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Abstract

Recent LLM-based Text-to-SQL methods usu-001
ally suffer from significant performance degra-002
dation on “huge" databases and complex user003
questions that require multi-step reasoning.004
Moreover, most existing methods neglect the005
crucial significance of LLMs utilizing external006
tools and model collaboration. To address these007
challenges, we introduce MAC-SQL, a novel008
LLM-based multi-agent collaborative frame-009
work. Our framework comprises a core decom-010
poser agent for Text-to-SQL generation with011
few-shot chain-of-thought reasoning, accom-012
panied by two auxiliary agents that utilize ex-013
ternal tools or models to acquire smaller sub-014
databases and refine erroneous SQL queries.015
The decomposer agent collaborates with auxil-016
iary agents, which are activated as needed and017
can be expanded to accommodate new features018
or tools for effective Text-to-SQL parsing. In019
our framework, We initially leverage GPT-4 as020
the strong backbone LLM for all agent tasks to021
determine the upper bound of our framework.022
We then fine-tune an open-sourced instruction-023
followed model, SQL-Llama, by leveraging024
Code Llama 7B, to accomplish all tasks as GPT-025
4 does. Experiments show that SQL-Llama026
achieves a comparable execution accuracy of027
43.94, compared to the baseline accuracy of028
46.35 for vanilla GPT-4. At the time of writ-029
ing, MAC-SQL+GPT-4 achieves an execution030
accuracy of 59.59 when evaluated on the BIRD031
benchmark, establishing a new state-of-the-art032
(SOTA) on its holdout test set 1.033

1 Introduction034

Text-to-SQL aims to automate the process of gen-035

erating Structured Query Language (SQL) queries036

for databases from natural language text. This037

long-standing challenge is essential for improving038

database accessibility without requiring expertise039

of SQL (Qin et al., 2022; Sun et al., 2023).040

†Corresponding Author
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User Question

List school names of charter schools with an SAT excellence 
rate over the average.

Database schema

frpm: CDSCode, County Code, School Code, Charter School(Y/N)
satscores: cds, sname, AvgScrMath, NumTstTakr, NumGE1500, …
schools: CDSCode, NCESDist, County, City, Zip, …

SAT_Excellence_Rate = CAST(NumGE1500 AS REAL) / NumTstTakr

SELECT ST.sname FROM frpm FR JOIN satscores ST
ON FR.CDSCode = ST.cds WHERE FR.`Charter School (Y/N)` = 1
AND SAT_Excellence_Rate >
( SELECT AVG(SAT_Excellence_Rate) FROM frpm fr JOIN
  satscores st  ON fr.CDSCode = st.cds
  WHERE fr.`Charter School (Y/N)` = 1 )

Evidence

Gold SQL

Figure 1: A complex example of Text-to-SQL. In the
Gold SQL, we use SAT_Excellence_Rate to represent
"CAST(NumGE1500 AS REAL)/NumTstTakr" for the
sake of brevity.

Over the past decade, research in this field has 041

progressed through three stages. In the initial 042

phase, systems encodes input sequence utilizing 043

pre-trained models, and SQL queries are decoded 044

using either abstract syntax trees (Xu et al., 2017; 045

Guo et al., 2019; Wang et al., 2021) or prede- 046

fined sketches (He et al., 2019). More recent sys- 047

tems (Raffel et al., 2023; Xie et al., 2022; Scholak 048

et al., 2021) have adopted sequence-to-sequence 049

methodologies. The latest research (Ouyang et al., 050

2022; OpenAI, 2023; Rozière et al., 2023) has 051

demonstrated the remarkable capabilities of Large 052

Language Models (LLMs) in this task. The success 053

of these models can be ascribed to their emerging 054

abilities (Wei et al., 2023; Brown et al., 2020) and 055

robust reasoning capabilities inherent in LLMs. 056

Recent research on LLM-based Text-to- 057

SQL (Dong et al., 2023; Pourreza and Rafiei, 058

2023; Gao et al., 2023) has mainly concentrated 059

on In-Context Learning prompt strategies and 060

supervised fine-tuning using data derived from the 061

target domain. However, these approaches usually 062
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Table schools

CDSCode County Street … Phone

109835 Alameda Sperber … 581-0202

Database schema

List school names of  charter schools with an SAT 

excellence rate over the average.

Final SQL

User Question

SQLite execute

SQLite error: syntax error

Exception: sqlite3.OperationalError

Wrong SQL

Decomposer

Sub Q1
Get the average value of  SAT excellence rate 

of  charter schools.

SQL 1
SELECT AVG(NumGE1500 / NumTstTakr)
FROM frpm JOIN … WHERE …

Sub Q2
List out school names of  charter schools with 

an SAT excellence rate over the average.

SQL 2
SELECT sname FROM .. JOIN .. 
WHERE SAT_Excellence_Rate > SQL1 and ..

Selector

Table frpm

CDSCode FRPM Count Meal … Charter (Y/N)

109835 2346.0 4369.0 … 581-0202

Table satscores

cds sname NumGE1500 … NumTstTakr

109835 2346.0 400 … 191

Refiner

User 

Question

User

Final

SQL

Figure 2: The overview of our MAC-SQL framework, which comprises three agents: (i) the Selector, which
decomposes a large database into smaller sub-database to mitigate the interference of irrelevant information, and (ii)
the Decomposer, which breaks down a complex question into simpler sub-questions and resolves them progressively
by chain-of-thought reasoning, and (iii) the Refiner, which uses an external tool for SQL execution and obtains
feedback, then refines faulty SQL queries.

suffer from significant performance degradation on063

“huge” databases and complex user questions that064

require multi-step reasoning, as demonstrated in065

Figure 1. Moreover, most existing methods neglect066

the crucial significance of LLMs utilizing external067

tools and model collaboration.068

To alleviate the above challenges, we introduce069

MAC-SQL, a novel LLM-based multi-agent col-070

laborative framework, which exploit LLMs as in-071

telligent agents with different functionalities for072

effective Text-to-SQL parsing. Our framework073

comprises a core Decomposer agent for Text-to-074

SQL generation, accompanied by two auxiliary075

agents, the Selector and the Refiner, for tool us-076

age and SQL refinement. Specifically, the Decom-077

poser breaks down a complex question into simpler078

sub-questions and resolves them progressively by079

chain-of-thought reasoning. When necessary, the080

Selector decomposes a large database into a smaller081

sub-database to minimize the interference of irrel-082

evant information, while the Refiner employs an083

external tool for SQL execution, obtains feedback,084

and refines erroneous SQL queries.085

Furthermore, we have fine-tuned an instruction-086

followed model, SQL-Llama, by leveraging Code087

Llama 7B, using agent instruction data from MAC-088

SQL, thus enabling capabilities in database simpli-089

fication, question decomposition, SQL generation,090

and SQL correction. We have also released the091

agent instruction data, which is derived from the092

training sets of BIRD and Spider and is generated 093

through multi-agent tasks. 094

In our experiments, we initially leverage GPT- 095

4 as a strong backbone LLM for all agent tasks 096

determine the upper bound of our MAC-SQL 097

framework on the widely used BIRD and Spider 098

dataset. Experimental results demonstrate that 099

MAC-SQL+GPT-4 achieves an execution accuracy 100

of 59.59 on the holdout test set of BIRD, establish- 101

ing a new state-of-the-art (SOTA) at the time of 102

writing. Furthermore, We utilize SQL-Llama(7B) 103

to accomplish all tasks in a manner similar to GPT- 104

4. Surprisingly, despite SQL-Llama having an or- 105

der of magnitude fewer parameters than GPT-4, its 106

execution accuracy reaches 43.94, which is remark- 107

ably close to the accuracy of GPT-4 (46.35). 108

Contribution Our main contributions and re- 109

sults are summarized as follows: 110

1. We propose MAC-SQL, a novel multi-agent 111

collaborative framework for Text-to-SQL. 112

2. We introduce an instruction-tuning model, 113

named SQL-Llama(7B), along with its associ- 114

ated agent-instruction dataset. 115

3. Experimental results demonstrate that MAC- 116

SQL achieves state-of-the-art execution accu- 117

racy of 59.59% on the BIRD test set at the 118

time of writing. 119

2



2 Task Formulation and Annotations120

The problem of Text-to-SQL parsing involves gen-121

erating an SQL query Y that corresponds to a122

given natural language question Q and is based123

on a database schema S and optional external124

knowledge evidence K. The database schema S125

is defined as {T , C,R}, where T represents multi-126

ple tables {T1, T2, . . . , Tm}, C represents columns127

{C1, C2, . . . , Cn}, and R represents foreign key re-128

lations. Here, m and n denote the number of tables129

and column names, respectively. Finally, the Text-130

to-SQL task could be formulated as:131

Y = f(Q,S,K | θ), (1)132

where the function f (· | θ) can represent a model133

or neural network with the parameter θ.134

Algorithm 1 The algorithm of MAC-SQL

Input: question q, database db, knowledge
kg

Output: sql
1: if need simplify to database then
2: db = LLMSelector(q, db, kg)
3: end if
4: dbDesc = getDbRepresenation(db, kg)
5: subQs, subSQLs = LLMDecomposer(q, dbDesc)
6: sql = subSQLs[-1]
7: count = 0
8: while count < maxTryTimes do
9: ok, err = executeAndAnalyze(sql, db)

10: if ok then
11: return sql
12: else
13: sql = LLMRefiner(q, dbDesc, sql,

err)
14: end if
15: end while
16: return sql

3 Methodology135

3.1 Overview136

We introduce MAC-SQL, a novel LLM-based137

multi-agent collaborative framework, which exploit138

LLMs as intelligent agents with different function-139

alities for effective Text-to-SQL parsing. As illus-140

trated in Figure 2, our framework comprises a core141

Decomposer agent for Text-to-SQL generation, ac-142

companied by two auxiliary agents, the Selector143

and the Refiner, for tool usage and SQL refinement.144

Task Description

As an experienced and professional database
administrator , your task is to ...

Instruction

1. Discard any table schema that is not
related to the user question and evidence.
2. Sort the columns in each relevant table in
descending order of relevance and keep the

top 6 columns.
3. Ensure that at least 3 tables are included
in the final output JSON.

4. The output should be in JSON format.

Demonstration

[DB_ID] banking_system
[Schema] Table schemas of account , client ,
loan , district ...
[Foreign keys] ...
[Question ]: What is the gender of the
youngest client who opened account in the
lowest average salary branch?
[Evidence ]: Later birthdate refers to younger
age; A11 refers to average salary

[Answer]
```json
{ "account": "keep_all",

"client": "keep_all",
"loan": "drop_all",
"district": ["district_id", "A11", "A2",
...] }

```

Test Question

[DB_ID] {db_id}
[Schema] {desc_str}
[Foreign keys] {fk_str}
[Question] {query}
[Evidence] {evidence}
[Answer]

Figure 3: An example of Selector prompt. The specific
details are omitted for the sake of brevity.

Specifically, the Decomposer disassembles com- 145

plex questions into simpler sub-questions and ad- 146

dresses them sequentially through chain-of-thought 147

reasoning. If required, the Selector decomposes 148

a large database into smaller sub-databases to 149

minimize interference from irrelevant information. 150

Meanwhile, the Refiner utilizes an external tool for 151

SQL execution, acquires feedback, and refines any 152

incorrect SQL queries. 153

We present the detailed algorithm of our frame- 154

work in Algorithm 1, which introduce the collab- 155

oration of three agents. In the following section, 156

a detailed introduction of three agents will be pre- 157

sented. 158

3.2 Selector 159

The Selector agent is designed to automatically 160

decompose a large database into smaller sub- 161

databases to minimize interference from irrelevant 162

information. The rationale behind this selection 163

process is crucial, particularly in real-world busi- 164

ness contexts where databases comprise numerous 165
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Figure 4: The Decomposer Agent Illustration.

tables and columns. The expansive nature of such166

schemas may surpass the processing capacity of a167

LLM within a single api call. Consequently, the168

Selector is designed to perform an initial filtration169

of relevant tables and columns to minimize inter-170

ference from irrelevant information.171

Figure 3 illustrates the Selector agent prompt,172

which is comprised of four components: task de-173

scription, instruction, demonstrations, and a test174

example. The figure indicates that the anticipated175

output is a JSON string enumerating the table se-176

lections. These choices can be classified into three177

categories: "keep_all", "drop_all", or a relevant178

column list. The JSON output will subsequently179

be interpreted as the input for the new database180

schema for the Decomposer agent.181

3.3 Decomposer182

The primary purpose of the Decomposer is to sys-183

tematically decompose complex questions into pro-184

gressively refined sub-questions, which can then be185

solved individually. The original idea behind this186

is that, when analyzing error examples, the model187

encounters difficulty in reasoning and generating188

entirely accurate SQL for complex questions in a189

straightforward prompting. As a result, the gener-190

ated SQL frequently exhibits flaws. Consequently,191

we naturally consider the approach of decompos-192

ing and solving the question, similar to the CoT193

method.194

The Decomposer pattern can be approached195

in two prompting methods for text-to-SQL pars-196

ing: chain-of-thought (CoT) prompting (Wei et al.,197

2023) and least-to-most prompting (Zhou et al.,198

2022). The former involves generating thinking199

and reasoning once to obtain an answer, while the200

latter incurs higher computational costs to generate201

each SQL query due to the iterative process. 202

Due to the inefficiency of the iterative method 203

and the need to determine when to stop, we adopt 204

the CoT approach to generate sub-questions and 205

their corresponding SQL. The specific implemen- 206

tation is as follows: dynamically judging the diffi- 207

culty of the user’s question, if it can be answered 208

by a simple SQL query, then the SQL is generated 209

directly. If the question is more complex, the corre- 210

sponding SQL is generated starting from the sim- 211

plest sub-problem, and then gradually broken down 212

to obtain progressive sub-problems until the final 213

SQL corresponding to the question is obtained. As 214

shown in Figure 4, the question is decomposed into 215

multiple sub-problems and solved one by one. In 216

order to enhance LLM’s understanding of instruc- 217

tions, we adopt the few-shot approach and conduct 218

experiments on the entire BIRD dev dataset. 219

3.4 Refiner 220

The primary function of the Refiner is to detect 221

and automatically rectify SQL errors. In a compre- 222

hensive multi-agent collaborative framework, par- 223

ticularly within the context of Text-to-SQL tasks, 224

the inclusion of a Refiner is essential for the in- 225

spection and correction of generated answers. For 226

instance, in the ChatDev project, intelligent agents 227

are responsible for conducting overall and func- 228

tional module testing in addition to overall archi- 229

tectural design and code writing for game software 230

development tasks. Similarly, in Text-to-SQL tasks, 231

the Refiner can be used to make appropriate ad- 232

justments due to the different data sets, database 233

schemas, SQL generation styles, and specific in- 234

ductive biases. 235

As shown in Figure 2, upon receiving an SQL 236

query, the Refiner first diagnoses the SQL state- 237

ment to assess its syntactic correctness, execution 238

feasibility, and the retrieval of non-empty results 239

from the database. If the check passes, the result 240

is output as the final answer; otherwise, a correc- 241

tion operation is initiated, as shown in Figure 5. 242

The corrected result then undergoes re-evaluation, 243

and if issues persist, the process is repeated until 244

the result is correct or the maximum number of 245

modifications is reached. The specific correction 246

process involves reasoning based on the original 247

SQL and error feedback information or modifica- 248

tion guidance signals to generate the modified re- 249

sult. In general, the core function of the Refiner 250

is to achieve self-checking and self-correction of 251

the model to enhance the overall framework’s fault 252
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Figure 5: The Refiner Agent Illustration.

tolerance and accuracy.253

Furthermore, there is a significant reduction in254

syntax errors, schema linking, and other errors. The255

remaining issues are often related to database mis-256

understandings, evidence misunderstandings, and257

question understanding, which pose greater chal-258

lenges. For more abstract problems, they rely more259

on the reasoning ability of the LLM itself and the260

level of detailed information provided, thus requir-261

ing more optimization at the system level, as the262

assistance that a single refiner agent can provide is263

relatively limited.264

4 Instruction-tuned SQL-Llama265

Our research has been primarily focused on the266

development of open-source models within the267

MAC-SQL framework, with the goal of achieving268

performance levels comparable to closed-source269

models like GPT-4. In order to achieve this, we270

have put significant effort into preparing the data271

for model training and have open-sourced SQL-272

Llama, a model that has been fine-tuned using273

three intelligent agent instruction data. This model,274

based on Code Llama 7B, has undergone super-275

vised fine-tuning using agent instruction data from276

MAC-SQL, which has enhanced its capabilities in277

database simplification, question decomposition,278

SQL generation, and SQL correction.279

The process of preparing the data for model train-280

ing involved the use of the instruction dataset de-281

rived from the training sets of BIRD and Spider282

through multi-agent tasks. This dataset provided283

a diverse and rich source of data for model train-284

ing and evaluation. The model training process 285

itself involved extensive fine-tuning and optimiza- 286

tion to ensure that SQL-Llama could perform at the 287

desired level within the MAC-SQL framework. 288

One of the key challenges we encountered during 289

the model training process was the need to balance 290

model complexity with performance. We had to 291

carefully optimize the model architecture and pa- 292

rameters to ensure that it could effectively handle 293

the complexities of database-related tasks while 294

still maintaining high performance levels. Addi- 295

tionally, ensuring the quality and relevance of the 296

instruction dataset for training was crucial, as it 297

directly impacted the performance of the model. 298

Despite these challenges, our work on 299

instruction-tuned models represents a significant 300

step towards democratizing access to high- 301

performance language models for database-related 302

tasks. By open-sourcing both the model and the 303

instruction dataset, we aim to provide valuable 304

resources for further research and development in 305

this area, ultimately leading to more accessible and 306

effective tools for database query processing and 307

related tasks. 308

5 Experiments 309

5.1 Experimental Setup 310

Datasets The Spider (Yu et al., 2018) dataset is 311

frequently employed for assessing the performance 312

of text-to-SQL parsing across multiple databases, 313

necessitating models to demonstrate adaptability 314

to unfamiliar database structures. The dataset com- 315

prises 7,000 question-query pairs in the training set 316

and 1,034 pairs in the development set, encompass- 317

ing 200 distinct databases and 138 domains. In this 318

study, we assess the efficacy of our framework on 319

the Spider development set, as the test set is not 320

accessible. 321

The BIRD (Li et al., 2023) dataset released by 322

Alibaba DAMO Academy is a new benchmark for 323

large-scale real databases, containing 95 large-scale 324

databases and high-quality Text-SQL pairs, with 325

a data storage volume of up to 33.4GB spanning 326

37 professional domains. Unlike Spider, BIRD 327

focuses on massive and real database content, ex- 328

ternal knowledge reasoning between natural lan- 329

guage questions and database content, and new 330

challenges in SQL efficiency when dealing with 331

large databases. 332

Evaluation Metrics Following BIRD (Li et al., 333

2023) and Test-suite (Zhong et al., 2020), we con- 334
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sider three metrics, exact match accuracy (EM),335

execution accuracy (EX) and valid efficiency score336

(VES) to evaluate text-to-SQL models confronted337

with real-world scenarios with large database con-338

tents. Exact Match Accuracy (EM) treats each339

clause as a set and compares the prediction for each340

clause to its corresponding clause in the reference341

query. A predicted SQL query is considered cor-342

rect only if all of its components match the ground343

truth. This metric does not take values into ac-344

count. Execution Accuracy (EX) is defined as the345

proportion of questions in the evaluation set for346

which the execution results of both the predicted347

and ground-truth inquiries are identical, relative348

to the overall number of queries. Valid Efficiency349

Score (VES) is designed to measure the efficiency350

of valid SQLs generated by models. It is important351

to note that "valid SQLs" refers to predicted SQL352

queries whose result sets align with those of the353

ground-truth SQLs.354

Baselines We conduct experiments on both355

BIRD and Spider dataset and compare our method356

with the following baseline:357

• GPT-4 (OpenAI, 2023) uses simple zero-shot358

text-to-SQL prompt for SQL generation.359

• DIN-SQL (Pourreza and Rafiei, 2023) decom-360

poses the text-to-SQL task into smaller sub-361

tasks and designs different prompts for each362

subtask to instruct GPT-4 to complete each363

subtask and obtain the final SQL.364

• DAIL-SQL (Gao et al., 2023) encodes struc-365

ture knowledge as SQL statements, selects366

few-shot demonstrations based on their skele-367

ton similarities and removes cross-domain368

knowledge from examples for token effi-369

ciency.370

• C3-SQL (Dong et al., 2023) first performs371

schema linking filtering and then directs GPT-372

4 with a calibration bias prompt designed for373

Spider using a self-consistency strategy.374

5.2 Overall Performance375

It is important to note that the experiment utilized376

the 32k version of GPT-4 and the 16k version of377

GPT-3.5-Turbo.378

BIRD Results In Table 1, we report the perfor-379

mance of our method and baseline methods on the380

Dev Test
Method EX VES EX VES

Palm-2 27.38 - 33.04 -
ChatGPT + CoT 36.64 42.30 40.08 56.56
Claude-2 42.70 - 49.02 -
GPT-4 46.35 49.77 54.89 60.77
DIN-SQL + GPT-4 50.72 58.79 55.90 59.44
DAIL-SQL + GPT-4 54.76 56.08 57.41 61.95

SQL-Llama(7B) 32.87 55.67 - -
MAC-SQL + SQL-Llama(7B) 43.94 57.36 - -

+ Oracle Schema 51.43 58.24 - -
MAC-SQL + GPT-3.5-Turbo 50.56 61.25 - -

+ Oracle Schema 65.78 60.62 - -
MAC-SQL + GPT-4 59.39 66.39 59.59 67.68

+ Oracle Schema 70.28 62.63 - -

Table 1: Execution accuracy(EX) and Valid efficiency
score (VES) on both dev and test set of BIRD dataset.
The term "Oracle Schema" refers to the utilization of a
ground truth sub-database as the input for the Decom-
poser, rather than employing the results obtained from
the Selector.

Method EX (Dev) EX (Test)

C3 + ChatGPT 81.80 82.30
DIN-SQL + GPT-4 82.80 85.30
DAIL-SQL + GPT-4 84.40 86.60

SQL-Llama(7B) 65.48 61.63
MAC-SQL + SQL-Llama(7B) 76.25 70.58
MAC-SQL + GPT-3.5-Turbo 80.56 75.53
MAC-SQL + GPT-4 86.75 82.80

Table 2: Execution accuracy(EX) on both dev and test
set of Spider.

BIRD dataset. It is evident that our method sur- 381

passes all LLM-based methods in terms of execu- 382

tion accuracy (EX) and valid efficiency score (VES) 383

on both the development and test sets. Specifically, 384

our method outperforms the second-best method by 385

4.63% on the development set and by 2.18% on the 386

test set. At the time of writing, MAC-SQL+GPT-4 387

achieves an execution accuracy of 59.59 when eval- 388

uated on the BIRD benchmark, establishing a new 389

state-of-the-art (SOTA) on its holdout test set. 390

Spider Results Currently, Spider has open- 391

sourced the test set, so we can evaluate our method 392

in both development and test set. As shown in Ta- 393

ble 2, for the dev set of Spider (Yu et al., 2018), our 394

method achieves the highest execution accuracy 395

using GPT-4. These results demonstrate the gener- 396

alization ability of our MAC-SQL framework. 397
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Method Simple Mod. Chall. All

MAC-SQL + GPT-4 65.73 52.69 40.28 59.39
w/o Selector 65.73 52.04 35.14 57.28(↓)
w/o Decomposer 61.51 48.82 38.89 55.54(↓)
w/o Refiner 63.24 44.52 33.33 54.76(↓)

Table 3: Execution accuracy of MAC-SQL ablation
study in BIRD dev set. For brevity, the abbreviation
"Mod." stands for "Moderate" while "Chall." denotes
"Challenging".

5.3 Ablation Study398

Table 3 presents the results of an ablation study for399

the MAC-SQL model in the BIRD dev set. The400

table lists different variations of the MAC-SQL401

model, including with and without certain com-402

ponents such as Selector, Decomposer, and Re-403

finer. The other columns represent the accuracy of404

the model on different levels of difficulty: Simple,405

Moderate, and Challenging, as well as the overall406

accuracy (All).407

The findings show that the original MAC-SQL408

+ GPT-4 model achieves an accuracy of 65.73%409

on Simple, 52.69% on Moderate, and 40.28% on410

Challenging, with an overall accuracy of 59.39%.411

When removing the Selector component, the accu-412

racy remained the same for Simple, but decreased413

to 52.04% for Moderate and 35.14% for Challeng-414

ing, resulting in an overall accuracy of 57.28%415

(a decrease of 2.11%). Similarly, removing the416

Decomposer and Refiner components also led to417

decreases in accuracy across all difficulty levels.418

Overall, the ablation study indicates that each419

component of the MAC-SQL model (Selector, De-420

composer, and Refiner) plays a crucial role in421

achieving high accuracy, as their removal resulted422

in decreased performance across all difficulty lev-423

els.424

5.4 Discussion425

Impact on the number of demonstrations Ta-426

ble 4 shows evaluation results of MAC-SQL with427

different number of demonstrations on the BIRD428

and Spider datasets. As the number of shots in-429

creases from 0 to 2, there is a consistent improve-430

ment in the performance metrics (EX, VES, and431

EM) for both BIRD and Spider. This indicates that432

the model benefits from additional demonstration433

examples and is able to generalize better with more434

data. The highest performance is achieved with435

2-shot evaluation, indicating that the model is capa-436

ble of learning effectively from a small number of437

Few-shot BIRD Spider

EX VES EM EX

0-shot 55.54 63.31 58.42 74.22
1-shot 57.26 64.32 59.68 78.35
2-shot 59.39 66.24 63.20 86.75

Table 4: Results of MAC-SQL+GPT-4 on the dev set of
BIRD and Spider with few-shot evaluation.

examples. The high cost of the GPT-4 interface re- 438

sults in a significant consumption of tokens during 439

a full test of the dev set for Spider and BIRD, es- 440

timated at approximately 6 million and 10 million 441

tokens, respectively. Due to the cost constraints, 442

our analysis is limited to a maximum of 2-shot, and 443

further experiments involving more shots (e.g., shot 444

k < 2) will have to await a more budget-friendly 445

implementation of GPT-4. 446

5.5 Error Analysis 447

In order to thoroughly assess the limitations of our 448

method, we begin by choosing two datasets (BIRD 449

and Spider) that contain various types of structured 450

data, as shown in Figure 6. 451

Figure 6 displays the error type distribution in 452

BIRD and Spider datasets. "Gold Error" is the most 453

common error type, accounting for 30% and 22% 454

in BIRD and Spider, respectively, signifying the 455

significance of gold standard annotations. "Seman- 456

tic Correct" is another prevalent error type, repre- 457

senting 14% and 22% in BIRD and Spider, respec- 458

tively, indicating the importance of semantic under- 459

standing and correctness. However, "Schema Link- 460

ing Error" is more frequent in BIRD (2%) than in 461

Spider (8%), demonstrating differences in schema 462

linking errors. This analysis underscores the need 463

for addressing gold standard annotations, semantic 464

correctness, and schema linking in dataset devel- 465

opment and evaluation, thereby improving their 466

quality and reliability. The appendix B contains 467

detailed examples of error types. 468

6 Related Work 469

LLMs for Text-to-SQL Recent advancements 470

in text-to-SQL tasks using large language mod- 471

els (LLMs) have focused on improving prompt 472

design and developing multi-stage refined frame- 473

works. In the early stages of the emergence of 474

large language models, research efforts were pri- 475

marily focused on designing high-quality prompts 476

7



Figure 6: Error Distributions of MAC-SQL on dev set of BIRD and Spider.

to better exploit the potential of LLMs for SQL477

generation. For example, (Tai et al., 2023) system-478

atically studied how to enhance LLMs’ reasoning479

ability through chain-of-thought style prompting,480

including the original chain-of-thought prompting481

and least-to-most prompting. Similarly, (Chang482

and Fosler-Lussier, 2023) comprehensively investi-483

gated the impact of prompt constructions across var-484

ious settings when constructing the prompt text for485

text-to-SQL inputs. Additionally, DAIL-SQL (Gao486

et al., 2023) systematically examined prompt en-487

gineering for LLM-based Text-to-SQL methods,488

including question representations, prompt com-489

ponents, example selections, and example organi-490

zations. Later studies, like C3-SQL (Dong et al.,491

2023), DIN-SQL (Pourreza and Rafiei, 2023), and492

StructGPT (Jiang et al., 2023), proposed frame-493

works for simplifying databases, generating SQL,494

verifying queries, and integrating answers through495

zero-shot approaches, query decomposition, and496

specialized interfaces for structured data access.497

However, the aforementioned methods have sev-498

eral issues. Firstly, the experiments were con-499

ducted solely on the Spider family dataset, failing500

to demonstrate their generalization to more com-501

plex datasets like BIRD, hence limiting their real-502

world applicability. Secondly, certain methods de-503

pend on difficulty level classifiers and customized504

biases specific to the Spider dataset for error cor-505

rection, thus lacking the ability to generalize to a506

broader spectrum of error types.507

Thus, we propose a framework centered on508

multi-agent collaboration that can be utilized for509

more intricate data scenarios and a broader spec-510

trum of error types for detection and correction.511

LLM-based Agents LLM-based agents have512

been a prominent area of study in both academic513

and industry communities for an extended pe-514

riod (Wang et al., 2023). Recently, through the ac-515

quisition of vast amounts of web knowledge, LLMs 516

have demonstrated remarkable potential in achiev- 517

ing human-level intelligence. This development 518

has led to a surge in research exploring autonomous 519

agents based on LLMs. AutoGPT (Team, 2023) 520

is an open-source implementation of an AI agent 521

and follows a single-agent paradigm in which it 522

augments the AI model with many useful tools, 523

and does not support multi-agent collaboration. 524

Similarly, OpenAgents (Xie et al., 2023) devel- 525

ops three distinct agents, the Data Agent for data 526

analysis, the Plugins Agent for plugin integration, 527

and the Web Agent for autonomous web browsing, 528

each specializing in different domains, similar to 529

OpenAI’s ChatGPT Plugins. Additionally, Auto- 530

Gen (Wu et al., 2023) is an open-source framework 531

that enables developers to build customizable, con- 532

versable agents that can operate in various modes, 533

employing combinations of LLMs, human inputs, 534

and tools to accomplish tasks. However, how to 535

apply LLM-based agents to Text-to-SQL parsing 536

remains under-explored. 537

We fill this gap by proposing a multi-agent col- 538

laborative Text-to-SQL framework, which inte- 539

grates multiple LLM-based agents to collectively 540

interpret SQL queries and address the complexity 541

and diversity of SQL queries encountered in real- 542

world scenarios. 543

7 Conclusion 544

In summary, this paper proposes the MAC-SQL 545

framework, which utilizes multi-agent collabora- 546

tion to address challenges in Text-to-SQL tasks. 547

The framework, along with the open-sourced SQL- 548

Llama model, achieved state-of-the-art execution 549

accuracy on the BIRD dataset. This work presents 550

a novel approach to Text-to-SQL and provides prac- 551

tical guidance for achieving high performance in 552

this domain. 553

8



Limitations554

There are two limitations of our work. Firstly, we555

did not extensively engineer the prompts, which556

may not be optimal. Secondly, this paper reports557

the fine-tuning results of the 7B CodeLLama model.558

Although it performs at a comparable level, we559

believe its performance can be further improved by560

using larger models.561

Ethics Statement562

The datasets and models utilized in this paper, and563

the implementation of the code and the resulting564

models, are not associated with any ethical con-565

cerns.566
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A Prompt Details 702

A.1 Selector Prompt 703

selector_template = """ 704
As an experienced and professional database administrator , your task is to analyze a 705

user question and a database schema to provide relevant information. The 706
database schema consists of table descriptions , each containing multiple column 707
descriptions. Your goal is to identify the relevant tables and columns based on 708
the user question and evidence provided. 709

710
[Instruction ]: 711
1. Discard any table schema that is not related to the user question and evidence. 712
2. Sort the columns in each relevant table in descending order of relevance and keep 713

the top 6 columns. 714
3. Ensure that at least 3 tables are included in the final output JSON. 715
4. The output should be in JSON format. 716

717
Requirements: 718
1. If a table has less than or equal to 10 columns , mark it as "keep_all ". 719
2. If a table is completely irrelevant to the user question and evidence , mark it as 720

"drop_all ". 721
3. Prioritize the columns in each relevant table based on their relevance. 722

723
Here is a typical example: 724

725
========== 726
[DB_ID] banking_system 727
[Schema] 728
# Table: account 729
[ 730

(account_id , the id of the account. Value examples: [11382 , 11362, 2, 1, 2367].) , 731
(district_id , location of branch. Value examples: [77, 76, 2, 1, 39].), 732
(frequency , frequency of the acount. Value examples: ['POPLATEK MESICNE ', ' 733

POPLATEK TYDNE ', 'POPLATEK PO OBRATU '].), 734
(date , the creation date of the account. Value examples: ['1997-12-29', 735

'1997-12-28'].) 736
] 737
# Table: client 738
[ 739

(client_id , the unique number. Value examples: [13998 , 13971, 2, 1, 2839].) , 740
(gender , gender. Value examples: ['M', 'F ']. And F:female . M:male ), 741
(birth_date , birth date. Value examples: ['1987-09-27', '1986-08-13'].), 742
(district_id , location of branch. Value examples: [77, 76, 2, 1, 39].) 743

] 744
# Table: loan 745
[ 746

(loan_id , the id number identifying the loan data. Value examples: [4959, 4960, 747
4961].) , 748

(account_id , the id number identifying the account. Value examples: [10, 80, 55, 749
43].), 750

(date , the date when the loan is approved. Value examples: ['1998-07-12', 751
'1998-04-19'].), 752

(amount , the id number identifying the loan data. Value examples: [1567, 7877, 753
9988].) , 754

(duration , the id number identifying the loan data. Value examples: [60, 48, 24, 755
12, 36].), 756

(payments , the id number identifying the loan data. Value examples: [3456, 8972, 757
9845].) , 758

(status , the id number identifying the loan data. Value examples: ['C', 'A', 'D', 759
'B '].) 760

] 761
# Table: district 762
[ 763

(district_id , location of branch. Value examples: [77, 76].), 764
(A2, area in square kilometers. Value examples: [50.5, 48.9].) , 765
(A4, number of inhabitants. Value examples: [95907 , 95616].) , 766
(A5, number of households. Value examples: [35678 , 34892].) , 767
(A6, literacy rate. Value examples: [95.6, 92.3, 89.7].) , 768
(A7, number of entrepreneurs. Value examples: [1234, 1456].) , 769
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(A8, number of cities. Value examples: [5, 4].),770
(A9, number of schools. Value examples: [15, 12, 10].),771
(A10 , number of hospitals. Value examples: [8, 6, 4].),772
(A11 , average salary. Value examples: [12541 , 11277].) ,773
(A12 , poverty rate. Value examples: [12.4, 9.8].) ,774
(A13 , unemployment rate. Value examples: [8.2, 7.9].) ,775
(A15 , number of crimes. Value examples: [256, 189].)776

]777
[Foreign keys]778
client.`district_id ` = district.`district_id `779
[Question]780
What is the gender of the youngest client who opened account in the lowest average781

salary branch?782
[Evidence]783
Later birthdate refers to younger age; A11 refers to average salary784
[Answer]785
```json786
{{787

"account ": "keep_all",788
"client ": "keep_all",789
"loan": "drop_all",790
"district ": [" district_id", "A11", "A2", "A4", "A6", "A7"]791

}}792
```793
Question Solved.794

795
==========796

797
Here is a new example , please start answering:798

799
[DB_ID] {db_id}800
[Schema]801
{desc_str}802
[Foreign keys]803
{fk_str}804
[Question]805
{query}806
[Evidence]807
{evidence}808
[Answer]809
"""810

A.2 Decomposer Prompt811

decompose_template = """812
Given a [Database schema] description , a knowledge [Evidence] and the [Question],813

you need to use valid SQLite and understand the database and knowledge , and then814
decompose the question into subquestions for text -to-SQL generation.815

When generating SQL , we should always consider constraints:816
[Constraints]817
- In `SELECT <column >`, just select needed columns in the [Question] without any818

unnecessary column or value819
- In `FROM <table >` or `JOIN <table >`, do not include unnecessary table820
- If use max or min func , `JOIN <table >` FIRST , THEN use `SELECT MAX(<column >)` or `821

SELECT MIN(<column >)`822
- If [Value examples] of <column > has 'None' or None , use `JOIN <table >` or `WHERE <823

column > is NOT NULL ` is better824
- If use `ORDER BY <column > ASC|DESC `, add `GROUP BY <column >` before to select825

distinct values826
827

==========828
829

[Database schema]830
# Table: frpm831
[832

(CDSCode , CDSCode. Value examples: [ '01100170109835 ' , '01100170112607 '].) ,833
(Charter School (Y/N), Charter School (Y/N). Value examples: [1, 0, None]. And 0:834

N;. 1: Y),835
(Enrollment (Ages 5-17), Enrollment (Ages 5-17). Value examples: [5271.0 ,836

4734.0].) ,837
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(Free Meal Count (Ages 5-17), Free Meal Count (Ages 5-17). Value examples: 838
[3864.0 , 2637.0]. And eligible free rate = Free Meal Count / Enrollment) 839

] 840
# Table: satscores 841
[ 842

(cds , California Department Schools. Value examples: [ '10101080000000 ' , 843
'10101080109991 '].) , 844

(sname , school name. Value examples: ['None ', 'Middle College High ', 'John F. 845
Kennedy High ', 'Independence High ', 'Foothill High '].), 846

(NumTstTakr , Number of Test Takers in this school. Value examples: [24305 , 4942, 847
1, 0, 280]. And number of test takers in each school), 848

(AvgScrMath , average scores in Math. Value examples: [699, 698, 289, None , 492]. 849
And average scores in Math), 850

(NumGE1500 , Number of Test Takers Whose Total SAT Scores Are Greater or Equal to 851
1500. Value examples: [5837, 2125, 0, None , 191]. And Number of Test Takers 852
Whose Total SAT Scores Are Greater or Equal to 1500. . commonsense evidence :. 853
. Excellence Rate = NumGE1500 / NumTstTakr) 854

] 855
[Foreign keys] 856
frpm.`CDSCode ` = satscores.`cds ` 857
[Question] 858
List school names of charter schools with an SAT excellence rate over the average. 859
[Evidence] 860
Charter schools refers to `Charter School (Y/N)` = 1 in the table frpm; Excellence 861

rate = NumGE1500 / NumTstTakr 862
863
864

Decompose the question into sub questions , considering [Constraints], and generate 865
the SQL after thinking step by step: 866

Sub question 1: Get the average value of SAT excellence rate of charter schools. 867
SQL 868
```sql 869
SELECT AVG(CAST(T2.`NumGE1500 ` AS REAL) / T2.`NumTstTakr `) 870

FROM frpm AS T1 871
INNER JOIN satscores AS T2 872
ON T1.`CDSCode ` = T2.`cds ` 873
WHERE T1.`Charter School (Y/N)` = 1 874

``` 875
876

Sub question 2: List out school names of charter schools with an SAT excellence rate 877
over the average. 878

SQL 879
```sql 880
SELECT T2.`sname ` 881

FROM frpm AS T1 882
INNER JOIN satscores AS T2 883
ON T1.`CDSCode ` = T2.`cds ` 884
WHERE T2.`sname ` IS NOT NULL 885
AND T1.`Charter School (Y/N)` = 1 886
AND CAST(T2.`NumGE1500 ` AS REAL) / T2.`NumTstTakr ` > ( 887

SELECT AVG(CAST(T4.`NumGE1500 ` AS REAL) / T4.`NumTstTakr `) 888
FROM frpm AS T3 889
INNER JOIN satscores AS T4 890
ON T3.`CDSCode ` = T4.`cds ` 891
WHERE T3.`Charter School (Y/N)` = 1 892

) 893
``` 894

895
Question Solved. 896

897
========== 898

899
[Database schema] 900
# Table: account 901
[ 902

(account_id , the id of the account. Value examples: [11382 , 11362, 2, 1, 2367].) , 903
(district_id , location of branch. Value examples: [77, 76, 2, 1, 39].), 904
(frequency , frequency of the acount. Value examples: ['POPLATEK MESICNE ', ' 905

POPLATEK TYDNE ', 'POPLATEK PO OBRATU '].), 906
(date , the creation date of the account. Value examples: ['1997-12-29', 907
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'1997-12-28 '].)908
]909
# Table: client910
[911

(client_id , the unique number. Value examples: [13998 , 13971, 2, 1, 2839].) ,912
(gender , gender. Value examples: ['M', 'F ']. And F:female . M:male ),913
(birth_date , birth date. Value examples: ['1987-09-27', '1986-08-13 '].),914
(district_id , location of branch. Value examples: [77, 76, 2, 1, 39].)915

]916
# Table: district917
[918

(district_id , location of branch. Value examples: [77, 76, 2, 1, 39].),919
(A4, number of inhabitants . Value examples: ['95907', '95616', '94812 '].),920
(A11 , average salary. Value examples: [12541 , 11277, 8114].)921

]922
[Foreign keys]923
account.`district_id ` = district.`district_id `924
client.`district_id ` = district.`district_id `925
[Question]926
What is the gender of the youngest client who opened account in the lowest average927

salary branch?928
[Evidence]929
Later birthdate refers to younger age; A11 refers to average salary930

931
Decompose the question into sub questions , considering [Constraints], and generate932

the SQL after thinking step by step:933
Sub question 1: What is the district_id of the branch with the lowest average salary934

?935
SQL936
```sql937
SELECT `district_id `938

FROM district939
ORDER BY `A11 ` ASC940
LIMIT 1941

```942
943

Sub question 2: What is the youngest client who opened account in the lowest average944
salary branch?945

SQL946
```sql947
SELECT T1.`client_id `948

FROM client AS T1949
INNER JOIN district AS T2950
ON T1.`district_id ` = T2.`district_id `951
ORDER BY T2.`A11 ` ASC , T1.`birth_date ` DESC952
LIMIT 1953

```954
955

Sub question 3: What is the gender of the youngest client who opened account in the956
lowest average salary branch?957

SQL958
```sql959
SELECT T1.`gender `960

FROM client AS T1961
INNER JOIN district AS T2962
ON T1.`district_id ` = T2.`district_id `963
ORDER BY T2.`A11 ` ASC , T1.`birth_date ` DESC964
LIMIT 1965

```966
Question Solved.967

968
==========969

970
[Database schema]971
{desc_str}972
[Foreign keys]973
{fk_str}974
[Question]975
{query}976
[Evidence]977
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{evidence} 978
979

Decompose the question into sub questions , considering [Constraints], and generate 980
the SQL after thinking step by step: 981

""" 982

A.3 Refiner Prompt 983

refiner_template = """ 984
[Instruction] 985
When executing SQL below , some errors occurred , please fix up SQL based on query and 986

database info. 987
Solve the task step by step if you need to. Using SQL format in the code block , and 988

indicate script type in the code block. 989
When you find an answer , verify the answer carefully. Include verifiable evidence in 990

your response if possible. 991
[Constraints] 992
- In `SELECT <column >`, just select needed columns in the [Question] without any 993

unnecessary column or value 994
- In `FROM <table >` or `JOIN <table >`, do not include unnecessary table 995
- If use max or min func , `JOIN <table >` FIRST , THEN use `SELECT MAX(<column >)` or ` 996

SELECT MIN(<column >)` 997
- If [Value examples] of <column > has 'None' or None , use `JOIN <table >` or `WHERE < 998

column > is NOT NULL ` is better 999
- If use `ORDER BY <column > ASC|DESC `, add `GROUP BY <column >` before to select 1000

distinct values 1001
[Query] 1002
-- {query} 1003
[Evidence] 1004
{evidence} 1005
[Database info] 1006
{desc_str} 1007
[Foreign keys] 1008
{fk_str} 1009
[old SQL] 1010
```sql 1011
{sql} 1012
``` 1013
[SQLite error] 1014
{sqlite_error} 1015
[Exception class] 1016
{exception_class} 1017

1018
Now please fixup old SQL and generate new SQL again. 1019
[correct SQL] 1020
""" 1021

B Error Type Examples 1022

Examples of error types can be observed in Figure 7 (next page). 1023
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Question Evidence Gold SQL Pred SQL Error Description

How many male patients have a

normal level of both albumin

and total protein?

male refers to Sex = 'M';

normal level of both

albumin and total protein

refers to ALB > 3.5 and

ALB < 5.5 AND TP

between 6.0 and 8.5;

SELECT COUNT(T1.ID) FROM

Patient AS T1 INNER JOIN

Laboratory AS T2 ON T1.ID =

T2.ID WHERE T1.SEX = 'M' AND

T2.ALB BETWEEN 3.5 AND 5.5

AND T2.TP BETWEEN 6.0 AND

8.5

SELECT COUNT(*) FROM

Laboratory WHERE `ID`

IN ( SELECT ... AND

`ALB` > 3.5 AND `ALB`

< 5.5 AND `TP` >= 6.0

AND `TP` <= 8.5

Gold SQL uses "ALB

BETWEEN 3.5 AND

5.5", which is conflict

with evidence "3.5 <

ALB < 5.5".

How many artists have designed

a card with a black border

color and is available in both

"arena" and "mtgo" printing

type?

available in both "arena"

and "mtgo" refers to

availability like

'%arena,mtgo%'

SELECT COUNT(CASE WHEN

availability LIKE

'%arena,mtgo%' THEN 1 ELSE

NULL END) FROM cards

SELECT COUNT(DISTINCT

`artist`) FROM cards

WHERE `borderColor` =

'black' AND …

Gold SQL missing the

borderColor  constraint.

Question Evidence Gold SQL Pred SQL Error Description

What is the total score of the

posts edited by Yevgeny and

include the user's website

URL.

"Yevgeny" is the

DisplayName; edited refers

to LastEditorUserId

SELECT SUM(T1.Score),

T2.WebsiteUrl FROM posts AS

T1 INNER JOIN users AS T2 ON

T1.OwnerUserId = T2.Id WHERE

T2.DisplayName = 'Yevgeny'

GROUP BY T2.WebsiteUrl

SELECT ... ON

T1.`LastEditorUserId`

= T2.`Id` WHERE

T2.`DisplayName` =

'Yevgeny'

Use wrong db foreign

key

Question Evidence Gold SQL Pred SQL Error Description

Which budget allowed the most

money for water, chips, and

cookies?

budget allowed refers to

expense_description;

expense_description =

'Water, chips, cookies';

most money refers to

SELECT T2.budget_id, T1.cost

FROM expense AS T1 INNER

JOIN budget AS T2 ON

T1.link_to_budget =

T2.budget_id WHERE …

SELECT T1.cost,

T2.budget_id FROM

expense AS T1 INNER

JOIN budget AS T2 ON

…

Same answer, but with

different order

Question Evidence Gold SQL Pred SQL Error Description

Which user has a higher

reputation, Harlan or Jarrod

Dixon?

"Harlan" and "Jarrod

Dixon" are both

DisplayName; highest

reputation refers to

Max(Reputation)

SELECT DisplayName FROM

users WHERE DisplayName IN

('Harlan', 'Jarrod Dixon')

AND Reputation = ( SELECT

MAX(Reputation) FROM users

WHERE DisplayName IN

('Harlan', 'Jarrod Dixon') )

SELECT `DisplayName`,

`Reputation` FROM

users WHERE

`DisplayName` =

"Harlan"

Pred SQL miss out one

of the names in the

question.

Question Evidence Gold SQL Pred SQL Error Description

What are the cards for set

OGW? State the colour for

these cards.

set OGW refers to setCode

= 'OGW';

SELECT id, colors FROM cards

WHERE id IN ( SELECT id FROM

set_translations WHERE

setCode = 'OGW' )

SELECT `name`,

`colors` FROM cards

WHERE `setCode` =

'OGW' AND `colors` IS

NOT NULL

Both table cards  and

table set_translations

have the column

setCode  with

inconsistent values.

Question Evidence Gold SQL Pred SQL Error Description

What is the post ID and the

comments commented in the

post titled by "Group

differences on a five point

Likert item"?

Title = 'Group differences

on a five point Likert item';

SELECT T2.Id, T1.Text FROM

comments AS T1 INNER JOIN

posts AS T2 ON T1.PostId =

T2.Id WHERE T2.Title =

'Group differences on a five

point Likert item'

SELECT T2.`Id` AS

CommentId, T2.`Text`

AS CommentText FROM

posts AS T1 INNER

JOIN comments AS T2

ON T1.`Id` =

T2.`PostId` WHERE …

Different table join

order, use wrong table id

Question Evidence Gold SQL Pred SQL Error Description

Which cities have the top 5

lowest enrollment number for

students in grades 1 through

12?

K-12 refers to students in

grades 1 through 12.

SELECT T2.City FROM frpm AS

T1 INNER JOIN schools AS T2

ON T1.CDSCode = T2.CDSCode

GROUP BY T2.City ORDER BY

SUM(T1.`Enrollment (K-12)`)

ASC LIMIT 5

SELECT T1.City,  ...

JOIN frpm ON

schools.CDSCode =

frpm.CDSCode WHERE

frpm.`Low Grade` =

'1' AND frpm.`High

Grade` = '12' ) ...

ASC LIMIT 5

Misunderstand

knowledge K-12

Question Evidence Gold SQL Pred SQL Error Description

What is the grade span offered

in the school with the highest

longitude?

SELECT GSoffered FROM

schools ORDER BY

ABS(longitude) DESC LIMIT 1

SELECT `GSoffered`

FROM schools WHERE

`Longitude` = (

SELECT

MAX(`Longitude`) FROM

schools )

No information about

ABS(longtitude)

Dirty Database Values

Wrong Schema Linking

Evidence Misunderstand

Other Errors

Gold Error

Database Misunderstand

Semantic Correct

Question Misunderstand

Figure 7: 8 major types of error cases of BIRD are presented. Some cases are shortcuts for better presentation.
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