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Semantic-Aware andQuality-Aware Interaction Network for
Blind VideoQuality Assessment

Anonymous Author(s)
ABSTRACT
Current state-of-the-art video quality assessment (VQA) models
typically integrate various perceptual features to comprehensively
represent video quality degradation. These models either directly
concatenate features or fuse different perceptual scores while ignor-
ing the domain gaps between cross-aware features, thus failing to
adequately learn the correlations and interactions between different
perceptual features. To this end, we analyze the independent effects
and information gaps of quality- and semantic-aware features on
video quality. Based on an analysis of the spatial and temporal differ-
ences between two aware features, we propose a semantic-Aware
and quality-Aware Interaction Network (A2INet) for blind VQA.
For spatial gaps, we introduce a cross-aware guided interaction
module to enhance the interaction between semantic- and quality-
aware features in a local-to-global manner. Considering temporal
discrepancies, we design a cross-aware temporal modeling module
to further perceive temporal content variation and quality saliency
information, and perceptual features are regressed into quality
score by a temporal network and a temporal pooling. Extensive
experiments on six benchmark VQA datasets show that our model
achieves state-of-the-art performance, and ablation studies further
validate the effectiveness of each module. We also present a simple
video sampling strategy to balance the effectiveness and efficiency
of the model. The code for the proposed method will be released.

CCS CONCEPTS
• Computing methodologies→Modeling and simulation.

KEYWORDS
Video quality assessment, semantic- and quality-aware, cross-aware
guided interaction, cross-aware temporal modeling.

1 INTRODUCTION
The goal of video quality assessment (VQA) is to enable the model to
perceive the visual quality of videos and produce results consistent
with human subjective opinions, making it a popular research topic
in multimedia [21, 45]. Blind VQA (BVQA) models evaluate video
quality in the absence of reference videos, so huge efforts for BVQA
have been devoted and a variety of deep learning-based models
have been proposed [47, 59].
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Figure 1: Visualize the spatial feature maps of semantic- and
quality-aware, alongside the temporal distribution of fea-
tures on two high-quality videos (HV1 andHV2) and two low-
quality videos (LV1 and LV2). MOS is the mean opinion score,
higher values mean better subjective visual quality. (a) Three
representative frames, and the semantic- and quality-aware
feature maps are presented for the frames boxed in red. We
use ResNet-50 [13] pre-trained on the ImageNet dataset [7]
and theKoNIQ-10k dataset [15] to generate the semantic- and
quality-aware feature maps. (b) The temporal distribution of
each aware feature. Frame entropy and frame score for each
frame of the feature map are used to measure information
content and image quality, respectively.

Given that human judgments of video quality are influenced by
multiple perceptual factors working in concert, recent top mod-
els [47, 56] that adopt multiple networks to extract perceptual fea-
tures, resulting in superior performance over models using a single
network [23, 53]. These models concatenate features or fuse quality
scores from different branches to comprehensively represent video
quality. However, domain gaps between different aware features
remain under-studied in existing work, hindering the full utiliza-
tion of the advantages of multiple features in VQA and further
constraining the perceptual ability of the models.

Subjective studies are instructive for the design of objective VQA
models, and previous studies [43, 47] indicate that visual content
and distortion artifacts play primary roles in human judgments of
video quality. Visual content primarily pertains to content compo-
sition and motion information, which dominate human preferences
for video content and are referred to as semantic-aware. Distortion
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artifacts such as spatial degradation and temporal flicker are in-
troduced into video due to imperfections in capture equipment or
processing algorithms, which is denoted as quality-aware. Taking
two sets of videoswith varying quality levels, as depicted in Figure 1,
as examples, we analyze the roles of semantic- and quality-aware
features in VQA. Two aware features focus on distinct spatial
perceptual information by comparing videos with varying
qualities from Figure 1(a). The semantic-aware features focus
on objects and are robust to quality degradation, while the quality-
aware features are sensitive to quality degradation and exhibit
a stronger response in low-quality frames. Thus, combining two
aware features spatially can better understand the quality degrada-
tion in context. Two aware features exhibit different temporal
characteristics by observing Figure 1(b). High-quality videos
(blue and red solid curves) have slower fluctuations in temporal
content information and higher frame-level quality. The opposite
is true for low-quality videos (green and yellow dashed curves).
Temporal content variations and overall quality emerge as key
factors in discerning video quality degradation. In summary, cross-
aware features exhibit perceptual gaps across spatial and temporal
dimensions. We argue that simply concatenating features makes it
difficult to comprehend the intricate connections between different
perceptual features and video quality.

To address these challenges, we propose an effective and efficient
semantic-Aware and quality-Aware Interaction Network (A2INet)
for BVQA. To mitigate representation differences and enhance spa-
tial perception, we propose a cross-aware guided interaction (CAGI)
module that uses cross-aware guided instance normalization (CGIN)
to perceive the gaps between frame-level features with semantic-
and quality-aware features, and then implements global interaction
through a global self-attention layer. Motivated by Figure 1(b), we
design a cross-aware temporal modeling (CATM) module by captur-
ing information with significant quality degradation and content
variation to enhance the perception for temporal distortion. Finally,
the video quality score is obtained through temporal modeling and
temporal pooling for the perceptual features. We conduct extensive
experiments to verify that the proposed BVQAmodel achieves state-
of-the-art (SOTA) results on the LIVE-Qual [11], CVD2014 [33],
LIVE-VQC [37] and KoNViD-1k [14] datasets, with respective im-
provements of 7.25%, 2.43%, 4.92% and 3.95% in Spearman rank
order correlation coefficient (SRCC). The main contributions of
this paper are as follows,
1) As far as we know, this is the first attempt to explore differences
in various perceptual features and employ cross-aware feature learn-
ing to enhance the perceptual ability of models for BVQA.
2) We design a CAGI module comprising a CGIN and a global
self-attention layer, it uses a local-to-global manner to facilitate
interaction on two aware features.
3) We introduce a CATM to perceive temporal distortions from the
perspectives of quality saliency and content variation.
4) Extensive experiments have verified the advantages of the pro-
posed BVQA model, and ablation studies have demonstrated the
effectiveness of each module.

2 RELATEDWORK
The success of the BVQA model hinges on effective perceptual
feature extraction and temporal modeling to represent video quality
degradation across spatial and temporal dimensions.

2.1 Feature extraction for BVQA
BVQA models based on hand-crafted features. Classic BVQA
methods [6, 19, 25, 32, 35, 40] are designed to use hand-crafted fea-
tures for describing visual quality degradation. Nevertheless, these
hand-crafted features only emphasize low-level edges and texture
information, falling short of capturing high-level semantic infor-
mation. Subsequent work [20, 41] combined hand-crafted features
with semantic features extracted from pre-trained ResNet-50 [13]
models, yielding promising results.

BVQA models based on deep features. Deep learning-based
models are further divided into fixed backbone [22, 58] and end-
to-end training [44, 59] methods. Fixed backbone-based methods
extract features from video using feature extractors pre-trained on
other tasks. Li et al. [23, 24] used a pre-trained ResNet-50 to extract
content-aware features. Related researches [3, 26] follow the work
of [23, 24] using a single 2D network to capture features. Madhusu-
dana et al.[31] proposed self-supervised learning to train the feature
encoder. Many researches [22, 43, 51, 52, 58] have designed multiple
backbone networks and concatenated features to capture various
information from distorted videos, and obtained better results than
a single network. Zhang et al. [56] incorporated five features related
to visual perception and achieved SOTA performance.

For end-to-end training methods, early models [4, 53] utilized
single convolutional neural networks (CNN) to extract perceptual
features. Recently, Wu et al. [44, 45] proposed FAST-VQA, which
takes video fragments as inputs and trains variants of the video
swin Transformer tiny (SwinT-3D) [29] for BVQA. DisCoVQA [46]
trained SwinT-3D with sparse frames as input. Yuan et al. [55] de-
signed a video transformer with a multi-path temporal network and
sparse attention blocks for capturing different distortions. Sun et
al. [38] fine-tuned ResNet-50 and incorporated motion features to
represent video quality. ZoomVQA [59] trained the image quality
assessment (IQA) and VQA branches separately. Wu et al. [47] used
inflated-ConvNext [28] and FAST-VQA models to perceive the qual-
ity of aesthetic and technical perspectives, obtaining video quality
scores through simple weighted fusion.

Overall, existing models usually concatenate features or fuse
branch scores to predict video quality. We analyze spatial gaps in
different aware features to narrow the feature gaps and enhance
mutual perception through a CAGI module. Since this paper focuses
on exploring more effective ways of combining different aware
features for BVQA rather than feature extraction, the proposed
model is designed as a fixed backbone method.

2.2 Temporal modeling for BVQA
Temporal distortion primarily occurs in the form of flicker, jitter,
and scene transitions, leading to video quality degradation. Previous
studies have shown that temporal modeling is crucial for BVQA.

Li et al. [23, 24] modeled temporal relationships frame-by-frame
using gated recurrent units (GRUs) [5], employing both min pool-
ing and soft-weighted average pooling to aggregate frame-level
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Figure 2: The framework of the proposed A2INet for BVQA, with the feature extraction module (Section 3.1) to extract two
aware features, the CAGI (Section 3.2) to perform local and global interactions of two aware features, and CATM module
(Section 3.3) to capture the long-term dependencies of fused features and regress features into video quality scores.

scores. [22, 56] referenced this temporal modeling and temporal
pooling method. Chen et al. [4] introduced multi-level GRUs to
fuse motion information of different frequencies. Chen et al. [3]
designed a pyramid temporal aggregation module that fuses short-
term and long-term memory of frame-level features. Telili et al. [39]
utilized bidirectional long short-term networks (Bi-LSTM) to cap-
ture temporal correlations between the previous and next frames.
Ying et al. [52] used InceptionTime [17] for temporal modeling due
to its faster and easier training. Li et al. [26] proposed a hierarchical
Transformer that integrates frame-level and clip-level quality to
derive video-level quality scores by stacking several divide and con-
quer Transformer layers. Wu et al. [46] designed a temporal content
Transformer to learn the relationships among frame contents. In
addition to modeling the long-term dependencies of video frames
through temporal networks, some related works [22, 38, 44, 46–
48, 58, 59] employed 3D networks, such as SlowFast [9], Swin-
Transformer (Swin-3D) [29] and TimeSformer [1], to extract local
spatio-temporal information.

In general, an effective temporal modeling module assists the
model in extracting long-term dependencies and perceiving tempo-
ral distortions in videos. Existing models usually perform temporal
modeling on concatenated features and do not fully exploit the gaps
in representing video quality over time among different features.
Based on the analysis of Figure 1(b), we propose the CATM module
to perceive the temporal content variation and quality saliency
information of the video, which fully considers the temporal char-
acteristics of two aware features in videos with varying quality.

3 PROPOSED METHOD
Figure 2 depicts the framework of the proposed semantic-aware
and quality-aware interaction network (A2INet) for BVQA. The
distorted video is first inputted into a feature extraction module
to extract spatial quality-aware and semantic-aware features (Sec-
tion 3.1). Subsequently, the cross-aware guided interaction (CAGI)
module is employed to perceive local perceptual gaps between the
two aware features and achieve global interaction (Section 3.2).
Next, the fused features are fed into a cross-aware temporal model-
ing (CATM) module to further capture quality-aware and semantic-
aware long-term dependencies, and aggregate frame-level features

through temporal pooling to estimate the video-level quality score
(Section 3.3). Each module is introduced in detail below.

3.1 Feature Extraction
Based on previous subjective experiments regarding human prefer-
ences in visual quality [43, 47, 48], we extract spatial quality-aware
features and spatial (or motion) semantic-aware features to repre-
sent video quality. The proposed model is designed a dual-branch
architecture, comprising a quality-aware network and a semantic-
aware network, for extracting two aware features. A distorted video
V = {V (ℎ,𝑤, 𝑡)} ∈ R𝐻×𝑊 ×𝑇 is treated as a collection of frame-
level images, where 𝐻 ×𝑊 represents the spatial resolution of the
video, and 𝑇 is the video length.

We employ an IQA model [57] pre-trained on multiple IQA
datasets as the quality-aware network. Given that the visual per-
ception system is a hierarchical structure [27, 49], features 𝑭𝑞1

𝑡 ∈
R64× 𝐻

2 ×𝑊
2 , 𝑭𝑞2

𝑡 ∈ R128× 𝐻
4 ×𝑊

4 , 𝑭𝑞3
𝑡 ∈ R256× 𝐻

8 ×𝑊
8 and 𝑭

𝑞4
𝑡 ∈

R512× 𝐻
16 ×

𝑊
16 are extracted from four bottlenecks of the quality-

aware network, where 𝑡 represents the 𝑡-th frame. Then, the spatial
global average pooling and global standard deviation pooling are
applied for the features of each bottleneck. The pooled features
are concatenated into features 𝒇𝑞𝑡 ∈ R1×1920 at the 𝑡-th frame, and
the quality-aware features of the distorted video are represented as
features 𝑭𝒒 =

{
𝒇
𝑞
𝑡

}
∈ R𝑇×1920.

For the other branch, we use the pre-trained ResNet-50 [13] on
the ImageNet dataset [7] as the semantic-aware network. Similarly,
we extract semantic-aware features from the distorted video, de-
noted as 𝑭 𝑠 =

{
𝒇𝑠𝑡

}
∈ R𝑇×7680. To align the feature dimensions of

the two aware features, we pass the features both through a fully
connected (FC) layer and obtain features 𝑭 𝑠

𝑓
and 𝑭

𝑞

𝑓
∈ R𝑇×𝐷 .

3.2 Cross-aware Guided Interaction Module
We propose the CAGI, which comprises a cross-aware guided in-
stance normalization (CGIN) and a global self-attention layer, to
perceive local gaps and achieve global interaction between features.

1) CGIN. An adaptive instance normalization is proposed for
style transfer [16] by combining the mean and variance of the
features from content image 𝑰𝑋 with the features from style image

3
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𝑰𝑌 , which is defined as

AdaIN (𝑿 , 𝒀 ) = 𝜎 (𝒀 ) 𝑿 − 𝜇 (𝑿 )
𝜎 (𝑿 ) + 𝜇 (𝒀 ) (1)

where 𝑿 and 𝒀 ∈ R𝐵×𝐶×𝐻×𝑊 are the features of input images 𝑰𝑋
and 𝑰𝑌 respectively, 𝐵, 𝐶 , 𝐻 , and𝑊 represent the batch size, the
feature channel, the height, and width of feature map, respectively,
𝜇 (·) and 𝜎 (·) calculate across spatial dimensions independently
for each channel and each sample of 𝑿 and 𝒀 [10, 30].

Inspired by this module, we use feature guided instance normal-
ization (FGIN) to interact the cross-aware features,

FGIN (𝑿 , 𝒀 ) = 𝛾𝑠 (𝒀 )
𝑿 − 𝜇 (𝑿 )
𝜎 (𝑿 ) + 𝜃𝑠 (𝒀 ) (2)

where 𝛾𝑠 (·) and 𝜃𝑠 (·) denote both an FC layer, 𝛾𝑠 (𝒀 ) and 𝜃𝑠 (𝒀 )
are treated as affine parameters to scale and shift the normalized
features 𝑿 , thereby facilitating the interaction between the two
features. However, the process of deforming𝑿 to 𝒀 by Eq. (2) leads
to the loss of the original information of 𝑿 . For this reason, we
further modify Eq. (2), as follows

𝑓 (𝑿, 𝒀 ) = 𝛾𝑠 (𝒀 )
𝑿 − 𝜇 (𝑿 )
𝜎 (𝑿 ) + 𝜃𝑠 (𝒀 ) + 𝛾1

𝑿 − 𝜇 (𝑿 )
𝜎 (𝑿 ) (3)

where 𝛾1 is a constant and is set to 1. As shown in Eq. (3), we add
normalized features 𝑿 in Eq. (3), which prevents the network from
losing information 𝑿 during feed-forward. Finally, the proposed
CGIN is formulated as follows,

CGIN
(
𝑭
𝑞

𝑓
, 𝑭 𝑠
𝑓

)
= 𝑓

(
𝑭
𝑞

𝑓
, 𝑭 𝑠
𝑓

)
⊕ 𝑓

(
𝑭 𝑠
𝑓
, 𝑭
𝑞

𝑓

)
= 𝑭𝑞𝑠 ⊕ 𝑭 𝑠𝑞 (4)

We narrow the perceptual gaps between the cross-aware features
by deforming them towards each other, and then concatenate 𝑭𝑞𝑠
and 𝑭 𝑠𝑞 to form the feature 𝑭𝑝𝑒 ∈ R𝑇×2𝐷 .

2) Global self-attention layer. After perceiving local gaps
on cross-aware features, a global self-attention layer [42, 50] is
designed to enhance the global interaction between frames.

Similar to the self-attention mechanism, the feature 𝑭𝑝𝑒 gener-
ates query 𝑭

𝑝𝑒

𝑄
, key 𝑭

𝑝𝑒

𝐾
and value 𝑭𝑝𝑒

𝑉
∈ R𝑇×2𝐷 matrices through

three linear projections 𝑾𝑄 , 𝑾𝐾 and 𝑾𝑉 ∈ R2𝐷×2𝐷 to encode
temporal information of the 𝑭𝑝𝑒 ,

𝑭
𝑝𝑒
𝑎𝑚 = 𝑀𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

©«
𝑭
𝑝𝑒

𝑄

(
𝑭
𝑝𝑒

𝐾

)T
√

2𝐷

ª®®¬ ∈ R𝑇×𝑇 (5)

where𝑀𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (·) means a Softmax function, “T” represents the
transpose operator. The values of 𝑭𝑝𝑒𝑎𝑚 reflect the correlation of two
elements between frames. Finally, the 𝑭

𝑝𝑒
𝑎𝑚 is directly multiplied

by the 𝑭𝑝𝑒
𝑉
, and 𝑭𝑝𝑒 with residual links [42] is added to obtain the

feature 𝑭𝑒 .

3.3 Cross-aware Temporal Modeling
The CATM module is designed to capture temporal distortions
associated with video quality degradation and to regress features
into video-level quality scores.

Previous research has shown that frames with severe quality
degradation may have a greater impact on the quality of the whole
video [54]. Additionally, factors such as camera shake and scene
transitions [46] also influence video quality. By integrating these

Figure 3: Illustrations of the quality saliency perception and
content variation perception blocks.

theoretical findings with the insights from Figure 1, we develop
the quality saliency perception and content variation perception
blocks to enhance the perception of temporal quality, as depicted in
Figure 3. Before input to the CATMmodule, feature 𝑭𝑒 is reduced to
the 𝐷-dimension through an FC layer, and maximum pooling and
standard deviation pooling are utilized to aggregate the saliency
and variation information of feature 𝑭𝑒 along the temporal dimen-
sion. Subsequently, features 𝑭𝑒𝑚𝑎𝑥 and 𝑭𝑒

𝑠𝑡𝑑
∈ R1×𝐷 are fed into a

lightweight network that consists of two FC layers, one ReLU func-
tion and one Sigmoid function to obtain features 𝑭𝑚𝑎𝑥 and 𝑭 𝑠𝑡𝑑 .
Then, 𝑭𝑒 is multiplied by 𝑭𝑚𝑎𝑥 and 𝑭 𝑠𝑡𝑑 after passing through a
temporal convolution layer to derive the temporal quality saliency
and content variation information, respectively. Finally, 𝑭𝑞𝑡 and
𝑭 𝑠𝑡 are concatenated into 𝑭𝑧 ∈ R𝑇×2𝐷 and input to the temporal
network to build long-term dependencies.

Similar to previous work [23], we first crop the feature 𝑭𝑧 by
using a FC layer, and the reduced feature 𝑭

𝑧
=

{
𝒇
𝑧

𝑡

}
∈ R𝑇×128

is obtained. Then, the feature 𝑭
𝑧 is input into GRUs to capture

long-term dependencies. And a FC layer is used to regress the
output features 𝑯 𝑡 = {𝒉𝑡 } ∈ R𝑇×32 of GRUs into frame-level
scores 𝒒 = {𝑞𝑡 } ∈ R𝑇×1. We adopt a subjectively-inspired temporal
pooling strategy [36] to integrate frame-level scores 𝒒 to a video-
level score 𝑄𝑝 .

3.4 Sampling Strategy and Optimization
1) Sampling strategy. Existing fixed backbone-based methods
usually extract features for full-resolution videos, resulting in mod-
els with high complexity that increases with the resolution of the
video. In this end, we propose a simple video sampling strategy
based on the characteristics of semantic-aware features and quality-
aware features to balance the effectiveness and efficiency of the
models. On one hand, as observed from Figure 1(a), semantic-aware
features focus on object and contextual semantics but has little
effect on quality degradation. On the other hand, quality-aware
features are sensitive to local quality degradation but lacks under-
standing of global semantic content. Thus, we resize each frame
to preserve the original global semantics and randomly crop each
frame into four 768×768 patches to ensure the original local quality.
The resized frame is set to𝑚𝑖𝑛 (𝐻,𝑊 ) = 540 while maintaining the
aspect ratio, and we strictly aligned the sample areas to ensure raw
temporal variations during patch sampling [18, 44], where𝑚𝑖𝑛 (·)
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denotes the minimum operation. Finally, the imresized video and
the cropped video are fed into the semantic-aware and quality-
aware networks, respectively. And, the features of four patches are
averaged as frame-level quality-aware features.

2) Optimization. During training, the proposed model is op-
timized using mean absolute error (MAE) loss L𝑀 and rank loss
L𝑅 as objective functions. The MAE loss measures the distance
between the predicted score 𝑄𝑝 and the mean opinion score (MOS)
𝑄𝑚 , denoted as:

L𝑀 =
1
𝐵

𝐵∑︁
𝑖=1

���𝑄𝑝𝑖 −𝑄𝑚𝑖

��� (6)

where 𝑖 represents the 𝑖-th video from the mini-batch. The differen-
tiable rank loss function is calculated as:

L𝑅 =
1
𝐵2

𝐵∑︁
𝑖=1

𝐵∑︁
𝑗=1

max
(
0,
���𝑄𝑚𝑖 𝑗 ��� − 𝜙

(
𝑄𝑚𝑖 , 𝑄𝑚𝑗

) (
𝑄
𝑝

𝑖 𝑗

))
(7)

where 𝑄𝒔
𝑖 𝑗

= 𝑄𝒔
𝑖
−𝑄𝒔

𝑗
, 𝒔 ∈ {𝑚, 𝑝}, and 𝜙 (·) is defined as :

𝜙
(
𝑄𝑖 , 𝑄 𝑗

)
=

{
1, if 𝑄𝑖 ≥ 𝑄 𝑗
−1, if 𝑄𝑖 < 𝑄 𝑗

(8)

Finally, the training loss function is represented by:

L𝐼𝑁𝑒𝑡 = L𝑀𝐴𝐸 + 𝜂L𝑟𝑎𝑛𝑘 (9)

where 𝜂 is the parameter used to balance the two losses.

4 EXPERIMENTS
4.1 Experimental Settings
1) Implementation details. In the experiment, the dimension
parameter 𝐷 is set to 1024, and the balance parameter 𝜂 is set to 1.
During training, we freeze the weights of the quality- and semantic-
aware networks. To compare with the VQA model based on the 3D
network, we replace the spatial semantic-aware network with the
SlowFast [9] pre-trained on the action recognition dataset [2] as the
motion semantic-aware network. Only the fast features from the
last layer of the network are used as motion semantic features, with
the feature dimension of 𝑭 𝒔 being 512. As a distinction, we use S+S
to represent the combination of spatial quality-aware and spatial
semantic-aware, and S+M to represent the combination of spatial
quality-aware and motion semantic-aware. Moreover, we set up
two video input modes, full resolution and preprocessing, which
are abbreviated as Proposed FR and Proposed PR. For Proposed
FR, we take the whole video as the input. For Proposed PR, we
sample 128 frames from the video at the same interval and process
them as input by the preprocessing described in Section 3.4. The
experiments are conducted on PyTorch [34] with single RTX 3090
GPU. The batch size is set to 8, and Adam optimizer with an initial
learning rate of 2 × 10−5 is used for training learnable parameters.

2) Comparedmethods.The performance of the proposedmodel
is compared with sixteen VQA models, including two models com-
bining hand-crafted and deep features (RAPIQUE [41] and CNN-
VQM [20]), and fourteen deep learning-based VQA models (in-
cluding eight fixed backbone models, VSFA [23], GSTVQA [3],
CoINVQ [43], PVQ [52], DCVQE [26], Li et al. [22], CONVIQT [31]
andHVS-5M [56], and six end-to-end trainingmodels, FAST-VQA [44],
SimpleVQA [38], FasterVQA [45], ZoomVQA [59], DisCoVQA [46]

and VQT [55]). Note that all models are run with the source code
released by the authors and are not trained with additional VQA
datasets. Two RTX 3090 GPUs are used for training HVS-5M [56],
FAST-VQA [44], FasterVQA [45], ZoomVQA [59] and SimpleVQA [38].

Table 1: Summary of six benchmark VQA datasets used for
experiments. These datasets cover videos with various scenes,
resolutions, durations and frame rates, which can test the
performance of models on various videos. “Num. Videos”,
“Num. Frames”, “Spatial Res.” and “Time Dur.” mean the num-
ber of videos,the number of frames, spatial resolution and
time duration, respectively.

Dataset Num.
Videos

Spatial
Res.

Num.
Frames

Time
Dur.

MOS
Range

CVD2014 [33] 234 480p,720p [143,830] 10-25s [-6.5,93.4]
LIVE-Qual [11] 208 1080p [358,526] 15s [16.6,73.6]
LIVE-VQC [37] 585 240p-1080p [166,1202] 10s [6.2,94.3]
YT-UGC [43] 1142 360p-4k [71,600] 20s [1.2,4.7]

KoNViD-1k [14] 1200 540p [181,240] 8s [1.2,4.6]
LSVQ [52] 38811 99p-4k [15,605] 5-12s [2.4,91.4]

3) Six benchmark VQA datasets. Six VQA datasets with mean
opinion scores (MOS) are used as benchmark datasets to test the per-
formance of different models, including five small-scale datasets
(CVD2014 [33], LIVE-Qual [11], LIVE-VQC [37], YT-UGC [43] and
KoNViD-1k [14]) and one large-scale dataset (LSVQ [52]), their
details are listed in Table 1. The LSVQ dataset comprises a train
subset (LSVQtrain), and two test subsets (LSVQtest and LSVQ1080p),
containing 28056, 7182 and 3573 videos, respectively. For YT-UGC
dataset, we follow [22] and 1142 videos are selected for experiments.

4) Evaluation criteria. For each VQA dataset, we follow the
settings of [38, 44] and the videos in each dataset are partitioned
into training and test sets. Specifically, we train each model on the
training set and verify the performance of the model on the test
set. Pearson linear correlation coefficient (PLCC) and Spearman
rank-order correlation coefficient (SRCC) are used as evaluation
criteria to quantify the correlation between predicted scores and
subjective judgments (i.e., MOS values), where SRCC reflects the
monotonicity of BVQA models, and PLCC is utilized to evaluate
the accuracy of BVQA models. Following [12], a nonlinear logistic
function maps the predicted scores to the same scale as the MOS
before calculating PLCC. The train-test splits are repeated ten times
to avoid performance bias, and the median results are reported.

4.2 Comparison on Individual Datesets
Table 2 presents the comparison results of the proposed models
and sixteen BVQA models on five small-scale datasets. In Table 2,
the weighted performance of the proposed FR(S+M) model sur-
passes that of the SOTA model [56] by 2.91% and 3.39% in terms
of PLCC and SRCC, respectively. The proposed FR(S+M) model
outperforms prior fixed backbone methods on four small-scale
datasets, achieving 7.25%, 2.43%, 4.92% and 3.95% improvements
over the second-best results in terms of SRCC on the LIVE-Qual,
CVD2014, LIVE-VQC, and KoNViD-1k datasets. It is worth men-
tioning that the proposed FR(S+S)model, which does not consider
local spatio-temporal information, still shows competitiveness. The
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Table 2: Results on the five benchmark VQA datasets. “F” and “B” represent feature type and backbone network, “H” and “D”
stand for hand-crafted and deep features, “2D” and “3D” denote 2D and 3D backbone networks. “W.A.” shows the weighted-
average performance over all datasets, and weights are proportional to database-sizes. The best and second best results for
fixed backbone methods are highlighted in red bold and blue bold respectively. The best result for end-to-end training methods
is underlined. Italics indicate data sourced from original references. “-” indicates that the results are not available.

Type Models F B
LIVE-Qual

(208)
CVD2014
(234)

LIVE-VQC
(585)

YT-UGC
(1142)

KoNViD-1k
(1200)

W.A.
(3369)

PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC
Fixed-

Backbone
CNN+TLVQM(MM,20) H+D 2D 0.8278 0.8220 0.7795 0.7486 0.8037 0.7719 0.8225 0.8112 0.8278 0.8220 0.8185 0.8045
RAPIQUE(OJSP,21) H+D 2D 0.7325 0.6927 0.7174 0.7177 0.7626 0.7879 0.7510 0.7429 0.8143 0.8060 0.7721 0.7683

Fixed-
Backbone

VSFA(MM,19) D 2D 0.8007 0.7671 0.8735 0.8732 0.7889 0.7255 0.7737 0.7659 0.7951 0.7943 0.7926 0.7765
GSTVQA(TCSVT,21) D 2D 0.7544 0.6873 0.8783 0.8718 0.7429 0.7260 0.7714 0.7758 0.8091 0.8133 0.7863 0.7817
CoINVQ(CVPR,21) D 2D+3D - - - - - - 0.802 0.816 0.764 0.767 - -
PVQ(CVPR,21) D 2D+3D - - - - 0.837 0.827 - - 0.791 0.786 - -

DCVQE(ACCV,22) D 2D 0.5822 0.7073 0.7601 0.8296 0.6316 0.7282 0.6599 0.7739 0.7953 0.8024 0.7054 0.7759
Li et al(TCSVT,22) D 2D+3D 0.8253 0.8150 0.9043 0.8909 0.8441 0.8515 0.8237 0.8387 0.8473 0.8514 0.8413 0.8476
CONVIQT(TIP,23) D 2D 0.802 0.797 0.837 0.858 0.817 0.808 0.822 0.832 0.849 0.851 0.831 0.834
HVS-5M(TCYB,23) D 2D+3D 0.8218 0.7866 0.8903 0.8780 0.8470 0.8531 0.8490 0.8519 0.8536 0.8538 0.8515 0.8506

End-
to-
End

FAST-VQA(ECCV,22) D 3D 0.8053 0.8093 0.8727 0.8635 0.7950 0.7515 0.8102 0.8122 0.8547 0.8489 0.8275 0.8181
SimpleVQA(MM,22) D 2D+3D 0.8304 0.8054 0.8987 0.8836 0.8329 0.7907 0.7915 0.7971 0.8521 0.8483 0.8301 0.8208

Faster-VQA(TPAMI,23) D 3D 0.7480 0.7477 0.8564 0.8490 0.8133 0.7690 0.8135 0.7987 0.8534 0.8500 0.8266 0.8122
DisCoVQA(TCSVT,23) D 3D 0.823 0.825 0.893 0.897 0.844 0.838 - - 0.860 0.863 - -
ZoomVQA(CVPR,23) D 2D+3D 0.8222 0.7987 0.8926 0.8719 0.7677 0.7227 0.8346 0.8409 0.8280 0.8301 0.8239 0.8161

VQT(MM,23) D 3D - - - - 0.8357 0.8238 0.8514 0.8357 0.8684 0.8582 - -

Fixed-
Backbone

Proposed PR(S+S) D 2D+2D 0.8785 0.8573 0.9182 0.9059 0.8493 0.8184 0.8472 0.8536 0.8657 0.8669 0.8610 0.8561
Proposed FR(S+S) D 2D+2D 0.8764 0.8676 0.9183 0.9056 0.8484 0.8195 0.8530 0.8531 0.8668 0.8695 0.8631 0.8577
Proposed PR(S+M) D 2D+3D 0.8860 0.8656 0.9128 0.9042 0.8894 0.8869 0.8408 0.8478 0.8785 0.8850 0.8705 0.8729
Proposed FR(S+M) D 2D+3D 0.8865 0.8741 0.9144 0.9126 0.8952 0.8951 0.8518 0.8569 0.8812 0.8875 0.8763 0.8794

proposed FR(S+S) model improves the LIVE-Qual, CVD2014 and
KoNViD-1k datasets by 6.45%, 1.65% and 1.84% in terms of SRCC,
respectively. One possible reason for the weaker performance of
the proposed FR(S+S)model on the LIVE-VQC dataset is that local
spatio-temporal information plays a significant role in this dataset.
Despite freezing the feature extractors, the weighted performance
of our proposed models still outperforms that of all end-to-end
training methods. In summary, the proposed model achieves SOTA
performance by analyzing domain gaps across aware features and
enhancing the perception of two aware features in space and time
through CAGI and CATM, rather than directly concatenating fea-
tures. Furthermore, the weighted performance of the proposed PR
models is only slightly lower than that of the proposed FRmodels.
We will further compare their complexity in Section 4.6.

In addition to analyzing the superior performance of the pro-
posed model, we draw several other conclusions. First, the perfor-
mance of models based on 3D feature extractors is superior to that of
models based on 2D feature extractors, suggesting that local spatio-
temporal information is more crucial than spatial features for VQA
tasks. Although models [3, 23, 26] temporally model frame-level
features via temporal network, the separate extraction of spatial
and temporal features fails to capture intrinsic spatio-temporal
information. Second, models based on multiple feature extractors
outperform those based on a single feature extractor. The utilization
of multiple feature extractors enables the capture of various per-
ceptual features, providing a richer representation for video quality
degradation and yielding superior performance. Lastly, the perfor-
mance of fixed backbone-based methods is comparable to that of
end-to-end training methods in small-scale datasets. End-to-end
training-based methods fine-tune the backbone network to extract

features related to visual quality while using only part of the video
data (clips or sparse frames) as input. Fixed backbone-based meth-
ods use feature extractors pre-trained from other tasks, yet they
have access to more comprehensive video data. As a result, both
methods have similar prediction performance on small datasets.

4.3 Intra- and Cross-dataset Validation
Next, we conduct intra- and cross-dataset validation to verify the
generalization ability of the proposedmodel. Themodels are trained
on the LSVQtrain subset and validated on the LSVQtest and LSVQ1080p
(intra-dataset validation). For cross-dataset validation, the optimal
trained model is tested on LIVE-VQC and KoNViD-1k datasets.
We choose VSFA [23] GSTVQA [3], PVQ [52], Li et al [22], CON-
VIQT [31] and HVS-5M [56] as comparison models, as they freeze
the backbone network during training. Table 3 presents the com-
parative results. The proposed PR(S+M) and FR(S+M) models
have better generalization performance. Although the proposed
FR(S+M) model has poor cross-dataset validation performance on
the LIVE-VQC dataset, it demonstrates excellent performance in
both intra- and cross-dataset validation. The proposed PR(S+S)
and FR(S+S) models outperform all VQA models based on the 2D
backbone network, and even surpass PVQ [52], which includes a 3D
feature extractor. The performance of the proposed PR(S+S) even
outperforms the proposed FR(S+S) with performance by training
on a large amount of video data on the LSVQtest dataset. Overall,
the proposed models have good generalization performance.

4.4 Qualitative Results
To illustrate the correlation between predicted scores with sub-
jective scores (i.e.MOS), we first visualize the scatter plots of the
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Table 3: Results of the intra- and cross-dataset validation on
LSVQtest, LSVQ1080p, and two small-scale datasets. The best
and second results are highlighted in red bold and blue bold.

Models
Intra-dataset Cross-dataset

LSVQtest LSVQ1080p KoNViD-1k LIVE-VQC
PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

VSFA 0.8050 0.8045 0.7201 0.6803 0.8174 0.8163 0.7896 0.7459
GSTVQA 0.7983 0.7985 0.7053 0.6754 0.7998 0.7954 0.7604 0.7057
PVQ 0.828 0.827 0.739 0.711 0.795 0.791 0.807 0.770

Li et al. 0.8567 0.8574 0.7825 0.7695 0.8379 0.8369 0.8136 0.7892
CONVIQT 0.820 0.821 - - - - - -
HVS-5M 0.8702 0.8731 0.8099 0.7830 0.8445 0.8401 0.8249 0.8013

Proposed PR(S+S) 0.8564 0.8561 0.7849 0.7420 0.8446 0.8375 0.8068 0.7574
Proposed FR(S+S) 0.8539 0.8542 0.7799 0.7331 0.8341 0.8329 0.7896 0.7509
Proposed PR(S+M) 0.8805 0.8789 0.8063 0.7741 0.8598 0.8640 0.8391 0.8082
Proposed FR(S+M) 0.8779 0.8780 0.8182 0.7851 0.8640 0.8673 0.8154 0.8165

proposed FR (S+S) and PR (S+M) models on the LSVQtest dataset
in Figure 4. We observe that most of the scatter points cluster
around the red line, indicating that the scores predicted by the
models are consistent with the subjective scores.

Then, we further demonstrate one successful and one failed
video prediction case of the proposed FR (S+M) model in Figure 5.
The proposed model accurately predicts video scenes with obvious
semantic information but fails to predict video examples where
the semantic content is not apparent. One possible explanation
is that the proposed method utilizes a fixed backbone network to
extract semantic features and relies on the presence of specific
semantic scenarios. Overall, the quantitative results illustrate the
effectiveness of the proposed model and provide inspirations for us
to better handle these scenarios in the future.

(a) (b)

Figure 4: Scatter plots of predicted scores on the LSVQtest
dataset by (a) the proposed FR (S+S) model and (b) the pro-
posed FR (S+M) model.

(a) (b)

Figure 5: (a) The one successful and (b) one failure prediction
cases of the proposed FR (S+M) model.

4.5 Ablation Studies
In this section, the whole video is utilized as input for ablation
experiments to assess the effectiveness of each module.

Ablation on quality-aware and semantic-aware features.
To quantitatively analyze the independent performance and mutual
gains of quality-aware and semantic-aware features, we report the
PLCC and SRCC results of spatial quality-aware, spatial semantic-
aware, motion semantic-aware features and their combinations
in Table 4. Note that all features are fed directly into a tempo-
ral network and a temporal pooling as described in Section 3.3.
First, we found that the quality-aware feature typically takes a
prominent role in VQA. Second, combining different aware features
brings gains and improves the prediction performance of the model.
Moreover, the combinations of quality-aware with semantic-aware
(spatial or motion) yield superior results compared to combining
two semantic-aware features, owing to the fact that they have more
complementary information in distorted videos.

Table 4: Ablation experiments on spatial quality-aware (SQ),
spatial semantic-aware (SS), motion semantic-aware (MS) fea-
tures and combinations (+) using three small-scale datasets.
We have respectively bolded the best-performing features
and combinations.

Feat
ures

LIVE-Qual LIVE-VQC KoNViD-1k
PLCC SRCC PLCC SRCC PLCC SRCC

SQ 0.8179 0.7764 0.8040 0.7599 0.8224 0.8261
SS 0.8099 0.7697 0.7918 0.7317 0.8156 0.8049
MS 0.6590 0.6159 0.7814 0.7372 0.7109 0.6993

SQ+SS 0.8193 0.8031 0.8124 0.7750 0.8390 0.8435
SQ+MS 0.8207 0.7986 0.8546 0.8526 0.8465 0.8499
SS+MS 0.8047 0.7728 0.8448 0.8396 0.8287 0.8278

Ablation on CAGI module.We compare three schemes that
combine quality-aware features with semantic-aware features, in-
cluding direct concatenation (Concat), concatenation followed by
multilayer perceptron fusion (Concat+MLP), and the CAGI mod-
ule. Among them, the MLP consists of an FC layer, ReLU function,
and dropout layer. Then, the fused features are input into an FC
layer and a temporal network as described in Section 3.3. For a full
comparison, we use variants of the CNN and Transformer architec-
tures to extract each perceptual feature and compose eight quality-
semantic aware combinations for analysis. Table 5 presents the
performance comparison of the three schemes. Intuitively, we ob-
serve that each feature combination through CAGI exhibits higher
performance than direct concatenation and is more efficient than
simple MLP fusion, proving that CAGI effectively enhances the
correlation between the two aware features. Furthermore, CAGI is
compatible for most dual-branch architectures.

Ablation on CGIN. We further investigate the impact of three
instance normalizations on the proposed model, including adaptive
instance normalization (AdaIN) [16], feature guided instance nor-
malization (FGIN) [10], and the proposed CGIN. The comparison
results are listed in Table 6. From Table 6, we observe that the pro-
posed CGIN obtains higher prediction accuracy, which implies that
CGIN is more helpful for the interaction of two aware features.
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Table 5: Performance comparison results using concatenation (Concat), concatenation followed bymulti-layer perceptron fusion
(Concat+MLP) and CAGI module combining the two aware features. We use varients of the CNN [9, 13, 57] and Transformer
(ViT) [8, 29, 50] pre-trained on IQA, image classification and action recognition datasets, respectively, as backbone networks to
extract spatial quality aware (CNN and ViT), spatial semantic aware (CNN and ViT), and motion semantic-aware (Fast and
Swin) features. Blue and red fonts indicate quality-aware and semantic-aware features, respectively, and the performance gains
of Concat+MLP and CAGI module are highlighted in green and purple.

Module LIVE-VQC KoNViD-1k
CNN+CNNCNN+ViT CNN+Fast CNN+Swin ViT+CNNViT+ViT ViT+Fast ViT+Swin CNN+CNNCNN+ViT CNN+Fast CNN+Swin ViT+CNNViT+ViT ViT+Fast ViT+Swin

Concat 0.7750 0.7879 0.8526 0.7920 0.7824 0.7714 0.8438 0.7868 0.8435 0.8290 0.8499 0.8334 0.8405 0.8114 0.8486 0.8179
Concat+MLP 0.7810 0.8061 0.8698 0.8087 0.7907 0.7823 0.8536 0.7871 0.8411 0.8362 0.8694 0.8340 0.8445 0.8331 0.8582 0.8190
Improvement 0.77% 2.31% 2.01% 2.11% 1.06% 1.41% 1.16% 0.04% -0.28% 0.87% 2.29% 0.07% 0.48% 2.67% 1.13% 0.13%

CAGI 0.8159 0.8423 0.8840 0.8377 0.8264 0.8276 0.8826 0.8302 0.8665 0.8697 0.8751 0.8645 0.8584 0.8574 0.8597 0.8548
Improvement 5.28% 6.90% 3.68% 5.77% 5.62% 7.29% 4.60% 5.52% 2.73% 4.91% 2.97% 3.73% 2.13% 5.67% 1.31% 4.51%

Table 6: SRCC results of different instance normalization,
where “S” and “Q” mean semantic- and quality-aware fea-
tures, “S→Q” represents the deformation of feature S to fea-
ture Q. The best results are bolded.

Module LIVE-Qual LIVE-VQC KoNViD-1k
(S+S) (S+M) (S+S) (S+M) (S+S) (S+M)

AdaIN S→Q 0.8513 0.7915 0.7824 0.8774 0.8514 0.8658
Q→S 0.8442 0.8508 0.7642 0.8727 0.8537 0.8715

FGIN S→Q 0.8485 0.8611 0.7914 0.8820 0.8583 0.8750
Q→S 0.8398 0.8658 0.7897 0.8794 0.8587 0.8776

CGIN 0.8676 0.8741 0.8195 0.8951 0.8695 0.8875

Table 7: Ablation on each component of the proposed model
using three VQA datasets. We choose the VSFA [23] model as
our baseline. Each component improves the performance of
the model. The best results are bolded.

Model F
E

G
C

T
M

LIVE-Qual LIVE-VQC KoNViD-1k
PLCC SRCC PLCC SRCC PLCC SRCC

Baseline ✓ × × 0.8007 0.7671 0.7889 0.7255 0.7951 0.7943

Proposed
(S+S)

✓ × × 0.8193 0.8031 0.8124 0.7750 0.8390 0.8435
✓ ✓ × 0.8657 0.8587 0.8390 0.8159 0.8628 0.8665
✓ ✓ ✓ 0.8764 0.8676 0.8484 0.8195 0.8668 0.8695

Proposed
(S+M)

✓ × × 0.8207 0.7986 0.8546 0.8526 0.8465 0.8499
✓ ✓ × 0.8785 0.8653 0.8905 0.8840 0.8711 0.8751
✓ ✓ ✓ 0.8865 0.8741 0.8952 0.8951 0.8812 0.8875

Ablation on each component of the proposed model.We
investigate the effectiveness of each module, including the feature
extraction module (FE), the CAGI module (GI), and the CATM
module (TM). Table 7 lists the performance results of different
model designing on three datasets. Based on the qualitative and
quantitative analysis of the two aware features, we meticulously
designed each module, and Table 7 proves that each module has
certain gains for the proposed model.

4.6 Computational Complexity
In this subsection, we compare the FLOPs and running times on
GPU of the proposed models with existing models, and plot the
performance curves of FLOPs and running times on videos with dif-
ferent resolutions in Figure 6. Average results of ten video samples
(10 seconds, 30 frames per second) as final test time, and experi-
ments are executed on a single 3090 GPU. It can observe that the
FLOPs and running time of the existing models increase with the

rise in video resolution. Although HVS-5M [56] exhibits good pre-
diction performance, the computational complexity is unacceptable.
When video resolution exceeded 540P, the HVS-5M run for more
than 100s and 2160P video could not be tested on a single 3090
GPU (540P, 134.54s; 720P, 224.08s; 1080P, 388.82s; 1440P, 687.7s).
The proposed FR(S+S) and FR(S+M) models achieve SOTA per-
formance with computational complexity between VSFA [23] and
GSTVQA [3]. The proposed PR(S+S) and PR(S+M)models reduce
redundant information from the input video through a simple sam-
pling strategy (as described in Section 3.4), achieving the lowest
computational complexity while maintaining performance with the
whole video as input (see Table 2).

Figure 6: (a) FLOPs and (b) running time performance curves
of the proposed models and four models on videos with dif-
ferent resolutions.

5 CONCLUSION
In this paper, we have presented the semantic-Aware and quality-
Aware InteractionNetwork (A2INet) for blind video quality assess-
ment (BVQA). Based on the analysis of the domain gaps between
semantic- and quality-aware features, we design a cross-aware
guided interaction module to enhance the interaction between the
two aware features and propose a cross-aware temporal modeling
module to perceive temporal distortion from the perspectives of
content variation and quality saliency. Experimental results show
that the proposed model outperforms the state-of-the-art perfor-
mance on six benchmark VQA datasets, and ablation studies further
verify the effectiveness of each component. Additionally, we demon-
strate a simple video sampling strategy to balance the effectiveness
and efficiency of the proposed model.
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