized outputs from the
encoder. As ablations, we test two variants of this operation sequence, both does Hadamard product
only once, but differs in location, i.e. before or after the Softmax function, as illustrated in Figure 7.

Adaptive scaling. Here, with other parts of the encoder architecture fixed, we perform two ablations
on alternative ways to combine xf and x̂f , namely the non-attentional and attentional features. (A)
We experiment a direct residual combination xf + x̂f , i.e. without σ re-weighting. (B) Instead of
addition, we concatenate the two features, and correspondingly increase the input dimension for the
subsequent fully connected (FC) layers (output feature dimension for FC layer are kept the same).
As the learning curve shows, the two ablations clearly underperforms the original version, which
suggests the need for more a flexible, learning-based combination of the features.

7 CONCLUSION

We present Reinforcement Learning with Attention module (R-LAtte), a simple yet effective ar-
chitecture for RL from pixels. On DeepMind Control benchmarks, our simple architecture is able
to achieve similar performance compared against representation learning and data augmentation
methods, which are currently the best-performing ones in the literature. We also illustrate that our
proposed module extracts interpretable task-relevant information without the need for data augmen-
tations or contrastive losses. We hope that our architecture will serve as a simple and strong baseline
for future research in RL from pixels, especially for investigations on neural network architectures
for encoding high-dimensional inputs. Potential future directions from this work include combining
representation learning or data augmentation methods, or both with the attention module, as well as
exploring better attention architecture that is more suitable for visual-based RL.

REFERENCES

D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio. End-to-end attention-based large
vocabulary speech recognition. In 2016 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 4945–4949, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In International Conference on Learning Representations, 2015.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,

8

Under review as a conference paper at ICLR 2021

Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Jongwook Choi, Yijie Guo, Marcin Moczulski, Junhyuk Oh, Neal Wu, Mohammad Norouzi, and
Honglak Lee. Contingency-aware exploration in reinforcement learning. In International Con-
ference on Learning Representations, 2019.

Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua Bengio.
Attention-based models for speech recognition, 2015.

Maurizio Corbetta and Gordon Shulman L. Control of goal-directed and stimulus-driven attention
in the brain. 2002.

Vikash Goel, Jameson Weng, and Pascal Poupart. Unsupervised video object segmentation for deep
reinforcement learning. In Advances in Neural Information Processing Systems, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International Conference on
Machine Learning, 2019.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2020.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In
International Conference on Learning Representations, 2017.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

Sabine Kastner and Leslie Ungerleider G. Mechanisms of visual attention in the human cortex.
2000.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas Kipf, Elise van der Pol, and Max Welling. Contrastive learning of structured world models.
In International Conference on Learning Representations, 2020.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Re-
inforcement learning with augmented data. arXiv preprint arXiv:2004.14990, 2020.

Kuang-Huei Lee, Ian Fischer, Anthony Liu, Yijie Guo, Honglak Lee, John Canny, and Sergio
Guadarrama. Predictive information accelerates learning in rl. arXiv preprint arXiv:2007.12401,
2020.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
motor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013.

Volodymyr Mnih, Nicolas Heess, Alex Graves, and koray kavukcuoglu. Recurrent models of visual
attention. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger (eds.),
Advances in Neural Information Processing Systems, 2014.

9

Under review as a conference paper at ICLR 2021

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Ronald A Rensink. The dynamic representation of scenes. Visual cognition, 7(1-3):17–42, 2000.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. In International conference on machine
learning, 2020.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In IEEE international conference on computer vision, 2017.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for
simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

Aravind Srinivas, Michael Laskin, and Pieter Abbeel. Curl: Contrastive unsupervised representa-
tions for reinforcement learning. arXiv preprint arXiv:2004.04136, 2020.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning
from reinforcement learning. arXiv preprint arXiv:2004.14990, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT Press, 2018.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Sabine Kastner Ungerleider and Leslie G. Mechanisms of visual attention in the human cortex.
Annual review of neuroscience, 23(1):315–341, 2000.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, 2017.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control:
A locally linear latent dynamics model for control from raw images. In Advances in Neural
Information Processing Systems, 2015.

Nicholas Watters, Loic Matthey, Matko Bosnjak, Christopher P Burgess, and Alexander Lerchner.
Cobra: Data-efficient model-based rl through unsupervised object discovery and curiosity-driven
exploration. arXiv preprint arXiv:1905.09275, 2019.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich
Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual
attention. In International conference on machine learning, 2015.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Im-
proving sample efficiency in model-free reinforcement learning from images. arXiv preprint
arXiv:1910.01741, 2019.

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the per-
formance of convolutional neural networks via attention transfer. In International Conference on
Learning Representations, 2017.

Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin, Karl
Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, et al. Relational deep reinforcement
learning. arXiv preprint arXiv:1806.01830, 2018.

Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention generative
adversarial networks, 2019a.

10

Under review as a conference paper at ICLR 2021

Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew Johnson, and Sergey Levine.
Solar: Deep structured representations for model-based reinforcement learning. In International
Conference on Machine Learning, 2019b.

Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. 2010.

11

Under review as a conference paper at ICLR 2021

Appendix

A OFFLINE BEHAVIOUR CLONING EXPERIMENTAL SETUP

We first train a RAD (Laskin et al., 2020) agent to convergence where it achieved around 1000
average reward (in DeepMind Control Suite, the reward is normalized to be between 0 to 1000).
Then, we collect 100,000 transitions and store in a replay buffer by rolling out the agent in the
environment. After the replay buffer is collected, we train both the architecture used in RAD (as
our baseline) and our architecture using stochastic gradient descent with the following behaviour
cloning loss:

LBC(φ) = −Eτt∈B [log πφ(at|st)] (5)

We use a batch size of 128 and Adam optimizer (Kingma & Ba, 2014) with (β1, β2) = (0.9, 0.999),
ε = 10−8. To determine the best learning rate for each method, we performed a learning rate search
over 0.001, 0.0003 and 0.003. We found that learning rate of 0.0003 worked the best for both the
baseline and our architecture. We repeat the same experiment for three different seeds and report
the mean and the standard deviation.

B EXPERIMENTAL SETUPS

We use the network architecture in https://github.com/MishaLaskin/rad for our im-
plementation. We show a full list of hyperparameters in Table 1. We will release our code in the
camera-ready version.

12

https://github.com/MishaLaskin/rad

Under review as a conference paper at ICLR 2021

Table 1: Hyperparameters used for DMControl experiments. Most hyperparameter values are un-
changed across environments with the exception of initial replay buffer size, action repeat, and
learning rate.

Hyperparameter Value

Augmentation Crop
Observation rendering (100, 100)
Observation down/upsampling (84, 84)

2000 reacher, easy; walker, walk
Number of updates per training step 1
Initial steps 1000
Stacked frames 3
Action repeat 2 finger, spin; walker, walk

4 reacher, easy
8 cartpole, swingup

Hidden units (MLP) 1024
Evaluation episodes 10
Evaluation frequency 2500 cartpole, swingup

1000 finger, spin; reacher, easy; walker, walk
Optimizer Adam
(β1, β2)→ (fψ, πφ, Qθ) (.9, .999)
(β1, β2)→ (α) (.5, .999)
Learning rate (fψ, πφQθ) 1e− 3
Learning rate (α) 1e− 4
Batch Size 128
Q function EMA τ 0.01
Critic target update freq 2
Convolutional layers 4
Number of filters 32
Non-linearity ReLU
Encoder EMA τ 0.05
Latent dimension 50
Discount γ .99
Initial temperature 0.1

13

