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Part-level Reconstruction for Self-Supervised Category-level 6D
Object Pose Estimation with Coarse-to-Fine Correspondence

Optimization
Anonymous Authors

ABSTRACT
Self-supervised category-level 6D pose estimation stands as a fun-
damental task in computer vision. However, current self-supervised
methods face two major challenges. Firstly, existing networks strug-
gle to reconstruct precise object models due to significant part-level
shape variations among specific categories. Secondly, they are im-
pacted by the many-to-one ambiguity in the correspondences be-
tween pixels and point clouds. To address these challenges, we
propose a novel approach that includes a Part-level Shape Recon-
struction (PSR) module and a Coarse-to-Fine Correspondence Op-
timization (CFCO) module. In the (PSR) module, we introduce
a part-level discrete shape memory to capture more fine-grained
shape variations of different objects and use it to perform precise
reconstruction. In the (CFCO) module, we utilize Hungarian match-
ing to generate one-to-one pseudo labels at both region and pixel
levels, which provides explicit supervision for the corresponding
similarity matrices. We evaluate our method on the REAL275 and
WILD6D datasets. Our extensive experiments show that ourmethod
outperforms existing methods and achieves new state-of-the-art
results.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
Deep Learning, Multimodal Data Processing, 3D Reconstruction,
Self-Supervised Learning, Visual-Spatial Correspondence

1 INTRODUCTION
6D object pose estimation, which involves estimating the 3D transla-
tion and 3D rotation of objects, has played a pivotal role in domains
like autonomous driving [23], virtual reality [2] and augmented
reality [10]. Traditional instance-level pose estimation can only es-
timate poses for specific instances, resulting in poor generalization.
In contrast, category-level pose estimation methods achieve great
generalization across different instances within the same category
by utilizing categorical priors and training on large-scale datasets.
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Figure 1: a) Objects that belong to the same category of-
ten have similar overall structures but exhibit significant
shape variations in local parts. b) The many-to-one ambigu-
ity occurs when there are more image pixels than points in
the point cloud model. This ambiguity can also be caused
by projection issues, where the model’s rear cannot be dis-
played in the image. To eliminate these ambiguities, the pro-
posed region-level relationships generated through Hungar-
ian matching can achieve a one-to-one correspondence.

However, annotating 6D labels for such real-world datasets is time-
consuming. Therefore, self-supervisedmethods have been proposed
to address this issue.

[34] explores self-supervised category-level pose estimation for
the first time. They first reconstruct instance models based on cat-
egorical shape priors. Then correspondences between pixels and
reconstructed models are established by calculating the pixel-point
similarity matrix. Additionally, they propose a cycle-consistency
loss to impose implicit supervision on the similarity matrix. To
achieve accurate pose estimation without 6D labels, we summarize
that two critical problems should be carefully considered as shown
in 1: 1) In the task of category-level pose estimation, instances
within the same category share similar overall structures, but often

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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exhibit significant shape variations in local parts. Previous methods
struggle to perform precise reconstructions in these regions. We
argue that is because they rely on a fixed categorical shape prior
which is insufficient to represent such local variations, particularly
in unsupervised scenarios. 2) Since the number of pixels in im-
ages is significantly greater than that of points in 3D models, it
is inevitable that multiple pixels will be mapped to same points,
causing many-to-one ambiguity in pixel-to-point correspondences.
On the other hand, 2D images only show the visible part of model
points. Thus, the invisible model points may be mapped to those
pixels corresponding to the visible points, leading to many-to-one
ambiguity. The aforementioned many-to-one relationship between
2D pixels and 3D points can degrade the network’s performance.
Since the correspondences between 2D pixels and 3D points are
established using the pixel-point similarity matrix, optimizing this
matrix is of significant importance.

Based on aforementioned discussions, we propose a novel self-
supervised category-level 6D object pose estimation method, which
comprises two key modules: a Part-level Shape Reconstruction
(PSR) module using adaptive shape memory and a Coarse-to-Fine
CorrespondenceOptimization module (CFCO). In the PSRmodule,
we use a discrete shape memory to capture more detailed shape
variations of different objects at the part-level. We start by extract-
ing patch features from images using an image encoder and then
retrieve their nearest shape codes from the discrete shape memory
based on feature similarity. After that, we use a shape decoder to
generate 3D object models based on the selected shape codes. To
ensure the network is well-trained, we pre-train our shape recon-
struction module on the ShapeNet dataset with a large number
of image-shape pairs. In the CFCO module, we employ the Hun-
garian matching algorithm to generate one-to-one pseudo labels,
facilitating a coarse-to-fine supervision approach at the region and
pixel levels, providing explicit supervision for the corresponding
similarity matrices. When it comes to point clouds, they cover more
extensive areas with fewer points, leading to a difference in den-
sity and a significant disparity in spatial granularity. To reconcile
this granularity inconsistency between images and point clouds,
we initially compute a region-level similarity matrix using inter-
mediate image features and point cloud features that have similar
granularity. We use the Hungarian matching algorithm to process
this similarity matrix, filtering out invisible points and establishing
more precise one-to-one correspondences. These one-to-one corre-
spondences serve as coarse pseudo labels to supervise the regional
similarity matrix. To achieve more refined and accurate correspon-
dences between pixels and points, we generate fine-grained su-
pervision by identifying the most similar pixel within each region.
This conversion of the initial coarse region-level pseudo-labels to
more detailed ones allows us to produce more refined and accurate
correspondences between pixels and points, thereby significantly
enhancing the accuracy of our pose estimation. In summary, the
primary contributions of our work are listed as follows:

• We introduce a novel method for self-supervised category-
level 6D object pose estimation, which comprises two crucial
modules: the CFCOmodule and the PSRmodule with Adap-
tive Shape Memory. They collaborate to better perform in
the self-supervised setting with large shape variations.

• In the Coarse-to-Fine Correspondence Optimization mod-
ule, a one-to-one region correspondence is provided as ex-
plicit supervision for both coarse-grained and fine-grained
similarity matrices through global optimization. In the Part-
level Shape Reconstruction module, discrete codebooks are
utilized to capture part-level semantic features of objects,
adapting to reconstruct point clouds for each image.

• Our proposed method achieves state-of-the-art results on
the NOCS dataset. Furthermore, we conduct comprehen-
sive ablation experiments to verify the effectiveness of our
designs.

2 RELATEDWORK
Fully-supervised Pose Estimation. Fully-supervised 6D pose
estimation can be categorized into instance-level [13, 17, 20, 28, 29]
and category-level methods [3, 24, 30]. Given specific models for
each instance, methods such as BB8 [20] and PVNet [17] predefine
a set of keypoints. These networks retrieve pose by establishing
correspondences among these keypoints. Additionally, there are
instance-level methods that directly regress pose [28] or establish
dense prediction [29]. To achieve generalization across instances
within a category, category-level methods incorporate category pri-
ors. [30] introduced Normalized Object Coordinate Space (NOCS),
which is later aligned with diverse objects to retrieve pose. Utilizing
the estimated NOCS, the 6D pose is then determined through the
application of the Umeyama algorithm [25]. Subsequent research
endeavors [3, 24] have emerged, focusing on refining and enhancing
the accuracy of NOCS representations.

Semi/Self-supervised for Pose Estimation. Due to the sub-
stantial labor and time costs for annotating 6D labels in the real-
world, various semi/self-supervised methods have been proposed to
enhance generalization. Some works are based on semi-supervised
learning [27, 33], where networks are trained initially on labeled
virtual datasets and unsupervised real-world datasets. These ap-
proaches all involve pretraining on virtual datasets to acquire favor-
able initialization. Besides, some of the semi-supervised focus on
migitating sim-to-real domain gap [5, 11, 12, 14]. To further address
the issue of labeled data requirement, self-supervised methods are
employed [34], whose networks are indirectly supervised through
2D/3D labels. Our proposed method addresses the challenge of in-
direct supervision by embedding a pseudo-label generation module
that progresses from coarse to fine.

VQVAE for generation. In generative tasks, VQVAE [26] has
been widely employed. VQVAE [26] learns the discrete representa-
tion of image patches and models their distribution. VQVAE2 [21]
extends the original VQVAE model with a hierarchical discrete rep-
resentation. In addition to 2D generative tasks, some studies have
utilized VQVAE methods in the 3D domain for 3D reconstruction
tasks. Canonical Mapping [6] proposes a model using VQVAE to
generate point clouds. In concurrent research, AutoSDF [16] gen-
eralizes VQVAE to 3D voxels. To capture more fine-grained shape
variations of different objects, we introduce a part-level discrete
shape memory based on VQVAE.
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Figure 2: Framework Overview. Our method is comprised of two primary modules: the Part-level Shape Reconstruction
Module and the Coarse-to-Fine Correspondence Optimization Module. The Part-level Shape Reconstruction Module adaptively
learns part features through a discrete shape memory 𝑒, effectively reconstructing the object model 𝑃 . In the Coarse-to-Fine
Correspondence Optimization Module, a regional similarity matrix 𝑆𝑐 is computed between the image features 𝐹2 and the point
features 𝐹𝑔𝑒𝑜 and is then refined using coarse pseudo-labels 𝑇 ∗

𝑐 , which are obtained via Hungarian Matching. Subsequently,
the fine pseudo-labels 𝑇 ∗

𝑓
, derived from 𝑇 ∗

𝑐 through index-based upsampling, supervise the pixel-point similarity matrix 𝑆𝑓 ,
enhancing the accuracy of correspondence at a finer granularity.

3 METHOD
Our method aims to infer the rotation 𝑅 ∈ R3×3 and translation
𝑇 ∈ R3 of objects solely from RGB images, without relying on
annotated object poses. Figure 2 illustrates the workflow of our
method, which is divided into two main stages. In the first stage, we
pre-train our PSRmodule on the ShapeNet dataset. Using synthetic
RGB images 𝑥 , we reconstruct the corresponding 3D point cloud
model 𝑃 of the object depicted in the image. This stage serves
to provide a robust initialization for our part-level code memory
𝑒 ∈ R𝐾×𝐶 , which contains 𝐾 shape codes. Leveraging ShapeNet’s
extensive range of 3Dmodels enhances the robustness and accuracy
of our method (see Section 3.1). In the second stage, we engage in
self-supervised training using unlabeled data. Initially, the object
model 𝑃 ∈ R𝑁×3 is reconstructed through PSR module using the
pre-trained reconstruction module with the learned shape memory.
We then employ a PointNet[19] to extract geometric features 𝐹𝑔𝑒𝑜 ∈
R𝑁×𝐶 from the reconstructed 𝑃 , and a U-Net[22] to extract multi-
level features {𝐹𝑙 }3𝑙=0 from the images. Subsequently, we compute
the similarity between 𝐹𝑔𝑒𝑜 and the multi-level image features 𝐹2
and 𝐹3, which are derived from the penultimate and last layers
of the U-Net, producing similarities at both regional and pixel
levels. Furthermore, The CFCO module processes the computed
similarities to generate pseudo-labels, which in turn are used to
explicitly supervise the similarities at various granularities. This
step is crucial for enhancing the precision of the correspondence
establishment, ensuring that our method can accurately map the

3D object features to the corresponding features in the RGB images.
(see Section 3.2). we will detail each part in the following sections.

Figure 3: An illustration of our part-level shape reconstruc-
tion module. Our proposed reconstruction model captures
part-level shape variations for a better reconstruction

3.1 Part-level Shape Reconstruction with
Adaptive Shape Memory

To provide a good initialization for the reconstruction module, we
first conduct pretraining on a large-scale dataset ShapeNet [30].
Since ShapeNet consists of abundant point cloud data, we leverage
them to render a substantial number of images to pre-train our
reconstruction module. Given a rendered image 𝑥 , let 𝐹 denote
the feature map extracted from the image encoder. The feature
map is then patchified into 𝑁 patches, which are then subject to
average pooling to obtain region-aware descriptors denoted as
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𝑧𝑒 (𝑥) ∈ R𝑁×𝐶 .This method of patchifying and pooling is instru-
mental in enhancing the model’s sensitivity to local variations in
the image. By breaking down the feature map into smaller, man-
ageable regions, our model can focus on fine details within each
segment, thereby capturing subtle differences that may be lost in a
more global analysis.

Concurrently, we establish a latent code memory 𝑒 ∈ R𝐾×𝐶 ,
where 𝐾 represents the number of discrete shape codes. The decod-
ing process involves matching each descriptor to the closest shape
code in the memory, as defined by equation 1:

𝑧𝑞 (𝑥) = 𝑒𝑘 , 𝑘 = argmin
𝑗

∥𝑧𝑒 (𝑥) − 𝑒 𝑗 ∥2 . (1)

These randomly initialized shape codes are refined during training
through a Nearest Neighbor matching mechanism to effectively cap-
ture diverse local shape features. The use of a discrete latent space,
as opposed to a continuous one, results in more stable training
dynamics and higher quality of the generated models. This discrete
representation allows for the precise encoding of complex geomet-
rical information and avoids the over-smoothing often associated
with continuous autoencoders. Furthermore, the discrete nature en-
sures the consistent and robust selection of shape codes, enhancing
the model’s ability to learn distinct and intricate patterns.

After retrieving shape codes 𝑧𝑞 (𝑥) for𝑁 patches, we concatenate
them into a global feature vector 𝑔 ∈ R1×𝑁𝐶 , which is then fed
into a three-layer MLP to reconstruct the 3D shape. We employ the
Chamfer Distance as the reconstruction loss, effectively measuring
the shape discrepancy between the reconstructed point cloud 𝑃 and
target point cloud 𝑃 . In detail,

𝐷𝑐𝑑 (𝑃, 𝑃) =
1
|𝑃 |

∑︁
𝑥∈𝑃

min
𝑦∈𝑃

∥𝑥 − 𝑦∥2 + 1
|𝑃 |

∑︁
𝑦∈𝑃

min
𝑥∈𝑃

∥𝑥 − 𝑦∥2 . (2)

Similar to the approach taken in [26], we have addressed the issue
of undefined real gradient for equation 1 that is common in VQ-
VAE architectures. To do this, we have updated the weights of the
encoder and the code memory using a straight-through estimator
[1] and moving averages, respectively. As a result, the final loss
function is composed of three components, which are as follows:

𝐿𝑟𝑒𝑐𝑜𝑛 = 𝐷𝑐𝑑 (𝑃, 𝑃) + ∥𝑠𝑔[𝑧𝑒 (𝑥)] − 𝑒 ∥22 + 𝛽 ∥𝑧𝑒 (𝑥) − 𝑠𝑔[𝑒] ∥
2
2, (3)

where 𝛽 is a hyperparameter, and 𝑠𝑔 denotes the stop-gradient
operation.

After obtaining the pre-trained model, we introduce the shape
memory into the self-supervised network and fine-tune both the en-
coder and the shape memory to better adapt to real images. During
this process, real images are transformed into latent representa-
tions through the encoder and then compared with the vectors
in the pre-trained shape memory to identify the most matching
shape code. The selected shape codes are subsequently fed into the
pre-trained decoder, ultimately generating the reconstructed point
cloud 𝑃 . In this way, the pre-trained shape memory serves as a
crucial component to capture the local shape variations of different
instances, enhancing the quality of the reconstructed shapes.

3.2 Coarse-to-Fine Correspondence
Optimization

Coarse correspondence estimation. To meditate the significant
disparity in the spatial granularity between pixels and points, we
first establish region-level correspondences by matching interme-
diate patch features of the image with point features. Specifically,
given a reconstructed object model 𝑃 ∈ R𝑁×3, we employ a feature
extractor to obtain point-wise features 𝑉 ∈ R𝑁×𝐶 where 𝐶 is the
feature dimension. Considering the sparsity of the point cloud and
the aggregation of surrounding point information during feature
extraction, we treat each point as a descriptor of regional features.
Simultaneously, we encode the input image into multi-level features
{𝐹𝑙 }3𝑙=0 using a U-Net architecture, where the encoder part is the
ResNet18 pretrained as described in section 3.1. Specifically, we
utilize the features 𝐹2, corresponding to the penultimate layer, to
represent image regions. Then, we compute the coarse similarity
matrix 𝑆𝑐 ∈ Rℎ2𝑤2×𝑁 between these image regions and point cloud
regions using cosine similarity, where ℎ2,𝑤2 denote the height and
width of the image features 𝐹2. In detail,

𝑆𝑐 =
𝐹2 ·𝑉

∥𝐹2∥∥𝑉 ∥ . (4)

Coarse mapping planner. To enhance the learning of the
region-level similarity matrix, we propose to generate one-to-one
coarse pseudo labels 𝑇 ∗

𝑐 ∈ Rℎ2𝑤2×𝑁 for ensuring a unique corre-
spondence between each image region and point cloud region. The
pseudo label assignment process is the same as the Optimal Trans-
port (OT), and the goal of the OT problem is to find a transportation
plan at a global minimal transportation cost, which can be solved
by the Hungarian Matching algorithm. Specifically, given the point
region features 𝑉 , we aim to map the image region features 𝐹2 to
them. We denote this regional mapping as𝑇 ∗

𝑐 with a similarity cost
matrix (1 − 𝑆𝑐 ) ∈ Rℎ2𝑤2×𝑁 . The optimal transportation plan 𝑇 ∗

𝑐 is
obtained by minimizing the similarity cost:

𝑇 ∗
𝑐 = arg min

𝑇 ∈T

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑇𝑖 𝑗 ·𝐶𝑖 𝑗 , (5)

Here, due to the image features being fewer than the point cloud
features, we introduce 𝑁 −ℎ𝑤 virtual rows to the similarity matrix
to equalize the number of rows and columns for the standard Hun-
garian matching, discarding these virtual rows afterward. T is the
search space limited as:

T =

{
T ∈ R𝑁×𝑁 | 𝑇1 =

1
𝑁

· 1, 𝑇𝑇 1 =
1
𝑁

· 1
}
, (6)

where 1 denotes the vector of all ones. To online refine the similarity
matrix, the pseudo label loss is imposed to make the similarity,
which is computed as:

𝐿𝑐 = CE(𝑇 ∗
𝑐 , 𝑆𝑐 ), (7)

In essence, after aligning the densities of images and point clouds
using image region representations, the number of regions in the
image is less than that in the point cloud. The Hungarian matching
process, by discarding virtual rows of the image, helps to ignore the
invisible parts of the point cloud, effectively solving the inherent
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many-to-one challenge of mapping point clouds to image pixels
and significantly enhancing the precision of 6D pose estimation.

Fine correspondence estimation. Employing the aforemen-
tioned approach, we enhance the regional-level matching between
images and point clouds, initially establishing a coarse region-level
correspondence. To refine the pose estimation, we aim to derive a
more precise fine-matching relationship, which involves specific
pixel positions to point cloud coordinates. Initially, we calculate
a pixel-level similarity matrix 𝑆𝑓 ∈ Rℎ3𝑤3×𝑁 by evaluating the
cosine similarity of each pixel point with every point in the point
cloud, where ℎ3𝑤3 refer to the height and width from the 𝐹3.

Fine mapping planner. We generate fine pseudo labels 𝑇 ∗
𝑓

from coarse pseudo labels 𝑇 ∗
𝑐 through index-based upsampling.

We then utilize these fine pseudo labels 𝑇 ∗
𝑓
to supervise the pixel-

level similarity matrix 𝑆𝑓 . To articulate this process more clearly, we
equate it to initially down-sampling the pixel-level similarity matrix
𝑆𝑓 using index-based down-sampling to produce 𝑆𝑓 𝑐 , followed
by supervising 𝑆𝑓 𝑐 with coarse pseudo labels 𝑇 ∗

𝑐 . Next, we detail
the index-based down-sampling process. Initially, we reshape the
similarity matrix 𝑆𝑓 into dimensions ℎ3 ×𝑤3 × 𝑛. Then, we apply
max pooling across the spatial dimensions ℎ3 ×𝑤3 for each of the 𝑛
feature channels, resulting in a reducedmatrix of sizeℎ2×𝑤2×𝑛.This
matrix is further reshaped toℎ2𝑤2×𝑛, denoted as 𝑆𝑓 𝑐 . We supervise
𝑆𝑓 𝑐 using the coarse pseudo labels𝑇𝑐 . In summary, we supervise the
similarity of the points with the highest similarity in each region.

𝐿𝑓 = CE(𝑇 ∗
𝑓
, 𝑆𝑓 𝑐 ), (8)

Thus, the overall loss for coarse-to-fine correspondence optimiza-
tion is

𝐿𝑐2𝑓 = 𝐿𝑐 + 𝐿𝑓 . (9)

3.3 Inference and Training
We employ a two-stage training strategy. During the first stage, we
pre-train a shape reconstruction module on the ShapeNet. In the
self-supervised learning phase, we fine-tune this module in an end-
to-end manner. Additionally, we incorporate the 𝐿𝑐𝑦𝑐𝑙𝑒 to optimize
the similarity matrix similar to [34]. The final loss function is as
follows:

𝐿 = 𝐿𝑐2𝑓 + 𝐿𝑐𝑦𝑐𝑙𝑒 (10)

In the inference phase, we extract part-level features to look up
the shape memory for adaptive model reconstruction and obtain
a reliable similarity matrix through the coarse-to-fine constraints
employed during training. We then select reliable point pairs using
the cycle matching distance method and finally solve for the pose
using the UMEYAMA algorithm[25].

4 EXPERIMENTS AND RESULTS
4.1 Experiments Settings
Datasets. The main body of our experiments is conducted on the
Wild6D dataset [33], comprising a diverse collection of 5,166 videos
featuring 1722 different objects in 5 categories (i.e., bottle, bowl,
camera, laptop, and mug). The training set of Wild6D provides
RGB-D inputs and object foreground segmentation masks gener-
ated using Mask R-CNN [8]. The test set includes 6D pose labels

annotated by humans. In our evaluation of this dataset, we com-
pare our method with the current state-of-the-art semi-supervised
method RePoNet [33] and self-supervised approach [34], as well as
several pre-trained supervised methods adapted to this dataset.

We also train and conduct evaluations on the commonly used
category-level benchmark: NOCS-REAL275. NOCS-REAL275 is a
real-world dataset consisting of 6 categories (i.e., bottle, bowl, cam-
era, can, laptop, and mug) across 13 different scenes. A total of 4250
images from each scene are utilized for training, and the remaining
2750 images are reserved for validation. It is worth noting that we
pre-train our part-level shape reconstruction module on ShapeNet.

Evaluation metrics. As for the Wild6D and NOCS-REAL275
dataset, we report the mean Average Precision (mAP) of 5◦2cm,
5◦5cm, 10◦2cm, 10◦5cm metrics. 𝑛◦𝑚 cm denotes the percentage
of prediction with rotation prediction error within 𝑛 degrees and
translation prediction error within𝑚 centimeters. We also report
mAP of 3D Intersection over Union (IoU) at the threshold of 25%
and 50%.

Implementation details.Our PSRmodule is initially pre-trained
on ShapeNet to establish a good initialization. The entire network
is further trained on Wild6D in an end-to-end manner later. We
first resize the images to 256 × 256 pixels and set the number of
point clouds for the reconstruction model to 2048. PointNet is em-
ployed as the feature extractor for the point cloud modality, while
ResNet18 serves as the feature extractor for the imaging modality.
We employ the Open3D library to generate meshes directly from
3D point clouds, which aids in the rendering process. The network
is trained on eight NVIDIA RTX3090 GPUs, with a batch size of 16,
trained over 100 epochs.is

4.2 Comparison with State-of-the-Art Methods
We categorize current pose estimation methods into three groups:
1) fully-supervised methods: with both labeled data in synthetic and
real-world datasets; 2) semi-supervised methods: with labeled data
only on synthetic datasest; 3) self-supervised methods: without any
labeled data both on synthetic and real-world datasets.

Evaluation onWild6D. The quantitative results on the Wild6D
dataset are illustrated in the Table 1. The results demonstrate that
our method outperforms all previous state-of-the-art (SOTA) meth-
ods, achieving an improvement of 2.7% and 5% under 5°2cm and
10°5cm respectively. The enhanced performance of our method can
be attributed to a more comprehensive and explicit understand-
ing of object-specific local semantic information. This is achieved
through explicit supervision in part-level shape reconstruction and
correspondence establishment. For instance, to infer the shape of
the camera lens, the network can choose a semantic code control-
ling this attribute to make more precise predictions. A visualization
of pose and the reconstructed mesh is shown in Figure 4. Further-
more, we employ a pseudo-label supervision for correspondence
in a coarse-to-fine manner while the deformation networks of the
previous methods lack sufficient attention to fine-grained object
parts, leading to the superior performance of our method. We vi-
sualize points on the image and the 3D point cloud model in each
point’s features, finding that our method concentrates and accu-
rately captures similarities, as seen in Figures 5(a), 5(b). This visual
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Method Name Data IoU25 IoU50 5°2cm 5°5cm 10°2cm 10°5cm

CASS [3] C+R 19.8 1.0 - - - -
Shape Prior [24] C+R 55.5 32.5 2.6 3.5 9.7 13.9
DualPoseNet [15] C+R 90.0 70.0 17.8 22.8 26.3 36.5
GPV-Pose [7] C+R 91.3 67.8 14.1 21.5 23.8 41.1
RePoNet [33] C+W* 84.7 70.3 29.5 34.4 35.0 42.5
Self-GC [34] W* 92.3 68.2 32.7 35.3 38.3 45.3

Ours W* 94.1 69.8 35.4 38.2 40.5 50.6

Table 1: Comparison with SOTA methods on Wild6D. In “Data” column, C=CAMERA25, R=REAL275, S=synthetic objects,
W=Wild6D, “*”=w/o pose annotation.

Bottle Bowl Camera Mug Laptop

2d-image 3d-points 2d-image 3d-points 2d-image 3d-points 2d-image 3d-points 2d-image 3d-points

　 　 　 　 　 　 　 　 　 　

　 　 　 　 　 　 　 　 　 　

　 　 　 　 　 　 　 　 　 　

Figure 4: Qualitative comparisons on the Wild6D dataset: our proposed method versus the state-of-the-art by [34]. The left
column displays the estimated poses with bounding boxes on the input 2D images, and the right column shows the 3D instance
models reconstructed from those images.

evidence further underscores the effectiveness of our coarse-to-fine
correspondence optimization strategy.

Evaluation on NOCS-REAL275. The quantitative results on
the NOCS-REAL275 dataset are presented in the Table 2, showing
that our method outperforms all previous SOTA methods and sur-
passes the [34] by 3.2% and 5.2% under 5°5cm and 10°5cm. On the
REAL275 dataset, our method’s performance is slightly improved
compared to the methods under the same setting. This is primarily
attributed to the fact that we train our model exclusively on the
REAL275 dataset. Since the REAL275 dataset is relatively small, it
is challenging to provide abundant training information, leading to
a degradation in our performance. A visualization of pose and the
reconstructed mesh is shown in Figure 6.

4.3 Ablation Studies
Effects of part-level shape reconstruction module. We ana-
lyze the effectiveness of each sub-pipe of the module by remov-
ing/replacing modules from the original network structure (de-
noted as a full model). We develop four variations for comparison
as shown in Table 3. 1) In the w/o 3D reconstruction configuration,
we eliminate the image-to-3D reconstruction module and instead
directly establish correspondences using the clustered center 3D
models for each category from the ShapeNet dataset. The use of
generic shape priors leads to a significant performance decline
because they fail to capture the local shape variations among dif-
ferent instances within the same category. This inaccuracy affects
both the computation of similarity and the loss calculation during
rendering, compromising the overall efficacy of the model. 2) In
the static shape memory setting, the shape memory is pre-trained
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Supervision Method Data IoU25 IoU50 5°5cm 10°5cm

fully-supervised NOCS [30] C+R 84.8 78.0 10.0 25.2
Shape-Prior [24] C+R - 77.3 21.4 54.1

FS-Net [4] C+R 95.1 92.2 28.2 60.8
DualPoseNet [15] C+R - 79.8 35.9 68.8

Semi-supervised DISR [18] C+R* 83.2 73.0 19.6 54.5
RePoNet [33] C+R* 85.8 76.9 31.3 56.8

UDA-COPE [11] C+R* 84.0 82.6 34.8 66.0
NAS [5] S 15.5 1.3 0.9 2.4
CPPF [32] S 78.2 26.4 16.9 44.9

Self-supervised SCPE [9] R*+Y* 83.5 58.7 5.6 17.4
REAL[34] R* 76.3 41.7 11.6 28.3
Wild6D[34] W* 89.3 49.5 13.7 33.7
Ours-REAL R* 80.1 44.5 14.7 30.4
Ours-Wild6D W* 92.5 51.4 16.9 38.9

Table 2: Comparison with SOTA methods on REAL275. In “Data” column, C=CAMERA25, R=REAL275, S=synthetic objects,
Y=YCB [31], W=Wild6D, “*”=not using pose annotation.

Green Point Red Point Blue Point

(a) The similarity between individual pixel points and the point cloud (camera)

Red Point Green Point Blue Point

(b) The similarity between individual pixel points and the point cloud (laptop)

Figure 5: We visualize the similarity between individual pixels in the input image and points in the point cloud. In the
visualizations, yellow indicates high similarity while blue represents low similarity. The first row presents results from our
method, and the second row shows results from the method described in [34].
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Figure 6: Qualitative comparisons between the state-of-the-art method of [34] and our proposed one on NOCS dataset.
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Method IoU25 IoU50 5°2cm 5°5cm 10°2cm 10°5cm

w/o 3D reconstruction 73.2 32.4 20.7 23.6 29.4 38.1
w/ deformation network 89.3 57.4 26.7 29.5 35.9 48.6
w/ static shape memory 76.5 47.6 23.4 24.0 32.1 41.9
w/ non-pretrained shape memory 65.9 43.3 22.5 26.4 25.2 31.2
w/o correspondences optimization 90.2 65.3 31.2 35.0 36.2 47.5
w/o region-level correspondences optimization 92.3 67.6 33.6 37.5 38.5 49.2
w/o pixel-level correspondences optimization 91.2 66.3 32.3 36.3 37.6 48.9
full model 94.1 69.8 35.4 38.2 40.5 50.6

Table 3: Ablation studies on model designs and other settings.

exclusively on synthetic datasets and then kept frozen during sub-
sequent training on the Wild6D dataset. This approach leads to
suboptimal performance due to the simulation-to-reality domain
gap, which the static memory cannot bridge effectively.3) In the
w non-prestrained shape memory setting, shape reconstruction is
randomly initiated on the Wild6D dataset without any pre-training,
relying solely on self-supervised learning. The absence of direct
label supervision, combined with significant shape reconstruction
disparities, prevents the rendering module from guiding the opti-
mization correctly, leading to an inability to learn effectively and
resulting in suboptimal performance. 4) We also substitute PSR
with a deformation network similar to [34]. The results reveal that
our module excels in capturing fine-grained details, as traditional
deformation networks pay less attention to part-level deformations
and rely on a shared category prior to deformation.

Effects of coarse-to-fine correspondence optimization. We
evaluate the distinct impacts of the CFCO module’s two levels
of supervision—coarse-grained and fine-grained—by establishing
three variations through sequential ablation of these components:
1)w/o correspondences optimization: In this configuration, the entire
CFCO module is removed for assessment. The absence of CFCO
eliminates explicit supervision for all correspondence types, lead-
ing to a significant decline in performance. This change distinctly
highlights the critical role of the CFCO in providing structured,
explicit guidance necessary for accurate correspondence mapping
across the entire network. 2)w/o region-level correspondences opti-
mization: In this setting, we remove only the coarse-grained, region-
level supervision. The result is a marginal improvement, indicating
that while region-level correspondences contribute to establishing
foundational matches, they alone do not suffice to drive optimal
performance across the network. 3)w/o pixel-level correspondences
optimization: By ablation of the fine-grained, pixel-level supervi-
sion, the network experiences a slight degradation in performance.
This underlines the importance of pixel-level correspondences in
fine-tuning pose estimation accuracy, particularly in enhancing the
details and precision provided by region-level correspondences.

5 CONCLUSIONS
In this work, we propose a novel network for self-supervised category-
level 6D pose estimation. We design a coarse-to-fine correspon-
dence Optimization module and a part-level shape reconstruction
module using adaptive shape memory. The first module generates

one-to-one pseudo-labels through the Hungarian matching algo-
rithm to supervise dense correspondence predictions in a coarse-
to-fine manner. The second module adaptively learns a part-level
shape memory to perform precise reconstructions in local regions
of object model. Extensive experiments have demonstrated that our
proposed method outperforms the state-of-the-art methods on the
REAL275 and Wild6D datasets.
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