Constructing an Optimal Behavior Basis for the
Option Keyboard

Lucas N. Alegre Ana L. C. Bazzan
Institute of Informatics Institute of Informatics
Federal University of Rio Grande do Sul Federal University of Rio Grande do Sul
Porto Alegre, RS, Brazil Porto Alegre, RS, Brazil
Inalegre@inf.ufrgs.br bazzan@inf .ufrgs.br
André Barreto Bruno C. da Silva
Google DeepMind University of Massachusetts
London, UK Amherst, MA, USA
andrebarreto@google.com bsilva@cs.umass.edu
Abstract

Multi-task reinforcement learning aims to quickly identify solutions for new tasks
with minimal or no additional interaction with the environment. Generalized
Policy Improvement (GPI) addresses this by combining a set of base policies to
produce a new one that is at least as good—though not necessarily optimal—as
any individual base policy. Optimality can be ensured, particularly in the linear-
reward case, via techniques that compute a Convex Coverage Set (CCS). However,
these are computationally expensive and do not scale to complex domains. The
Option Keyboard (OK) improves upon GPI by producing policies that are at least
as good—and often better. It achieves this through a learned meta-policy that
dynamically combines base policies. However, its performance critically depends
on the choice of base policies. This raises a key question: is there an optimal set of
base policies—an optimal behavior basis—that enables zero-shot identification of
optimal solutions for any linear tasks? We solve this open problem by introducing
a novel method that efficiently constructs such an optimal behavior basis. We show
that it significantly reduces the number of base policies needed to ensure optimality
in new tasks. We also prove that it is strictly more expressive than a CCS, enabling
particular classes of non-linear tasks to be solved optimally. We empirically
evaluate our technique in challenging domains and show that it outperforms state-
of-the-art approaches, increasingly so as task complexity increases.

1 Introduction

Reinforcement learning (RL) methods have been successfully used to solve complex sequential
decision-making problems (Silver et al., 2017; Bellemare et al., 2020). However, traditional RL
algorithms typically require thousands or millions of interactions with the environment to learn a
single policy for a single task. Multi-task RL methods address this limitation by enabling agents to
quickly identify solutions for new tasks with minimal or no additional interactions. Such methods
often achieve this by learning a set of specialized policies (or behavior basis) designed for specific
tasks and subsequently combining them to more rapidly solve novel tasks.

A powerful approach for combining policies to solve new tasks in a zero-shot manner leverages succes-
sor features (SFs) and generalized policy improvement (Barreto et al., 2018, 2020). GPI can combine
base policies to solve a new task, producing a policy that is at least as good as any individual base pol-

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

icy. Importantly, however, GPI policies are not guaranteed to be optimal. Optimality can be ensured
if tasks can be expressed as a linear combination of reward features using techniques that compute
a convex coverage set (CCS) (Alegre et al., 2022). A CCS is a set of policies that includes an optimal
policy for any linear task. Unfortunately, the number of policies in a CCS often grows exponentially
with the number of reward features (Roijers, 2016), making existing algorithms computationally
expensive and difficult to scale to complex domains (Yang et al., 2019; Alegre et al., 2022, 2023b).

The option keyboard (OK) method improves upon GPI by producing policies that are at least as
good—and often better. It achieves this through a learned meta-policy that dynamically combines
base policies by assigning state-dependent linear weights to reward features (Barreto et al., 2019).
This allows OK to express a larger spectrum of behaviors than GPI and potentially solve tasks beyond
linear rewards, enabling it to produce policies that GPI cannot represent. However, its performance
critically depends on the choice of base policies available. Existing OK-based methods assume a
predefined set of base policies or rely on expert knowledge to construct one, without addressing how
to identify a good behavior basis (Barreto et al., 2019; Carvalho et al., 2023b). This raises a key
question and open problem: is there an optimal set of base policies for the OK—an optimal behavior
basis—that enables zero-shot identification of optimal solutions for any linear tasks?

We solve this open problem by introducing Option Keyboard Basis (OKB), a novel method with strong
formal guarantees that efficiently identifies an optimal behavior basis for the OK. OKB provably identi-
fies a set of policies that allows the OK to optimally solve any linear task; i.e., it can express all policies
in a CCS. We show that it significantly reduces the number of base policies required to ensure zero-shot
optimality in new tasks. Furthermore, we prove that the set of policies it can express is strictly more ex-
pressive than a CCS, enabling particular classes of non-linear tasks to be solved optimally. We empiri-
cally evaluate our method in challenging high-dimensional RL problems and show that it consistently
outperforms state-of-the-art GPI-based approaches. Importantly, we also observe that the performance
gain over competing methods becomes more pronounced as the number of reward features increases.

2 Background

2.1 Reinforcement Learning

An RL problem (Sutton and Barto, 2018) is typically modeled as a Markov decision process (MDP).
An MDP is defined as a tuple M = (S, A, p,r, j1,7), where S is a state space, A is an action space,
p(+|s, a) describes the distribution over next states given that the agent executed action « in state s,
r: SxAxS — Ris areward function, y is an initial state distribution, and € [0, 1) is a discounting
factor. Let Sy, As, and R, £ (S, A¢, St+1) be random variables corresponding to the state, action,
and reward, respectively, at time step ¢. The goal of an RL agent is to learn a policy 7 : § — A
that maximizes the expected discounted sum of rewards (return), Gy = Ziﬁo viRt+i. The action-
value function of a policy r is defined as ¢" (s, a) £ E.[G¢|S; = s, A; = a], where E,[-] denotes
the expectation over trajectories induced by 7. Given ¢”, one can define a greedy policy 7'(s) €
argmax, ¢" (s, a). It is guaranteed that ¢™ (s, a) > ¢"(s,a),¥(s,a) € S x A. The processes of
computing ¢™ and 7’ are known, respectively, as the policy evaluation and policy improvement steps.
Under certain conditions, repeatedly executing the policy evaluating and improvement steps leads
to an optimal policy 7*(s) € arg max, ¢*(s,a) (Puterman, 2014). Let (S, A, p, u,) be a Markov
control process (MPC) (Puterman, 2014), i.e., an MDP without a reward function. Given an MPC,
we define a family of MDPs M = {(S, A, p, 7, 11,7) | 7 : S x A x S — R} that only differ in their
reward function. We refer to any MDP M € M (and its corresponding reward function) as a fask.

2.2 Generalized Policy Evaluation and Improvement

Generalized Policy Evaluation (GPE) and Generalized Policy Improvement (GPI) generalize the
policy evaluation and improvement steps to the case where an agent has access to a set of policies. In
particular, GPE and GPI are used, respectively, (i) to evaluate a policy on multiple tasks; and (ii) to con-
struct a policy, capable of solving a particular novel task, by improving on an existing set of policies.

Definition 2.1 (Barreto et al. (2020)). GPE is the computation of the action-value function of a policy
m, g~ (s, a), for a set of tasks. Moreover, given a set of policies IT and a reward function of an arbitrary

task, r, GPI defines a policy, 7', such that qu,(s, a) > max,er gF(s,a) forall (s,a) € S x A.

Based on the latter definition, for any reward function r, a GPI policy can be constructed based on a
set of policies II as
7P (5; 1) € arg max max ¢7 (s, a). (1)
acA mEII

GPI

Let ¢SP!(s, a) be the action-value function of 7" under the reward function 7. The GPI theorem (Bar-

reto et al., 2017) ensures that 76! in Eq. (1) satisfies Def. 2.1; i.e., that ¢S*'(s, a) > max e ¢~ (s, a)
for all (s,a) € S x A. This implies that Eq. (1) can be used to define a policy guaranteed to perform
at least as well as all other policies 7; € II w.r.t. any given reward function, r. The GPI theorem can

also be extended to the case g™ is replaced with an approximation, g™ (Barreto et al., 2018).

2.3 GPE&GPI via Successor Features

Successor features (SFs) allows us to perform GPE&GPI efficiently (Barreto et al., 2017). Assume
that the reward functions of interest are linear w.r.t. reward features, ¢ : S x A x S — R<. That is,
a reward function, ,, can be expressed as 7 (s, a,s’) = ¢(s, a, s') - w, where w € R? is a weight
vector. Then, the SFs of a policy 7 for a given state-action pair (s, a), " (s, a) € R, are defined as

P (s,0) 2 Br | > by | Si =5, A =al,)

=0

where ¢, = ¢(S, Az, Si+1). Notice that the definition of SFs corresponds to a form of action-value
function, where the features ¢, play the role of rewards. Thus, SFs can be learned through any
temporal-difference (TD) learning algorithm (e.g., Q-learning (Watkins, 1989; Mnih et al., 2015) for
learning 1"). We refer to 1™ = Eg, . [1" (So, 7(So))] as the SF vector associated with 7, where
the expectation is with respect to the initial state distribution.

Given the SFs 97 (s,a) of a policy , it is possible to directly compute the action-value func-
tion ¢Z(s,a) of m, under any linearly-expressible reward functions, ry, as follows: ¢% (s,a) =
Er [Dieo 7 rw(Siqis Atgis Striv1) | S¢ = s, Ay = a] = 9™ (s,a) - w. That is, given any set of
reward weights, {w;}?_;, GPE can be performed efficiently via inner-products between the SFs
and the reward weights: ¢7, (s,a) = ¥ (s,a) - w;. Note that the value of a policy 7 under any
task w can be expressed as v}, = 9" - w. Let Il = {7, }_, be a set of policies with correspond-
ing SFs ¥ = {¢™ }?_,. Based on the definition of GPI (Def. 2.1) and the reward decomposition
rw(s,a,8") = ¢(s,a,s")-w, a generalized policy, 7' : Sx W — A, can then be defined as follows:

7P (s, w;II) € arg max max 9" (s,a) - w. 3)
cA mell

2.4 GPI via the Option Keyboard

The Option Keyboard (OK) (Barreto et al., 2019, 2020) is a method that generalizes GPI (Eq. (1)) by
allowing agents to use a different weight vector at each time step. It does so by learning a meta-policy
w : S — Z that outputs weights, z € Z, ' used when following the GPI policy 76! (s, z; IT) at each
state s. Intuitively, given a set of policies IT, w modulates the behavior induced by 7wC*! by controlling
the preferences w(s) over features for each state s. The OK policy, 7O, at each state s, is given by:

79K (s; 1) £ arg max max ¥" (s, a) - w(s).)
cA mell

Note that, by construction, 79X (s; 1) = 76P!(s, w(s);). Intuitively, in the “keyboard” analogy,

w(s) (a “chord”) combines base policies in I (“keys”) to generate more complex behaviors. A key
property of OK is that learning a policy over Z is often easier than over 4, as solutions typically
involve repeating the same action z across multiple timesteps, similar to temporally extended options.

3 Optimal Behavior Basis

In this section, we formalize the problem of identifying a behavior basis—i.e., a set of base
policies—that enables the OK to optimally solve all tasks within a given family of MDPs. We are

'Without loss of generality, let Z be the space of d-dimensional unit vectors, i.e., Z = {z € R? | ||z||]2 = 1}.

interested in incremental methods for constructing a behavior basis, 11, that provably enables the
OK to solve any MDP in M. Specifically, we consider approaches where an agent first iteratively
learns a behavior basis for solving some subset of tasks, M’ C M. Then, the method should be
capable of leveraging GPI or OK to identify additional specialized policies for optimally solving
novel, unseen tasks M ¢ M’. This process should progressively expand the behavior basis until
it converges to a small but sufficient set that guarantees zero-shot optimality. The core problem
investigated in this paper is, then, how to identify an optimal set of base policies that an agent should
learn to facilitate transfer learning within specific classes of MDPs.

Let Mﬁ’n C M be the—possibly infinite—set of MDPs associated with all linearly expressible
reward functions. This set, typically studied in the SFs literature, can be defined as

M E{(S A D, rw, 1,7) | 1w = ¢ W}, (5)

Each element M € Mﬁ’n (or, equivalently, its weight vector w) is called a fask. In what follows, we
consider weight vectors that induce convex combinations of features; that is, W = {w | >~, w; = 1,
w; > 0,Vi}. This is common practice, e.g., in the multi-objective RL literature (Hayes et al., 2022).
Our analyses naturally extend to linear combinations of features—in App. B, we show how linear-

reward MDPs can be transformed into equivalent convex-reward MDPs (w.l.0.g.) so that our results

and algorithms apply directly. Existing algorithms capable of optimally solving all tasks in ./\/l]‘f’n
often identify a set of policies, IT;, = {m; }*, such that their associated SF vectors, ¥ = {¢p"* }_,,
form a convex coverage set (CCS) (Alegre et al., 2022). A CCS is a set of SF vectors that allows

the optimal value function, v}, = 9™ - w, for any given task w € W, to be directly identified:’
CCS2 {4p™ | Iw e Wst. V™ - w > " - wh. (©6)

Unfortunately, methods that compute the complete CCS for Mﬁ’n do not scale to complex tasks
since its size can grow exponentially with d—counting corner weights is equivalent to Vertex
Enumeration (Roijers, 2016). Hence, it becomes critical to develop novel techniques capable of
recovering all solutions induced by a CCS without incurring the cost of learning the corresponding full
set of policies. This could be achieved, for instance, by methods capable of expressing all solutions
in a CCS by combining policies in a behavior basis IT;, smaller than the CCS; that is, || < |CCS].

We start by extending the definition of the OK (Eq. (4)) to include the description of the task being
solved, w € W, as one of its arguments. That is, we consider meta-policies w : S x W — Z, and
OK policies defined as

OK

Ty

(s, w;II) £ arg max max " (s, a) - w(s, w). ™
acA TEI

The meta-policy w(s, w) enables the OK to decompose the optimal policy for a task w by dynamically
assigning state-dependent linear weights to the SFs of its various base policies. Note that if w(s, w) =
w for all s € S, we recover GPI. Given an arbitrary set of base policies 11, we define the space of all
policies expressible by the OK, IT°(I1},), and their associated SF vectors, WOK(II},), respectively, as

TO¥(11;) & {79, w;TI) [w € W,w: S x W — Z} and ¥OX(IT;) £ {47 | m € TOX(IT;)}.

We are now ready to mathematically define our goal:

Goal: Learn a set of policies (the behavior basis) I}, and a meta-policy w such that (1) |II| <
|CCS|; and (2) 79K (-;11;) is optimal for any task M € M . The latter condition implies that

lin*
CCS C WOK(II,); i.e., the OK is at least as expressive as a CCS.
As observed by Barreto et al. (2019, 2020), learning a meta-policy, w, is often easier than learning base
policies over the original action space, .A. Consider, e.g., that if a task w € W can be solved by switch-
ing between two base policies in I, then an optimal meta-policy for w, w(-, w), only needs to output
two vectors z (one for each base policy) for any given state. Thus, solving the goal above is bound to be
more efficient than constructing a complete CCS since it requires learning fewer optimal base policies.

2A CCS may not be unique since tasks can have multiple optimal policies with distinct SF vectors. In what fol-
lows, CCS refers specifically to the minimal set satisfying Eq. (6), which is uniquely defined (Roijers et al., 2013).

4 Constructing an Optimal Behavior Basis

We now introduce Option Keyboard Basis (OKB), a novel method to solve the goal introduced in
the previous section. The OKB (Alg. 1) learns a set of base policies, IIj, and a meta-policy, w, such
that the induced OK policy 79X (-; II;,) is provably optimal w.r.t. any given task w € W.

The algorithm starts with a single base policy optimized to solve an arbitrary initial task
(e.g., w=[1/d,...,1/d]") in its set of policies II (lines 1-2). OKB’s initial partial CCS, W°K,
and weight support set, WP, are initialized as empty sets (line 3). W will store the
weights of tasks the meta-policy has been trained on. At each iteration k, OKB carefully
selects the weight vectors on which its meta-policy, w, will be trained so that the policies
expressible by WOK iteratively approximate a CCS. This process is implemented by OK-LS
(Alg. 2), an algorithm inspired by the SFs Optimistic Linear Support (SFOLS) method (Alegre
et al., 2022) but that operates over a meta-policy w rather than the space of base policies.

Algorithm 1: Option Keyboard Basis (OKB) Next, in lines 8—10, OKB identifies a set of can-
Input: MPC with features ¢(s,a) € R? dl(llate t?ilslll(S.’ C, that the OI? Ca?n.ot OII)_}lme.lHy
1 Tw, ™ < NewPolicy(w=InitialTask()) solve with 1ts Currenj[set S policies, Ly, 1.¢.,
2 Tho {ma}; TR < g™} a set of tasks for which 7, is not included in
\I/(O)K v);VS”% ITOK(T1;,). We discuss how to check this condi-
3 Voo {EWp" « {} tion in Section 4.1 If C is empty (line 11), the
4 Initialize meta-policy wq . .
sfork=0,1,2,... do OKB terminates and returns a meta-pohcy (w)
and base policies (II;) capable of ensuring that
CCS C WOK(II;). This is due to Thm. 4.3,

> Update meta-policy w

6 Wi, UK WP . . .

g;—lL g (';H lI/OI]2+]1/\}sup) which we discuss later. If C is not empty, OKB
; Ce{} ko Sk PV o Tk selects a task from it and adds a new correspond-
. for w € Corner(W1**) U CornerW(WX) do ing optimal base policy to its behavior basis, IIj

b Check if task w is solvable (lines 14—17). In line 18, RemoveDominated
with OK and II, removes redundant policies—policies that are

, if 2, is not in TI°X(IT,) then not strictly required to solve at least one task.

10 | C+Cu{w} In Algorithms 1 and 2, the function CornerW(¥)

1 if C is empty then takes a set of SF vectors, ¥, as input and returns
> Found optimal basis II and a set of corner weights (see App. F.1). Intu-
meta-policy w itively, both Alg. 1 and Alg. 2 rely on the fact

12 return w41, g, U2, that (i) a task w €)V that maximizes A(w) £

13 else Uy, — MaXrcrr, Vg 1 guaranteed to be a corner

> Learn a new base policy

weight, and (i) if OKB has an optimal policy for

i: ;vwfws:ieial\;zi]l;gfﬂ;(w) all corner weights, then it must hqve ic}entiﬁed
% i1 < g U {7} a CCS. These results were shown in prior work
. Whe b {qpmw) on constructing a CCS (Roijers, 2016; 'A]egre
s Ty, U35, et al., 2022) and can also be proven using the

fundamental theorem of linear programming.

RemoveDominated (Il 1, \Ill,laffl)

OK-LS (Alg. 2) trains the meta-policy, w, on
Algorithm 2: OK - Linear Support (OK-LS) selected tasks W (line 2) using the base
policies II;, so that is partial CCS, POK
iteratively approximates a CCS. It stores the

Input: Meta-policy w, partial CCS UK, weight
support W*P_ base policies IIj.

1 while True do tasks w it has already trained on, as well as
2 WO CornerW(WOK) \ WP the corner weights of the current iteration, in
3 if W is empty then the weight support set, WP (line 5). If W
4 ‘ return w, WK is empty in a given iteration, no tasks remain to
5 WP — YW pyeemer be solved, and the algorithm returns the updated
6 w ¢ TrainOK(w, W™, IIx) > (Alg. 3) meta-policy. Otherwise, OK-LS adds the corner
7 POoK {ﬂ,ﬂgk(wwﬂk) | w e WP} weights WY to WP and trains the meta-policy
s UK « RemoveDominated(¥K) w on the tasks w € W*P using the TrainOK

subroutine (Alg. 3). Finally, in line 7, OK-LS
computes the SF vectors of the policies induced
by OK for each w € W*'P, updating its partial CCS, ¥°X 3 In App. D, we discuss how to train w

*Notice that SFs only need to be computed for vectors newly added to W in the current iteration (lines 6-7).

using an actor-critic RL method (Alg. 3). Finally, note that to accelerate the learning of w, the corner
weights in YW can be prioritized, similar to Alegre et al. (2022).

4.1 Condition for OK Optimality

In this section, we address the following question: Given an arbitrary task with reward function
7 and a set of base policies 11, is w} € II°%(II},) ? In other words, does a meta-policy w exist such
that the OK policy, 7%%w(-; II;), can represent the optimal policy 7*? Determining whether this
holds is essential for implementing the OKB step in line 9.

Proposition 4.1. Let 11j, = {m; }_, be a set of base policies with corresponding SFs ¥ = {¢™ }1_,.
Given an arbitrary reward function r, an optimal OK policy 79X (-; 1) can only exist if there exists
an OK meta-policy, w : § — Z, such that for all s € S,

arg max max v" (s, a) - w(s) = argmax ¢ (s, a). 8)
acA TEIL acA

This proposition provides a sufficient condition for the existence of an optimal OK meta-policy w for a
given reward function 7. Intuitively, it implies that the OK policy should be able to express all optimal
actions through w and ¥. Next, we show how to verify this condition without requiring access to g;-.

Let II; be a set of base policies, w be an OK meta-policy, and ¢¥(s,z) = 7(S¢ A) +
VEL[¢¥ (Str1,w(Sex1)) | Sp = s, Ay = 7OPL(S;, z; 1,)] be the meta-policy’s action-value function
for task r. Given a state-action pair (s, a), let the advantage function of w for executing action a in
state s be

A7 (s,a) £ 7(s,a) + VEu[g7 (S, w(Si1)) | Si=s, Ay=a] — g7 (s,w(s))- ©

It is well-known that an optimal policy’s advantage function is zero when evaluated at an optimal
action; i.e., A" %s, a*) = 0forall s € S. Thm. 4.2 uses this insight to introduce a principled way to
verify if 7 € IO (T1,,).

Theorem 4.2. Let I}, be a set of base policies and w* be a meta-policy trained to convergence to
solve a given task r. If A% (s, a) > 0 for some (s, a), then action a is not expressible by 79X (-; Tly,).
Consequently, the OK with base policies 11}, cannot represent an optimal policy for r.

Note that the procedure for verifying whether the OK is optimal for a given task » (Thm. 4.2) is a
sufficient, but not necessary, condition to guarantee optimality. It serves two key purposes: (i) to
avoid training on tasks w whose optimal policies have either already been learned or that can be
reconstructed from II; and w, and (i) to prioritize which tasks to train on in order to accelerate
learning. In other words, the procedure for assessing OK optimality is primarily a tool to reduce
training effort; our method does not rely on an exact test to ensure the correctness of the behavior basis
it constructs. For a detailed discussion of how Thm. 4.2 can be applied in practical implementations
of OKB to verify whether 7% € TI9X(I;), see App. E.

4.2 Theoretical Results

In this section, we present the theoretical guarantees of OKB (Alg. 1). Proofs of the theorems can be
found in App. A.

Theorem 4.3. OKB returns a set of base policies, I, and a meta-policy, w, such that |II;| < |CCS]

and 79X (11, is optimal for any task M € M?ﬁq This implies that CCS C WOK(I1}); i.e., the OK
¢

matches or exceeds the expressiveness of a CCS and ensures zero-shot optimality for all M € M;; .

This is a key result of this paper: OKB can provably identify a behavior basis, IIj, that enables

an option keyboard to optimally solve any task M € /\/lﬁ’n. Furthermore, it is capable of ensuring
zero-shot optimality using a set of base policies potentially smaller than a CCS. This is the first
method to offer such a guarantee—until now, all existing approaches required the number of base
policies to be strictly equal to the size of the CCS. This limitation posed a major scalability challenge:
computing a full CCS becomes intractable as the number of reward features d grows, since its size can
grow exponentially with d—counting corner weights is equivalent to Vertex Enumeration (Roijers,
2016). OKB overcomes this bottleneck by avoiding the need to construct a full CCS, thereby reducing

the total cost of computing optimal policies for all M € Mﬁ’n. See below for more details.

Proposition 4.4. Let 11}, be the set of policies learned by OKB (Alg. 1) when solving tasks that are
linearly expressible in terms of reward features ¢(s,a) € R%. Let r be an arbitrary reward function
that is non-linear with respect to ¢. Suppose the optimal policy for r can be expressed by alternating,
as a function of the state, between policies in the CCS induced by ¢. That is, suppose that for all
s € S, there exists a policy 73, (optimal for some w € W) such that 7} (s) = w%,(s). Then, the OK
can represent the optimal policy for r using the set of base policies ly; i.e., 7% € TIOX(ITy).

This deepens the theoretical understanding of the OKB by showing it is strictly more expressive than
existing methods. In particular, it allows us to characterize (1) conditions under which the OKB
matches the expressiveness of a CCS while relying on strictly fewer policies; and (2) a broad class of
non-linear tasks that can be optimally solved by an OK using the behavior basis learned by OKB.

First, Prop. 4.4 establishes the optimality of the OKB in transfer learning scenarios where related
tasks can be solved by reusing parts of existing solutions—that is, the widely studied setting in
which transfer is possible due to shared structure across tasks. Concretely, the OKB is guaranteed
to optimally solve, in a zero-shot manner, tasks whose solutions decompose into sequences of sub-
policies. Building on this result and Thm. 4.3, we formally characterize, in App. A.5, the conditions
under which the OKB is as expressive as a CCS while relying on strictly fewer policies.

Second, Proposition 4.4 precisely characterizes a class of non-linear tasks that can be optimally
solved by an OK using the behavior basis learned by OKB. Intuitively, OKB can solve any task whose
optimal policy can be constructed by alternating between the optimal policies for tasks in Mff’n, even
when the task itself is non-linear. This implies, importantly, that while existing methods that compute
a CCS are limited to linearly expressible tasks, OKB can handle a broader class of non-linear tasks.
Furthermore, as discussed above, the OKB achieves this without having to learn all policies in the
CCS. We further discuss the properties of OK under non-linear reward functions in App. C.

To state our next theoretical result, we first recall Thm. 2 by Barreto et al. (2017):

Theorem 4.5 (Barreto et al. (2017)). Let II={m;}"_, be a set of optimal policies w.r.t. tasks {w;}?_,.
Let {1217”};’:1 be approximations to their SFs and w € W be a task. Let |q% (s,a) — §&i (s, a)| <
eforall (s,a) € SxA, and 7; € II. Let ¢, = max, ||@(s,a)||. Then, it holds that:

PI

G 2
qe(s,a) — g (s,a) < = (d)max min ||w — w|| + 6) forall (s,a) € SxA. (10)
p i

Thm 4.5 describes the optimality gap of GPI policies, how it depends on the available base policies,
and how it is affected by function approximation errors. It does not, however, characterize the
optimality gap of option keyboards, which generalize GPI policies. We introduce and highlight

two generalizations of this theorem: (1) Since the OK generalizes GPI policies, it follows that
PL

qs (s, a) —qf,rng (s,a) < g (s,a) —q@c (s,a); and (2) when Eq. (8) (Prop. 4.1) is satisfied, ¢, (s, a) —
O]

gw’ (s,a) = 0. That is, OK can entirely avoid optimality gaps from approximation errors in the base
policies’ SFs. Thus, OK and OKB are not only more expressive than GPI (Thm. 4.3) but also naturally
lead to transfer learning strategies that are significantly more robust to approximation errors than GPI.

5 Experiments

We now empirically evaluate OKB and investigate
the following research questions: Q1: Can OKB
approximate a CCS more effectively while requiring
fewer base policies than competing methods? Q2:
Does OKB’s performance advantage grow with
problem complexity, as measured by the number of
reward features d? Q3: Can the base policies learned
by OKB be used to solve tasks with non-linear
reward functions, under the conditions in Prop. 4.4?

. Figure 1: Domains used in the experiments:
Fig. 1 depicts the domains used in our experiments. \finecart. FetchPickAndPlace. Item Collec-

To handle the high-dimensional state space of these

. L : . tion, and Highway.
domains, we learn base policies using a Universal SF

Approximator (USFA) (Borsa et al., 2019). Furthermore, rather than learning a separate SF for each
base policy 7 € I, we train a single USFA, (s, a, w), conditioned on task vectors w, such that
Tw(s) & arg max,¢ 4 ¥ (s, a, w) - w. Each call to NewPolicy(w) in Alg.| trains the USFA to solve
task w. We employ USFAs in our experiments primarily to avoid the memory and computational
costs of training a separate neural network for each policy’s SFs. Moreover, USFAs typically achieve
a level of approximation comparable to—or better than—that of independently trained networks,
since in both cases generalization depends mainly on the architecture, capacity, and distribution of
training data. See App. F for more details.

In all experiments, we report the mean normalized return of each method (normalized with respect
to the minimum and maximum returns observed for a given task) along with the 95% bootstrapped
confidence interval over 15 random seeds. We compare OKB to SFOLS (Alegre et al., 2022), a
method that identifies a CCS using GPI policies, and to OKB-Uniform, a variant of OKB that selects
tasks uniformly from W in line 14 of Alg. I, rather than from C. An iteration corresponds to each
method training a base policy within a fixed budget of environment interactions. To ensure fair
comparisons, since OKB must also train a meta-policy while SFOLS does not, we restrict OKB to
using only half of its budget for learning base policies, allocating the other half to training the meta-
policy (Alg. 2). This makes the comparison more conservative for OKB, as it has fewer interactions
available to learn base policies.

Fig. 2 depicts each method’s mean return over a set of

o] JI— test tasks, M € Mff;,* as a function of the iteration
oo | / number (i.e., the number of base policies learned).
i We report results for the Minecart domain—a classic
multi-objective RL problem—and the Highway
oo domain. Both domains have reward functions
oo Do o e toun defined by d = 3 reward features, which are detailed
SFOLS (GE based) in App. F.2. These results demonstrate that OKB

) 2 3 i 5 6 achieves strong performance across test tasks with a
Heration small number of base policies, positively answering

(a) Minecart research question Q1l: OKB can approximate a

050 1 CCS more effectively using fewer base policies.
oo | /’—/ This is particularly evident in Fig. 2a, where OKB

/ reaches near-optimal performance with just 2-3 base

1.00 4

0.70 o

0.60 -

Mean Normalized Return

0.60 -

policies. While OKB-Uniform also performs well

in the Minecart domain, its lower performance in the

[| Highway domain (Fig. 2b) highlights the importance
040 1 SFOLS (GP-based) of expanding the set of base policies by carefully
! : : 1 : 5 selecting promising tasks—defined by corner
lteration weights—for training. Across both domains, OKB

(b) Highway consistently outperforms all competing methods.

050 {

Mean Normalized Return

To investigate Q2, we evaluate each method in the
FetchPickAndPlace domain with varying numbers of
reward features, d € {2, 4, 6,8}. In this domain, an
agent controls a robotic arm that must grasp a block and move it to a specified location. Each of the
d reward features represents the block’s distance to a different target location (red spheres in Fig. 1).
Fig. 3 shows that as the number of target locations (d) increases, the performance gap between
OKB and SFOLS increases significantly—positively answering Q2. ° Intuitively, OKB focuses on
tasks where the OK cannot express optimal actions (see Thm. 4.2). By learning the corresponding
optimal policies, OKB quickly identifies a behavior basis that enables the OK to solve tasks across
the entire space of task vectors WW. Conversely, the gap between OKB and OKB-Uniform decreases
since a larger number of reward features enhances the expressivity of the OK (Prop. 4.1). The total
computation time required by OKB to train a meta-policy and base policies for zero-shot optimality

Figure 2: Mean normalized return per itera-
tion for each method on a set of test tasks.

*To generate test task sets VW' C W for different values of d, we used the method introduced by Takagi et al.
(2020), which produces uniformly spaced weight vectors in WW.

SImportantly, to the best of our knowledge, most state-of-the-art methods are typically evaluated on problems
with dimensionality at most d = 4 (e.g., SFOLS and SIP). In our experiments, by contrast, we double the number
of reward features, thus showing that our method remains effective and continues to outperform all baselines
even on problems an order of magnitude more challenging.

Figure 3: Mean normalized return over test tasks as a function of iteration number (i.e., number
of base policies learned per method) [FetchPickAndPlace]. As d increases, OKB’s performance
advantage over SFOLS (a state-of-the-art GPI-based algorithm) grows.

is consistently comparable to or lower than that of competing methods, as it learns and evaluates
fewer policies at inference time.

Next, we investigate Q3 by conducting an experiment similar to the one proposed by Alver and Precup
(2022). We compare OKB to relevant competitors in an environment with non-linear reward functions.
The Item Collection domain (Fig. 1; top right) is a 10 x 10 grid world where agents must collect two
types of items. Reward features are indicator functions that signal whether the agent has collected a
particular item in the current state. This domain requires function approximation due to the combina-
torial number of possible states. After OKB learns a behavior basis I, the agent trains a meta-policy
w : S — Z to solve a task with a non-linear reward function. Specifically, this is a sequential task
where the agent must collect all instances of one item type before collecting any items of another type.
We compare OKB with SIP (Alver and Precup, 2022),° a method that learns d base policies—each
maximizing a specific reward feature—and a meta-policy w over a discrete set of weights in V. We
also compare OKB against a baseline DQN agent that learns tasks from scratch and against GPI
policies (horizontal blue lines), which are optimal for either exclusively prioritizing one item type or as-
signing equal importance to both. Fig. 4 shows the mean total reward achieved by each method in this
non-linear task as a function of the total number of environment interactions required to train the meta-
policies. Both OKB and SIP successfully solved the task, with OKB doing so more quickly. The DQN
baseline failed to solve the task as directly learning a policy over A is significantly more difficult.

10.00 +

8.00 1 I
1040 3 3 2
6.00 - W om0
g A
4.00 4 / E \/
—— OKB (ours) ===+ GPIwithw = [-1.0, 1.0]
2.00 — sIp GPIwithw = [1.0, —1.0]
[—om o 25 4
T T

—— DQN —— GPlwithw = [0.5,0.5]
T —T T T T T T T T T T T T T T T T T T
56 7 8 9 10 11 12 13 14 15 16 17 18 10 20 21 22 23 24 25 26 27 28 20

0.00 T T T 1 T
Time Step

ALg[a[a[a[a[&] 4[4 [T[O[T[TJT[TJT[T[3

Mean Total Reward

Meta Action w(S, w)

Base Policy in IT; Dim. of z = w(S¢)

—im oo

T T
0.0 0.2 0.4 0.6 0.8 1.0 0128
Time Step x10°

Figure 5: Continuous actions from the meta-policy on a

Figure 4: Mean return in the Item Collec- Rl
selects base policies in a temporally

tion domain under a non-linear reward Sample task. OKB
function consistent way.

Finally, we examine the qualitative behavior of OKB policies by visualizing the continuous actions
produced by the meta-policy w(s, w) while solving a sample task in the Highway domain, where
the agent must prioritize driving fast and staying in the rightmost lane. In Fig. 5, the color of each
timestep’s column represents the selected base policy. The agent initially accelerates as quickly as
possible by following base policy 7; for the first 10 timesteps while the rightmost lane is occupied.
At timestep ¢t = 10, the agent turns right and switches to base policy w2, which is optimized for
driving in the rightmost lane. At ¢ = 20, 7; becomes active again, allowing the agent to accelerate
while staying in the rightmost lane. Note that while the meta-policy w is relatively smooth, the base
policies it selects are complex. In particular, although z; remains approximately constant during the
first 10 timesteps, the underlying primitive actions a € A (Fig. 5; black numbers at the top of each
column) continuously alternate between turning left or right, accelerating, and idling. Finally, notice
that OKB selects base policies in a temporally consistent manner, suggesting that it learns to identify
temporally extended behaviors—akin to options (Sutton et al., 1999)—that help solve the task.

SSIP was not part of previous experiments as it assumes independent reward features (Alver and Precup, 2022).

6 Related Work

OK and GPI. Previous works have extended the OK in different ways. Carvalho et al. (2023b)
introduced a neural network architecture for jointly learning reward features and SFs, while Machado
et al. (2023) proposed using the OK with base policies that maximize Laplacian-based reward features.
However, unlike our work, these methods do not provide theoretical guarantees on optimality for solv-
ing specific families of tasks. Other works have introduced GPI variants for risk-aware transfer (Gimel-
farb et al., 2021), mitigating function approximation errors (Kim et al., 2022), planning with approxi-
mate models (Alegre et al., 2023a), planning to solve tasks defined by finite state automata (Kuric et al.,
2024), and combining non-Markovian policies (Thakoor et al., 2022). These approaches improve GPI
in ways that are orthogonal to our contribution and could potentially be combined with our method.

Learning behavior basis. Previous works have addressed the problem of learning an effective behav-
ior basis for transfer learning within the SF framework (Nemecek and Parr, 2021; Zahavy et al., 2021).
The method introduced by Alver and Precup (2022) assumes that reward features are independent (i.e.,
can be controlled independently) and that the MDP’s transition function is deterministic. These as-
sumptions often do not hold in complex RL domains, including most of those studied in Section 5. Ale-
gre et al. (2022) proposed a method that learns a set of policies corresponding to a CCS and combines
them with GPI. In contrast, we use option keyboards, which enable a broader range of policies to be
expressed, allowing our method to approximate a CCS more effectively with a smaller behavior basis.

Learning features. While we focused on identifying an optimal behavior basis given a particular set
of reward features, other works have addressed the complementary problem of learning more expres-
sive reward features (Touati and Ollivier, 2021; Carvalho et al., 2023a; Chua et al., 2024). A promising
future research direction is to combine OKB with methods such as the Forward-Backward represen-
tation (Touati et al., 2023) to construct an optimal behavior basis under learned reward features.

7 Conclusions

We introduced OKB, a principled method with strong theoretical guarantees for identifying the
optimal behavior basis for the Option Keyboard (OK). Our theoretical results, supported by thorough
empirical analysis, show that OKB significantly reduces the number of base policies required
to achieve zero-shot optimality in new tasks compared to state-of-the-art methods. In particular,
OKB constructs a behavior basis efficiently by carefully selecting base policies that iteratively
improve its meta-policy’s approximation of the CCS. We empirically evaluate OKB in challenging
high-dimensional RL problems, demonstrating that it consistently outperforms GPI-based approaches.
Notably, its performance advantage becomes increasingly pronounced as the number of reward
features grows. Finally, we prove that OKB’s expressivity surpasses that of a CCS, enabling it to
optimally solve specific classes of non-linear tasks. Among several possible research directions,
one promising direction is to extend OKB with temporally extended meta-policies that incorporate
learned termination conditions. The resulting expressiveness could further expand OKB’s flexibility
and efficiency in reusing behaviors across tasks. Furthermore, recently identified mathematical
connections between multi-objective RL (MORL) and SFs (Alegre et al., 2022) open the door to
adapting OKB to integrate with MORL techniques, paving the way for unified representations that
improve both sample efficiency and generalization across objectives.

Acknowledgments

This work is partially supported by CAPES (Coordenagao de Aperfeicoamento de Pessoal de Nivel
Superior - Brazil, Finance Code 001). Ana Bazzan is partially supported by CNPq under grant
number 304932/2021-3.

10

References

Abels, A., Roijers, D. M., Lenaerts, T., Nowé, A., and Steckelmacher, D. (2019). Dynamic weights in multi-
objective deep reinforcement learning. In Proceedings of the 36th International Conference on Machine
Learning, volume 97, pages 11-20, Long Beach, California, USA. International Machine Learning Society
(IMLS). F.2

Alegre, L. N., Bazzan, A. L. C., and da Silva, B. C. (2022). Optimistic linear support and successor features as a
basis for optimal policy transfer. In Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 394-413, Baltimore, Maryland, USA.
PMLR. 1,3,4,8,5,6,7, A.1, A3, F.1

Alegre, L. N., Bazzan, A. L. C., Nowé, A., and da Silva, B. C. (2023a). Multi-step generalized policy
improvement by leveraging approximate models. In Advances in Neural Information Processing Systems,
volume 36, pages 38181-38205, New Orleans, USA. Curran Associates, Inc. 6

Alegre, L. N., Bazzan, A. L. C., Roijers, D. M., Nowé, A., and da Silva, B. C. (2023b). Sample-efficient
multi-objective learning via generalized policy improvement prioritization. In Proceedings of the 2023
International Conference on Autonomous Agents and Multiagent Systems, AAMAS 23, pages 2003-2012,
Richland, SC. International Foundation for Autonomous Agents and Multiagent Systems. 1, A.3

Alver, S. and Precup, D. (2022). Constructing a good behavior basis for transfer using generalized policy updates.
In Proceedings of the Tenth International Conference on Learning Representations, Virtual. OpenReview.net.
5,6,6

Barreto, A., Borsa, D., Hou, S., Comanici, G., Aygiin, E., Hamel, P.,, Toyama, D., Hunt, J., Mourad, S., Silver, D.,
and Precup, D. (2019). The Option Keyboard: Combining skills in reinforcement learning. In Proceedings
of the 33rd International Conference on Neural Information Processing Systems, pages 13052-13062, Red
Hook, NY, USA. Curran Associates Inc. 1, 2.4, 3, F.2

Barreto, A., Borsa, D., Quan, J., Schaul, T., Silver, D., Hessel, M., Mankowitz, D., Zidek, A., and Munos, R.
(2018). Transfer in deep reinforcement learning using successor features and generalised policy improvement.
In Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 501-510, Stockholm, Sweden. PMLR. 1,2.2

Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T., van Hasselt, H. P., and Silver, D. (2017). Successor
features for transfer in reinforcement learning. In Guyon, 1., Luxburg, U. V., Bengio, S., Wallach, H., Fergus,
R., Vishwanathan, S., and Garnett, R., editors, Proceedings of the 31st International Conference on Neural
Information Processing Systems, volume 30, pages 4058-4068, Red Hook, NY, USA. Curran Associates, Inc.
2.2,2.3,4.2,45

Barreto, A., Hou, S., Borsa, D., Silver, D., and Precup, D. (2020). Fast reinforcement learning with generalized
policy updates. Proceedings of the National Academy of Sciences, 117(48):30079-30087. 1,2.1,2.4,3,C

Bellemare, M. G., Candido, S., Castro, P. S., Gong, J., Machado, M. C., Moitra, S., Ponda, S. S., and Wang, Z.
(2020). Autonomous navigation of stratospheric balloons using reinforcement learning. Nature, 588(7836):77—
82. 1

Bhatt, A., Palenicek, D., Belousov, B., Argus, M., Amiranashvili, A., Brox, T., and Peters, J. (2024). Crossq:
Batch normalization in deep reinforcement learning for greater sample efficiency and simplicity. In Proceed-
ings of The Twelfth International Conference on Learning Representations. F

Blank, J. and Deb, K. (2020). Pymoo: Multi-objective optimization in python. /IEEE Access, 8:89497-89509. F

Borsa, D., Barreto, A., Quan, J., Mankowitz, D. J., Munos, R., Hasselt, H. V., Silver, D., and Schaul, T. (2019).
Universal successor features approximators. In Proceedings of the 7th International Conference on Learning
Representations (ICLR), New Orleans, USA. OpenReview.net. 5

Carvalho, W., Filos, A., Lewis, R., Lee, H., and Singh, S. (2023a). Composing task knowledge with modular
successor feature approximators. In Proceedings of The Eleventh International Conference on Learning
Representations, Kigali, Rwanda. OpenReview.net. 6

Carvalho, W., Saraiva, A., Filos, A., Lampinen, A., Matthey, L., Lewis, R., Lee, H., Singh, S., Jimenez Rezende,
D., and Zoran, D. (2023b). Combining behaviors with the successor features keyboard. In Oh, A., Neumann,
T., Globerson, A., Saenko, K., Hardt, M., and Levine, S., editors, Advances in Neural Information Processing
Systems, volume 36, pages 9956-9983. Curran Associates, Inc. 1, 6

11

Chen, X., Wang, C., Zhou, Z., and Ross, K. W. (2021). Randomized ensembled double g-learning: Learning fast
without a model. In Proceedings of the Ninth International Conference on Learning Representations (ICLR),
Virtual. OpenReview.net. F

Chua, R., Ghosh, A., Kaplanis, C., Richards, B. A., and Precup, D. (2024). Learning successor features the
simple way. In Proceedings of the Thirty-eighth Annual Conference on Neural Information Processing
Systems. 6

de Lazcano, R., Andreas, K., Tai, J. J., Lee, S. R., and Terry, J. (2023). Gymnasium robotics. F.2

Felten, F., Alegre, L. N., Nowé, A., Bazzan, A. L. C., Talbi, E.-G., Danoy, G., and da Silva, B. C. (2023). A
toolkit for reliable benchmarking and research in multi-objective reinforcement learning. In Proceedings of the
37th International Conference on Neural Information Processing Systems, volume 36, pages 23671-23700,
Red Hook, NY, USA. Curran Associates, Inc. F.2

Fujimoto, S., van Hoof, H., and Meger, D. (2018). Addressing function approximation error in actor-critic
methods. In Dy, J. and Krause, A., editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 1587-1596, Stockholm, Sweden.
PMLR. F

Gimelfarb, M., Barreto, A., Sanner, S., and Lee, C.-G. (2021). Risk-aware transfer in reinforcement learning
using successor features. In Proceedings of the 35th Annual Conference on Advances in Neural Information
Processing Systems, pages 17298-17310, Red Hook, NY, USA. Curran Associates Inc. 6

Hayes, C. F.,, Radulescu, R., Bargiacchi, E., Killstrom, J., Macfarlane, M., Reymond, M., Verstraeten, T.,
Zintgraf, L. M., Dazeley, R., Heintz, F., Howley, E., Irissappane, A. A., Mannion, P., Nowé, A., Ramos, G.,
Restelli, M., Vamplew, P., and Roijers, D. M. (2022). A practical guide to multi-objective reinforcement
learning and planning. Autonomous Agents and Multi-Agent Systems, 36(1):26. 3

Kim, J., Park, S., and Kim, G. (2022). Constrained GPI for zero-shot transfer in reinforcement learning. In
Proceedings of the 36th International Conference on Neural Information Processing Systems, NIPS’22, pages
4585-4597, Red Hook, NY, USA. Curran Associates Inc. 6

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In Bengio, Y. and LeCun, Y.,
editors, Proceeding of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA,
USA. OpenReview.net. F

Kuric, D., Infante, G., Gémez, V., Jonsson, A., and van Hoof, H. (2024). Planning with a learned policy basis to
optimally solve complex tasks. In Proceedings of the International Conference on Automated Planning and
Scheduling, pages 333-341, Alberta, Canada. AAAI Press. 6

Leurent, E. (2018). An Environment for Autonomous Driving Decision-Making. Python Package. F.2

Machado, M. C., Barreto, A., and Precup, D. (2023). Temporal abstraction in reinforcement learning with the
successor representation. Journal of Machine Learning Research (JMLR), 24(80):1-69. 6

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep reinforcement learning.
Nature, 518(7540):529-533. 2.3

Motzkin, T. S., Raiffa, H., Thompson, G. L., and Thrall, R. M. (1953). The Double Description Method.
Princeton University Press. F.1

Nemecek, M. and Parr, R. (2021). Policy caches with successor features. In Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 8025—
8033, Virtual. PMLR. 6

Plappert, M., Andrychowicz, M., Ray, A., McGrew, B., Baker, B., Powell, G., Schneider, J., Tobin, J., Chociej,
M., Welinder, P., Kumar, V., and Zaremba, W. (2018). Multi-goal reinforcement learning: Challenging
robotics environments and request for research. arXiv preprint arXiv:1802.09464. F.2

Puterman, M. L. (2014). Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley
& Sons, New York, NY, USA. 2.1

Roijers, D. (2016). Multi-Objective Decision-Theoretic Planning. PhD thesis, University of Amsterdam. 1, 3, 8,
4.2, A3, F1

Roijers, D. M., Vamplew, P., Whiteson, S., and Dazeley, R. (2013). A survey of multi-objective sequential
decision-making. J. Artificial Intelligence Research, 48(1):67-113. 2

12

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, 1., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T., and Hassabis, D.
(2017). Mastering the game of go without human knowledge. Nature, 550(7676):354-359. 1

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. The MIT Press, Cambridge,
MA, USA, second edition. 2.1

Sutton, R. S., Precup, D., and Singh, S. (1999). Between MDPs and semi-MDPs: a framework for temporal
abstraction in reinforcement learning. Artif. Intell., 112(1-2):181—-211. 5

Takagi, T., Takadama, K., and Sato, H. (2020). Incremental lattice design of weight vector set. In Proceedings of
the 2020 Genetic and Evolutionary Computation Conference Companion, GECCO 20, pages 1486—-1494,
New York, NY, USA. Association for Computing Machinery. 4, F

Thakoor, S., Rowland, M., Borsa, D., Dabney, W., Munos, R., and Barreto, A. (2022). Generalised policy
improvement with geometric policy composition. In Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 21272-21307,
Baltimore, Maryland, USA. PMLR. 6

Touati, A. and Ollivier, Y. (2021). Learning one representation to optimize all rewards. In Proceedings of the
35th International Conference on Neural Information Processing Systems, pages 13-23, Red Hook, NY, USA.
Curran Associates Inc. 6, C

Touati, A., Rapin, J., and Ollivier, Y. (2023). Does zero-shot reinforcement learning exist? In Proceedings of
The Eleventh International Conference on Learning Representations, Kigali, Rwanda. OpenReview.net. 6

Watkins, C. (1989). Learning from Delayed Rewards. PhD thesis, University of Cambridge. 2.3

Yang, R., Sun, X., and Narasimhan, K. (2019). A generalized algorithm for multi-objective reinforcement
learning and policy adaptation. In Proceedings of the 33rd International Conference on Neural Information
Processing Systems, pages 14610-14621, Red Hook, NY, USA. Curran Associates Inc. 1

Zahavy, T., Barreto, A., Mankowitz, D. J., Hou, S., O’Donoghue, B., Kemaeyv, 1., and Singh, S. (2021).

Discovering a set of policies for the worst case reward. In Proceedings of the 9th International Conference on
Learning Representations, Vienna, Austria. OpenReview.net. 6

13

Appendix

A Proofs

A.1 Proof of Proposition 4.1

Proposition (4.1). Let I, = {m;}7, be a set of base policies with corresponding SFs U =
{p™}1_,. Given an arbitrary reward function r, an optimal OK policy 79X (-; 1) can only exist if
there exists an OK meta-policy, w : S — Z, such that for all s € S,

arg max max v’ (s,a) - w(s) = argmax ¢, (s, a). (11)
acA mEIk a€A

Proof. The proof follows directly from the definition of a deterministic optimal policy for
a given reward function r. Recall that 7/(s) € argmax,c4¢;(s,a) and 79K(s;1II) €
arg max,c 4 maxem ¥" (s, a) - w(s). If for some state s € S, there is no value of z = w(s) such
that Eq. (11) holds, then it is not possible to define a meta policy w such that 79X (s; 1) = 7(s). O

A.2 Proof of Theorem. 4.2

Theorem (4.2). Let I, be a set of base policies and w* be a meta-policy trained to convergence to
solve a given task r. If A% (s, a) > 0 for some (s, a), then action a is not expressible by 79X (-; TIy,).
Consequently, the OK with base policies 11}, cannot represent an optimal policy for r.

Proof. First, recall the definitions of ¢¥ (s, z) and A% (s, a):

q,‘i’(s, Z) £ T(St, At) + VEw[q(;)(St+17w(St+l)) | Sy =54, = ﬂ'GPI(St, Z§Hk)]7 (12)
A¥(s,a) = (S, Ar) + VB [g8 (Sep1,w(Seq1)) | Sp = 5, Ap = a] — ¢ (s,w(s)). (13)

A% (s, a) measures the relative benefit of executing action « in state s compared to following the
current OK policy 79K,

If A¥(s,a) > 0, then executing a in s provides a higher expected return than the action currently
selected by 79K, Hence, if there exists an (s, a) such that A%(s,a) > 0, this implies that the OK
policy fails to represent at least one optimal action, meaning it is suboptimal.
Recall from Prop. 4.1 that for the OK policy to be optimal, it must express the optimal action a™* for
every s:
U *
arg max max s,a) - w(s) = argmaxgq,(s,a).
gmax max 9" (s, a) - w(s) = argmaxq, (s, a)

Since w™ is trained until convergence to solve r, it has reached a stable policy. However, if there
exists an (s, a) such that AY (s,a) > 0, then

g (s,a) > g7 (s,w"(s))-
This means that in at least one state-action pair, the OK policy does not select an action that maximizes
the expected return. Since 79K is restricted to the actions expressible via its base policies ITy, this
implies that

a* & {arg max max P (s,a) ~w*(s)} .

welly
Thus, no possible weighting of the base policies can recover the optimal action in state s.

Since at least one optimal action a* is missing from the action space of the OK policy, it follows
that 79X is not an optimal policy for 7, and the task r cannot be optimally solved using the given
base policies II;. Therefore, to guarantee optimality, additional base policies must be introduced into
k. O

14

A.3 Proof of Theorem. 4.3

Lemma A.1 (Alegre et al. (2022)). Let Wy, C CCS be a subset of the CCS. If, for all corner weights
w € CornerW(Uy), it holds that maxyrecw, Y™ - W = v}, then Uy, contains all elements of the
CCS, i.e.,, CCS C Uy,

This lemma follows directly from the theoretical guarantees of previous methods that construct a
CCS, e.g., OLS and SFOLS (Roijers, 2016; Alegre et al., 2022). Intuitively, this result states that to
check if a given set of SF vectors, Uy, is a CCS, it is sufficient to check if it contains an optimal policy
for all of its corner weights. If this is the case, then it is not possible to identify some alternative
weight vector w € W for which it does not contain an optimal policy.

Theorem (4.3). OKB returns a set of base policies, Iy, and a meta-policy, w, such that |1I;| < |CCS]
and 79K (- 11) is optimal for any task M € M . This implies that CCS C WOX(I1,); i.e., the OK

lin®
matches or exceeds the expressiveness of a CCS.

Proof. We start the proof by stating two assumptions on which the theorem relies:
Assumption 1. NewPolicy(w) returns an optimal policy, 7, for the given task w.

Assumption 2. For all w € W*"_ if an optimal policy 7%, € IT°X(II), then TrainOK(w, WP, II)
(Alg. 3) returns a meta-policy, w, s.t. 79X (-, w; II) is optimal w.r.t. task w.

Recall that the OKB (Alg. 1) maintains two partial CCSs, ¥?%¢ and WP, which store, respectively,
the SFs of the base policies 11 and the policies generated via the OK using II,. We first will prove
that, if in any given iteration k, the set of candidate corner weights C is empty (see line 16 in Alg. 1),
then it holds that CCS C \Il(kjfl. First, note that C contains corner weights of both \Ilgase and \IISK.

If the OK policy 79X (-;11;) is able to optimally solve all tasks in C (line 12 in Alg. 1), then we
have that CCS € W6K(Hk) due to Lemma A.1. Note that assumptions 1 and 2, above, are necessary
because Lemma A.1 requires the partial CCS W, to be a subset of the CCS. If it contains e-optimal
policies, then it is possible to prove convergence to e-CCSs instead (Alegre et al., 2023b).

Now, to conclude the proof, we only need to show that |II;,| < |CCS|. The set of base policies is
never larger than the CCS due to line 24 in Alg. 1, in which dominated base policies (i.e., redundant
policies that are not exclusively optimal w.r.t. any w) are removed from II; by the procedure
RemoveDominated. Importantly, the set of base policies returned by OKB, 11, will only have the

same of the CCS (|II| = |CCS|) in domains where no single task in M. can be optimally solved

lin
by combining policies optimal for other tasks in /\/lff’n.7 O

A.4 Proof of Proposition 4.4

Proposition (4.4). Let 11y be the set of policies learned by OKB (Alg. 1) when solving tasks that
are linearly expressible in terms of the reward features ¢(s,a) € R, Let r be an arbitrary reward
Sfunction that is non-linear with respect to ¢. Suppose the optimal policy for r can be expressed by
alternating, as a function of the state, between policies in the CCS induced by ¢. That is, suppose that
forall s € S, there exists a policy 7, (optimal for some w € W) such that) (s) = 7k, (s). Then,
the OK can represent the optimal policy for r using the set of base policies Iy; i.e., 7} € TIOK(IT},).

Proof. We have that, for all s € S, 3w € W such that:

7*(s) = 75 (s), where ™ € CCS, (14)
= argmax)™ (s,a) - w. (15)
acA

Due to Thm. 4.3, we know that by employing the set of base policies returned by OKB, we have that
7k, € MO (T1},). Equivalently,

* (5) = 7% (s, w; II;,) = arg max max 9" (s, a) - w(s, w). (16)

acA TEIL

e

7 An example of such a domain is an MDP composed of independent corridors, in which optimal policies for
different weights w € W must traverse different corridors.

15

Combining Eq. (15) and Eq. (16), we have that
mr(s) = mOt (s, wi L), 17

which concludes the proof, demonstrating that 7 € TIO%(T1}). O

A.5 Conditions for OKB’s Behavior Basis to be Strictly Smaller Than the CCS

Transfer learning techniques dating back to the early 1990s often leverage the principles of compo-
sitionality and modularity—the idea that related tasks can be solved by reusing parts of previously
learned solutions.® Our formal analysis of when OKB’s behavior basis is strictly smaller than the CCS
draws on the principles of compositionality and modularity—the idea that related tasks can be solved
by combining reusable components (“sub-behaviors”) from previously acquired policies. We show
that identifying these conditions reduces to analyzing the cardinality of a specific Set Cover problem.

Intuitively, the OKB only requires a behavior basis as large as the CCS in degenerate cases where
the solution to all possible tasks involves executing at least one type of behavior that does not occur
in the solutions to any other tasks. Such cases are fundamentally at odds with the assumptions that
make transfer learning viable. In contrast, as long as policies in the CCS (which solve related tasks
drawn from a shared distribution) produce similar behaviors in shared regions of the state space, the
OKB matches the expressiveness of the CCS while requiring strictly fewer policies.

Consider a transfer learning scenario where agents must solve tasks drawn from some distribution,
and each task’s solution can be expressed as a (possibly stochastic, closed-loop) sequence of sub-
behaviors—often referred to as options, skills, policy modules, controllers, motor primitives, or
sub-policies. For example, task 7 might require sub-behaviors 01, 02, 05, and og (opening doors,
driving, turning off lights, and finding exits), while task 7, might require a different combination of
sub-behaviors—some of which it may share with 71, since both come from the same distribution.

Assume a distribution of related tasks that induce a CCS whose policies use some subset of the
available sub-behaviors, O = {01, ...,0n}, with m; drawing on O; C O. The question is: What is
the smallest subset of CCS policies that together cover all sub-behaviors in O? Formally, we seek the
smallest collection {r;, 7, 7y, ... } such that O; U Oy U O, U - -- = O. This reduces to the classic
Set Cover problem and corresponds to identifying the minimum number of CCS policies containing
all sub-behaviors that might be required to solve any tasks from the distribution of interest.

Let SC C CCS denote the solution to this Set Cover problem. By Proposition 4.4, if the solution
to a novel task consists of switching between policies in a behavior basis, then a corresponding
optimal meta-policy exists that sequences such policies. To formally characterize when the OKB
is as expressive as a CCS while relying on a strictly smaller behavior basis, we need to understand

when |SC| < |CCS|.

In general, a Set Cover solution will have |SC| = |CCS| only in degenerate cases where no CCS
policy can be discarded without leaving some sub-behavior uncovered. One such case arises when
every policy in the CCS contains at least one unique sub-behavior—a behavior that never contributes
to solving any other possible task. This situation is arguably at odds with the assumptions of transfer
learning. Only in such cases—for example, when every possible task uniquely requires a specialized
sub-behavior that no other task ever uses—would |[SC| = |CCS].

As long as some sub-behaviors are shared between elements of the CCS, the set of policies needed to
cover all sub-behaviors (i.e., [SC|) will be strictly smaller than the CCS. In such common transfer
learning settings, the OKB is as expressive as a CCS while requiring strictly fewer policies.

B Transforming General Linear Reward MDPs into Convex Reward MDPs

Let M? C M be the (possibly infinite) set of MDPs associated with all linearly expressible reward

lin
functions. This set, commonly studied in the SFs literature, can be defined as

Ml?n é {(SvAapa TW7,LL7'7) | Tw = ¢ W}7

8These principles underpin a long line of research on hierarchical reinforcement learning, temporal abstraction,
macro-actions, skill discovery, and studies in neuroscience and cognitive science exploring how animal behavior
is organized hierarchically.

16

where w € R? is a d-dimensional weight vector that may include negative elements.

Standard methods for computing convex coverage sets (CCS) require reward functions to be expressed
as convex combinations of features, i.e., using weights in the d-dimensional simplex, A4

d
Ad:{WERd|wiZO,Zwi:1}.

i=1

To use methods that learn a CCS—typically designed for convex reward functions—to solve all linear

tasks in Mﬁ’n, we first need to show that any MDP in Mﬁ’n can be transformed into an equivalent one

where rewards are expressed as convex combinations over a new set of features. In other words, given
a family of MDPs Ml‘fn, we show how to construct a corresponding family of MDPs with convex

rewards (defined over a transformed feature space gb) that induces the same set of optimal policies.
This family of MDPs can be defined as follows:

M2, 2 (S AT 7) | 1oy = bW, w € A}, where (s, a) = [_‘@ﬁf;“g) 3
(18)

&

We now show that this transformed family of MDPs induces the same set of optimal policies as M .

As aresult, learning a CCS for M, allows us to recover the optimal policy for any task in Mffn.

Let r(s,a) = ¢(s,a) - w be an arbitrary linear reward function with a weight vector w € R, One

can decompose w into its non-negative and non-positive components as follows:
+ +

w=w"—w , where w, =max(w;0), w;, =max(—w;,0).

K2

We can now define an augmented feature vector @

y _ [#(s,a)
¢(s,a) = _—¢(8,a)} € R*,

and a non-negative weight vector w:

wT

W = W_} e R%.

This allows us to rewrite the original reward function as follows:
r(s,a) =w-d(s,a) = W - ¢(s, a).

Finally, let us normalize the weights W (e.g., by dividing by their norm) to ensure they lie in the
simplex A2, Recall that scaling a reward function by a positive constant does not affect its optimal
policy, so this transformation is valid. Since we showed that any linear reward function can be
expressed as a convex combination of a transformed feature set—without altering the corresponding

optimal policy—it follows that a CCS for Mim, contains the optimal solutions for all tasks in the
original family, Mﬁ;

C Beyond Linear Rewards

In this section, we further discuss the use of the OK to solve tasks defined by non-linear reward
functions; that is, reward functions that are not linear-expressible under reward features ¢(s, a, s’) €
R%.

We start by arguing that, in many cases, the linear reward assumption does not pose any limitations.
As discussed by Barreto et al. (2020), when both S and A are finite, we can recover any possible
reward function by defining d = |S|? x |.A| features ¢;, each being an indicator function associated
with a specific transition (s, a, s’). This result shows that it is possible to define reward features

RS RISPxIAIsuch that every task in M is linearly expressible. A challenge, however, is to find
alternative features with this property, but with dimension d < |S| (Touati and Ollivier, 2021).

17

When examining how the OK is defined (Eq. 4), a natural idea is to use it to solve tasks defined

by reward functions with state-dependent weights w(s). In particular, let M;{’j_nnear be a family of
non-linear tasks defined as

Mgc)l—linear £ {(Sa Avpa Twy s 7) | TW(S7 a, S/) = ¢(Sa a, Sl) ' W(S)} (19)
Note that it is easy to show that Mffn - Mﬁ_hnear Cc M.

@

sd-linear?

Unfortunately, the OK may be unable to solve all tasks in the family M
access to a set of policies IT; forming a CCS.

even when given

Proposition C.1. There exists a task M € M such that no meta-policy, w : S — Z, and set

sd-linear
of policies, 1, results in 79K (s;11) being optimal with respect to M.

Proof. Assume a family of MDPs, M < Mi’i_hnear, with states, actions, transitions, and features

defined as in Figure 6. Let a task M € M2, be defined via the following reward function:

sd-linear

$(s1) = P(s2) = Ps3) = ¢(sy) =
[0,0] [2,1] [1,2] [1,1]

Figure 6: Counterexample MDP.

r(s1) = @(s1)-[1,0] = 0,7(s2) = d(s2)-[-1, 1] = =3,7(s3) = @(s3)-[-1, —1] = =3,7(s4) =
@(s4) - [1,1] = 2, with optimal policy 7*(sg) = a4 and whose SF vector is ™ = [1, 1]. We now
show that there is no meta-policy w(s) that results in 76! (s; w(s)) being equal to the optimal policy
7*. This is proved by noticing the impossibility of the following equality:
7 (s0,w(s0)) = argmax max ¥ (sg,a) - w(sy) = ay. (20)
a€{ai,az,a3,a4} T I

O

@

OK
«d-lincar that can not be solved by 7

Notice that the result above implies that there are tasks in M
even when assuming access to a CCS.

@

sd-linear

While this result may be negative, we highlight that M
it may seem at first glance.

Proposition C.2. Let M' C M such that for all M € M’, r(s,a,s") = r(s). If ¢(s) # 0 for all
s €S, then M® =M.

sd-linear

is a family of tasks more general than

Proof. If ¢(s) # 0 for all s € S, then for any reward function r there exist a function w(s) such
that r(s) = ¢(s) - w(s). O

¢

The proposition above implies that, under mild conditions, Mg .

functions and tasks in M.

is able to represent all reward

D Training the OK Meta-Policy

Alg. 3 (Train-OK) is the sub-routine for training a meta-policy omega under an actor-critic training
framework, given the selected tasks by Alg. 2. In Alg. 3, we show how our method optimizes the
OKB meta-policy w for a given set of tasks WP,

18

Algorithm 3: Train Option Keyboard (Train0K)
Input: Meta-policy w, weight support W*"P, base policies II.

1 Initialize replay buffer B
2 Let ¥ (s, z, w) be the critic of the meta-policy w
3 wo ~ WP Sp ~
4 fort=0,1,2,...,Tdo
if S; is terminal then

Wy ~)\)sup

St ~
zs < w(St, W)
> Exploration clipped Gaussian noise, as in TD3
9 | 2z < 24 +clip(e, —0.5,0.5), where € ~ N(0,0.22)
10 Zt<—Zt/HZtH2
> Follow OK policy
11 Ay + 7Sy, 24 D)
12 Execute A;, observe Sy41, and ¢,
13 Add (St, Zy, ¢t7 St+1) to B
14 Update 1) by minimizing

E s Bower | (47 (5.2,W) = (¢ +79% (', (s, w), w)))?|

15 Update w via the policy gradient V1 (5,2, W) - W|,—u(s,w) Vww(s, W)
16 return w

® 9 & W

E Checking the Condition for OK Optimality

Our practical implementation of the OKB test the condition in Thm. 4.2 by randomly sampling
from a replay buffer, B={(s;, a;, ¢(si,a;), s;,) }1_,, which contains experiences observed during
the training of the base policies in IIj. Given a candidate task w € C (line 12 of Alg. 1), we compute
the mean positive advantage of w as:

—1
| B] |B]

Z LiAg (si,00)>01 Zmax(/lffv(sz-, ai),0), (21)
=1

i=1

where A% (s;,a;) = ¢(8i,a:) - w + ¥ (s, w(sh)) - w — P“ (s, w(s;)) - w. In line 14 of Alg. 1,
we select the task w € C with the highest value for Eq. (21). Intuitively, we select the task w for
which the OK can improve the most its performance. By adding 7, to IT; and retraining w, the OK
will be more expressive in the subsequent iteration. We highlight that OKB theoretical guarantees
(e.g., Thm. 4.3) are independent of the heuristic used to select the task w € C (line 14), and other
strategies could be used instead.

F Experimental Details

The code and scripts necessary to reproduce our experiments will be made publicly available upon
acceptance.

The USFAs (s, a, w) used for encoding the base policies II; were modeled with multi-layer
perceptron (MLP) neural networks with 4 layers with 256 neurons. We use an ensemble of 10 neural
networks, similar to Chen et al. (2021), and compute the minimum value over two randomly sampled
elements when computing the Bellman update targets. We used Leaky ReLLU activation functions
and layer normalization for improved training stability. For a fair comparison, we independently
optimized all method-specific hyperparameters (e.g., network architectures, OKB settings, and those
of competing baselines) via grid search.

The budget of environment interactions per iteration (i.e., call to NewPolicy in Alg. 1) used was
25000, 50000, 50000 and 100000 for the Minecart, FetchPickAndPlace, Item Collection, and High-
way domains, respectively. At each iteration, 1 (s, a, w) is trained with the current task w, as well as
with the tasks from previous iterations in order to avoid catastrophic forgetting.

19

The meta-policy w(s, w) was modeled with an MLP with 3 layers with 256 neurons. We employed
the techniques introduced by Bhatt et al. (2024), i.e., batch normalization and removal of target
networks, which increased the training efficiency. We used Adam (Kingma and Ba, 2015) as the
first-order optimizer used to train all neural networks with mini-batches of size 256.

When training the base policies, we used e-greedy exploration with a linearly decaying schedule. For
training the meta-policy, we added a clipped Gaussian noise (see line 11 of Alg. 3), as done in other
actor-critic algorithms, e.g., TD3 (Fujimoto et al., 2018).

Since running OK-LS (Alg. 2) until no more corner weights are identified (see line 4) may require a
large number of iterations, in the experiments we ran OK-LS for 5 iterations, which we found to be
enough for learning a well-performing meta-policy w.

To generate sets of test tasks YW C W given different values of d, we employed the method introduced
by Takagi et al. (2020) available on pymoo (Blank and Deb, 2020), which produces uniformly-spaced
weight vectors in the simplex, W.

All experiments were performed in a cluster with NVIDIA A100-PCIE-40GB GPUs with 32GB of
RAM. Each individual run of each method took approximately 2.5 hours (Item Collection), 6 hours
(Minecart), 10 hours (FetchPickAndPlace), and 25 hours (Highway).

F.1 Corner Weights.

Below, we define the concept of corner weights used by OKB (Alg. 1) and OK-LS (Alg. 2), as defined
in previous works (Roijers, 2016; Alegre et al., 2022).

Definition F.1. Let U = {¢™} , be a set of SF vectors of n policies. Corner weights are the
weights contained in the vertices of a polyhedron, P, defined as:

P={xeR"™ | VTx<0,Y,w =1w >0}, (22)

where V1 is a matrix whose rows store the elements of ¥ and is augmented by a column vector of
—1’s. Each vector x=(wy, ..., w4, Uy) in P is composed of a weight vector and its scalarized value.

To compute corner weights, as in Def. F.I, we used pycddlib (https://github.com/
mcmtroffaes/pycddlib) implementation of the Double Description Method (Motzkin et al., 1953)
to efficiently enumerate the vertices of the polyhedron P.

F.2 Domains

In this section, we describe in detail the domains used in the experiments, which are shown in Fig. 1.

Minecart domain. The Minecart domain is a widely-used benchmark in the multi-objective
reinforcement learning literature (Abels et al., 2019). We used the implementation available on
MO-Gymnasium (Felten et al., 2023). This domain consists of a cart that must collect two different
ores and return them to the base while minimizing fuel consumption. The agent’ observation S C R”
contains the agent x, y position, the current speed of the cart, its orientation (sin and cos), and the
percentage of occupied capacity in the cart by each ore: S = [—1,1]% x [0, 1]2. The agent has the
choice between 6 actions: A = {MINE, LEFT, RIGHT, ACCELERATE, BRAKE, DO NOTHING}.
Each mine has a different distribution over two types of ores. Fuel is consumed at every time step,
and extra fuel is consumed when the agent accelerates or selects the mine action. The reward features
of this domain, (s, a,s’) € R3, is defined as:

¢1(s,a,s") = quantity of ore 1 collected if s is inside the base, else 0,
¢2(s, a,s") = quantity of ore 2 collected if s’ is inside the base, else 0,
¢3(s,a,8") = —0.005 — 0.0251{a = ACCELERATE} — 0.051{a = MiNE}.

We used v = 0.98 in this domain.
FetchPickAndPlace domain. We extended the FetchPickAndPlace domain (Plappert et al., 2018),

which consists of a fetch robotic arm that must grab a block on the table with its gripper and move the
block to a given target position on top of the table (shown in the middle of Fig. 1). Our implementation

20

https://github.com/mcmtroffaes/pycddlib
https://github.com/mcmtroffaes/pycddlib

of this domain is an adaptation of the one available in Gymnasium-Robotics (de Lazcano et al., 2023).
We note that the state space of this domain, S C R?5, is high-dimensional. The action space consists
of discretized Manhattan-style movements for the three movement axes, i.e., {1 : [1.0,0.0,0.0],2 :
[-1.0,0.0,0.0],3 : [0.0,1.0,0.0],4 : [0.0,—1.0,0.0],5 : [0.0,0.0,1.0],6 : [0.0,0.0,—1.0]}, and
two actions for opening and closing the gripper, totaling 8 actions. The reward features ¢ (s, a, ') €
R? correspond to the negative Euclidean distances between the square block and the d target locations
(shown in red in Fig. 1). We used v = 0.95 in this domain.

Item Collection domain. This domain consists of a 10 x 10 grid world, in which an agent
(depicted as a yellow circle in the rightmost panel of Fig. 1) moves along the 4 directions, A =
{UP,DOWN, LEFT, RIGHT}, and must collect items of two different types (denoted by red
triangles and green diamonds, respectively). The reward features ¢(s,a,s’) € R? are indicator
functions indicating whether the agent collected one of the items in state s’. In each episode, 5
items of each type are randomly placed in the grid. The agent perceives its observation as a 10 x 10
image with 2 channels (one per item), which is flattened into a 200-dimensional vector. We make the
observations and dynamics toroidal—that is, the grid “wraps around” connecting cells on opposite
edges—similarly as done by Barreto et al. (2019). We used v = 0.95 in this domain.

Highway domain. This domain is based on the autonomous driving environment introduced by
Leurent (2018). The agent controls a vehicle on a multilane highway populated with other vehicles.
Its observations includes its coordinates as well as coordinates from other vehicles. Formally,
the state space is given by an array of size V' x F, where V represents the number of vehicles
in the environment and F' are the features describing each vehicle, e.g., velocity, position, angle.
The agent’s actions consist in changing lanes, accelerating or decelerating, or doing nothing, i.e.,
A = {TURN_LEFT,IDLE, TURN_RIGHT, FASTER, SLOWER}. The reward features of this
domain, ¢ (s, a, s’) € R3, is defined as:

#1(s,a,s") = normalized forward speed of the vehicle,
¢2(s,a,s") = 0.5 if driving in the rightmost lane, else 0,
#3(s,a,s") = —1if a = TURN_LEFT or a = TURN_RIGHT else 0.

All three reward features above are zeroed if the agent is off the road and penalized by —10 if the
agent crashes into another vehicle. We used v = 0.99 in this domain.

21

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We support the theoretical claims in Section 4.2 and the empirical claims in
Section 5.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes, we discuss all theoretical assumptions in Section 3 and Section 4.2, as
well as future research directions for improving the method in Section 7.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

22

Answer: [Yes]

Justification: The proof of all theoretical results can be found in Appendix A. All assumptions
made are stated in the introduced theorems or in Section 4.2.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the details on how the algorithms were implemented and the
hyperparameters selected in Appendices D, E, and F.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

23

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the code required to reproduce our experiments is available in the Supple-
mental Material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide details about the experimental setup, hyperparameters and algo-
rithm implementations in Section 5, Appendix F.2, and Appendix F.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We state in Section 5 that, in all experiments, we report the mean normalized
return of each method (normalized with respect to the minimum and maximum returns
observed for a given task) along with the 95% bootstrapped confidence interval over 15
random seeds.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We specify all the compute resources in Appendix F.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: No human subjects were involved in this research, and all analyses were based
on publicly available simulators. All required details were documented, and algorithms and
code are provided.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper is foundational research and is not tied to particular applications.
We do not anticipate any negative social impact.

Guidelines:

25

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not release any dataset or model with risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite and credit the papers in which the original domains used in Section 5
were introduced. All licenses are respected.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

26

13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our extensions of the original domains used in the experiments are detailed in
Appendix F.2, and their implementations are available in the Supplementary Material.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

27

paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: This work does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

28

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Reinforcement Learning
	Generalized Policy Evaluation and Improvement
	GPE&GPI via Successor Features
	GPI via the Option Keyboard

	Optimal Behavior Basis
	Constructing an Optimal Behavior Basis
	Condition for OK Optimality
	Theoretical Results

	Experiments
	Related Work
	Conclusions
	Proofs
	Proof of Proposition 4.1
	Proof of Theorem. 4.2
	Proof of Theorem. 4.3
	Proof of Proposition 4.4
	Conditions for OKB’s Behavior Basis to be Strictly Smaller Than the CCS

	Transforming General Linear Reward MDPs into Convex Reward MDPs
	Beyond Linear Rewards
	Training the OK Meta-Policy
	Checking the Condition for OK Optimality
	Experimental Details
	Corner Weights.
	Domains

