
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

V2P: VISUAL ATTENTION CALIBRATION FOR GUI
GROUNDING VIA BACKGROUND SUPPRESSION AND
CENTER PEAKING

Anonymous authors
Paper under double-blind review

ABSTRACT

Precise localization of GUI elements is crucial for the development of GUI agents.
Traditional methods rely on bounding box or center-point regression, neglecting
spatial interaction uncertainty and visual-semantic hierarchies. Recent methods
incorporate attention mechanisms but still face two key issues: (1) ignoring pro-
cessing background regions causes attention drift from the desired area, and (2)
uniform modeling the target UI element fails to distinguish between its center and
edges, leading to click imprecision. Inspired by how humans visually process
and interact with GUI elements, we propose the Valley-to-Peak (V2P) method
to address these issues. To mitigate background distractions, V2P introduces a
suppression attention mechanism that minimizes the model’s focus on irrelevant
regions to highlight the intended region. For the issue of center-edge distinction,
V2P applies a Fitts’ Law-inspired approach by modeling GUI interactions as 2D
Gaussian heatmaps where the weight gradually decreases from the center towards
the edges. The weight distribution follows a Gaussian function, with the variance
determined by the target’s size. Consequently, V2P effectively isolates the target
area and teaches the model to concentrate on the most essential point of the UI
element. The model trained by V2P achieves the performance with 92.3% and
50.5% on two benchmarks ScreenSpot-v2 and ScreenSpot-Pro. Ablations further
confirm each component’s contribution, underscoring V2P’s generalizability in
precise GUI grounding tasks and its potential for real-world deployment in future
GUI agents.

1 INTRODUCTION

Recent advances in large language models (LLMs) and vision-language models (VLMs) have enabled
agents to interpret natural language instructions and interact with graphical user interfaces (GUIs)
across desktop, mobile, and web platforms. Central to this capability is GUI grounding, which aligns
language commands with semantically relevant UI elements and their spatial locations (Cheng et al.,
2024). This task bridges user intent and interface actions, supporting the development of intelligent,
general-purpose agents for real-world human-computer interaction.

Early approaches framed GUI grounding as coordinate generation task, outputting a bounding box or
(x, y) coordinate for a natural-language query (Zhang et al., 2025; Qin et al., 2025). However, this
“coordinate generation” method suffers weak spatial–semantic alignment (Wu et al., 2025), treating
coordinates like ordinary words without inherent spatial meaning. Moreover, point-wise regression
contradicts the multi-point validity inherent in real interactions. Recent work addresses these issues
by leveraging the model’s attention maps (Wu et al., 2025). Instead of predicting coordinates, it
extracts cross-modal attention weights linking instruction tokens to image patches, selecting the most
attended patch as the click position. This approach offers dense spatial supervision and naturally
tolerates multiple valid click regions, aligning better with human behavior.

However, after manually scrutinizing the attention heatmap of these methods mentioned above (see
Sec. 4.3), we found two main issues, as shown in Fig. 1:

1. Background Distraction: Current loss functions only reward attention on target patches
but fail to penalize it on the background. This leads to a "divergent" attention distribution
where background regions also receive high scores. Consequently, softmax normalization

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Comparison of different strategies in the GUI grounding task. The green box marks the
ground-truth bounding box, and the red box highlights the region where the model places the highest
attention given the instruction and screenshot. The overlaid heatmap is colour-coded from cool (blue)
to warm (red), with warmer colours indicating higher attention values.

allows these regions to absorb probability mass, weakening or even shifting the intended
attention peak.

2. Centre-edge Confusion: Because labels treat all pixels within a bounding box equally, the
model cannot differentiate an element’s center from its edges, resulting in uniform attention
and inaccurate clicks that miss the center. Furthermore, for small elements, this often leads
the attention to drift towards the edges, making the model more prone to mislocalization,
especially when elements overlap.

This raises a key question: How can we guide the model’s attention to focus more precisely on the
target UI element? Motivated by human behavior—first isolating the target (valley suppression) then
focusing on the action point (peak emphasis)—we propose Valley-to-Peak (V2P). V2P suppresses
distractions by creating low-attention "valleys" in irrelevant areas while sharpening a "peak" at the
actionable center.

Suppression Attention: We apply inverse attention regularization (Li et al., 2018) to penalize high
attention outside the target, isolating true UI elements and reducing attention to non-target regions.

Fitts-Gaussian Peak Modeling: Inspired by Fitts’ Law (MacKenzie, 1992; Fitts, 1954), we use a 2D
Gaussian centered on the target, scaled to its size, to model human’s click likelihood, which yields a
heatmap that peaks at the center and decays towards the edges, better matching real user interactions.

Together, these modules reshape the attention map, enhancing grounding precision by aligning the
model’s focus with human patterns.

Our contribution can be summarized as follows:

1. We systematically analyze existing attention-based methods for visual grounding in GUI agents
and, through statistical evaluation, identify two main issues——Background Distraction and
Center-Edge Confusion. In addition, we provide a detailed analysis of the underlying causes of
these issues and provide insights for further improvements.

2. We introduce Attention Suppression Mechanism (SA) to mitigate Background Distraction and
employ Fitts-Gaussian Peak Modeling (FGPM) to effectively alleviate Center-Edge Confusion.
Building on these methods, we propose the Valley-to-Peak (V2P) framework, an agentic learning
paradigm for GUI grounding that significantly enhances the localization precision and accuracy of
Vision-Language Models on GUI elements.

3. Extensive experiments demonstrate that V2P achieves advanced performance on multiple public
benchmarks, reaching 92.3% on ScreenSpot-v2 and 50.5% on the challenging ScreenSpot-Pro,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

with relative improvements of 3.5% and 23.7%. Furthermore, we confirm that V2P demonstrates
significant practical value for real-world deployment and seamless integration into GUI agents.

2 RELATED WORK

2.1 GUI-AGENTS

GUI agents have progressed from rudimentary random- or rule-based test tools to multimodal,
LLM-driven systems that can follow natural-language instructions. Early efforts such as Monkey
testing (Wetzlmaier et al., 2016) and planning or script record-and-replay frameworks (Memon
et al., 2001; Steven et al., 2000) provided basic coverage but required hand-crafted rules or scripts.
Machine-learning techniques later enabled more adaptive behaviour: Humanoid (Li et al., 2020)
and Deep GUI (YazdaniBanafsheDaragh & Malek, 2022) learned user-like action policies from
screenshots, while widget detectors (White et al., 2019) improved element recognition. Natural-
language interfaces soon followed, e.g. FLIN (Mazumder & Riva, 2021) and RUSS (Xu et al.,
2021), and reinforcement learning environments like WoB (Shi et al., 2017) and WebShop (Yao et al.,
2023) pushed web-scale interaction. The recent arrival of LLMs has unified perception, reasoning
and control: WebAgent (Gur et al., 2024) and WebGUM (Furuta et al., 2024) achieve open-world
browsing, AutoDroid (Wen et al., 2024) and AppAgent (Zhang et al., 2023) automate smartphones,
and desktop agents such as UFO (Zhang et al., 2024) demonstrate GPT-4-level capabilities; industrial
systems (e.g. Claude 3.5 Sonnet and Operator) further attest to the practical traction of GUI agents.

2.2 GUI GROUDING

Early works on GUI grounding treated it as a coordinate regression task (Zhang et al., 2025; Qin
et al., 2025). However, modern methods have largely shifted to leveraging the cross-modal attention
maps of Vision-Language Models (VLMs) (Cheng et al., 2024; Wu et al., 2025). In this paradigm,
the model’s prediction is derived from the image patch with the highest attention score in response to
a language command. While more robust, this approach often suffers from imprecise attention, with
focus leaking into irrelevant background regions or spreading too uniformly across the target element.
Our work directly addresses this by refining the quality of the attention map itself.

Our approach, V2P, draws inspiration from two distinct areas. To create attention "valleys" and
suppress background noise, we adopt attention suppression techniques that penalize focus outside the
target region (Li et al., 2018). To form a sharp "peak" at the target’s center, we are inspired by both
Fitts’ Law from Human-Computer Interaction (HCI) (MacKenzie, 1992) and the common practice of
using Gaussian heatmaps in localization tasks like pose estimation (Fitts, 1954). To our knowledge,
our work is the first to synergistically combine background suppression with center-focused peak
modeling to simulate the human pattern of interaction with the UI elements.

3 METHOD

We introduce Valley-to-Peak (V2P), a method that reshapes the model’s attention landscape to mimic
human focus patterns for precise GUI grounding. It achieves this through two synergistic components:

• Suppression Attention Valley Constraint: Penalizes attention on irrelevant regions to
form low-attention "valleys," effectively suppressing background distractions.

• Fitts-Gaussian Peak Modeling: Models interaction likelihood with a size-adaptive 2D
Gaussian, creating a sharp attention "peak" at the target’s most actionable center.

By jointly optimizing these objectives, V2P produces a continuous, spatially-aware attention map
that overcomes the limitations of rigid, uniform labels used in prior work. Below, we first outline the
overall architecture (Sec. 3.1), then detail the Suppression Attention (Sec. 3.2) and Fitts-Gaussian
Peak Modeling (Sec. 3.3) components.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Valley-to-Peak training method (V2P). V2P jointly suppresses noise and enhances signals
via two strategies: An inverse-attention penalty carves valleys in non-target areas, while size-adaptive
Fitts-Gaussian peaks create sharp peaks at UI elements’ centers. This dual approach reshapes attention
maps (rightmost example), enabling the model to quickly pinpoint interaction points in cluttered
interfaces.

3.1 MODEL ARCHITECTURE OVERVIEW

We build upon GUI-Actor (Wu et al., 2025), a coordinate-free visual grounding framework that
localizes GUI actions through attention rather than coordinate regression. Given a screenshot I
and an instruction q, the model introduces a special token <ACTOR> in the output sequence as a
contextual anchor. The final-layer hidden state of <ACTOR>, denoted h<ACTOR>, is used to compute
action attention over image patch features {v1, . . . , vM} extracted by the vision encoder.

To enhance spatial coherence among visual patches, we apply a self-attention module over the patch
features:

ṽ1, . . . , ṽM = SelfAttn(v1, . . . , vM), (1)
yielding contextualized representations. These are projected into a shared embedding space with
h<ACTOR> via separate MLPs:

z = MLPT (h<ACTOR>), (2)
zi = MLPV (ṽi), i = 1, . . . ,M. (3)

Attention scores are then computed as:

αi =
z⊤zi√

d
, ai =

exp(αi)∑M
j=1 exp(αj)

, (4)

where d is the embedding dimension. The resulting {ai}Mi=1 forms a normalized attention distribution
over the M image patches, representing the model’s belief about the target interaction location.

3.2 SUPPRESSION ATTENTION CONSTRAINT FOR DISTRACTION MITIGATION

Attention maps in complex interfaces can suffer from attention leakage, where notable responses
are mistakenly assigned to regions far from the target area, particularly in the presence of visually
similar distracting patches. To address this issue and enhance spatial precision, we propose a
Suppression Attention Constraint. This mechanism explicitly penalizes attention allocated to non-
target regions, enforcing sparsity and improving the model’s ability to distinguish targets from
surrounding distractions.

Let G ⊂ {1, . . . ,M} denote the set of patch indices whose spatial support Ri has empty intersection
with the ground-truth bounding box b:

G = {i ∈ {1, . . . ,M} | Ri ∩ b = ∅} . (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We define the attention loss as the total attention mass over these irrelevant regions:

LAttn =
∑
i∈G

ai. (6)

To better understand the theoretical foundation of this constraint, we analyze the gradient dynamics
of attention weights. For the target patch k with attention weight Ak = softmax(sk), the gradient
with respect to any non-target patch logit si is:

wi =
∂Ak

∂si
=

∂softmax(sk)
∂si

= − eskesi

(
∑M

i esi)2
= −AkAi < 0 (i ̸= k). (7)

This gradient analysis reveals that any increase in attention logits si for non-target patches negatively
impacts the target attention Ak. The magnitude |wi| = AkAi quantifies this negative influence: larger
values indicate that even small increases in attention to patch i will cause rapid degradation in target
attention Ak. This theoretical insight naturally motivates using |wi| as a weighting factor in our
suppression loss, providing stronger penalties for patches that pose greater threats to target attention
focus. And we have the suppression attention loss combined with gradient weight as:

LSup_Attn =
∑
i∈G

wiai. (8)

This loss encourages the model to suppress attention on irrelevant regions, thereby reducing the
impact of distracting elements in cluttered interfaces. By explicitly minimizing LSup_Attn, the model
is incentivized to concentrate its focus on the target region, resulting in enhanced spatial precision
and improved robustness.

3.3 FITTS-GAUSSIAN PEAK MODELING FOR CENTER-FOCUSED GROUNDING

While the Suppression Attention Constraint encourages focus on target regions, overlapping UI
elements can still lead to attention dispersion—particularly toward the boundaries of positively
labeled components—resulting in ambiguous and spatially diffused attention maps.

Our supervision strategy is inspired by Fitts’ Law (MacKenzie, 1992; Fitts, 1954), which reveals that
click probability peaks at the center of an UI element and decays toward its edges, closely following
a Gaussian distribution. We encode this behavior with Fitts-Gaussian Peak Modeling to guide the
model’s focus in line with observed human interaction.

Specifically, we model the ideal attention distribution as a 2D Gaussian density centered at the
centroid of the ground-truth bounding box b = [x1, y1, x2, y2]:

µ = (cx, cy) =

(
x1 + x2

2
,
y1 + y2

2

)
. (9)

To reflect the interaction tolerance associated with target size, we set the standard deviation of the
Gaussian proportional to the element’s width and height:

σx =
w

σfactor
, σy =

h

σfactor
, (10)

where w = x2 − x1, h = y2 − y1, and σfactor is a hyperparameter controlling the concentration
of the attention prior. This formulation ensures that larger elements—more tolerant to pointing
errors—induce broader attention peaks, while smaller elements require sharper focus.

Given an input image partitioned into M = H×W non-overlapping patches of size s×s, we compute
the expected attention mass for each patch i, covering spatial region Ri = [xi

min, x
i
max]×[yimin, y

i
max],

by integrating the 2D Gaussian density over Ri:

yi =

∫
Ri

N (x, y;µ,Σ)dx dy, (11)

where Σ = diag(σ2
x, σ

2
y). Thanks to axis-aligned separability, this integral decomposes efficiently

into the product of two univariate cumulative distribution functions (CDFs):

yi =
[
Φ(xi

max; cx, σx)− Φ(xi
min; cx, σx)

]
·
[
Φ(yimax; cy, σy)− Φ(yimin; cy, σy)

]
, (12)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

with Φ(· ;µ, σ) denoting the CDF of a univariate normal distribution.

To supervise the model’s predicted attention distribution {ai}, we adopt the action attention loss from
GUI-Actor (Wu et al., 2025), using the Kullback-Leibler (KL) divergence to measure the discrepancy
between the target p and prediction a:

LAction_Attn =

M∑
i=1

pi log
pi
ai
, pi =

yi∑M
j=1 yj + ϵ

, i = 1, . . . ,M, (13)

where ϵ is a small constant for numerical stability.

Fitts-Gaussian Peak Modeling establishes a center-biased, size-aware attention prior that closely
mimics human pointing behavior. By discouraging boundary leakage and promoting centralized
attention in a graded, interaction-informed manner, it enhances localization precision and improves
robustness in complex and cluttered UI layouts.

3.4 VALLEY-TO-PEAK TRAINING

The overall training objective combines next-token prediction loss with action-focused attention
losses:

L = LNTP + λ1LSup_Attn + λ2LAction_Attn, (14)

where LSup_Attn suppresses attention outside the target region (Section 3.2), and LAction_Attn enforces
alignment between predicted attention and a Gaussian-shaped target distribution (Section 3.3).

Minimizing the combined loss supports a Valley-to-Peak training paradigm: coarse suppression
followed by fine-grained alignment. LSup_Attn first suppresses distractions, guiding attention toward
the target region. Then, LAction_Attn sharpens this focus by prioritizing the target’s center. This reduces
misclicks and alleviates ambiguity caused by overlapping labels, ensuring precise and human-like
attention alignment. The coarse-to-fine control enables robust interaction predictions, even in dense
and visually complex UI environments.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Setup. We use Qwen2.5-VL-7B-Instruct (Bai et al., 2025) as our backbone and train it on 0.7M
filtered GUI screenshots, with a learning rate of 5e-6 and Gaussian factor σ=1. We evaluate on
ScreenSpot-v2 (Wu et al., 2024b) and the more challenging ScreenSpot-Pro (Li et al., 2025) bench-
marks using Element Accuracy. Comprehensive implementation details, including the data filtering
process, are provided in App. A and B.

4.2 MAIN RESULT

Our proposed V2P-7B demonstrates outstanding performance across diverse benchmarks, showcasing
robust generalization and superior efficiency. On the highly challenging ScreenSpot-Pro benchmark,
which serves as a strong indicator of out-of-distribution (OOD) generalization, V2P-7B achieves an
average accuracy of 50.54% (Tab. 1). This result significantly outperforms all GUI-specific models,
including strong RL-based methods like SE-GUI-7B (47.3%) and GUI-G2-7B (47.5%). Remarkably,
our 7B model even surpasses the much larger 72B-parameter UI-TARS-72B (38.1%), highlighting
exceptional parameter efficiency. This strong performance is consistent across diverse scenarios,
with our model securing top scores in 6 of 12 task categories and demonstrating stable adaptability
in specialized domains like CAD, Creative, and Science. Furthermore, V2P-7B also excels on
the ScreenSpot-v2 benchmark with an average accuracy of 92.3% and we report the result in the
Appendix (See Tab. 5).

These advancements are driven by our dual-optimization strategy: Suppression Attention mitigates
background distractions, while Fitts-Gaussian Labeling resolves center-edge confusion. This strong
performance is achieved via supervised fine-tuning (SFT) alone, which highlights the potential for

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

further enhancements through reinforcement learning (RL) integration. The stability of our SFT
approach is further evidenced by the model’s training trajectory on ScreenSpot-Pro (Fig. 4(c)),
which shows no signs of persistent overfitting, unlike baselines that exhibit a continued performance
decline. The consistent gains across diverse UI platforms and interaction types affirm V2P’s robust
generalizability for real-world GUI grounding applications.

Model
ScreenSpot-Pro Accuracy (%)

CAD Dev Creative Scientific Office OS Avg.

Text Icon Text Icon Text Icon Text Icon Text Icon Text Icon Text Icon Avg.

Proprietary Models

GPT-4o 2.0 0.0 1.3 0.0 1.0 0.0 2.1 0.0 1.1 0.0 0.0 0.0 1.3 0.0 0.8
Claude Computer Use 14.5 3.7 22.0 3.9 25.9 3.4 33.9 15.8 30.1 16.3 11.0 4.5 23.4 7.1 17.1

General Open-source Models

Qwen2.5-VL-3B 9.1 7.3 22.1 1.4 26.8 2.1 38.2 7.3 33.9 15.1 10.3 1.1 23.6 3.8 16.1
Qwen2.5-VL-7B 16.8 1.6 46.8 4.1 35.9 7.7 49.3 7.3 52.5 20.8 37.4 6.7 38.9 7.1 26.8

GUI-specific Models (SFT)

SeeClick-9.6B 2.5 0.0 0.6 0.0 1.0 0.0 3.5 0.0 1.1 0.0 2.8 0.0 1.8 0.0 1.1
FOCUS-2B 7.6 3.1 22.8 1.7 23.7 1.7 25.0 7.1 23.2 7.7 17.8 2.5 19.8 3.9 13.3
CogAgent-18B 7.1 3.1 14.9 0.7 9.6 0.0 22.2 1.8 13.0 0.0 5.6 0.0 12.0 0.8 7.7
Aria-UI 7.6 1.6 16.2 0.0 23.7 2.1 27.1 6.4 20.3 1.9 4.7 0.0 17.1 2.0 11.3
OS-Atlas-7B 12.2 4.7 33.1 1.4 28.8 2.8 37.5 7.3 33.9 5.7 27.1 4.5 28.1 4.0 18.9
ShowUI-2B 2.5 0.0 16.9 1.4 9.1 0.0 13.2 7.3 15.3 7.5 10.3 2.2 10.8 2.6 7.7
UGround-7B 14.2 1.6 26.6 2.1 27.3 2.8 31.9 2.7 31.6 11.3 17.8 0.0 25.0 2.8 16.5
UGround-V1-7B 15.8 1.2 51.9 2.8 47.5 9.7 57.6 14.5 60.5 13.2 38.3 7.9 45.2 8.1 31.1
UI-TARS-2B 17.8 4.7 47.4 4.1 42.9 6.3 56.9 17.3 50.3 17.0 21.5 5.6 39.6 8.4 27.7
UI-TARS-7B 20.8 9.4 58.4 12.4 50.0 9.1 63.9 31.8 63.3 20.8 30.8 16.9 47.8 16.2 35.7
UI-TARS-72B 18.8 12.5 62.9 17.2 57.1 15.4 64.6 20.9 63.3 26.4 42.1 15.7 50.9 17.6 38.1
JEDI-3B 27.4 9.4 61.0 13.8 53.5 8.4 54.2 18.2 64.4 32.1 38.3 9.0 49.8 13.7 36.1
JEDI-7B 38.0 14.1 42.9 11.0 50.0 11.9 72.9 25.5 75.1 47.2 33.6 16.9 52.6 18.2 39.5
GUI-Actor-7B – – – – – – – – – – – – – – 44.6

GUI-specific Models (RL)

UI-R1-3B 11.2 6.3 22.7 4.1 27.3 3.5 42.4 11.8 32.2 11.3 13.1 4.5 24.9 6.4 17.8
UI-R1-E-3B 37.1 12.5 46.1 6.9 41.9 4.2 56.9 21.8 65.0 26.4 32.7 10.1 – – 33.5
GUI-R1-3B 26.4 7.8 33.8 4.8 40.9 5.6 61.8 17.3 53.6 17.0 28.1 5.6 – – –
GUI-R1-7B 23.9 6.3 49.4 4.8 38.9 8.4 55.6 11.8 58.7 26.4 42.1 16.9 – – –
InfiGUI-R1-3B 33.0 14.1 51.3 12.4 44.9 7.0 58.3 20.0 65.5 28.3 43.9 12.4 49.1 14.1 35.7
GUI-G1-3B 39.6 9.4 50.7 10.3 36.6 11.9 61.8 30.0 67.2 32.1 23.5 10.6 49.5 16.8 37.1
SE-GUI-3B 38.1 12.5 55.8 7.6 47.0 4.9 61.8 16.4 59.9 24.5 40.2 12.4 50.4 11.8 35.9
SE-GUI-7B 51.3 42.2 68.2 19.3 57.6 9.1 75.0 28.2 78.5 43.4 49.5 25.8 63.5 21.0 47.3
GUI-G2-7B 55.8 12.5 68.8 17.2 57.1 15.4 77.1 24.5 74.0 32.7 57.9 21.3 64.7 19.6 47.5

Ours

V2P-7B 58.38 12.50 67.53 24.83 62.63 16.08 73.61 33.64 75.71 43.40 56.07 32.58 65.81 25.83 50.54

Table 1: Comparison of Model Performance Across Task Categories in ScreenSpot-Pro. Bold text
highlights the best results, while “–” represents missing values not reported in the original papers.
The baseline models utilize various backbones and parameter sizes, as indicated by their names (e.g.,
-7B, -18B). Further details are provided in App. C.

4.3 ATTENTION MAP QUALITY ANALYSIS

To diagnose common failure modes in GUI grounding, we manually analyzed the attention qual-
ity of 100 randomly sampled cases across our V2P model and two representative baselines (UI-
TARS (Qin et al., 2025) and GUI-Actor (Wu et al., 2025)). Our analysis focused on two critical issues:
background distraction (attention on irrelevant regions) and center-edge confusion (imprecise
localization at the element’s boundary).

The results, summarized in Table 2, reveal a clear discrepancy in attention quality. Traditional textual-
output models like UI-TARS suffer from near-total background distraction (100 cases), indicating
that coordinate supervision fails to teach visual focus. While vision-attention models like GUI-Actor
show improvement (74 total issues), they still struggle with background distraction and center-edge
confusion. In contrast, our V2P model demonstrates superior performance, reducing background
distraction to only 42 cases and center-edge confusion to 15. With a total of just 57 issues, V2P
significantly outperforms both baselines, providing direct evidence that its explicit design effectively
remedies these common failure modes for more reliable GUI grounding.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Attention Issue UI-TARS GUI-Actor V2P (Ours)
Background distraction 100 53 42
Centre-edge confusion 0 21 15
Total Issues 100 74 57

Table 2: Attention Map Quality Analysis on 100 Manually Sampled Cases.

4.4 ABLATION STUDY

4.4.1 ABLATION STUDY FOR V2P

Our ablation study (Tab. 3a) on the challenging ScreenSpot-Pro benchmark validates the efficacy of
our V2P method. Removing Fitts-Gaussian Peak Modeling and Suppression Attention individually
causes performance drops of 3.0% (to 47.5%) and 3.2% respectively, highlighting their roles in
resolving center-edge confusion and reducing background distractions.

On the simpler ScreenSpot-v2, removing Fitts-Gaussian Peak Modeling alone has a negligible
impact (92.3% accuracy), as its simple layouts with minimal overlap diminish the need for precise
center-point guidance. We further demonstrate in Sec. 4.4.2 that this component excels on complex,
overlapping interfaces. However, removing both components still results in a slight drop to 91.9%.
This shows that while V2P’s full potential is most evident in challenging scenarios like ScreenSpot-
Pro, it remains robust across different complexities.

ScreenSpot-Pro

Model Avg.

V2P-7B (Full) 50.5
w/o FGPM 47.5 (−3.0↓)
w/o FGPM & SA 44.3 (−6.2↓)

ScreenSpot-v2

Model Avg.

V2P-7B (Full) 92.3
w/o FGPM 92.3 (−0.0)
w/o FGPM & SA 91.9 (−0.4↓)

(a) Ablation study on ScreenSpot-Pro and ScreenSpot-
v2.

(b) Ablation study demonstrating the effectiveness of
Fitts-Gaussian Peak Modeling.

Figure 3: Combined ablation studies. (a) Performance on different datasets. (b) Detailed breakdown
for UI element size and shape.

4.4.2 ABLATION STUDY FOR EFFECTIVENESS OF FITTS-GAUSSIAN PEAK MODELING

Traditional attention methods often yield overly broad regions, misaligning with small UI elements
and producing points outside their boxes (Fig. 1(b)). Fitts-Gaussian Peak Modeling counters this
by centering the attention, boosting accuracy on tiny elements. We conduct ablation studies on the
challenging ScreenSpot-Pro dataset (Li et al., 2025) to validate our approach.

We first split UI elements into small, medium, and large categories based on bounding box sizes.
Fig. 3b shows that our Fitts-Gaussian Peak Modeling (FGPM) yields substantial improvements
on challenging smaller elements: 7.4% for small and 3.0% for medium elements. For large
elements, there is a slight decrease, as original attention-based methods with dispersed attention may
accidentally fall within large bounding boxes even when localizing incorrectly, while our precise
targeting reduces such coincidental hits.

We further analyze shape impact by categorizing small elements into square, moderate, and flat
shapes based on aspect ratios. The zoomed-in table in Fig. 3b demonstrates consistent improve-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Ablation Study of Fitts-Gaussian Peak Modeling and Generalization Analysis of V2P. The
table shows the performance impact of our proposed method and its generalization capability on an
out-of-distribution dataset. Results for Aguvis-7B are from GUI-Actor (Wu et al., 2025).

ments across all shapes, confirming that FGPM effectively addresses precise localization challenges
regardless of element shape.

4.4.3 ABLATION STUDY FOR GAUSSIAN FACTOR σ

We conducted ablation experiments to analyze the effect of different Gaussian factors σ on model
performance. As shown in Fig. 4(a), the model’s performance is strongly influenced by the choice of
Gaussian factor σ. For both ScreenSpot-v2 and ScreenSpot-Pro, accuracy improves as σ decreases.
For example, on ScreenSpot-v2, the accuracy rises from 91.3% at σ = 6.0 to 92.4% at σ = 0.5,
while ScreenSpot-Pro achieves its best result of 50.5% accuracy at σ = 1.0.

We suspect that this is because that larger σ values correspond to a broader Gaussian distribution,
which tends to dilute the spatial focus and introduce noise into the attention maps. In comparison,
smaller σ produces sharper Gaussian peaks, allowing the model to localize UI elements with higher
precision and resulting in more accurate click predictions. These results underscore that carefully
balancing the Gaussian factor is crucial: excessively large values hinder localization, while moderate
to smaller values significantly enhance spatial accuracy and overall model performance.

4.5 QUALITATIVE AND ADVANCED CAPABILITIES ANALYSIS

To provide deeper insights beyond quantitative metrics, we conducted a series of qualitative and
advanced capability analyses, with full details and visualizations provided in App. D.

Our qualitative review (Fig. 5 and 6) confirms that V2P generates sharp, well-defined attention maps
that align closely with target element boundaries, successfully mitigating common failure modes like
semantic confusion and low-confidence predictions. Furthermore, we validated V2P’s practical utility
in more complex scenarios. As shown in Fig. 7(a) and 8, the model demonstrates robust performance
in multi-step interaction workflows, maintaining contextual awareness across sequential operations.
It also exhibits sophisticated multi-target localization capabilities in Fig. 7(b), simultaneously
identifying multiple elements within a single interface.

Finally, we integrated V2P into an end-to-end agent to tackle a real-world, multi-app task. The model
successfully completed the entire 7-step trajectory without error (Fig. 10), confirming its potential as
a reliable grounding component for practical GUI automation.

5 CONCLUSION

We presented V2P, a novel framework for GUI grounding that operationalizes a "valley-to-peak"
strategy. By first suppressing background distractions and then highlighting clickable regions with
a Fitts-Gaussian peak, V2P explicitly addresses the critical issues of background distraction and
center-edge confusion. Our approach achieves state-of-the-art performance, attaining 92.3% accuracy
on ScreenSpot-v2 and 50.5% on the challenging ScreenSpot-Pro benchmark. Extensive experiments
validate the effectiveness of each component and demonstrate the strong generalization capabilities
of our model. As a lightweight, interpretable, and scalable solution, V2P offers tangible benefits for
developing robust GUI agents capable of operating in complex, real-world software environments.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. Key experimental settings,
datasets, model architectures, and training procedures are described in detail in the main paper
(Sec. 4.1 and App. A). The anonymous source code is available via a link in the supplementary
materials. We encourage readers to consult these resources for detailed replication guidance.

ACKNOWLEDGEMENT

During the preparation of this manuscript, we used Google Gemini-2.5-Pro (gem, 2025) to assist with
language polishing and proofreading to improve the clarity and readability of the text. The authors
assume full responsibility for the final content.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Google team, 2025. URL https://arxiv.org/abs/2312.11805.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. arXiv
preprint arXiv:2502.13923, 2025.

Yuxiang Chai, Siyuan Huang, Yazhe Niu, Han Xiao, Liang Liu, Dingyu Zhang, Shuai Ren, and
Hongsheng Li. Amex: Android multi-annotation expo dataset for mobile gui agents, 2025. URL
https://arxiv.org/abs/2407.17490.

Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun Liu,
Guirong Chen, Yupeng Huo, Yuan Yao, Yankai Lin, Zhiyuan Liu, and Maosong Sun. Guicourse:
From general vision language models to versatile gui agents, 2025. URL https://arxiv.
org/abs/2406.11317.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Li YanTao, Jianbing Zhang, and Zhiyong Wu.
SeeClick: Harnessing GUI grounding for advanced visual GUI agents. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
9313–9332, Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL
https://aclanthology.org/2024.acl-long.505.

Paul M. Fitts. The information capacity of the human motor system in controlling the amplitude
of movement. Journal of experimental psychology, 47 6:381–91, 1954. URL https://api.
semanticscholar.org/CorpusID:501599.

Hiroki Furuta, Kuang-Huei Lee, Ofir Nachum, Yutaka Matsuo, Aleksandra Faust, Shixiang Shane
Gu, and Izzeddin Gur. Multimodal web navigation with instruction-finetuned foundation models,
2024. URL https://arxiv.org/abs/2305.11854.

Google. Claude 3.5 sonnet model card addendum. In Claude 3.5 Sonnet Model Card Addendum,
2024. URL https://api.semanticscholar.org/CorpusID:270667923.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents,
2025a. URL https://arxiv.org/abs/2410.05243.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun,
and Yu Su. Navigating the digital world as humans do: Universal visual grounding for GUI
agents. In The Thirteenth International Conference on Learning Representations, 2025b. URL
https://openreview.net/forum?id=kxnoqaisCT.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and program
synthesis, 2024. URL https://arxiv.org/abs/2307.12856.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxuan Zhang, Juanzi Li, Bin Xu, Yuxiao Dong, Ming Ding, and Jie Tang. Cogagent: A
visual language model for gui agents, 2024. URL https://arxiv.org/abs/2312.08914.

Kaixin Li, Meng Ziyang, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang,
and Tat-Seng Chua. Screenspot-pro: GUI grounding for professional high-resolution computer
use. In Workshop on Reasoning and Planning for Large Language Models, 2025. URL https:
//openreview.net/forum?id=XaKNDIAHas.

Kunpeng Li, Ziyan Wu, Kuan-Chuan Peng, Jan Ernst, and Yun Fu. Tell me where to look: Guided
attention inference network, 2018. URL https://arxiv.org/abs/1802.10171.

Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu,
and Oriana Riva. On the effects of data scale on ui control agents, 2024. URL https://arxiv.
org/abs/2406.03679.

11

https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2407.17490
https://arxiv.org/abs/2406.11317
https://arxiv.org/abs/2406.11317
https://aclanthology.org/2024.acl-long.505
https://api.semanticscholar.org/CorpusID:501599
https://api.semanticscholar.org/CorpusID:501599
https://arxiv.org/abs/2305.11854
https://api.semanticscholar.org/CorpusID:270667923
https://arxiv.org/abs/2410.05243
https://openreview.net/forum?id=kxnoqaisCT
https://arxiv.org/abs/2307.12856
https://arxiv.org/abs/2312.08914
https://openreview.net/forum?id=XaKNDIAHas
https://openreview.net/forum?id=XaKNDIAHas
https://arxiv.org/abs/1802.10171
https://arxiv.org/abs/2406.03679
https://arxiv.org/abs/2406.03679

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. Humanoid: A deep learning-based
approach to automated black-box android app testing, 2020. URL https://arxiv.org/
abs/1901.02633.

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen Bai, Weixian Lei,
Lijuan Wang, and Mike Zheng Shou. Showui: One vision-language-action model for gui visual
agent, 2024. URL https://arxiv.org/abs/2411.17465.

Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang,
and Fei Wu. Infigui-r1: Advancing multimodal gui agents from reactive actors to deliberative
reasoners, 2025. URL https://arxiv.org/abs/2504.14239.

Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang Liu, Hao Wang, Han Xiao, Shuai Ren,
Guanjing Xiong, and Hongsheng Li. Ui-r1: Enhancing efficient action prediction of gui agents by
reinforcement learning, 2025. URL https://arxiv.org/abs/2503.21620.

Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia. Gui-r1 : A generalist r1-style vision-language
action model for gui agents, 2025. URL https://arxiv.org/abs/2504.10458.

I. Scott MacKenzie. Fitts’ law as a research and design tool in human-computer interaction. Hum.-
Comput. Interact., 7(1):91–139, March 1992. ISSN 0737-0024. doi:10.1207/s15327051hci0701_3.
URL https://doi.org/10.1207/s15327051hci0701_3.

Sahisnu Mazumder and Oriana Riva. Flin: A flexible natural language interface for web navigation,
2021. URL https://arxiv.org/abs/2010.12844.

A.M. Memon, M.E. Pollack, and M.L. Soffa. Hierarchical gui test case generation using
automated planning. IEEE Transactions on Software Engineering, 27(2):144–155, 2001.
doi:10.1109/32.908959.

OpenAI. OpenAI Operator, 2023. URL https://github.com/openai-operator/
openai-operator. Accessed: 2023-10-13.

OpenAI. Gpt-4o system card, 2024. URL https://arxiv.org/abs/2410.21276.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang,
Jiahao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu Lin,
Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei Zheng,
Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua Yang, Haifeng
Liu, Feng Lin, Tao Peng, Xin Liu, and Guang Shi. Ui-tars: Pioneering automated gui interaction
with native agents, 2025. URL https://arxiv.org/abs/2501.12326.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits:
An open-domain platform for web-based agents. In Doina Precup and Yee Whye Teh (eds.),
Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pp. 3135–3144. PMLR, 06–11 Aug 2017. URL https://
proceedings.mlr.press/v70/shi17a.html.

John Steven, Pravir Chandra, Bob Fleck, and Andy Podgurski. jrapture: A capture/replay tool for
observation-based testing. SIGSOFT Softw. Eng. Notes, 25(5):158–167, August 2000. ISSN 0163-
5948. doi:10.1145/347636.348993. URL https://doi.org/10.1145/347636.348993.

Fei Tang, Zhangxuan Gu, Zhengxi Lu, Xuyang Liu, Shuheng Shen, Changhua Meng, Wen Wang,
Wenqi Zhang, Yongliang Shen, Weiming Lu, Jun Xiao, and Yueting Zhuang. Gui-g2: Gaussian
reward modeling for gui grounding, 2025a. URL https://arxiv.org/abs/2507.15846.

Jiaqi Tang, Yu Xia, Yi-Feng Wu, Yuwei Hu, Yuhui Chen, Qing-Guo Chen, Xiaogang Xu, Xiangyu Wu,
Hao Lu, Yanqing Ma, Shiyin Lu, and Qifeng Chen. Lpo: Towards accurate gui agent interaction via
location preference optimization, 2025b. URL https://arxiv.org/abs/2506.09373.

Jianqiang Wan, Sibo Song, Wenwen Yu, Yuliang Liu, Wenqing Cheng, Fei Huang, Xiang Bai,
Cong Yao, and Zhibo Yang. Omniparser: A unified framework for text spotting, key information
extraction and table recognition, 2024. URL https://arxiv.org/abs/2403.19128.

12

https://arxiv.org/abs/1901.02633
https://arxiv.org/abs/1901.02633
https://arxiv.org/abs/2411.17465
https://arxiv.org/abs/2504.14239
https://arxiv.org/abs/2503.21620
https://arxiv.org/abs/2504.10458
https://doi.org/10.1207/s15327051hci0701_3
https://doi.org/10.1207/s15327051hci0701_3
https://arxiv.org/abs/2010.12844
https://doi.org/10.1109/32.908959
https://github.com/openai-operator/openai-operator
https://github.com/openai-operator/openai-operator
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2501.12326
https://proceedings.mlr.press/v70/shi17a.html
https://proceedings.mlr.press/v70/shi17a.html
https://doi.org/10.1145/347636.348993
https://doi.org/10.1145/347636.348993
https://arxiv.org/abs/2507.15846
https://arxiv.org/abs/2506.09373
https://arxiv.org/abs/2403.19128

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao
Liu, Yaqin Zhang, and Yunxin Liu. Autodroid: Llm-powered task automation in android, 2024.
URL https://arxiv.org/abs/2308.15272.

Thomas Wetzlmaier, Rudolf Ramler, and Werner Putschögl. A framework for monkey gui testing. In
2016 IEEE International Conference on Software Testing, Verification and Validation (ICST), pp.
416–423, 2016. doi:10.1109/ICST.2016.51.

Thomas D. White, Gordon Fraser, and Guy J. Brown. Improving random gui testing with image-based
widget detection. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2019, pp. 307–317, New York, NY, USA, 2019. Association for
Computing Machinery. ISBN 9781450362245. doi:10.1145/3293882.3330551. URL https:
//doi.org/10.1145/3293882.3330551.

Qianhui Wu, Kanzhi Cheng, Rui Yang, Chaoyun Zhang, Jianwei Yang, Huiqiang Jiang, Jian Mu,
Baolin Peng, Bo Qiao, Reuben Tan, et al. Gui-actor: Coordinate-free visual grounding for gui
agents. arXiv preprint arXiv:2506.03143, 2025.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
Zichen Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao. Os-atlas: A foundation action model for
generalist gui agents, 2024a. URL https://arxiv.org/abs/2410.23218.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen
Ding, Liheng Chen, Paul Pu Liang, et al. Os-atlas: A foundation action model for generalist gui
agents. arXiv preprint arXiv:2410.23218, 2024b.

Tianbao Xie, Jiaqi Deng, Xiaochuan Li, Junlin Yang, Haoyuan Wu, Jixuan Chen, Wenjing Hu,
Xinyuan Wang, Yuhui Xu, Zekun Wang, Yiheng Xu, Junli Wang, Doyen Sahoo, Tao Yu, and
Caiming Xiong. Scaling computer-use grounding via user interface decomposition and synthesis,
2025. URL https://arxiv.org/abs/2505.13227.

Nancy Xu, Sam Masling, Michael Du, Giovanni Campagna, Larry Heck, James Landay, and Monica S
Lam. Grounding open-domain instructions to automate web support tasks, 2021. URL https:
//arxiv.org/abs/2103.16057.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction, 2025.
URL https://arxiv.org/abs/2412.04454.

Jianwei Yang, Reuben Tan, Qianhui Wu, Ruijie Zheng, Baolin Peng, Yongyuan Liang, Yu Gu, Mu Cai,
Seonghyeon Ye, Joel Jang, Yuquan Deng, Lars Liden, and Jianfeng Gao. Magma: A foundation
model for multimodal ai agents, 2025a. URL https://arxiv.org/abs/2502.13130.

Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li. Aria-
ui: Visual grounding for gui instructions, 2025b. URL https://arxiv.org/abs/2412.
16256.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents, 2023. URL https://arxiv.org/
abs/2207.01206.

Faraz YazdaniBanafsheDaragh and Sam Malek. Deep gui: black-box gui input generation with
deep learning. In Proceedings of the 36th IEEE/ACM International Conference on Automated
Software Engineering, ASE ’21, pp. 905–916. IEEE Press, 2022. ISBN 9781665403375.
doi:10.1109/ASE51524.2021.9678778. URL https://doi.org/10.1109/ASE51524.
2021.9678778.

Xinbin Yuan, Jian Zhang, Kaixin Li, Zhuoxuan Cai, Lujian Yao, Jie Chen, Enguang Wang, Qibin
Hou, Jinwei Chen, Peng-Tao Jiang, and Bo Li. Enhancing visual grounding for gui agents via self-
evolutionary reinforcement learning, 2025. URL https://arxiv.org/abs/2505.12370.

Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qingwei
Lin, Saravan Rajmohan, Dongmei Zhang, and Qi Zhang. Ufo: A ui-focused agent for windows os
interaction, 2024. URL https://arxiv.org/abs/2402.07939.

13

https://arxiv.org/abs/2308.15272
https://doi.org/10.1109/ICST.2016.51
https://doi.org/10.1145/3293882.3330551
https://doi.org/10.1145/3293882.3330551
https://doi.org/10.1145/3293882.3330551
https://arxiv.org/abs/2410.23218
https://arxiv.org/abs/2505.13227
https://arxiv.org/abs/2103.16057
https://arxiv.org/abs/2103.16057
https://arxiv.org/abs/2412.04454
https://arxiv.org/abs/2502.13130
https://arxiv.org/abs/2412.16256
https://arxiv.org/abs/2412.16256
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2207.01206
https://doi.org/10.1109/ASE51524.2021.9678778
https://doi.org/10.1109/ASE51524.2021.9678778
https://doi.org/10.1109/ASE51524.2021.9678778
https://arxiv.org/abs/2505.12370
https://arxiv.org/abs/2402.07939

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Chaoyun Zhang, Shilin He, Jiaxu Qian, Bowen Li, Liqun Li, Si Qin, Yu Kang, Minghua Ma,
Guyue Liu, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang, and Qi Zhang. Large language
model-brained gui agents: A survey, 2025. URL https://arxiv.org/abs/2411.18279.

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu.
Appagent: Multimodal agents as smartphone users, 2023. URL https://arxiv.org/abs/
2312.13771.

Yuqi Zhou, Sunhao Dai, Shuai Wang, Kaiwen Zhou, Qinglin Jia, and Jun Xu. Gui-g1: Understanding
r1-zero-like training for visual grounding in gui agents, 2025. URL https://arxiv.org/
abs/2505.15810.

14

https://arxiv.org/abs/2411.18279
https://arxiv.org/abs/2312.13771
https://arxiv.org/abs/2312.13771
https://arxiv.org/abs/2505.15810
https://arxiv.org/abs/2505.15810

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A TRAINING AND INFERENCE DETAILS

A.1 SOURCE TRAINING DATA

Following GUI-Actor (Wu et al., 2025), we compile our training dataset from several publicly
available, high-quality GUI datasets, with summary statistics provided in Table 3. To ensure fair
evaluation, we also exclude any samples from Wave-UI that overlap with the test sets of downstream
tasks. Our data recipe is built from several public GUI datasets, the source data totaling approximately
1M screenshots. To ensure annotation quality, we apply Ominiparser (Wan et al., 2024) to detect
bounding boxes for all samples and filter those where the IoU between ground truth (GT) and parser-
detected boxes is less than 0.3, as such cases likely contain annotation errors, this step improves the
data consistency for training. After filtering, there are about ∼ 0.7M screenshots remains.

Dataset # of Elements # of Screenshots Platform
Uground Web–Hybrid (Gou et al., 2025a) 8M 775K Web
GUI-Env (Chen et al., 2025) 262K 70K Web
GUI-Act (Chen et al., 2025) 42K 13K Web
AndroidControl (Li et al., 2024) 47K 47K Android
AMEX (Chai et al., 2025) 1.2M 100K Android
Wave-UI 50K 7K Hybrid

Total 9.6M 1M –

Table 3: Overview of training datasets used for GUI-Actor.

A.2 TRAINING AND INFERENCE SETUP

During the training phase, we first freeze the backbone VLM parameters and train only the action
head (∼ 20M parameters). In the second phase, we fine-tune the entire model using the filtered
dataset with standard supervised learning. At inference, we follow deterministic generation with a
temperature of 0 and adopt a confidence threshold of γ = 0.95 for the ScreenSpot-Pro benchmark
and γ = 0.8 for ScreenSpot-v2 tasks.

A.3 TRAINING AND INFERENCE COSTS

A.3.1 TRAINING COSTS

The V2P-7B model was trained using a comprehensive dataset comprising Uground Web-Hybrid,
GUI-Env, GUI-Act, AndroidControl, AMEX, and Wave-UI (Tab. 3). The training process was
conducted on a high-performance computing cluster equipped with 32 NVIDIA H200 GPUs.

Following the (Wu et al., 2025), the training procedure consisted of two phases: an initial warmup
phase which only fine-tunes the parameters of attention heads requiring approximately 15 hours,
followed by full supervised fine-tuning (SFT) that took an additional 20 hours. This results in a total
training time of approximately 35 hours across 32 H200 GPUs, equivalent to 1,120 GPU-hours for
the complete training pipeline.

A.3.2 INFERENCE EFFICIENCY

Tab. 4 presents the detailed inference performance metrics of the V2P-7B model evaluated on different
benchmarks with batch size 1.

Metric ScreenSpot-v2 ScreenSpot-Pro
Latency per Sample (ms) 154.00 1857.97
Throughput (samples/sec) 6.49 0.54

Table 4: Inference Performance Metrics

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The model demonstrates efficient inference performance, with significantly faster processing on
ScreenSpot-v2 compared to ScreenSpot-Pro, likely due to the complexity differences between the
two benchmarks.

A.3.3 RESOURCE REQUIREMENTS

The V2P-7B model comprises approximately 7 billion parameters and requires around 110 GB of
disk storage for the model weights. During inference, the model consumes approximately 80 GB of
GPU memory at peak usage. All inference evaluations were conducted on a single NVIDIA H200
GPU with 141 GB of memory, demonstrating that the model can be efficiently deployed on high-end
consumer or enterprise-grade hardware.

The computational requirements make the model accessible for research and production environments
with sufficient GPU resources, while the inference speeds are suitable for real-time applications,
particularly on the ScreenSpot-v2 benchmark.

B BENCHMARKS

Our evaluation centers on two sophisticated benchmarks for GUI visual grounding: ScreenSpot-
v2 (Wu et al., 2024b) and ScreenSpot-Pro (Li et al., 2025).

ScreenSpot-v2 encompasses 1,272 carefully annotated instructions, each paired with corresponding
target elements across diverse GUI environments, including mobile (Android and iOS), desktop
(macOS and Windows), and web platforms. The dataset is designed to improve the quality and
reliability of GUI visual grounding tasks, addressing key challenges such as eliminating ambiguities
in natural language instructions and resolving annotation errors. By refining the alignment between
textual descriptions and interface elements, ScreenSpot-v2 provides a robust and standardized
benchmark for evaluating grounding models.

ScreenSpot-Pro, meanwhile, focuses on more demanding scenarios, especially those involving
high-resolution professional applications. It contains 1,581 tasks annotated by domain experts across
23 specialized software applications, spanning three operating systems. This benchmark significantly
broadens the scope of GUI visual grounding by introducing interfaces with industrial software and
multi-window layouts, creating a larger domain gap compared to most pretraining data. With its
increased complexity and domain diversity, ScreenSpot-Pro is an invaluable resource for assessing
the generalization ability of models in realistic and challenging GUI environments.

C BASELINES

C.1 BASELINES FOR SCREENSPOT-PRO

We establish comprehensive benchmarking across four categories of state-of-the-art GUI understand-
ing systems:

• Proprietary Systems: GPT-4o (OpenAI, 2024) (vision-language foundation model), Claude
Computer Use (Google, 2024) (specialized GUI agent)

• General-Purpose Open-Source: Qwen2.5-VL series (Bai et al., 2025) (7B/72B parameter
variants)

• GUI-Specialized (SFT):
– Medium-scale: SeeClick-9.6B (Based on Qwen-VL-Chat) (Cheng et al., 2024),

FOCUS-2B (Based on Qwen2-VL-2B-Instruct) (Zhang et al., 2024), OS-Atlas-7B
(Based on Qwen2-VL-7B) (Wu et al., 2024a)

– Large-scale: CogAgent-18B (Based on CogVLM17B) (Hong et al., 2024), Aria-UI
(Based on Megatron-LM) (Yang et al., 2025b), JEDI series (Based on Qwen2.5-VL
series) (Xie et al., 2025)

– Domain-specific: ShowUI-2B (Based on Qwen2-VL-2B) (Lin et al., 2024), Uground
series (Based on Qwen2-VL series) (Gou et al., 2025b), UI-TARS series (Based on
Qwen2-VL series) (Qin et al., 2025)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Model
ScreenSpot-v2 Accuracy (%)

Mobile-Text Mobile-Icon Desktop-Text Desktop-Icon Web-Text Web-Icon Avg.

Proprietary Models

Operator 47.3 41.5 90.2 80.3 92.8 84.3 70.5
GPT-4o + OmniParser-v2 95.5 74.6 92.3 60.9 88.0 59.6 80.7

General Open-source Models

Qwen2.5-VL-3B 93.4 73.5 88.1 58.6 88.0 71.4 80.9
Qwen2.5-VL-7B 97.6 87.2 90.2 74.2 93.2 81.3 88.8

GUI-specific Models (SFT)

SeeClick-9.6B 78.4 50.7 70.1 29.3 55.2 32.5 55.1
Magma-8B 62.8 53.4 80.0 57.9 67.5 47.3 61.5
OS-Atlas-4B 87.2 59.7 72.7 46.4 85.9 63.1 71.9
UI-TARS-2B 95.2 79.1 90.7 68.6 87.2 78.3 84.7
OS-Atlas-7B 95.2 75.8 90.7 63.6 90.6 77.3 84.1
Aguvis-7B 95.5 77.3 95.4 77.9 91.0 72.4 86.0
UGround-V1-7B 95.0 83.3 95.0 77.8 92.1 77.2 87.6
UI-TARS-72B 94.8 86.3 91.2 87.9 91.5 87.7 90.3
GUI-Actor-3B 97.6 83.4 96.9 83.6 94.0 85.7 91.0
UI-TARS-7B 96.9 89.1 95.4 85.0 93.6 85.2 91.6
GUI-Actor-7B 97.6 88.2 96.9 85.7 93.2 86.7 92.1

GUI-specific Models (RL)

SE-GUI-7B - - - - - - 90.3
LPO-8B - - - - - - 90.5

Ours

V2P-7B 98.1 88.0 96.1 89.7 95.4 84.4 92.3

Table 5: Comparison of Model Performance Across Task Categories in ScreenSpot-v2. Bold text
highlights the best results, while “–” represents missing values not reported in the original papers.

• GUI-Specialized (RL):
– R1-style: UI-R1 (Based on Qwen2.5-VL-3B-Instruct) (Lu et al., 2025), GUI-R1 (Based

on Qwen2.5-VL-3B and Qwen2.5-VL-7B) (Luo et al., 2025), InfiGUI-R1-3B (Based
on Qwen2.5-VL-3B-Instruct) (Liu et al., 2025)

– Gaussian-based: GUI-G1-3B (Based on Qwen2.5-VL-3B-Instruct) (Zhou et al., 2025),
SE-GUI (Based on Qwen2.5-VL-3B and Qwen2.5-VL-7B) (Yuan et al., 2025), GUI-
G2-7B (Based on Qwen2.5-VL-7B-Instruct) (Tang et al., 2025a)

C.2 BASELINES FOR SCREENSPOT-V2

We establish comprehensive benchmarking across four categories of state-of-the-art GUI understand-
ing systems:

• Proprietary Systems: Operator (OpenAI, 2023) (proprietary multimodal system), GPT-4o
+ OmniParser-v2 (OpenAI, 2024; Wan et al., 2024) (enhanced vision-language integration)

• General-Purpose Open-Source: Qwen2.5-VL series (Bai et al., 2025) (7B/72B parameter
variants)

• GUI-Specialized (SFT):
– Medium-scale: SeeClick-9.6B (Cheng et al., 2024), Magma-8B (Yang et al., 2025a),

OS-Atlas series (Wu et al., 2024a)
– Large-scale: UI-TARS series (Qin et al., 2025), Uground series (Gou et al., 2025b),

GUI-Actor series (Wu et al., 2025)
– Domain-specific: Aguvis-7B (Xu et al., 2025)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• GUI-Specialized (RL):
– SE-GUI-based: SE-GUI-7B (Yuan et al., 2025), LPO-8B (Tang et al., 2025b)

D ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSIS

D.1 QUALITATIVE ANALYSIS OF MODEL PERFORMANCE

D.1.1 SUCCESS CASES

Fig. 5 demonstrate several representative success cases where our V2P-7B model achieves accurate
GUI element localization. Through these successful examples, we observe that the model exhibits
high confidence in precisely highlighting target regions, with attention distributions that closely align
with the actual shapes of UI elements. The attention maps show sharp, well-defined boundaries
that accurately correspond to button edges, text field borders, and icon contours. This demonstrates
the model’s robust understanding of visual-semantic correspondence between natural language
instructions and GUI components, effectively bridging the gap between textual descriptions and
visual interface elements.

D.1.2 FAILURE CASES AND ERROR ANALYSIS

Our analysis of failure cases reveals several interesting patterns and limitations, as illustrated in Fig. 6.
In some instances, we observe that the model encounters difficulties when multiple UI elements
share semantic similarities. The model often exhibits high confidence while incorrectly selecting
semantically related but functionally different elements or misidentifying similar icons with different
purposes (Fig. 6a).

Additionally, we identify cases where the model’s attention distribution becomes highly dispersed
across the interface, which we interpret as an indicator of low confidence (Fig. 6b). This scattered
attention pattern typically occurs in scenarios with numerous distracting elements or cluttered
interfaces, suggesting that the model’s decision-making process becomes uncertain when faced with
complex visual layouts.

Furthermore, we observe failure modes where the model’s attention concentrates entirely on regions
completely unrelated to the target element (Fig. 6c). These cases often involve ambiguous natural
language descriptions or interfaces with unconventional design patterns that deviate from the model’s
training distribution. Such failures highlight the need for enhanced user intent understanding and
more comprehensive UI context comprehension capabilities.

D.1.3 MULTI-STEP INTERACTION SCENARIOS

To evaluate the model’s capability in complex interaction workflows, we designed multi-step interac-
tion scenarios using pure grounding tasks selected from the AndroidControl (Li et al., 2024) dataset.
Fig. 7a and Fig. 8 showcases the model’s performance across sequential GUI operations.

The results demonstrate that our model maintains consistent accuracy throughout extended interaction
sequences, successfully completing multi-step tasks that require contextual understanding and state
awareness. This capability highlights the model’s potential for integration into automated GUI Agent
frameworks, where reliable multi-step interaction is crucial for practical deployment. We conducted
an experiment that incorporate our V2P-7B into an end-to-end real-world application case, more
details can be seen in Appendix D.2

D.1.4 MULTI-TARGET LOCALIZATION CAPABILITIES

We investigated the model’s ability to simultaneously localize multiple targets within a single interface,
which holds significant value for batch operations and improving inference efficiency. Fig. 7b presents
our experimental setup using a calculator interface, where we tasked the model with simultaneously
localizing the elements "1", "0", and "00".

The results reveal that the model successfully generates attention distributions for all three target
elements simultaneously, with appropriately differentiated confidence levels. Notably, the element "1"

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) Success Case 1

(b) Success Case 2

(c) Success Case 3

Figure 5: Representative success cases of GUI element localization.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) Failure Case 1

(b) Failure Case 2

(c) Failure Case 3

Figure 6: Representative failure cases of GUI element localization.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) Multi step grounding case 1: "Open Phase of the moon App,
select the date 25 July on the calendar and view the moon phase for
that date." Step 1 (left) and Step 2 (right).

(b) Multi-target grounding case.

Figure 7: Multi-step grounding case and multi-target grounding case.

receives the highest attention intensity, followed by "0" and "00" respectively, which aligns with the
natural priority and visual prominence of these elements. This multi-target capability demonstrates
the model’s sophisticated attention mechanism and its potential for complex GUI analysis tasks
requiring simultaneous element identification, as well as its genuine understanding capability of user
queries.

D.2 END-TO-END REAL-WORLD APPLICATION

D.2.1 TASK DESIGN AND SETUP

To validate the practical value of our grounding model in real-world scenarios, we selected a complex,
complete GUI navigation task from the AndroidControl dataset (Li et al., 2024). The chosen task
encompasses a comprehensive action space including "navigate_back", "click", and "type_text"
operations, spanning a total of 7 sequential steps that effectively simulate realistic user interaction
circumstance.

The task involves navigating through a complex multi-application workflow on mobile devices,
requiring seamless transitions between different apps (Daff Moon app and Gmail app), information
extraction and processing, and email composition with specific recipient details. This scenario was
specifically chosen to test the model’s ability to handle real-world user requests that span multiple
applications, maintain context across app switches, and accurately interpret nuanced user intents
involving personal relationships and specific communication requirements. We integrated our V2P-7B
model into the grounding components of the navigation pipeline, replacing the baseline grounding
module while maintaining the overall task execution framework.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(a) Step 1: Click on the discover
icon.

(b) Step 2: Click on the first re-
sult.

(c) Step 3: Click on the play but-
ton.

Figure 8: Multi step grounding case 2: "Open the Mindfulness app, I would like to have a personalized
guided meditation to help me be productive throughout the day."

(a) Caption 1 (b) Caption 2 (c) Caption 3 (d) Caption 4

Figure 9: Grounding part of the end-to-end real-world application.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 10: End-to-end real-world application trajectory: "My wife is interested in the details of the
moon phases, and she asked me to share these moon phase details, so share all the details of the moon
phase with her at clarawagner98b@gmail.com via the Gmail app from the Daff Moon app."

D.2.2 EXECUTION RESULTS

Figure 10 illustrates the complete execution trajectory of the 7-step navigation task. Our V2P-
7B model successfully completed the entire trajectory without errors, accurately localizing target
elements at each step despite varying interface layouts and contextual changes.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

The end-to-end execution demonstrates our V2P-7B model’s robust practical capabilities, achieving
100% task completion rate with consistent localization accuracy across diverse UI elements and
application contexts. With the reliable performance across varying visual conditions and state
transitions. This validation confirms that V2P-7B successfully bridges research benchmarks and real-
world applications, with its powerful grounding capabilities providing stable support and guarantee
for GUI automation.

24

	Introduction
	Related Work
	GUI-Agents
	GUI Grouding

	Method
	Model Architecture Overview
	Suppression Attention Constraint for Distraction Mitigation
	Fitts-Gaussian Peak Modeling for Center-Focused Grounding
	Valley-to-Peak Training

	Experiment
	Experiment Setup
	Main Result
	Attention Map Quality Analysis
	Ablation Study
	Ablation Study for V2P
	Ablation Study for Effectiveness of Fitts-Gaussian Peak Modeling
	Ablation Study for Gaussian Factor

	Qualitative and Advanced Capabilities Analysis

	Conclusion
	Training and Inference Details
	Source Training Data
	Training and Inference Setup
	Training and Inference Costs
	Training Costs
	Inference Efficiency
	Resource Requirements

	Benchmarks
	Baselines
	Baselines for ScreenSpot-Pro
	Baselines for ScreenSpot-v2

	Additional Experimental Results and Analysis
	Qualitative Analysis of Model Performance
	Success Cases
	Failure Cases and Error Analysis
	Multi-step Interaction Scenarios
	Multi-target Localization Capabilities

	End-to-End Real-World Application
	Task Design and Setup
	Execution Results

