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Figure 1. Images generated by CHATS with SDXL, an innovative text-to-image generation framework that, for the first time, facilitates
collaboration between human preference alignment and test-time sampling, establishing a new paradigm in text-conditioned image
synthesis.

Abstract

Diffusion models have emerged as a dominant
approach for text-to-image generation. Key com-
ponents such as the human preference alignment
and classifier-free guidance play a crucial role
in ensuring generation quality. However, their
independent application in current text-to-image
models continues to face significant challenges
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in achieving strong text-image alignment, high
generation quality, and consistency with human
aesthetic standards. In this work, we for the
first time, explore facilitating the collaboration
of human performance alignment and test-time
sampling to unlock the potential of text-to-image
models. Consequently, we introduce CHATS
(Combining Human-Aligned optimization and
Test-time Sampling), a novel generative frame-
work that separately models the preferred and
dispreferred distributions and employs a proxy-
prompt-based sampling strategy to utilize the use-
ful information contained in both distributions.
We observe that CHATS exhibits exceptional data
efficiency, achieving strong performance with
only a small, high-quality funetuning dataset. Ex-
tensive experiments demonstrate that CHATS sur-
passes traditional preference alignment methods,
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setting new state-of-the-art across various stan-
dard benchmarks. The code is publicly available
at github.com/AIDC-AI/CHATS.

1. Introduction
Diffusion models (Cao et al., 2024) have emerged as a lead-
ing generative framework (Kingma & Welling, 2014; Sohl-
Dickstein et al., 2015; Goodfellow et al., 2020) by iteratively
transforming random noise into structured images (Ho et al.,
2020; Rombach et al., 2022; Song et al., 2022). Text-to-
image generation, as a key application, offers broad versatil-
ity, supporting tasks like image editing (Brooks et al., 2023)
and generative conversational AI (Brown et al., 2020).

In particular, high-quality image generation largely depends
on two stages: 1) human preference alignment, in which
ranked pairs reflecting human preference are utilized to
train the model for maximizing the distinction between pre-
ferred and dispreferred generated images; and 2) sampling,
where Classifier-Free Guidance (CFG) (Ho & Salimans,
2022) plays a vital role by merging conditional and un-
conditional noise predictions to focus on regions of higher
text-conditioned density.

Preference alignment involves human experts categorizing
images into preferred and dispreferred groups based on
their aesthetic desirability, and using these two groups of
images to train a model for capturing desirable character-
istics from preferred images while avoiding undesirable
features or errors present in dispreferred ones. Similarly,
the sampling procedure of CFG can be conceptualized as
denoising from a preferred distribution (conditional) while
simultaneously steering away from a dispreferred distribu-
tion (unconditional). This dual-framework naturally aligns
with the principles of preference alignment. Nevertheless,
previous efforts (Dhariwal & Nichol, 2021; Fan et al., 2023;
Yang et al., 2024; Ahn et al., 2024; Black et al., 2024) focus
on optimizing these two processes in isolation, leaving the
integration of the two for leveraging their mutual benefits
unexplored and resulting in suboptimal outcomes. This
presents an opportunity for us to develop unified method
that enables a more effective solution.

Motivated by this, we introduce CHATS (Combining
Human-Aligned optimization and Test-time Sampling), a
novel approach that integrates human preference alignment
with the sampling stage, thereby further enhancing the per-
formance of text-to-image generation systems.

Specifically, CHATS employs two distinct models: one
tasked with learning the preferred distribution (referred to
as the preferred model) and another dedicated to capturing
the dispreferred and unconditional distributions (referred to
as the dispreferred model). These models are trained using

a novel, theoretically grounded objective function based
on the general principle of direct preference optimization
(DPO) (Rafailov et al., 2023). During sampling, two mod-
els collaborate to guide the denoising process towards the
preferred model while concurrently repelling it from the
dispreferred model using a proxy-prompt-based sampling
strategy to leverage conditional and unconditional informa-
tion.

Our method is simple, intuitive, has a robust theoretical
foundation, while also demonstrating high efficiency and
effectiveness. In particular, training our approach requires
only 7,459 high-quality preference pairs, exhibiting sig-
nificantly greater data efficiency compared to traditional
preference optimization methods (Wallace et al., 2024).

Empirical evaluations on two mainstream text-to-image gen-
eration frameworks, diffusion (Podell et al., 2024) and flow
matching (Liu et al., 2023; Lipman et al., 2023), under-
score the superiority of our method. Our approach not only
surpasses naive CFG sampling strategies but also outper-
forms the most effective preference optimization methods
currently available (Wallace et al., 2024). Furthermore,
the default configuration of hyperparameters in our method
performs robustly across different model architectures, high-
lighting its practical utility.

As far as we know, our work marks the first attempt to unify
the human preference alignment and sampling stages within
the current text-to-image generation framework. We hope
that our research can shed new light on the paradigm design
of such generative systems.

The contributions of this paper can be summarized as:

• We are the first to integrate human preference optimiza-
tion finetuning with the sampling process, leveraging
their inherent synergy to refine image generation.

• We propose CHATS, a novel framework that offers
precise control over preference distributions while en-
suring efficient sampling. CHATS requires only a small
high-quality dataset for training, maintaining high data
efficiency.

• Extensive experiments are conducted to demonstrate
that the collaboration between preference alignment
and sampling together yields significantly improved
generation performance compared to baseline methods.

2. Related Work
2.1. Human Preference Optimization

Human preference optimization aims to improve the aes-
thetic quality of generated images. One line of research (Xu
et al., 2024; Wu et al., 2023; Kirstain et al., 2023b; Lee et al.,
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Figure 2. Illustration of CHATS. Both DPO and CFG adopt preference-based frameworks in their formulations. DPO derives preferences
from user feedback, while CFG utilizes diverse prompting strategies to capture such discrepancies. However, their current independent
working paradigms present significant potential for integration. Our CHATS addresses this by separately modeling preferred and
dispreferred information with two distinct models. Additionally, it employs a proxy-prompt-based sampling strategy to facilitate effective
collaboration between two models.

2023) focused on developing reward models to evaluate the
alignment between generated images and their correspond-
ing prompts. These reward models are subsequently used
to finetune diffusion models, guiding them to better capture
desirable characteristics.

Another line of research explored direct finetuning on
preferred images (Dong et al., 2023; Dai et al., 2024)
or adopted reinforcement learning from human feedback
(RLHF) (Black et al., 2024; Fan et al., 2023; Yang et al.,
2024; Wallace et al., 2024). Specifically, DDPO (Black
et al., 2024) formulated denoising as a multi-step decision-
making problem. DPOK (Fan et al., 2023) incorpo-
rated KL regularization as an implicit reward to stabilize
the finetuning process. D3PO (Yang et al., 2024) and
Diffusion-DPO (Wallace et al., 2024) extended the con-
cept of DPO (Rafailov et al., 2023) to diffusion models
by optimizing the respective policies. Different from these
methods, CHATS employs two distinct models to separately
capture preferred and dispreferred information.

2.2. Guided Sampling for Text-to-Image Generation

Guided sampling enhances fidelity by steering generation
towards specific directions determined by various strategies.
CG (Dhariwal & Nichol, 2021) utilized the gradients from
a classifier as the signal to achieve class-conditional gener-
ation at the cost of diversity. CFG (Ho & Salimans, 2022)
extended this concept to the open-vocabulary domain by
combining conditional and unconditional outputs, thereby

biasing the noise towards areas with higher semantic den-
sity. Numerous methods (Hong et al., 2023; Bansal et al.,
2023; Luo et al., 2024; Nichol et al., 2022) were proposed
to further refine CFG. In contrast to these approaches, as
shown in Fig. 2, our CHATS enhances sampling quality by
facilitating collaboration with DPO, enabling both processes
to mutually reinforce each other and thus achieve superior
results.

3. Preliminaries
3.1. Diffusion Models

Diffusion-based generative frameworks (Sohl-Dickstein
et al., 2015; Ho et al., 2020) operate by iteratively injecting
Gaussian noise ϵ sampled from N (0, I) into clean data z0,
creating progressively noisier versions zt at each timestep t.
This forward diffusion is described by:

q(zt | z0) = N
(
zt;

√
ᾱt z0,

√
1− ᾱt I

)
, (1)

where αt = 1− βt and ᾱt =
∏t

s=1 αs emerge from a pre-
determined schedule {β1, . . . , βT }. The denoising model
ϵθ is trained to predict the noise ϵ, under the objective:

LDiffusion = Ezt,t,ϵ

∥∥ϵ− ϵθ(zt, t)
∥∥2, (2)

where t is uniformly sampled from {1, . . . , T}.
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3.2. Rectified Flow

Rectified Flow (Liu et al., 2023; Lipman et al., 2023) learns a
direct mapping from noise to target data through a reversible
ODE:

dzt
dt

= vθ(zt, t). (3)

The intermediate state zt during training is approximated
as:

zt = (1− t)z0 + tϵ, (4)

where t ∈ [0, 1] controls the progression from z0 to noise ϵ.

3.3. Direct Preference Optimization

DPO (Rafailov et al., 2023) formalizes the preference op-
timization problem as a single-stage policy training based
on human preference data, without explicitly relying on a
reward model. Follow this rule, given condition c, only
preference-ranked pairs z+0 ≻ z−0 (preferred vs. non-
preferred) are available. The Bradley-Terry (Bradley &
Terry, 1952) model characterizes the human preference dis-
tribution as:

p(z+0 ≻ z−0 |c) = σ
(
r(z+0 , c)− r(z−0 , c)

)
, (5)

where σ(·) denotes the sigmoid function and r is a reward
model that quantifies the coherence between the input im-
age and text. Approximated by a neural network param-
eterized by θ, r is optimized by minimizing the negative
log-likelihood, as follows:

LDPO = −E(c,z+
0 ,z−

0 )∼D
[
log pθ(z

+
0 ≻ z−0 |c)

]
,

where D = {(c, z+0 , z
−
0 )} represents the preference dataset

obtained through human feedback. They build on the work
of Jaques et al. (2017; 2020) by implicitly employing a
reward model to optimize the task distribution pθ using
reference distribution pref and demonstrating that pθ admits
a global optimum. Leveraging this property, DPO derives
the following final preference alignment objective:

LDPO=−E(c,z+
0 ,z−

0 )∼D

[
log σ

(
log

pθ(z
+
0 |c)

pref(z
+
0 |c)−log

pθ(z
−
0 |c)

pref(z
−
0 |c)

)]
.

(6)

3.4. Classifier-Free Guidance

To enhance the alignment between generated images and
textual descriptions, Classifier-Free Guidance (CFG) (Ho &
Salimans, 2022) modifies the sampling distribution as:

p̃θ(zt|c) ∝ pθ(zt|c)1+spθ(zt)
−s, (7)

where c denotes the textual input, pθ(zt|c) represents the
conditional generative distribution, pθ(zt) is the uncondi-
tional distribution and s is a scale scalar. CFG guides the

generation by estimating the diffusion score (Song et al.,
2022) as:

ϵ̃θ(zt, c) = (1 + s)ϵθ(zt, c)− sϵθ(zt). (8)

CFG biases the generation process towards the conditional
distribution while reducing reliance on the unconditional
counterpart, effectively aligning the generated content with
the provided textual prompt.

4. CHATS: Combining Human-Aligned
Optimization and Test-Time Sampling

DPO and CFG both enhance generation performance by
leveraging preferred and dispreferred information, yet they
rely on a single model to process and balance these conflict-
ing distributions. In contrast, as shown in Fig. 2, our CHATS
adopts a more nuanced approach by employing two models,
initialized from the same reference model, to independently
capture the characteristics of the preferred and dispreferred
distributions. During sampling, these models collaborate
using a proxy-prompt-based conditional strategy, seamlessly
integrating their strengths.

4.1. Training

We aim for both the preferred and dispreferred models to
maximize their reward scores, defined by rθ+ and rθ− , re-
spectively. However, the introduction of two independent
models brings a new challenge in designing a valid learning
objective. In this scenario, the naive DPO loss defined in
Eq. 6 is no longer suitable, as its direct use would lead to
the collapse of the dispreferred model. To address this issue,
we reformulate the training objective as follows:

L=−E(c,z+
0 ,z−

0 )∼D
[
log σ

(
rθ+(z+0 , c)+rθ−(z−0 , c)

)]
, (9)

where the sum of reward scores from two models is treated
as the target. This formulation enables both models to learn
meaningful image distributions, with the preferred model
capturing high-quality characteristics and the dispreferred
model fitting a less optimal but complementary image dis-
tribution.

Training using this objective poses significant chal-
lenges in deriving the task distributions pθ+(z+t−1|z

+
t ) and

pθ−(z−t−1|z
−
t ), as we need to account for all potential de-

noising trajectories from zT to z0 under conditioning c. This
complexity arises from the intractability of marginalizing
over all intermediate steps in the reverse diffusion process.

To address this challenge, following Wallace et al. (2024),
we define R(zi0:T , c) as the reward score associated with the
entire denoising chain from zT to z0 given the condition
c. We further express the per-sample reward r(zi0, c) as the
expectation of this reward score over the intermediate steps
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zi1:T :

r(zi0, c) = Epθi (z
i
1:T |zi

0,c)

[
R(zi0:T , c)

]
, (10)

where i ∈ {+,−} represents the preferred and dispreferred
distributions, respectively. We abbreviate c to simplify the
notation. By substituting Eq. 10 into Eq. 9, assuming z+1:T ∼
pθ+(z+1:T |z

+
0 ) and z−1:T ∼ pθ−(z−1:T |z

−
0 ), with z+0 and z−0

treated as input variables, the loss for each ranked pair is
defined as:

L(z+0 , z
−
0 )=− logσ

(
Ez+

1:T

z−
1:T

[
log

pθ+ (z+
0:T )

pref(z
+
0:T )

+log
pθ− (z−

0:T )

pref(z
−
0:T )

])
.

(11)

We approximate pθi(zi1:T |zi0) using q(z1:T |z0) as the di-
rect estimation of pθi(zi1:T |zi0) is intractable. Leveraging
Jensen’s inequality, given (z+0 , z

−
0 ) ∼ D, t ∼ U(0, T ),

z+t ∼ q(z+t |z+0 ) and z−t ∼ q(z−t |z−0 ), we obtain the follow-
ing upper bound:

L(z+0 , z−0 ) ≤ −E
t,z+t ,z−t

log σ

[
− T

(
DKL

(
q(z+t−1|z

+
t , z+0 )

∥∥pθ+(z+t−1|z
+
t )

)
− DKL

(
q(z+t−1|z

+
t , z+0 )

∥∥pref(z
+
t−1|z

+
t )

)
+ DKL

(
q(z−t−1|z

−
t , z−0 )

∥∥pθ−(z−t−1|z
−
t )

)
− DKL

(
q(z−t−1|z

−
t , z−0 )

∥∥pref(z
−
t−1|z

−
t )

))]
.

(12)

For diffusion models, the loss function of CHATS is explic-
itly formulated as:

LDiffusion
CHATS = −E

(z+0 ,z−0 ),(z+t ,z−t ),t
log σ

[
− T

(
+

∥∥ϵ+−ϵθ+(z
+
t , t)

∥∥2−
∥∥ϵ+ − ϵref(z

+
t , t)

∥∥2

+
∥∥ϵ−−ϵθ−(z−t , t)

∥∥2−
∥∥ϵ− − ϵref(z

−
t , t)

∥∥2
)]
.

(13)

For flow matching models, q(zt−1|zt, z0) is expressed using
the Dirac delta function. In this setting, q is uniquely deter-
mined by Eq. 3. Consequently, the loss function is defined
as:

LFlow
CHATS = −E

(z+0 ,z−0 ),(z+t ,z−t ),t
log σ

[
− T

(
+

∥∥v+−vθ+(z
+
t , t)

∥∥2−
∥∥v+ − vref(z

+
t , t)

∥∥2

+
∥∥v−−vθ−(z−t , t)

∥∥2−
∥∥v− − vref(z

−
t , t)

∥∥2
)]

.

(14)

Please refer to Supp. A.2 for a detailed derivation of the
training objective. Our method ensures that the two models,
responsible for learning the preferred and dispreferred dis-
tributions, achieve the dual objectives of accurately fitting
their respective targets while not shifting too far from the
reference model.

4.2. Sampling

After training, we obtain two models: one corresponds to the
preferred distribution, denoted as pθ+ , and the other corre-
sponds to the dispreferred distribution, denoted as pθ− . Mo-
tivated by the mechanism of CFG (Ho & Salimans, 2022),
we propose a novel strategy to leverage the contribution of
these two models. Let zt be the noisy image at step t and
c be the condition. The sampling distribution of CHATS is
expressed as:

p̃θ(zt|c)∝pθ+(zt|c)1+spθ−(zt|c)αspθ−(zt)
−(1+α)s. (15)

Please refer to Sec A.4 for the details of its theoretical
foundations. In this formulation, pθ+(zt|c)1+s encourages
the samples to align closely with the preferred distribution.
When 0 < α < 1+s

s , the dispreferred distribution pθ−

is partially incorporated, allowing it to contribute poten-
tially useful patterns while remaining less influential than
pθ+ . Conversely, when α < 0, the terms pθ−(zt|c)αs and
pθ−(zt)

−(1+α)s actively push the samples away from unde-
sired modes in the dispreferred distribution, both condition-
ally and unconditionally.

This balanced approach ensures that the sampling process
leverages the strengths of the preferred distribution while
selectively integrating or excluding aspects of the dispre-
ferred distribution, depending on the value of α. Empirically,
we observe that this strategy is not sensitive to the precise
choice of α and a default value of α = 0.5 performs well
across diverse text-to-image models.

Similar to (Ho & Salimans, 2022), the predicted noise of
CHATS is combined as follows:

ϵ̃θ(zt, c) = (1 + s)ϵθ+(zt, c)

− s
[
− αϵθ−(zt, c) + (1 + α)ϵθ−(zt)

]
.

(16)

For flow matching models, the final expression remains sim-
ilar, with ϵθ simply replaced by vθ. To improve the sampling
efficiency of our method, we introduce an approximation
that constructs a proxy prompt by linearly combining the
prompt c with a null prompt ∅ after they are transformed
into text embeddings, i.e., ĉ = −αc+ (1 + α)∅. We then
use this proxy prompt as the input to the dispreferred model:

ϵ̃θ(zt, c) = (1 + s)ϵθ+(zt, c)− sϵθ−(zt, ĉ). (17)

Note that when α = 0, the method degenerates into CFG
but utilizes two models. This modification significantly re-
duces the number of forward passes required for generation
by unifying c and ∅ into a single representation. Empirical
evaluations demonstrate that this substitution achieves ro-
bust performance and serves as an effective surrogate for
incorporating dispreferred information.
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Table 1. HPS v2 results (↑) on multiple benchmarks. The best results are in bold face.
Model Method Anime Concept-Art Paintings Photo GenEval DPG-Bench

SD1.5
Standard 19.66 18.11 18.25 20.13 21.20 18.88
Diffusion-DPO 21.65 20.12 19.87 20.74 22.04 19.87
CHATS 27.74 26.17 26.04 26.43 26.17 24.97

SDXL
Standard 30.20 28.38 28.19 26.88 28.19 27.38
Diffusion-DPO 31.69 29.64 29.83 28.34 29.51 28.71
CHATS 32.96 30.94 31.08 29.62 29.81 29.51

In-house T2I
Standard 25.00 23.60 23.18 26.09 27.23 25.68
Diffusion-DPO 26.03 24.87 24.71 26.56 27.62 26.16
CHATS 30.41 29.87 29.95 29.30 29.84 29.53

5. Experiments
In this section, we first provide a detailed description of our
experimental settings. We then compare our method with
state-of-the-art approaches on multiple text-to-image gener-
ation models and benchmarks to highlight its effectiveness.
Finally, we conduct essential ablation studies to investigate
the impact of each component in our CHATS.

5.1. Experimental Settings

Models and datasets. We utilize two model families: dif-
fusion models and flow matching models. For diffusion
models, we employ Stable Diffusion 1.5 (SD1.5) (Rombach
et al., 2022) and Stable Diffusion XL-1.0 (SDXL) (Podell
et al., 2024). For flow matching models, we deploy In-house
T2I, a text-to-image generation model optimized for pho-
torealistic images in e-commerce scenarios, based on the
DiT architecture (Peebles & Xie, 2023). We conduct exper-
iments primarily on two preference optimization datasets,
Pick-a-Pic v2 (PaP v2) (Kirstain et al., 2023a) and OpenIm-
agePreferences (OIP) (Data is Better Together, 2024) (see
Supp. B.1 for more details).

Evaluation. We utilize publicly available benchmark
prompts from GenEval (Ghosh et al., 2023), DPG-
Bench (Hu et al., 2024), and HPS v2 (Wu et al., 2023).
Detailed information about these benchmarks is provided
in Supp. B.3. We employ multiple evaluation metrics, in-
cluding HPS v2 (Wu et al., 2023), ImageReward (Xu et al.,
2024), and PickScore (Kirstain et al., 2023b), which are
trained on extensive preference datasets, offering robust in-
sights about authentic human preferences. During sampling,
by default we keep s and α as 5 and 0.5, respectively.

5.2. Main Results

We compare our CHATS against two baselines: (1) the
Standard versions of SD1.5, SDXL, and In-house T2I, and
(2) Diffusion-DPO (Wallace et al., 2024), the current state-
of-the-art DPO method for text-to-image generation. We
find that Diffusion-DPO performs better when finetuned

on the PaP v2 dataset, whereas CHATS achieves superior
results when trained on OIP. Consequently, by default we
report results from Diffusion-DPO finetuned on PaP v2
alongside CHATS finetuned on OIP for a fair comparison.
More details about data efficiency can be found in Sec. 5.3
and Table 5.

In table 1 we report the HPS v2 results over diverse prompt
groups as this aesthetic metric is better aligned with human
judgment compared to ImageReward and PickScore met-
rics (Wu et al., 2023) (see Supp. C for full results). CHATS
consistently surpasses two baselines in all cases, underlining
its robustness in handling various visual styles. Moreover,
CHATS effectively narrows the aesthetic gaps among differ-
ent models. For example, the largest discrepancy in average
scores across the six groups occurs between SD1.5 and
SDXL. Under the Standard setting, this gap is 8.83, but it
decreases to 4.41 when adopting CHATS.

Table 2 presents the evaluation results on the GenEval bench-
mark, averaged over four random seeds. In this challenging
scenario, CHATS outperforms baselines in 12 out of 18
tasks, achieving an average improvement of 2.39% com-
pared to Diffusion-DPO. Notably, CHATS excels in difficult
tasks such as “Counting” (+10.18% over Diffusion-DPO)
and “Color attribution” (+2.13%), underscoring its capa-
bility to capture complex relationships in multi-object or
attribute-focused prompts. Furthermore, the results on DPG-
Bench (Table 3) show a similar trend, with CHATS achiev-
ing the highest overall evaluation scores. Combined with
the previous findings, these outcomes confirm the superior-
ity of CHATS across diverse evaluation metrics and model
architectures, effectively establishing a new state-of-the-art.

5.3. Identifying Key Components of CHATS

Modular ablation. To elucidate the critical elements of our
CHATS, we conduct an ablation study by examining differ-
ent fintuning and sampling configurations. The CHATS dis-
tinguishes itself from traditional finetuning methods through
two primary innovations: (1) the introduction of two sep-
arate models dedicated to learning the preferred and dis-
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Table 2. Quantitative results (%) averaged by 4 random seeds on GenEval.
Model Method Single object ↑ Two object ↑ Counting ↑ Colors ↑ Position ↑ Color attribution ↑ Overall ↑

SD1.5
Standard 95.31 38.13 5.94 75.27 7.25 9.25 38.52
Diffusion-DPO 96.56 49.24 5.94 82.71 7.75 9.75 41.99
CHATS 98.75 47.73 20.94 78.72 7.75 10.75 44.11

SDXL
Standard 98.44 68.43 40.62 83.78 10.25 20.75 53.71
Diffusion-DPO 99.53 81.94 45.47 88.70 13.25 26.75 59.27
CHATS 99.38 79.09 53.50 87.45 13.90 27.40 60.12

In-house T2I
Standard 98.75 75.25 37.81 85.37 25.75 44.00 61.16
Diffusion-DPO 99.06 75.25 40.00 83.78 27.25 48.00 62.22
CHATS 99.06 82.58 47.50 90.16 26.50 52.75 66.42

Table 3. Quantitative results (%) on DPG-Bench.
Model Method Global ↑ Entity ↑ Attribute ↑ Relation ↑ Other ↑ Overall ↑

SD1.5
Standard 74.77 68.74 69.72 79.11 39.20 57.92
Diffusion-DPO 81.76 71.02 72.78 80.66 38.40 61.67
CHATS 77.51 73.67 74.34 80.23 58.80 64.44

SDXL
Standard 85.41 81.24 78.90 87.04 60.80 74.37
Diffusion-DPO 84.50 82.00 80.16 87.39 67.20 74.66
CHATS 84.50 82.91 80.12 87.47 70.80 76.08

In-house T2I
Standard 85.11 87.98 87.91 92.03 75.60 81.27
Diffusion-DPO 86.63 88.98 87.87 91.91 75.20 82.18
CHATS 82.67 90.11 88.17 92.34 84.40 83.72

Table 4. Ablation study on various configurations using In-house
T2I with prompts from Photo. “s” denotes the guidance scalar in
CFG as in Eq. 8.

Configuration HPS v2 (↑)Finetuning Sampling

single model (full data) s=5 28.64
single model (preferred data) s=5 28.70
two models (w/o ref) s=5 28.99
two models s=5 29.15
two models s=5,α=0.5 29.30

preferred distributions, and (2) the integration of guidance
signals from two models.

As shown in Table 4, the baseline configuration, referred to
as “single model (full data)”, trains a single model on the
entire DPO dataset by converting all preference pairs (z+,
z−, c) into individual samples (z+, c) and (z−, c). These
samples are combined to construct a dataset without explic-
itly ranked preference pairs and are subsequently used to
train the model with a standard flow matching loss (Liu
et al., 2023). This configuration achieves an HPS v2 score
of 28.64. Restricting the training to only preferred data
results in a slight performance improvement to 28.70, sug-
gesting that a single model fails to effectively leverage all
preference information when full data is provided. Intro-
ducing a second model without a reference policy leads to a
more substantial increase in performance, yielding an HPS

Table 5. Ablation studies on different finetuning datasets. HPS v2
results are reported for quantitative comparison.

Method Model Finetuning
Dataset

Benchmarks
Photo Paintings

Diffusion-DPO
SDXL PaP v2 28.34 29.83

OIP 28.16 29.03

In-house T2I PaP v2 26.56 24.71
OIP 26.47 24.10

CHATS
SDXL PaP v2 28.67 30.12

OIP 29.62 31.08

In-house T2I PaP v2 28.73 28.70
OIP 29.30 29.95

v2 score of 28.99, thereby underscoring the advantages of
independently modeling preferred and dispreferred distri-
butions. By further integrating a reference model to guide
the finetuning process elevates the score to 29.15. The most
significant improvement is observed when incorporating the
sampling strategy in CHATS with α = 0.5, resulting in the
highest HPS v2 score of 29.30.

These findings demonstrate that both the dual-model archi-
tecture and the cooperative sampling strategy are crucial for
enhancing the alignment of generated outputs with human
preferences, thereby validating the critical design choices
underpinning our CHATS.

A small high-quality preference dataset is enough. We
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Table 6. Throughput with 50 sampling steps, measured on NVIDIA
A100 GPU with BF16 inference. “bs” specifies the batch size.

Model Method Throughput (img/sec)
bs=1 bs=4

SDXL Standard 0.187 0.217
CHATS 0.166 (-11%) 0.210 (-3%)

In-house T2I Standard 0.153 0.162
CHATS 0.148 (-3%) 0.158 (-2%)
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Figure 3. HPS v2 results by varying α of CHATS. The evaluation
are conducted with SDXL and In-house T2I, using prompts from
Photo.

further conduct ablation studies on two finetuning datasets
with distinct characteristics: PaP v2 (Kirstain et al., 2023a)
and OIP (Data is Better Together, 2024). PaP v2 contains a
large number of preference pairs but suffers from lower data
quality, whereas OIP comprises ∼ 1% of PaP v2’s entries
yet features significantly higher-quality generated images.

As presented in Table 5, CHATS consistently outperforms
Diffusion-DPO by a substantial margin across all scenarios.
Notably, while Diffusion-DPO achieves superior perfor-
mance when finetuned on PaP v2 dataset, CHATS excels
when leveraging the smaller, high-quality OIP dataset.

The contrasting behaviors between Diffusion-DPO and
our CHATS stem from their distinct training objectives.
Diffusion-DPO maximizes the difference in diffusion
squared-loss values (cf. Eq. 2) from ranked preference pairs.
However, in the OIP dataset, these differences are mini-
mal because the ranked pairs are derived from two closely
matched top-performing models. As a result, Diffusion-
DPO struggles to distinguish and model preferred and dis-
preferred distributions, leading to suboptimal performance
compared to training on the larger PaP v2 dataset with
stronger preference signals.

In contrast, CHATS adopts a more direct approach by inde-
pendently modeling the preferred and dispreferred distribu-
tions using two distinct models, while explicitly facilitating
collaboration between them. This design enables CHATS
to effectively utilize high-quality data and capture nuanced
preference information, offering the possibility of perform-

Standard Diffusion-DPO CHATS

Figure 4. Qualitative comparison among various methods. The im-
ages generated by CHATS exhibit stronger text-image alignment,
higher visual fidelity, and align more closely with human aesthetic
standards. Prompts: 1) Three friends working in a magical bakery.
2) An anthropomorphic cat riding a Harley Davidson in Arizona
with sunglasses and a leather jacket. 3) A kangaroo in an orange
hoodie and blue sunglasses stands on the grass in front of the
Sydney Opera House holding a sign that says Welcome Friends.

ing preference optimization with only a small set of images.

Robustness of α. The hyperparameter α in CHATS con-
trols the balance between conditional and unconditional
textual embeddings and regulates the contribution of the
dispreferred distribution during sampling. We analyze its
impact by varying α. As shown in Fig. 3 (see Supp. D for
more results), both SDXL and In-house T2I models exhibit
consistent trends: as α increases from 0 to approximately
0.5, the HPS v2 results improve significantly. Beyond this
range, the performance gradually saturates. Notably, com-
pared to the naive CFG case (α = 0), the proposed sampling
strategy leveraging two models consistently enhances aes-
thetic scores across different model families. These results
indicate that α is robust to variations in its value, with the
default setting of 0.5 performing reliably well.

6. Conclusions and Limitations
In this paper, we for the first time explored integrating hu-
man preference optimization and sampling process to ad-
vance text-to-image synthesis. We proposed CHATS, a
novel training and sampling framework that enables better
utilization of preference distributions by independently mod-
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eling preferred and dispreferred data. Our method exhibits
high data efficiency, requiring only a small, high-quality
dataset for finetuning to achieve strong results. Extensive
experiments demonstrated the superiority of CHATS across
various benchmarks, setting a new state-of-the-art compared
to traditional non-synergistic baselines.

Our method has a limitation: in CFG, conditional and un-
conditional prompts are typically concatenated for a single
forward pass with a batch size of 2, but our model processes
them separately in two forward passes with a batch size of
1 each. Consequently, our approach slightly reduces infer-
ence throughput as shown in Table 6. However, this impact
diminishes as the batch size increases. In industrial applica-
tions, the primary focus is on generation quality. In practice
this additional overhead becomes negligible, as model dis-
tillation (Meng et al., 2023) can effectively unify the two
models into a single, optimized model, such as FLUX.1-dev.

Impact Statement
This paper presents work whose goal is to advance the field
of machine learning in text-to-image generation. The ro-
bust generation capability of our method holds the potential
to benefit domains such as design, data augmentation, and
education, fostering interdisciplinary collaboration and in-
spiring creative exploration.
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A. Mathematical Derivations
In this section, we present the mathematical derivation of the training objective for CHATS. First, we identify the global
optimum of the target generative distribution pθ(z0|c) by maximizing the KL-divergence-constrained reward score in the
framework of reinforcement learning from human feedback (RLHF). Subsequently, we utilize this global optimum to derive
the training loss for our proposed method, ensuring a clear and rigorous formulation.

A.1. Global Optimum of Reward Maximization

RLHF refines a generative model pθ(z0|c) by maximizing the scores defined by a reward model r, simultaneously minimizing
the KL-divergence between pθ(z0|c) and a reference distribution pref(z0|c) as:

max
pθ

Ec∼D
[
Ez0∼pθ(z0|c)r(z0, c)− βDKL

(
pθ(z0|c)||pref(z0|c)

)]
(18)

where D = {c} is the conditional dataset and β is a scale scalar. Following Wallace et al. (2024), we have:

max
pθ

Ec∼D
[
Ez0∼pθ(z0|c)r(z0, c)− βDKL

(
pθ(z0|c)||pref(z0|c)

)]
(19)

= max
pθ

Ec∼D,z0∼pθ(z0|c)
[
r(z0, c)− β log

pθ(z0|c)
pref(z0|c)

]
(20)

= max
pθ

Ec∼D,z0∼pθ(z0|c)
[
Ez1:T∼pθ(z1:T |z0,c)

(
R(z0:T , c)− β log

pθ(z0|c)
pref(z0|c)

)]
(21)

= max
pθ

Ec∼D,z0:T∼pθ(z0:T |c)
[
R(z0:T , c)− β log

pθ(z0|c)
pref(z0|c)

]
(22)

≥ max
pθ

Ec∼D,z0:T∼pθ(z0:T |c)
[
R(z0:T , c)− β log

pθ(z0:T |c)
pref(z0:T |c)

]
, (23)

which is equivalent to:

min
pθ

Ec∼D,z0:T∼pθ(z0:T |c)
[
log

pθ(z0:T |c)
pref(z0:T |c)

− log e
R(z0:T ,c)

β
]

= min
pθ

Ec∼D,z0:T∼pθ(z0:T |c)
[
log

pθ(z0:T |c)

pref(z0:T |c)e
R(z0:T ,c)

β /Z(c)
− logZ(c)

]
,

(24)

where Z(c) =
∑

z0:T
pref(z0:T |c)e

R(z0:T ,c)

β is the regularization term. We define:

p∗(z0:T |c) = pref(z0:T |c)e
R(z0:T ,c)

β /Z(c), (25)

which is a valid distribution since p∗(z0:T |c) > 0 for any z0:T and
∑

z0:T
p∗(z0:T |c) = 1. Therefore Eq. 24 corresponds to:

min
pθ

Ec∼D,z0:T∼pθ(z0:T |c)
[
log

pθ(z0:T |c)
p∗(z0:T |c)

− logZ(c)
]

(26)

= min
pθ

Ec∼D
[(
Ez0:T∼pθ(z0:T |c) log

pθ(z0:T |c)
p∗(z0:T |c)

)
− logZ(c)

]
(27)

= min
pθ

Ec∼D
[
DKL

(
pθ(z0:T |c)||p∗(z0:T |c)

)
− logZ(c)

]
. (28)

This optimization objective shows a global minimum as:

p∗θ(z0:T |c) = p∗(z0:T |c) = pref(z0:T |c)e
R(z0:T ,c)

β /Z(c). (29)

A.2. Training Objective of CHATS

According to Eq. 29, the reward function can be reformulated as:

R(z0:T , c) = β log
p∗θ(z0:T |c)
pref(z0:T |c)

+ β logZ(c). (30)

12



CHATS: Combining Human-Aligned Optimization and Test-Time Sampling for Text-to-Image Generation

Hence the r is expressed as:

r(z0, c) = Ez1:T∼pθ(z1:T |z0,c) [R(z0:T , c)] (31)

= Ez1:T∼pθ(z1:T |z0,c)

[
β log

p∗θ(z0:T |c)
pref(z0:T |c)

+ β logZ(c)

]
. (32)

Since CHATS employs two different models for preferred and dispreferred distributions, parameterized by θ+ and θ−, the
loss for each ranked pair can be recast by substituting Eq. 32 into Eq. 9, omitting c, and setting β = 1 for simplicity, as
follows:

L(z+0 , z
−
0 )=− logσ

(
Ez+

1:T∼pθ+ (z+
1:T |z+

0 ),z−
1:T∼pθ− (z−

1:T |z−
0 )

[
log

pθ+(z+0:T )

pref(z
+
0:T )

+log
pθ−(z−0:T )

pref(z
−
0:T )

+K

])
, (33)

where K is a variable that depends only on c, and can therefore be treated as a constant during optimization. Consequently,
the objective can be simplified as:

L(z+0 , z
−
0 )=− logσ

(
Ez+

1:T∼pθ+ (z+
1:T |z+

0 ),z−
1:T∼pθ− (z−

1:T |z−
0 )

[
log

pθ+(z+0:T )

pref(z
+
0:T )

+log
pθ−(z−0:T )

pref(z
−
0:T )

])
. (34)

Using q(z1:T |z0)to approximate pθ(z1:T |z0) for both θ+and θ−, we have:

L(z+0 , z
−
0 ) = − log σ[Ez+

1:T∼q(z+
1:T |z+

0 ),z−
1:T∼q(z−

1:T |z−
0 )(log

pθ+(z+0:T )

pref(z
+
0:T )

+ log
pθ−(z−0:T )

pref(z
−
0:T )

)] (35)

= − log σ[Ez+
1:T∼q(z+

1:T |z+
0 ),z−

1:T∼q(z−
1:T |z−

0 )

( T∑
t=1

(log
pθ+(z+t−1|z

+
t )

pref(z
+
t−1|z

+
t )

+ log
pθ−(z−t−1|z

−
t )

pref(z
−
t−1|z

−
t )

)
)
] (36)

= − log σ[Ez+
1:T∼q(z+

1:T |z+
0 ),z−

1:T∼q(z−
1:T |z−

0 )

(
TEt(log

pθ+(z+t−1|z
+
t )

pref(z
+
t−1|z

+
t )

+ log
pθ−(z−t−1|z

−
t )

pref(z
−
t−1|z

−
t )

)
)
] (37)

= − log σ[TE(z+
t−1,z

+
t )∼q(z+

t−1,z
+
t |z+

0 )

(z−
t−1,z

−
t )∼q(z−

t−1,z
−
t |z−

0 )

Et(log
pθ+(z+t−1|z

+
t )

pref(z
+
t−1|z

+
t )

+ log
pθ−(z−t−1|z

−
t )

pref(z
−
t−1|z

−
t )

)] (38)

= − log σ[TEtEz+
t ∼q(z+

t |z+
0 )

z−
t ∼q(z−

t |z−
0 )

Ez+
t−1∼q(z+

t−1|z
+
t ,z+

0 )

z−
t−1∼q(z−

t−1|z
−
t ,z−

0 )

(log
pθ+(z+t−1|z

+
t )

pref(z
+
t−1|z

+
t )

+ log
pθ−(z−t−1|z

−
t )

pref(z
−
t−1|z

−
t )

)] (39)

≤ −E
t,
z+
t ∼q(z+

t |z+
0 )

z−
t ∼q(z−

t |z−
0 )

log σ[TEz+
t−1∼q(z+

t−1|z
+
t ,z+

0 )

z−
t−1∼q(z−

t−1|z
−
t ,z−

0 )

(log
pθ+(z+t−1|z

+
t )

pref(z
+
t−1|z

+
t )

+ log
pθ−(z−t−1|z

−
t )

pref(z
−
t−1|z

−
t )

)] (40)

= −E
t,
z+
t ∼q(z+

t |z+
0 )

z−
t ∼q(z−

t |z−
0 )

log σ[−T

(
Ez+

t−1∼q(z+
t−1|z

+
t ,z+

0 )

z−
t−1∼q(z−

t−1|z
−
t ,z−

0 )

(
+ log

q(z+t−1|z
+
t , z

+
0 )

pθ+(z+t−1|z
+
t )

− log
q(z+t−1|z

+
t , z

+
0 )

pref(z
+
t−1|z

+
t )

+ log
q(z−t−1|z

−
t , z−0 )

pθ−(z−t−1|z
−
t )

− log
q(z−t−1|z

−
t , z−0 )

pref(z
−
t−1|z

−
t )

))
] (41)

= −E
t,
z+
t ∼q(z+

t |z+
0 )

z−
t ∼q(z−

t |z−
0 )

log σ[−T

(
+ DKL

(
q(z+t−1|z

+
t , z

+
0 )||pθ+(z+t−1|z

+
t )

)
− DKL

(
q(z+t−1|z

+
t , z

+
0 )||pref(z

+
t−1|z

+
t )

)
+ DKL

(
q(z−t−1|z

−
t , z−0 )||pθ−(z−t−1|z

−
t )

)
− DKL

(
q(z−t−1|z

−
t , z−0 )||pref(z

−
t−1|z

−
t )

))
]. (42)

For diffusion models, minimizing DKL
(
q(zt−1|zt, z0) ∥ pθ(zt−1|zt)

)
is equivalent to minimizing ∥ϵ− ϵθ(zt, t)∥2. Accord-

ingly, the training loss of CHATS is formulated as:

LDiffusion
CHATS (z+0 , z

−
0 ) = −E

t∼U(0,T ),
z+
t ∼q(z+

t |z+
0 )

z−
t ∼q(z−

t |z−
0 )

log σ

[
− T

(

+
∥∥ϵ+−ϵθ+(z+t , t)

∥∥2−∥∥ϵ+ − ϵref(z
+
t , t)

∥∥2 + ∥∥ϵ−−ϵθ−(z−t , t)
∥∥2−∥∥ϵ− − ϵref(z

−
t , t)

∥∥2)], (43)
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where ϵ+, ϵ+ ∼ N (0, I) and z+t , z
−
t are defined as in Eq. 1.

For flow matching models, the minimization of DKL
(
q(zt−1|zt, z0)||pθ(zt−1|zt)

)
is equivalent to the minimization of

||v − vθ(zt, t)||2. In this case, the loss function is defined as:

LFlow
CHATS(z

+
0 , z

−
0 ) = −E

t∼U(0,T ),
z+
t ∼q(z+

t |z+
0 )

z−
t ∼q(z−

t |z−
0 )

log σ

[
− T

(

+
∥∥v+−vθ+(z+t , t)

∥∥2−∥∥v+ − vref(z
+
t , t)

∥∥2 + ∥∥v−−vθ−(z−t , t)
∥∥2−∥∥v− − vref(z

−
t , t)

∥∥2)], (44)

where z+t and z−t are defined as the linear interpolation between noise ϵ ∼ N (0, I) and the data samples z+0 or z−0 , following
Eq. 4.

A.3. Convergence Properties of CHATS

Given that DPO is invariant to affine transformations of the reward, for reward: R′(z0:T , c) = a ·R(z0:T , c) + b, the optimal
policy becomes (cf. Eq. 29):

p∗(z0:T | c) = pref(z0:T | c)ea·R(z0:T ,c)+b

Z ′(c)
. (45)

CHATS decomposes reward of traditional DPO (Eq. 30) into two parts:

R+(θ+) = log
pθ+(z+0:T | c)
pref(z

+
0:T | c)

, R−(θ−) = log
pθ−(z−0:T | c)
pref(z

−
0:T | c)

, (46)

with β and logZ(c) omitted since they are constants for optimization. Defining the effective reward as: RCHATS =
R+(θ+) +R−(θ−), the resulting joint optimal distribution becomes:

p∗(z0:T | c) = pref(z0:T | c)eRCHATS

ZCHATS(c)
. (47)

Under the assumption of L-smoothness and using standard gradient descent, we obtain the recursive inequality:

Lk+1 ≤ Lk − η

2
∥∇L(θ+k , θ

−
k )∥

2, (48)

which ensures the CHATS loss (Eq. 9) decreases monotonically and converges. Since their combination recovers the same
optimal joint distribution as traditional DPO methods (Wallace et al., 2024), CHATS preserves theoretical foundations of
DPO.

A.4. Theoretical Foundations of CHATS Sampler

Start from Bayes’ rule for a classifier:

p(c | zt) =
p(zt | c)p(c)

p(zt)
, (49)

since p(c) can be regarded as a constant during optimization, CFG defines the guided distribution by raising p(c | zt) with a
guidance scale s:

p̃(zt | c) ∝ p(zt|c)
[
p(c | zt)

]s
. (50)

Substitute the expression for p(c | zt) and omit p(c) yields:

p̃(zt | c) ∝ p(zt | c)1+sp(zt)
−s. (51)

In CHATS, two models are used:
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• The preferred model pθ+(zt | c),

• The dispreferred model pθ−(zt | c) (with its unconditional form pθ−(zt)).

For each model, we can write a classifier-like term via Bayes’ rule. For the preferred model:

pθ+(c | zt) =
pθ+(zt | c)p(c)

pθ+(zt)
, (52)

and for the dispreferred model:

pθ−(c | zt) =
pθ−(zt | c)p(c)

pθ−(zt)
. (53)

Assuming pθ+(zt) ≈ pθ−(zt), we combine the two signals by defining a composite log-odds score:

∆(zt, c) = log
pθ+(zt | c)
pθ−(zt)

+ α log
pθ−(zt | c)
pθ−(zt)

. (54)

The first term tends to generate features favored by the preferred model while suppressing the background features typically
produced by the dispreferred model in its unconditional output (similar to CFG), and the second term further accounts for
the shift in the output of the dispreferred model when conditioned on c, with its impact regulated by a scalar α. In this form,
the useful information in pθ−(zt | c) is effectively utilized as well.

Following CFG, we define the CHATS guided distribution as:

p̃θ(zt | c) ∝ pθ+(zt | c) exp
(
s ·∆(zt, c)

)
. (55)

Substitute ∆(zt, c):

p̃θ(zt | c) ∝ pθ+(zt | c) · exp
(
s

[
log

pθ+(zt | c)
pθ−(zt)

+ α · log pθ−(zt | c)
pθ−(zt)

])
. (56)

Using exp(s logA) = As, we have

p̃θ(zt | c) ∝ pθ+(zt | c)
(
pθ+(zt | c)
pθ−(zt)

)s (
pθ−(zt | c)
pθ−(zt)

)αs

. (57)

Grouping terms, we obtain

p̃θ(zt | c) ∝ pθ+(zt | c)1+spθ−(zt | c)αspθ−(zt)
−(1+α)s, (58)

which is the same with Eq. 15. The final guided distribution is not merely a sharpened version of pθ+(zt | c). It also

leverages the dispreferred model. The term
(

pθ− (zt|c)
pθ− (zt)

)αs

adjusts the output based on how conditioning on c changes the
dispreferred model’s behavior. This derivation, starting from p(c | zt) for both models, provides a theoretical foundation for
the CHATS sampling distribution analogous to that of CFG.

B. Full Experimental Settings
B.1. Models and Finetuning Datasets

We utilize two model families: diffusion models and flow matching models. For diffusion models, we employ Stable
Diffusion 1.5 (SD1.5) (Rombach et al., 2022) and Stable Diffusion XL-1.0 (SDXL) (Podell et al., 2024). For flow matching

15



CHATS: Combining Human-Aligned Optimization and Test-Time Sampling for Text-to-Image Generation

Table 7. Full aesthetic results (↑) on “Anime” and “Concept-Art”.
Model Method Anime Concept-Art

ImageReward HPS v2 PickScore ImageReward HPS v2 PickScore

SD1.5
Standard -134.51 19.66 19.46 -121.69 18.11 19.47
Diffusion-DPO -95.95 21.65 20.13 -89.71 20.12 20.14
CHATS 34.35 27.74 21.38 30.74 26.17 20.80

SDXL
Standard 94.99 30.20 22.80 90.24 28.38 22.19
Diffusion-DPO 111.73 31.69 23.09 98.26 29.64 22.27
CHATS 122.73 32.96 23.17 107.21 30.94 22.38

In-house T2I
Standard 49.23 25.00 20.99 53.89 23.60 20.50
Diffusion-DPO 65.49 26.03 21.27 69.82 24.87 20.83
CHATS 112.41 30.41 22.13 114.07 29.87 21.66

models, we deploy In-house T2I, a text-to-image generation model optimized for photorealistic images in e-commerce
scenarios, based on the DiT architecture (Peebles & Xie, 2023).

We finetune our models on two preference optimization datasets. The first, Pick-a-Pic v2 (PaP v2) (Kirstain et al., 2023a),
comprises 851,293 tie-free preference pairs collected through user interactions with SD2.1, SD1.5 variants, and SDXL
variants (Rombach et al., 2022) under various CFG values. The second, OpenImagePreferences (OIP) (Data is Better
Together, 2024), is a recently released high-quality image preference dataset containing 7,459 preference pairs of 1024×1024
images generated by SD3.5-large (Esser et al., 2024) and FLUX.1-dev (Labs, 2024). Compared to PaP v2, OIP offers
superior image quality, including enhanced resolution and textual fidelity. We leverage both datasets to demonstrate the
distinct advantages of our proposed method.

B.2. Finetuning Details

Following the approach from Wallace et al. (2024), we employ Adafactor (Shazeer & Stern, 2018) to finetune the SDXL
model and AdamW (Loshchilov & Hutter, 2019) for the SD1.5 and In-house T2I models. Training is conducted with an
effective batch size of 512, maintaining an image resolution of 1024. The default learning rate is set to 1 × 10−8, and a
learning rate scaling strategy based on batch size increases is utilized to accelerate the finetuning. T (cf. Eq. 13 and Eq. 14)
is fixed as 1000.

B.3. Evaluation Prompts

HPS v2. The HPS v2 (Wu et al., 2023) is a comprehensive benchmark for aesthetic evaluation, comprising 3,200 prompts
evenly distributed across four distinct styles: “Anime”, “Concept-Art”, “Paintings”, and “Photo” with 800 prompts per style.
We select this benchmark due to its extensive number of prompts, which ensures the stability of results and strengthens the
reliability of the evaluation.

GenEval. GenEval (Ghosh et al., 2023) is an object-centric evaluation framework designed to assess text-to-image models
on compositional image attributes, such as object co-occurrence, spatial positioning, quantity, and color. It comprises 553
prompts and is typically used in conjunction with object detection models to report compositional scores.

DPG-Bench. DPG-Bench (Hu et al., 2024) is a challenging benchmark consisting of 1,065 lengthy and dense prompts, with
each describing multiple objects characterized by a wide range of attributes and complex relationships.

B.4. Evaluation Metrics

For aesthetic evaluation, we employ three aesthetic evaluators:

HPS v2. HPS v2 (Wu et al., 2023) is built upon a CLIP (ViT-H/14) model, finetuned on the Human Preference Datasets v2.
This dataset includes 798,090 human preference annotations across 433,760 image pairs, enabling HPS v2 to accurately
predict human preferences for images generated from textual prompts.

ImageReward. ImageReward (Xu et al., 2024) is the first general-purpose human preference scoring model for text-to-image
generation. It is trained using a systematic annotation pipeline, incorporating both rating and ranking methodologies, and
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Table 8. Full aesthetic results (↑) on “Paintings” and “Photo”.
Model Method Paintings Photo

ImageReward HPS v2 PickScore ImageReward HPS v2 PickScore

SD1.5
Standard -123.31 18.25 19.53 -84.69 20.13 20.19
Diffusion-DPO -97.24 19.87 20.08 -72.05 20.74 20.47
CHATS 40.53 26.04 20.94 18.71 26.43 21.44

SDXL
Standard 91.39 28.19 22.31 67.31 26.88 22.26
Diffusion-DPO 108.19 29.83 22.42 82.89 28.34 22.51
CHATS 114.10 31.08 22.55 88.72 29.62 22.61

In-house T2I
Standard 53.03 23.18 20.48 73.00 26.09 21.86
Diffusion-DPO 70.20 24.71 20.88 80.51 26.56 21.98
CHATS 116.36 29.95 21.54 97.02 29.30 22.17

Table 9. Full aesthetic results (↑) on “GenEval” and “DPG-Bench”.
Model Method GenEval DPG-Bench

ImageReward HPS v2 PickScore ImageReward HPS v2 PickScore

SD1.5
Standard -111.58 21.20 20.46 -117.39 18.88 19.70
Diffusion-DPO -95.61 22.04 20.72 -100.05 19.87 20.01
CHATS -19.74 26.17 21.55 -21.47 24.97 20.79

SDXL
Standard 55.14 28.19 22.65 48.84 27.38 21.99
Diffusion-DPO 79.19 29.51 22.94 57.17 28.71 22.06
CHATS 84.72 29.81 22.96 65.79 29.51 22.08

In-house T2I
Standard 76.61 27.23 22.13 56.44 25.68 21.08
Diffusion-DPO 84.61 27.62 22.24 60.73 26.16 21.21
CHATS 105.31 29.84 22.54 89.28 29.53 21.66

has collected over 137,000 expert comparisons.

PickScore. PickScore (Kirstain et al., 2023b) is another preference evaluator, finetuned on the Pick-a-Pic dataset, a large
open dataset comprising text-to-image prompts and real user preferences for generated images.

Among these three evaluators, HPS v2 demonstrates the highest correspondence with human annotators. Therefore, we use
it as the primary evaluator for aesthetic evaluation in the main text. In the following section, we provide the complete results
from all three evaluators.

C. Full Aesthetic Results
We report the full aesthetic results on Table 7, 8 and 9. Consistent with the findings presented in the main text, our CHATS
outperforms two baseline methods across all aesthetic evaluators and all groups of prompts. This further highlights the
effectiveness of CHATS.

D. More Ablation on α

In Fig. 5, we present the complete results of the ablation studies on α, exploring the impact of varying its values. CHATS
consistently outperforms CFG (α = 0) across almost all cases, as it better incorporates preference information during
sampling. Any value of α within the range [0.5, 0.7] performs well. Therefore, to demonstrate the generalizability of
CHATS, we set α = 0.5 as the default choice for the main experiments, although α = 0.7 achieves the best performance.

E. More Qualitative Results
We present additional qualitative results in Fig. 6 to 10. As shown in these figures, our CHATS significantly enhances the
quality of generated images compared to the standard version of models. Furthermore, in comparison to Diffusion-DPO, our
approach shows a superior capability in capturing and accurately rendering the intricate details described in the prompts.
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Figure 5. Full ablation results on α. We report the HPS v2 results on Anime, Concept-Art, Paintings and Photo.
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Standard Diffusion-DPO CHATS

Figure 6. More qualitative comparisons. Prompts: 1) Batman is shown working as a Bagger at a grocery store. 2) A cat sitting besides a
rocket on a planet with a lot of cactuses. 3) A West Highland white terrier holding a “Hug me!” sign. 4) A beaver in formal attire stands
beside books in a library.
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Standard Diffusion-DPO CHATS

Figure 7. More qualitative comparisons. Prompts: 1) An anthropomorphic and surreal depiction of artificial intelligence’s self-image. 2)
Portrait of a male furry anthro Blue wolf fursona wearing black cyberpunk clothes in a city at night while it rains. 3) An elderly woman
poses for a high fashion photoshoot in colorful, patterned clothes with a cyberpunk 2077 vibe. 4) Colorful scifi shanty town with metal
rooftops and wooden and concrete walls in the style of Studio Ghibli and other anime influences.
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Standard Diffusion-DPO CHATS

Figure 8. More qualitative comparisons. Prompts: 1) Colorful illustration of a forest tunnel illuminated by sunlight and filled with
wildflowers. 2) A spring landscape painting featuring a treeless mountain village with melting lake ice, winding stone steps, and fog. 3)
A digital painting of Teemo from League of Legends, wearing cyborg parts and a new skin, in a fantasy MMORPG style. 4) A digital
painting of a fantasy kitchen environment with elements of cartoons, comics, and manga.
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Standard Diffusion-DPO CHATS

Figure 9. More qualitative comparisons. Prompts: 1) Solar punk vehicle in a bustling city. 2) A neofuturistic island city depicted in a
photo-realistic illustration by five artists. 3) Architecture render with pleasing aesthetics. 4) A stylized digital art image of a cherry tree
overlooking a valley with a waterfall during sunset.
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Standard Diffusion-DPO CHATS

Figure 10. More qualitative comparisons. Prompts: 1) The image is a digital art headshot of an owlfolk character with high detail and
dramatic lighting. 2) An elderly man is sitting on a couch. 3) Woman walking down the side walk of a busy night city. 4) A view of a table
with a bunch of cakes and tea on it.
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