
DynaNav: Dynamic Feature and Layer Selection for
Efficient Visual Navigation

Jiahui Wang1 Changhao Chen2

1College of Design and Engineering, National University of Singapore
2PEAK-Lab, The Hong Kong University of Science and Technology (Guangzhou)

wjiahui@u.nus.edu changhaochen@hkust-gz.edu.cn

Abstract

Visual navigation is essential for robotics and embodied AI. However, existing
foundation models, particularly those with transformer decoders, suffer from high
computational overhead and lack interpretability, limiting their deployment in
resource-tight scenarios. To address this, we propose DynaNav, a Dynamic Vi-
sual Navigation framework that adapts feature and layer selection based on scene
complexity. It employs a trainable hard feature selector for sparse operations,
enhancing efficiency and interpretability. Additionally, we integrate feature se-
lection into an early-exit mechanism, with Bayesian Optimization determining
optimal exit thresholds to reduce computational cost. Extensive experiments in
real-world-based datasets and simulated environments demonstrate the effective-
ness of DynaNav. Compared to ViNT, DynaNav achieves a 2.26× reduction in
FLOPs, 42.3% lower inference time, and 32.8% lower memory usage, while im-
proving navigation performance across four public datasets.

1 Introduction

Visual navigation is a fundamental capability for robotics and embodied AI, enabling autonomous
agents to perceive, interpret, and navigate complex 3D environments based on visual inputs [1–3].
Its applications span real-world scenarios, such as delivery and logistics, as well as virtual domains,
including gaming and simulation. By bridging perception and action, visual navigation plays a cru-
cial role in intelligent systems. Recently, there has been growing interest in developing foundation
models for visual navigation [4–10, 1]. ViNT [5] is a notable example that learns from large-scale
egocentric observations using transformer layers on CNN-extracted features, demonstrating strong
generalization across robotic platforms and environments. NoMad [6] further builds on this by incor-
porating a diffusion policy and a goal-masking mechanism. PixNav [9] utilizes textual heuristics and
large language models(LLMs) to explore zero-shot possibility. However, these approaches, particu-
larly those relying on deep neural architectures such as transformer decoders, introduce significant
computational overhead, posing challenges for edge deployment where efficiency is paramount.

Robotic applications demand greater efficiency than large cloud-based models. As the trend toward
efficient foundation models continues [11, 12], reducing the computational burden of visual navi-
gation models is a key challenge. Additionally, existing models function as "black boxes," raising
concerns about interpretability. As humans and intelligent agents increasingly coexist, explainability
becomes essential. These challenges lead to two critical research questions:

• Is it necessary to activate all transformer layers for every navigation scenario?

• Which features are most important in the decoding process, and can we identify the most
salient regions or pixels for navigation?

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Humans do not always activate all neurons for visual tasks [13]; rather, the brain dynamically recruits
resources based on task complexity. Inspired by this, we propose that visual navigation models
should adopt dynamic inference mechanisms, selectively utilizing features and neural layers based
on scene complexity. In simpler scenarios, the model should rely on fewer features and layers for
efficient computation, whereas in more complex tasks, it should allocate additional resources to
ensure accurate decision-making.

To this end, we propose DynaNav, a highly efficient Dynamic Visual Navigation framework that
adaptively selects relevant features and neural layers based on visual observations. Our approach
employs a trainable hard feature selector to create sparse representations, enabling computationally
efficient sparse operations at the feature level. This dynamic feature masking not only lowers com-
putational overhead but also improves the understanding of which regions more relevantly influence
the inference of visual navigation models, thereby enhancing explainability. Additionally, we in-
troduce an early-exit strategy for deep Transformer layers by integrating feature selection into the
early-exit mechanism, improving stability and computational efficiency. After training the decoder,
Bayesian Optimization determines optimal early-exit thresholds. During inference, if a layer’s fea-
ture meets its threshold, computation terminates early, significantly reducing overall computational
cost. Extensive experiments on real-world datasets and in simulated environments demonstrate the
effectiveness of our proposed DynaNav. Compared to ViNT [5], DynaNav achieves a 2.26× re-
duction in FLOPs, 42.3% lower inference time, and 32.8% lower memory usage while improving
navigation performance across four public datasets. To the best of our knowledge, this is the first
work to introduce dynamic network mechanisms to visual navigation models. To sum up, the main
contributions of our work can be summarized as follows:

• We propose DynaNav, a highly efficient and effective dynamic neural model for visual
navigation, introducing a novel feature and layer selection strategy to improve efficiency
without compromising performance.

• We integrate sparse feature selection into the early exit mechanism, improving the stabil-
ity and success rate of dynamic layer inference, while the visualized mask enhances the
interpretability of the navigation decision process.

• Extensive experiments and simulations demonstrate that DynaNav achieves more than
twice the efficiency while maintaining comparable success rates.

2 Related Work

2.1 End-to-end Visual Navigation

Nowadays, conducting robot learning from diverse datasets to obtain a general model is becoming
more and more popular [14–16]. Nonetheless, current approaches rely on real-world data, which
is usually costly to obtain, lacks generalization, and is highly coupled with specific robot settings
that are hard to transfer to different platforms [17, 18]. Instead, our paper follows the paradigm
of learning navigation behavior from data collected across multiple different real-world robotic sys-
tems [19, 20, 4] while focusing on training a foundation model that can be adapted for various
downstream tasks in zero-shot or with small amounts of data. To this end, models like RT-1, I2O,
and GNM [21, 4, 22] provide useful insights that study broad generalization across environments
and embodiments for robots deployed in real-world settings. GNM [4] demonstrates policy learning
from heterogeneous RGB datasets but focuses on the singular task of reaching image goals in the
zero-shot setting. ViNT [5] trains an effective visual navigation policy that can solve a range of
downstream tasks, such as navigating to GPS goals [23], goal images [24], and skill-conditioned
driving [25]. Building upon extensive prior work in visual navigation, ViNT combines two key el-
ements: it uses topological graphs to keep track of how spaces are connected in the environment
while employing trained policies to handle the detailed movement controls [26–29, 7, 30]. Recently,
NoMaD [6] boosted the navigation task in previously unseen environments with goal masking tech-
niques and diffusion policy.

2.2 Dynamic Network and Early Exit

Dynamic networks [31–33] tend to optimize models that can modify their architecture or parameters
based on the input during the inference process. There are many techniques to achieve a dynamic

2

Past Frames

Observation

Goal

EfficientN
et Encoder

Goal
Feature Map

Observation
Feature Map

Past Frames
Feature Map

Goal
Feature Mask

Observation
Feature Mask

Past Frames
Feature Mask

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(.)

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(.)

𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(.)

Prediction H
ead Pred Actions

Transform
er Layer

Transform
er Layer

Transform
er Layer

Exit?

Exit?N

Y

Inference

Training Random Sampling

Record
Difference

N
Y

Figure 1: The architecture of our DynaNav framework. DynaNav employs two encoder instances
of the same architecture: one processes the concatenated observation and historical frame sequence,
while the other extracts features from the early-fused combination of the current observation and
goal image. Two independent feature selectors generate masks for observations and the goal, which
are then tokenized and fed into a Transformer decoder. Training incorporates stochastic early-exit
triggers at intermediate decoder layers. During inference, a decision step at each layer evaluates
optimized thresholds to determine whether early exit conditions are met.

network depth-wise and width-wise. For instance, layer-skipping [34], neurons-skipping [35], and
low rank approximation (LoRA) [36]. Moreover, some dynamic networks focus on adjusting the
shape and value of weights adaptively during the inference, such as deformable convolution [37],
dynamic filter network [38], etc.. Among these techniques, early exiting gained popularity because
of the prevalent Transformer-based model, which fits the inherent architecture with stacked blocks.

Early exiting is a depth-wise dynamic method for halting forward propagation at a certain layer
based on intermediate predictions. This technique has been well explored in both computer vi-
sion [39–44], language processing [45–51], and multimodality [52, 53]. One challenge in imple-
menting early-exiting models lies in finding a suitable metric to decide when to make an intermediate
prediction. Commonly, metrics like probability confidence [41] or entropy value [47] are employed
in traditional vision tasks. Some research also pointed out the possibility of using learning-based
early exit, which relies on a trained network [54, 46, 55, 56]. Recent research [32, 34] has extended
early exiting to the LLMs, which treat the autoregressive task as a classification subgoal.

In this work, we are the first to utilize the idea of early exiting on an end-to-end visual navigation
model. We further develop the current method [11] with the integration of sparse feature selection
to the Bayesian optimization process in obtaining the desirable metric.

3 Dynamic Visual Navigation Model

3.1 Framework Overview

To enable efficient and effective visual navigation, we propose DynaNav, a dynamic navigation
pipeline illustrated in Figure 1. Unlike previous end-to-end models with static network inference,
DynaNav integrates a dynamic feature selector and an early-exit mechanism, reducing computa-
tional costs while enhancing explainability and robustness. DynaNav begins with an EfficientNet
backbone [57] to extract features from RGB image sequences. Building on ViNT [5], we introduce
a feature selector module that generates masks before feature processing in the Transformer decoder,
allowing for sparse computation. Additionally, we implement a dynamic Transformer decoder, en-
abling predictions at intermediate layers to improve efficiency. Finally, Bayesian optimization [11]
determines the optimal early-exit thresholds for our jointly trained model, further minimizing com-
putational overhead.

3

Feature Extraction. We chose EfficientNet-B0 as our visual encoder due to its innovative com-
pound scaling method, which optimally balances network width, depth, and resolution. Mathemat-
ically, the encoder processes an input sequence consisting of consecutive visual observations oi,
where i ∈ [t − p, t], along with a goal image os. Each observation is first mapped to a latent space
representation by the encoder, denoted as ψ(oi) ∈ RH×W×C , where ψ(·) represents the network,
and H,W,C correspond to the height, width, and number of channels in the feature map. To en-
hance the connection between the current observation and the goal, we adopt an early fusion strategy.
Specifically, the goal image is processed separately by another EfficientNet instance, producing a
feature representation denoted as ϕ([ot;os]) ∈ RH×W×C , where [;] represents concatenation. The
detailed hyperparameter settings are provided in Section B.1.

Dynamic Feature Selector. However, when the embedded feature map is large [11], computing
such a tensor in a transformer incurs significant computational costs [58], which limits the navi-
gation model’s efficiency. Moreover, not all pixels in the observations and goal are essential; some
redundant pixels can be ignored to improve processing efficiency [59]. To address this, we introduce
a dynamic hard feature selector that generates a mask to filter out pixels with minimal relevance to
the final prediction.

Transformer Decoder. After the feature selection process, a transformer decoder D is employed
to extract contextual features for action prediction, as illustrated in Figure 1. The stacked multi-
head self-attention (MHSA) layers continuously refine the contextual information of visual tokens.
Formally, we define the intermediate token as:

xi = D1:i ([mt−p:t ∗ ψ(ot−p:t);ms ∗ ϕ([ot;os])]) , (1)
where mt−p:t represents the generated masks for oi, i ∈ [t − p, t], and D1:i, i ∈ [1, l], denotes the
first i layers of the decoder. The process for obtaining m is detailed in Section 3.2.

Navigational Action Prediction. Finally, a head network is trained to predict both the action at
and the waypoint distance vector wt. When feature selection is applied, this prediction process can
be formulated as at,wt = h(xl), where h represents the prediction head. In our implementation, h
consists of a 4-layer transformer followed by an MLP with a single hidden layer.

Training Objective. During training, we sample a sequence of visual images from the dataset to
construct the observation ot−p:t. A goal image os is randomly selected for a valid prediction length,
where os = ot+d and d ∈ [tmin, tmax]. The corresponding action sequence agt

t = at:t+d and
waypoint wgt

t serve as ground truth. The objective of training is to maximize the likelihood of the
predicted outputs aligning with the ground truth, formulated as:

L = E
[
log p

(
agt
t | at

)
+ λ log p

(
wgt

t | wt

)]
. (2)

3.2 Dynamic Sparse Feature Selection H W C× ×

Input Feature

2H W C× ×

1×1 C
onv

1×1 C
onv

R
eLU

R
eLU

Expansion MLP
Gumble SoftMax

Mask
Filter

H W C× × 2H W C× ×H W C× ×

Sparse Feature Feature Mask

Figure 2: Architecture of the dynamic feature selec-
tor. A trainable MLP projects the input features to
twice their original dimension. A pixel-wise Gumbel-
Softmax operation is then applied to compute selection
probabilities.

End-to-end visual navigation models often
operate as black boxes [4, 5, 60, 7], mak-
ing it unclear which parts of an observa-
tion contribute most to action prediction.
Understanding these key elements could
enable targeted preprocessing to enhance
model performance. This leads to a fun-
damental question: should all pixels be
treated equally? Intuitively, the answer
is noemphasizing only relevant pixels im-
proves robustness. In real-world scenar-
ios, indiscriminate reliance on all pixels
can lead to failures, especially when ob-
stacles obstruct a robots camera. To ad-
dress this, we introduce a feature selection
approach based on the Gumbel-Softmax
mechanism [61], dynamically prioritizing
critical features. This improves perfor-
mance and adaptability across diverse en-
vironments and provides meaningful insights into the model’s region of interest. The feature selector

4

functions as a classification network, assigning each pixel a probability score to generate masks for
different input features. As shown in Figure 2, the feature selector f(·) takes encoded features as
input and outputs corresponding masks as follows,

mi = f(ψ(oi)); ms = f(ϕ([ot;os])) ∈ RH×W . (3)

Within the feature selector, the latent feature ψ(oi) is projected into a higher-dimensional space:

Zi =MLP (ψ(oi)) ∈ RH×W×C×2, (4)

where MLP (·) denotes a multi-layer perceptron. Here, zn,c,ki represents the unnormalized log
probability of the k-th category for the n-th pixel and c-th channel. To obtain the one-hot mask, we
utilize the Gumble-SoftMax trick, which first adds a log term to each element and then conducts the
SoftMax. The logarithm term is defined as:

gn,c,ki = − log
(
− log

(
un,c,k

))
; un,c,k ∼ U(0, 1), (5)

and the processed value in Zi is z̄n,c,ki = zn,c,ki + gn,c,ki . Then the SoftMax is applied on Zi along
the last dimension:

ẑn,c,ki =
exp(

z̄n,c,k
i

τ)∑2
k′=1 exp(

z̄n,c,k′
i

τ)
, k = 1, 2, (6)

where τ is a temperature hyperparameter. At last, we manually define the last dimension of Ẑi as
the generated mask, i.e. mn,c

i = ẑn,c,2i . The feature selector will gradually filter out the undesired
features as the training continues.

Obs RGB Goal RGBObs Saliency Map Goal Saliency Map

Figure 3: Visualization of saliency maps for observation and
goal images.

Figure 3 presents the visualized input
and its gradients that are processed
through the feature selector. The
spatial importance weights are visu-
alized through saliency maps, where
the attention mask is upsampled to
match the input dimensions. The
brightness intensity of each pixel in
the visualization corresponds to its se-
lection probability by the feature se-
lection mechanism. The results in-
dicate redundancy within the input
data, while the navigation model does
not specifically focus on the largest
common object between the observa-
tion and the goal. This finding not
only supports the feasibility of filter-
ing pixels but also enhances the interpretability of the navigation process. After selection, we can
utilize data sparselization techniques [62, 63] to save space.

3.3 Dynamic Transformer Layer Inference

3.3.1 Feature-Aware Early Exit Strategy

Transformer-based decoders are highly effective in visual navigation, leveraging long-range depen-
dencies and flexible adaptation [64–67]. However, models like ViNT [5] employ a scene-agnostic
decoder that activates all layers indiscriminately, disregarding scene complexity and task require-
ments. While beneficial for large-scale training, this approach imposes excessive computational
demands on edge devices. We argue that activating every layer is often unnecessarysimilar to how
humans selectively engage neurons for cognitive tasks [13, 68]. To address this, we propose a dy-
namic navigation decoder with an early-exit mechanism, allowing the model to halt computation
based on scene complexity and navigation needs. By leveraging intermediate features for action
prediction, this methodthe first to introduce early exiting in visual navigationeliminates redundant
computations. Additionally, we enhance efficiency and robustness by integrating feature selection as

5

an initial step in the early-exit strategy. Our approach significantly reduces computational overhead
while maintaining performance, making it well-suited for resource-constrained deployment.

Figure 1 outlines our early-exiting strategy workflow. DeeR-VLA [11] proposes a metric for robotic
tasks, arguing that transformer layer features are inherently distinct. It uses an action consistency
condition, measuring the difference in action outputs from an action head h:

|h(xi)− h(xi−1)|2 ≤ ηi, ∀i ∈ {1, 2, . . . , l}. (7)

However, this still requires activating multiple layers, limiting computational savings. To improve
efficiency, we introduce an aggressive early-exit strategy. When the L2 difference between the goal
state and the current observation falls below a training-derived threshold (based on masked pixel
counts), we bypass the transformer decoder entirely and compute actions directly from the encoded
tokens and a prediction head.

3.3.2 Adaptive Threshold Optimization

To determine the optimal early-exit threshold, we employ Bayesian Optimization [69, 11] to itera-
tively search for the best value under given constraints. Specifically, we consider the predicted action
at and waypoint wt alongside their respective ground truth values, agt

t and wgt
t . Our objective is to

maximize the cosine similarity between predictions and ground truth by optimizing the early-exiting
thresholds, denoted as η = {η1, η2, . . . , ηN}. Consequently, the objective function is formulated as:

max
η

J(η) =
1

T

T∑
t=1

(
Sim(at,a

gt
t ; η) + λ · Sim(wt,w

gt
t ; η)

)
, (8)

where Sim(u,v; η) represents the cosine similarity between two vectors with a given early exit
threshold η. λ > 0 is a hyperparameter that balances waypoint and action prediction, and T is the
total number of time steps in the task. To optimize this objective function, we introduce a penalty
function P (η) that enforces the required constraints. This function assigns a positive value when η
violates any constraint and remains zero otherwise. Incorporating this penalty into the optimization
framework, we reformulate the problem as:

max
η

V (η) = J(η)− P (η), (9)

where the penalty term, P (η) =
∑

k ξk · max(0, gk(η)), captures the weighted sum of constraint
violations. Here, gk(η) quantifies the extent to which the k-th constraint is violated, while ξk rep-
resents its associated weight (remain constant). The specific constraints that the model must satisfy
are outlined below.

Inference Time Constraint. Let Time(η) denote the average inference time over the entire test
set, where η represents the early exit decision parameters. To ensure the efficiency of the network,
we impose a constraint that the average inference time remains below a predefined threshold Tmax.
Mathematically, this can be formulated as:

Time(η) =
1

T

T∑
t=1

Timet(η), s.t. Time(η) ≤ Tmax. (10)

T is the total number of test samples, Tmax is the maximum time, and Timet(η) denotes the inference
time for the t-th sample under the given early exit strategy. This constraint ensures that the optimiza-
tion selects an early exit criterion that balances computational efficiency, predictive performance,
and real-time or application-specific latency requirements.

GPU Memory Constraint.To ensure efficient deployment under limited GPU resources, we define
Mem(η) as the GPU memory usage when applying the early exit strategy. Since memory consump-
tion can fluctuate during inference, we consider the peak memory usage across all inference steps
and enforce an upper bound constraint:

Mem(η) = max
t=1,...,T

Memt(η), s.t. Mem(η) ≤ Gmax (11)

where Memt(η) represents the memory consumption at time step t, andGmax denotes the maximum
allowable GPU memory. This constraint ensures that Bayesian optimization selects an early exit
criterion that not only improves efficiency but also maintains feasibility within hardware limitations.

6

Table 1: Quantitative Comparison on Benchmarks. We highlight our method with the colored font ,
the best and the second best value of each metric are reported with bold and underlined fonts, re-
spectively.

Dataset Method Sim(at,a
gt
t) ↑ Sim(wt,w

gt
t) ↑ Laction↓ Ldist↓ FLOPs (109) Time(s/traj) Memory (Gb)

Recon [5]
ViNT [5] 94.49 96.20 0.285 6.94 4.37 0.379 19.07

NoMad [6] - 96.64 0.207 6.44 7.46 1.118 21.36
Ours 94.92 96.53 0.191 6.26 1.93 0.228 13.35

Go-Stanford [4]
ViNT [5] 88.50 93.47 0.531 15.80 4.37 0.379 19.07

NoMad [6] - 93.51 0.507 12.93 7.46 1.118 21.36
Ours 89.07 93.66 0.449 14.23 1.68 0.209 12.27

SACSoN [71]
ViNT [5] 89.66 93.16 0.686 10.95 4.37 0.379 19.07

NoMad [6] - 93.69 0.501 9.66 7.46 1.118 21.36
Ours 90.54 93.72 0.493 9.62 1.68 0.209 12.27

SCAND [70]
ViNT [5] 95.43 96.89 0.141 16.08 4.37 0.379 19.07

NoMad [6] - 97.79 0.121 13.05 7.46 1.118 21.36
Ours 96.85 97.03 0.130 14.41 1.93 0.228 13.25

FLOPs Constraint. One of the most critical considerations in optimizing the early exit strategy
is controlling the computational cost, particularly in the transformer decoder. To achieve this, we
define FLOPs(η) as the average floating point operations (FLOPs) required per trajectory. Our goal
is to ensure that the computational complexity remains within a predefined upper bound, Fmax,
while maintaining the models performance. Formally, we express this constraint as:

FLOPs(η) =
1

T

T∑
t=1

FLOPst(η) s.t. FLOPs(η) ≤ Fmax. (12)

Here, FLOPst(η) represents the computational cost at each exit point t. By integrating this con-
straint into our Bayesian optimization framework, we explore the trade-off between computational
efficiency and model accuracy, enabling us to identify the most effective early exit criteria within
the computational limits.

4 Experiment

4.1 Experimental Setups

4.1.1 Datasets

We evaluated our method in two experimental settings: benchmark datasets and simulated envi-
ronments. For the benchmark datasets, we select four diverse datasets to assess the performance
of our approach under various conditions. These include the Recon dataset [5], which provides
medium-speed (2m/s) outdoor data to evaluate our method in real-world, dynamic outdoor settings,
and the SCAND dataset [70], a medium-speed dataset featuring environmental interactions. Addi-
tionally, we include the Go-Stanford dataset [30] and the SACSoN dataset [71], representing low-
speed (0.5m/s) and medium-speed indoor scenarios, respectively. These datasets allow us to test
our method across environments with varying speed characteristics. All datasets are pre-processed
following the ViNT method [5] to ensure consistency across experiments. For each dataset, we
randomly split the data into training (80%) and testing (20%) sets. The implementation detail is
illustrated in Section B in the Appendix.

4.1.2 Evaluation Metrics

For the benchmark comparison, we report the cosine similarity between action angles and pre-
dicted waypoints, denoted as Sim(at,a

gt
t) and Sim(wt,w

gt
t), respectively (in percentage). Since

NoMad [6] only outputs waypoints through the diffusion process, we omit the action angle term for
this model. To highlight the efficiency advantages of our approach, we report the FLOPs and mem-
ory usage of each model on the entire evaluation set. For inference, we measure the time required
to predict a single trajectory for each model. Additionally, we report the loss values for the action
vector and distance.

7

For the CARLA [72] simulation, we track the progress of our model-driven agent until it either
reaches the target or encounters a collision. The success rate is calculated as the mean of the ratio
of progress length to total trajectory length.

4.2 Evaluation in Real-world Benchmarks

Figure 4: Efficiency comparison of upper: FLOPs,
bottom: inference time between ours and ViNT on RE-
CON dataset.

Table 1 illustrates the performance of our
method on RECON [5], Go-Stanford [4],
SACSoN [71], and SCAND [70] datasets.
We compare the performance with
ViNT [5] and NoMad [6]. All models are
trained from scratch. Our model saves
about 58% FLOPs across all benchmarks
compared to ViNT [5] while maintaining
comparable accuracy. Figure 4 depicts the
efficiency advantages of our model com-
pared to ViNT [5]. Our approach achieves
a 0.83% improvement in Sim(at,a

gt
t) and

a 0.28% increase in Sim(wt,w
gt
t) com-

pared to ViNT [5] across four benchmarks.
In terms of time efficiency, we save 0.16 seconds compared to ViNT [5] and 0.89 seconds compared
to NoMaD [6]. Despite this, NoMaD [6], due to its diffusion refinement procedure, achieves an
average performance that is 0.2% higher than ours. However, NoMaD [6] requires approximately
four times the FLOPs of our method, making it less efficient. Notably, the average FLOPs of
our dynamic model in RECON [5] and SCAND [70] are higher than those in SACSoN [71] and
Go-Stanford [4]. One reason for this is that the former two datasets are from outdoor environments,
while the latter two consist of indoor scenarios. The indoor datasets benefit from lower speeds,
more controllable environments, and less complex lighting conditions. This finding also validates
the assumption that for a more complex scene, activating more layers for accurate navigation.

4.3 Real-time Robotic Navigation in CARLA Simulation Environment

GNM ViNT Ours

Figure 5: The simulation result in CARLA Town02 environ-
ment. The green dots represent the discrete goals, and the
red dots represent the predicted waypoints.

For the simulation, we first collected
200 trajectories of inline navigation
data from CARLA [72] Town01 to
fine-tune the pre-trained model. The
data was gathered using an RGB cam-
era and various sensors mounted on
an autopilot agent operating at a fre-
quency of 4Hz. To ensure consis-
tency, we standardized the image size
to 640 × 480 pixels with a 90◦ field
of view (FOV). We evaluated our
method across three distinct CARLA
environments: Town02 (Scene A),
Town03 (Scene B), and Town10 (Scene C). Scene A, with a small-town layout and simple residential-
commercial mix, represents an “easy task" for the agent. Scene B, a larger urban map with round-
abouts and large junctions, is considered a “medium task." Scene C, a downtown area filled with
skyscrapers, residential buildings, and parked cars, presents a highly dynamic and complex envi-
ronment, making it a “hard task." For each scene, we collected 20 trajectories, which were used in
the subsequent testing phase. The car was driven by a BehaviorAgent [72], maintaining a consis-
tent maximum speed of 20 km/h across all environments. More details are illustrated in Appendix
Section B.

Figure 5 illustrates the visualized navigation performance of baselines and ours. GNM [4] lacks
enough generalization ability to achieve the target task. ViNT [5] and our method can successfully
reach the target points. Note that the trajectory of ViNT [5] has some drift. This is due to ViNT [5]
utilizing all features and decoder layers, potentially overfitting to training data and producing sub-

8

Table 3: Ablation study of the effectiveness of individual modules on the RECON dataset.

Dynamic decoder Feature selector Sim(at,a
gt
t) Sim(wt,w

gt
t) Laction Ldist FLOPs (109) Time Memory

Half layers - 91.05 93.28 0.332 7.53 2.61 0.306 17.48
Half channel - 89.70 92.41 0.390 7.71 2.19 0.270 12.11

- - 94.49 96.20 0.285 6.94 4.37 0.379 19.07
✓ - 93.68 95.42 0.274 7.08 2.41 0.251 16.49
- ✓ 94.81 96.44 0.205 6.30 4.06 0.377 18.22
✓ ✓ 94.92 96.53 0.191 6.26 1.93 0.228 13.35

optimal trajectories. Our approach dynamically activates transformer layers and selectively filters
features, resulting in superior trajectory performance.

Table 2: The comparison of our model with baselines
in the CARLA under various environments. The best
and the second best values of each metric are reported
with bold and underlined fonts, respectively.

Environment Model Successful Rate FLOPs (109)

Scene A
GNM [4] 0.297 1.09
ViNT [5] 0.724 4.37

Ours 0.727 1.58

Scene B
GNM [4] 0.288 1.09
ViNT [5] 0.659 4.37

Ours 0.664 1.70

Scene C
GNM [4] 0.251 1.09
ViNT [5] 0.589 4.37

Ours 0.588 1.93

Table 2 presents the success rate of dif-
ferent models on the CARLA [72] simu-
lation. NoMad [6] is unable to achieve
agile real-time simulation on our test plat-
form due to the computationally intensive
nature of its diffusion process. The results
show that, although our model has higher
FLOPs than GNM [4], its success rate
shows a 38% improvement, demonstrating
the effectiveness of our approach. Com-
pared to ViNT [5], our method not only
achieves comparable performance but also
reduces FLOPs by more than a factor
of two. Furthermore, as the simulation
environment becomes more challenging
(Scene A→Scene C), the FLOPs required
by our model increase. This is because we
use a unified early exit metric across all three simulation environments. As the visual discrepancy
between the observation and goal increases, our model needs more decoder blocks to extract contex-
tual information effectively.

4.4 Ablation Study

Ablation into Individual Modules: Table 3 illustrates the effectiveness of our proposed module.
The dynamic decoder column represents whether we are using early exit on the transformer decoder.
The first row shows the result when we simply deactivate half of the decoder layers. Similarly,
the second row presents the result when we deliberately reduce the hidden channel size from C to
C
2 . Although these settings can improve efficiency, they usually lead to decreased performance and
poor generalization (i.e., high accuracy on the training set but low accuracy on the testing set).. The
rest of Table 3 elaborates that without the dynamic decoder, the efficiency does not vary too much
compared to the baseline. Moreover, by using the feature selector, the performance will be better,
and the efficiency will also be boosted. This is because our proposed feature selector sparsifies the
features and stabilizes the early exit process.

Table 4: Ablation study on whether using post-training
Bayesian Optimization (BO) and allowing exit before the
decoder. The best and the second best values of each metric
are reported with bold and underlined fonts, respectively.

BO Pre-decoder Exit Sim(wt,w
gt
t) Successful Rate FLOPs (109)

- - 96.30 0.725 2.46
- ✓ 96.22 0.719 2.27
✓ - 96.58 0.732 2.11
✓ ✓ 96.53 0.727 1.93

Ablation into Threshold Optimiza-
tion: Table 4 shows the different
performances of whether we imple-
ment an extra Bayesian Optimiza-
tion (BO) after training as DeeR-
VLA [11]. Moreover, it reports the in-
fluence of whether we allow an early
exit before the decoder. Results show
that without BO, the early exit pro-
cess can be impaired due to a subop-
timal threshold. Besides, if we allow
the early exit before the transformer decoder, although it can gain efficiency improvement, the over-

9

Figure 6: Visualized relationship between the number of selected features and the skipped layers
(Left) and the frequency of different numbers of skipped layers in the context of with or without the
feature selector (right).

all accuracy will slightly decrease. Therefore, such a technique ought to be a trade-off that requires
careful design.

Ablation into Feature Selection for Early Exit: To assess the impact of our proposed feature
selector on the early exit mechanism, we evaluate the model on the RECON [5] test set with a
batch size of 1, both with and without the feature selector. For each sample, we record the MEAN
value of the action difference between each layer (0-1,1-2,2-3). Moreover, we record the early
exit index, referring to it as the number of skipped layers. In Figure 6, we observe that within a
certain range of selected feature numbers, the average number of skipped layers remains high. This
finding suggests that our feature selector helps determine an appropriate early exit threshold, thereby
enhancing the frequency of early exiting. Additionally, Figure 6 shows that our proposed feature
selector increases the frequency of 2-to-4 layer jumps, leading to improved efficiency. Therefore,
by integrating the feature selector with early exit, our method achieves both more stable and more
efficient performance.

5 Conclusion

In this work, we propose DynaNav, a novel, highly efficient visual navigation model. We first
introduce a dynamic feature selector that filters observations and goals to extract robust, memory-
efficient features. We also introduce feature-aware early exit criteria for the transformer decoders,
using action consistency metrics optimized via Bayesian techniques. Our experimental results show
a significant reduction in computational overhead compared to existing foundation navigation mod-
els while maintaining high performance across standard benchmarks and the CARLA simulation
environment. The empirical evidence validates the effectiveness of our approach in achieving effi-
cient and robust visual navigation.

To achieve optimal performance, our model requires an additional optimization process. Although
the Bayesian optimization helps fine-tune the model and determine optimal thresholds, the added
labor cost is non-negligible. Future work could involve implementing these optimization techniques
concurrently with training to create a more streamlined end-to-end system. Furthermore, the pro-
posed feature selection mechanism can be integrated with various CNN-based encoder models to
improve their overall efficiency.

6 Acknowledgement

This research is supported by the National University of Singapore under the NUS College of Design
and Engineering Industry-focused Ring-Fenced PhD Scholarship programme. Changhao Chen is
funded by the Young Elite Scientist Sponsorship Program by CAST (No. YESS20220181) and the
National Natural Science Foundation of China (NFSC) under the Grant Number 62573370.

References
[1] Y. Zhang, Z. Ma, J. Li, Y. Qiao, Z. Wang, J. Chai, Q. Wu, M. Bansal, and P. Kordjamshidi, “Vision-

and-language navigation today and tomorrow: A survey in the era of foundation models,” arXiv preprint
arXiv:2407.07035, 2024.

10

[2] H. Li, M. Li, Z.-Q. Cheng, Y. Dong, Y. Zhou, J.-Y. He, Q. Dai, T. Mitamura, and A. Hauptmann, “Human-
aware vision-and-language navigation: bridging simulation to reality with dynamic human interactions,”
Advances in Neural Information Processing Systems, vol. 37, pp. 119 411–119 442, 2025.

[3] A. Bar, G. Zhou, D. Tran, T. Darrell, and Y. LeCun, “Navigation world models,” in Proceedings of the
Computer Vision and Pattern Recognition Conference (CVPR), 2025, pp. 15 791–15 801.

[4] D. Shah, A. Sridhar, A. Bhorkar, N. Hirose, and S. Levine, “Gnm: A general navigation model to drive
any robot,” in 2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2023,
pp. 7226–7233.

[5] D. Shah, A. Sridhar, N. Dashora, K. Stachowicz, K. Black, N. Hirose, and S. Levine, “Vint: A foundation
model for visual navigation,” in Conference on Robot Learning (CoRL). PMLR, 2023, pp. 711–733.

[6] A. Sridhar, D. Shah, C. Glossop, and S. Levine, “Nomad: Goal masked diffusion policies for navigation
and exploration,” in 2024 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
2024, pp. 63–70.

[7] D. Shah, B. Eysenbach, G. Kahn, N. Rhinehart, and S. Levine, “Ving: Learning open-world navigation
with visual goals,” in 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
2021, pp. 13 215–13 222.

[8] D. Shah, B. Osiński, S. Levine et al., “Lm-nav: Robotic navigation with large pre-trained models of
language, vision, and action,” in Conference on robot learning. PMLR, 2023, pp. 492–504.

[9] W. Cai, S. Huang, G. Cheng, Y. Long, P. Gao, C. Sun, and H. Dong, “Bridging zero-shot object navigation
and foundation models through pixel-guided navigation skill,” in 2024 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2024, pp. 5228–5234.

[10] G. Zhou, Y. Hong, and Q. Wu, “Navgpt: Explicit reasoning in vision-and-language navigation with large
language models,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, no. 7, 2024,
pp. 7641–7649.

[11] Y. Yue, Y. Wang, B. Kang, Y. Han, S. Wang, S. Song, J. Feng, and G. Huang, “Deer-vla: Dynamic
inference of multimodal large language models for efficient robot execution,” in The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

[12] X. Sun, P. Zhang, P. Zhang, H. Shah, K. Saenko, and X. Xia, “Dime-fm: Distilling multimodal and
efficient foundation models,” in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2023, pp. 15 521–15 533.

[13] A. A. Bharath and M. Petrou, Next generation artificial vision systems: Reverse engineering the human
visual system. Artech House, 2008.

[14] C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine, “Learning modular neural network policies for
multi-task and multi-robot transfer,” in 2017 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2017, pp. 2169–2176.

[15] S. Dasari, F. Ebert, S. Tian, S. Nair, B. Bucher, K. Schmeckpeper, S. Singh, S. Levine, and C. Finn,
“Robonet: Large-scale multi-robot learning,” in Conference on Robot Learning (CoRL). PMLR, 2020,
pp. 885–897.

[16] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and T. Darrell, “Bdd100k: A diverse
driving dataset for heterogeneous multitask learning,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2020, pp. 2636–2645.

[17] A. Kadian, J. Truong, A. Gokaslan, A. Clegg, E. Wijmans, S. Lee, M. Savva, S. Chernova, and D. Batra,
“Sim2real predictivity: Does evaluation in simulation predict real-world performance?” IEEE Robotics
and Automation Letters, vol. 5, no. 4, pp. 6670–6677, 2020.

[18] P. Anderson, A. Shrivastava, J. Truong, A. Majumdar, D. Parikh, D. Batra, and S. Lee, “Sim-to-real
transfer for vision-and-language navigation,” in Conference on Robot Learning (CoRL). PMLR, 2021,
pp. 671–681.

[19] N. Hirose, D. Shah, A. Sridhar, and S. Levine, “Exaug: Robot-conditioned navigation policies via geo-
metric experience augmentation,” in 2023 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2023, pp. 4077–4084.

11

[20] A. Loquercio, A. I. Maqueda, C. R. Del-Blanco, and D. Scaramuzza, “Dronet: Learning to fly by driving,”
IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 1088–1095, 2018.

[21] J. Truong, A. Zitkovich, S. Chernova, D. Batra, T. Zhang, J. Tan, and W. Yu, “Indoorsim-to-outdoorreal:
learning to navigate outdoors without any outdoor experience,” IEEE Robotics and Automation Letters,
2024.

[22] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Hausman,
A. Herzog, J. Hsu et al., “Rt-1: Robotics transformer for real-world control at scale,” arXiv preprint
arXiv:2212.06817, 2022.

[23] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain, J. Straub, J. Liu, V. Koltun, J. Malik
et al., “Habitat: A platform for embodied ai research,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2019, pp. 9339–9347.

[24] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi, “Target-driven visual
navigation in indoor scenes using deep reinforcement learning,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2017, pp. 3357–3364.

[25] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy, “End-to-end driving via conditional
imitation learning,” in 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 4693–4700.

[26] N. Savinov, A. Dosovitskiy, and V. Koltun, “Semi-parametric topological memory for navigation,” in
International Conference on Learning Representations (ICLR), 2018.

[27] J. Bruce, N. Sunderhauf, P. Mirowski, R. Hadsell, and M. Milford, “Learning deployable navigation
policies at kilometer scale from a single traversal,” in Conference on Robot Learning (CoRL). PMLR,
2018, pp. 346–361.

[28] A. Faust, K. Oslund, O. Ramirez, A. Francis, L. Tapia, M. Fiser, and J. Davidson, “Prm-rl: Long-range
robotic navigation tasks by combining reinforcement learning and sampling-based planning,” in 2018
IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018, pp. 5113–5120.

[29] X. Meng, N. Ratliff, Y. Xiang, and D. Fox, “Scaling local control to large-scale topological navigation,”
in 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020, pp. 672–678.

[30] N. Hirose, F. Xia, R. Martín-Martín, A. Sadeghian, and S. Savarese, “Deep visual mpc-policy learning for
navigation,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3184–3191, 2019.

[31] Y. Han, G. Huang, S. Song, L. Yang, H. Wang, and Y. Wang, “Dynamic neural networks: A survey,”
TPAMI, vol. 44, no. 11, pp. 7436–7456, 2021.

[32] L. Del Corro, A. Del Giorno, S. Agarwal, B. Yu, A. Awadallah, and S. Mukherjee, “Skipdecode:
Autoregressive skip decoding with batching and caching for efficient llm inference,” arXiv preprint
arXiv:2307.02628, 2023.

[33] D. Raposo, S. Ritter, B. Richards, T. Lillicrap, P. C. Humphreys, and A. Santoro, “Mixture-of-depths: Dy-
namically allocating compute in transformer-based language models,” arXiv preprint arXiv:2404.02258,
2024.

[34] M. Elhoushi, A. Shrivastava, D. Liskovich, B. Hosmer, B. Wasti, L. Lai, A. Mahmoud, B. Acun, S. Agar-
wal, A. Roman et al., “Layer skip: Enabling early exit inference and self-speculative decoding,” arXiv
preprint arXiv:2404.16710, 2024.

[35] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating gradients through stochastic neurons
for conditional computation,” arXiv preprint arXiv:1308.3432, 2013.

[36] A. Davis and I. Arel, “Low-rank approximations for conditional feedforward computation in deep neural
networks,” arXiv preprint arXiv:1312.4461, 2013.

[37] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable convolutional networks,” in
Proceedings of the IEEE international conference on computer vision, 2017, pp. 764–773.

[38] X. Jia, B. De Brabandere, T. Tuytelaars, and L. V. Gool, “Dynamic filter networks,” Advances in neural
information processing systems, vol. 29, 2016.

[39] Y. Wang, R. Huang, S. Song, Z. Huang, and G. Huang, “Not all images are worth 16x16 words: Dynamic
transformers for efficient image recognition,” Advances in neural information processing systems, vol. 34,
pp. 11 960–11 973, 2021.

12

[40] T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama, “Adaptive neural networks for efficient inference,” in
ICML, 2017.

[41] G. Huang, D. Chen, T. Li, F. Wu, L. Van Der Maaten, and K. Q. Weinberger, “Multi-scale dense networks
for resource efficient image classification,” ICLR, 2018.

[42] Y. Han, D. Han, Z. Liu, Y. Wang, X. Pan, Y. Pu, C. Deng, J. Feng, S. Song, and G. Huang, “Dynamic
perceiver for efficient visual recognition,” in ICCV, 2023.

[43] L. Yang, H. Jiang, R. Cai, Y. Wang, S. Song, G. Huang, and Q. Tian, “Condensenet v2: Sparse feature
reactivation for deep networks,” in CVPR, 2021.

[44] Y. Han, Z. Liu, Z. Yuan, Y. Pu, C. Wang, S. Song, and G. Huang, “Latency-aware unified dynamic net-
works for efficient image recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
pp. 1–17, 2024.

[45] M. Elbayad, J. Gu, E. Grave, and M. Auli, “Depth-adaptive transformer,” ICLR, 2020.

[46] J. Xin, R. Tang, Y. Yu, and J. Lin, “Berxit: Early exiting for bert with better fine-tuning and extension to
regression,” in ACL, 2021.

[47] J. Xin, R. Tang, J. Lee, Y. Yu, and J. Lin, “Deebert: Dynamic early exiting for accelerating bert inference,”
arXiv preprint arXiv:2004.12993, 2020.

[48] W. Liu, P. Zhou, Z. Zhao, Z. Wang, H. Deng, and Q. Ju, “Fastbert: a self-distilling bert with adaptive
inference time,” arXiv preprint arXiv:2004.02178, 2020.

[49] S. Mangrulkar, A. MS, and V. Sembium, “Be3r: Bert based early-exit using expert routing,” in KDD,
2022.

[50] Y. Chen, X. Pan, Y. Li, B. Ding, and J. Zhou, “Ee-llm: Large-scale training and inference of early-exit
large language models with 3d parallelism,” arXiv preprint arXiv:2312.04916, 2023.

[51] T. Schuster, A. Fisch, J. Gupta, M. Dehghani, D. Bahri, V. Tran, Y. Tay, and D. Metzler, “Confident
adaptive language modeling,” NeurIPS, 2022.

[52] Z. Fei, X. Yan, S. Wang, and Q. Tian, “Deecap: Dynamic early exiting for efficient image captioning,” in
CVPR, 2022, pp. 12 216–12 226.

[53] S. Tang, Y. Wang, Z. Kong, T. Zhang, Y. Li, C. Ding, Y. Wang, Y. Liang, and D. Xu, “You need multiple
exiting: Dynamic early exiting for accelerating unified vision language model,” in CVPR, 2023.

[54] A. Ghodrati, B. E. Bejnordi, and A. Habibian, “Frameexit: Conditional early exiting for efficient video
recognition,” in CVPR, 2021.

[55] Z. Ni, Y. Wang, R. Zhou, R. Lu, J. Guo, J. Hu, Z. Liu, Y. Yao, and G. Huang, “Adanat: Exploring adaptive
policy for token-based image generation.” in ECCV, 2024.

[56] C. Fang, C. He, F. Xiao, Y. Zhang, L. Tang, Y. Zhang, K. Li, and X. Li, “Real-world image dehazing with
coherence-based label generator and cooperative unfolding network,” arXiv preprint arXiv:2406.07966,
2024.

[57] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” in ICML,
2019.

[58] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polo-
sukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30, 2017.

[59] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked autoencoders are scalable vision
learners,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022,
pp. 16 000–16 009.

[60] D. Shah and S. Levine, “ViKiNG: Vision-Based Kilometer-Scale Navigation with Geographic Hints,” in
Proceedings of Robotics: Science and Systems, 2022.

[61] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-softmax,” arXiv preprint
arXiv:1611.01144, 2016.

13

[62] B. Wheatman and H. Xu, “Packed compressed sparse row: A dynamic graph representation,” in 2018
IEEE High Performance extreme Computing Conference (HPEC). IEEE, 2018, pp. 1–7.

[63] S. Ruiter, S. Wolfgang, M. Tunnell, T. Triche, E. Carrier, and Z. DeBruine, “Value-compressed sparse
column (vcsc): Sparse matrix storage for redundant data,” in 2024 Data Compression Conference (DCC).
IEEE, 2024, pp. 580–580.

[64] L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z.-H. Jiang, F. E. Tay, J. Feng, and S. Yan, “Tokens-to-token
vit: Training vision transformers from scratch on imagenet,” in ICCV, 2021.

[65] A. Awadalla, I. Gao, J. Gardner, J. Hessel, Y. Hanafy, W. Zhu, K. Marathe, Y. Bitton, S. Gadre, S. Sagawa
et al., “Openflamingo: An open-source framework for training large autoregressive vision-language mod-
els,” arXiv preprint arXiv:2308.01390, 2023.

[66] H. Liu, C. Li, Q. Wu, and Y. J. Lee, “Visual instruction tuning,” Advances in neural information processing
systems (NeurIPS), vol. 36, pp. 34 892–34 916, 2023.

[67] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khalidov, P. Fernandez, D. Haziza,
F. Massa, A. El-Nouby et al., “Dinov2: Learning robust visual features without supervision,” Transac-
tions on Machine Learning Research Journal, pp. 1–31, 2024.

[68] M. Ramamurthy and V. Lakshminarayanan, “Human vision and perception,” Handbook of advanced light-
ing technology, pp. 1–23, 2015.

[69] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking the human out of the loop:
A review of bayesian optimization,” Proceedings of the IEEE, 2015.

[70] H. Karnan, A. Nair, X. Xiao, G. Warnell, S. Pirk, A. Toshev, J. Hart, J. Biswas, and P. Stone, “Socially
compliant navigation dataset (scand): A large-scale dataset of demonstrations for social navigation,” IEEE
Robotics and Automation Letters, vol. 7, no. 4, pp. 11 807–11 814, 2022.

[71] N. Hirose, D. Shah, A. Sridhar, and S. Levine, “Sacson: Scalable autonomous control for social naviga-
tion,” IEEE Robotics and Automation Letters, vol. 9, no. 1, pp. 49–56, 2023.

[72] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: An open urban driving simulator,”
in Conference on robot learning. PMLR, 2017, pp. 1–16.

[73] A. Gu and T. Dao, “Mamba: Linear-time sequence modeling with selective state spaces,” arXiv preprint
arXiv:2312.00752, 2023.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We develop a novel method for efficient visual navigation. Our proposed
method effectively reduces the computational and time cost by using the developed feature
selector to obtain sparse features and utilizing dynamic early-exiting to skip decoder layers.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

14

Answer: [Yes]

Justification: In the conclusion section of the main body, we elaborate on some limitations
of our work. These limitations can be further investigated to find suitable solutions.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: In this work, we develop a novel architecture of the visual navigation model.
There are no additional newly proposed theories, such as optimization or representation,
etc.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

15

Answer: [Yes]
Justification: In the experiment section and appendix, we provide detailed settings for train-
ing and data processing.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: All data we use in this paper comes from publicly available datasets. Upon
the situation of acceptance, we will consider releasing the code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In the experiment section and appendix, we provide detailed settings for train-
ing and data processing.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We use the mean value as the justification metric. For each dataset, the final
metric value is the mean across all samples. As the parameters of the model are frozen
during the inference, therefore, the standard deviation of the same model inference on the
same dataset is small enough.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

17

Answer: [Yes]
Justification: We illustrate all hardware resources we used in the experimental section and
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work conforms to it in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work is a standard vision task and does not involve societal issues.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

18

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: All data and models used by this work are publicly available and tested in
many applications. There are no such risks for this paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use publicly available code resources.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

19

paperswithcode.com/datasets
paperswithcode.com/datasets

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our work focuses on visual navigation, which does not involve language
models.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

Appendices of
DynaNav: Dynamic Feature and Layer Selection for Efficient Visual Navigation

A Overview

Section B illustrates the hyperparameters and details for training and inference. Section C shows
more experimental results. Section D illustrates more visualized results of the saliency heatmaps on
observations and goals.

B Implementation Details
For pre-training, we adopt the same parameter settings as ViNT [5] to ensure a fair comparison. A
notable difference, however, is that we directly use the encoded features from EfficientNet-B0 [57]
as tokens to the transformer layer, bypassing the MLP projection used by ViNT to reduce the dimen-
sionality from 1280 to 512. This modification helps save computational resources and time. The
input RGB images are resized to a resolution of 85×64, with a batch size of 256. Both ViNT and
our models are trained for 100 epochs under these conditions. For fine-tuning, we set the learning
rate to 1e-4 and train for 80 epochs, deactivating the warm-up stage during this process.

Table 5: Hyperparameter Settings.
Hyperparameter Value

General
Train Epochs 100
Fine-tuning Epochs 80
Input Resolution 85 × 64
Training LR 0.0005
Fine-tuning LR 0.0001
Warmup Epochs 3
Optimizer AdamW
LR Scheduler Cosine Annealing
Batch Size 256
λ in loss 0.5

Backbone
Type EfficientNet-b0
Hidden Dim 1280

Data
Length of past frames 5
Length of predicted waypoints 5
Max obs-goal distance(meter) 20
Min obs-goal distance(meter) 0

Transformer Decoder
Number of layers 4
Attention Heads 4

Bayesian Optimization
Sim(at,a

gt
t) Constraint 0.950

Sim(wt,w
gt
t) Constraint 0.960

FLOPs Constraint (109) 2.0
Time Constraint (sec) 0.3
Memory Constraint (GB) 14
Optimization Epochs 20
Constraint of Masked Pixels (obs) 2770
Constraint of Masked Pixels (goal) 3400
ξ [0.8,0.5,1.0]

CARLA Realted
Max Speed 20km/h
Max Distance 900m
Capture Frequency 4Hz

21

B.1 Hyper-parameter Setting

The detailed hyper-parameter settings for our training and fine-tuning are in Table 5.

C More Experiment Result

C.1 Results with Mamba Decoder

We also test the performance of the Mamba [73] block. Table 6 illustrates the results of substituting
mamba. As the resolution of our feature maps is not large, the advantage of Mamba [73] can not be
fully explored. On the other hand, the Mamba’s [73] core computing structure - the state space model
(SSM) and its high-order recursive calculations- causes its calculation volume to increase rapidly
under high-dimensional features. Comparing the Sim(wt,w

gt
t), the performance using Mamba [73]

blocks is lower than ours. This may result from the fact that Mamba [73] has advantages on long
sequences but may not be able to fully utilize its recursive modeling capabilities on short sequences.
Transformer [58] is more suitable for capturing global dependencies. Even if the sequence is short,
it can still use the self-attention mechanism to efficiently model the relationship between features.

During the CARLA [72] simulation, the models predictions are normalized to compute the necessary
waypoint offsets. These offsets, combined with the vehicles current location, determine the target
waypoint. A PID controller is employed to generate control signals based on the target waypoint. To
ensure smooth trajectory generation within the CARLA environment, we use an image captured six
timestamps ahead of the current observation as the objective, carefully tracking the models progress
over each run. As ViNT [5] processes the waypoints in relative coordinates, represented as follows:

wt = (Pt+h −Pt)⊗R(θt), (13)

where Pt+h and Pt denote the position vectors of the goal and current points in world coordinates,
respectively, and ⊗ indicates matrix multiplication. θt represents the vehicle’s yaw, and R is the
rotation matrix. Thus, the final target point is calculated as: Pt+h = Pt + ŵt ⊗R(θt)

⊤, where ŵt

is the predicted waypoint offset.

Table 6: Quantitative Comparison on Benchmarks of ours and Mamba blocks.

Dataset Method Sim(wt,w
gt
t) FLOPs(109)

RECON [5] Mamba [73] 95.09 4.41
Ours 96.53 1.93

Go-Stanford [4] Mamba [73] 93.34 4.41
Ours 93.66 1.68

SacSoN [71] Mamba [73] 92.92 4.41
Ours 93.72 1.68

SCAND [70] Mamba [73] 97.28 4.41
Ours 97.43 1.93

C.2 Goal Image Viewpoint Investigation

In real-world scenarios, goal images often come from diverse sourcessuch as human-captured pho-
tosand may not exactly align with the agents ego-centric view. Understanding how such domain and
viewpoint differences impact performance is critical.

To investigate this, we conducted additional experiments in CARLA under three challenging condi-
tions:

• Same location, different angle: Goal image is taken from the same waypoint but with a
camera orientation offset (within ±15◦).

22

• Nearby location, same angle: Image is captured from a nearby position (within 5 meters),
keeping the same orientation.

• Nearby location, different angle: Goal is from a nearby waypoint (within 5 meters) and
a different orientation.

Table 7 illustrates the quantitative results. Our model exhibits graceful degradation as the domain
gap increasesi.e., greater viewpoint or positional differences. However, it consistently outperforms
the ViNT baseline across all settings, highlighting the robustness and generalization of our approach
to goal images with moderate domain shifts.

Table 7: Comparison of our model and ViNT under varying goal image settings in CARLA Scene A
Setting Model Success Rate FLOPs (×109)

Same Position, Same Angle ViNT 0.724 4.37
Ours 0.727 1.58

Nerby Position, Same Angle ViNT 0.723 4.37
Ours 0.725 1.58

Same Position, Different Angle ViNT 0.694 4.37
Ours 0.708 1.74

Nearby Position, Different Angle ViNT 0.688 4.37
Ours 0.691 1.79

C.3 Timestep-wise Consistency

To investigate the potential timestep-wise inconsistency, we conducted an in-depth analysis on a 700-
frame trajectory. We segmented the trajectory into 100-frame intervals and computed the average
FLOPs and inference time for each segment, comparing our model against the baseline ViNT. As
shown in Table 8, our model consistently reduces both computational cost and inference time across
all intervals, while maintaining or improving action similarity Sim(at,a

gt
t). In over 96% of the eval-

uated trajectories, our approach is more efficient than ViNT without any degradation in navigation
accuracy.

These results demonstrate that, despite the dynamic nature of early exiting, our model exhibits stable,
consistent, and efficient performance over time in practice.

Table 8: Timestep-wise results compared with ViNT
No. of Frame 100 200 300 400 500 600 700

ViNT
FLOPs (109) 4.37 4.37 4.37 4.37 4.37 4.37 4.37
Avg Time (s) 0.218 0.218 0.218 0.218 0.218 0.218 0.218
Sim(at,a

gt
t) 94.41 94.46 94.49 94.48 94.52 94.51 94.49

Ours
FLOPs (109) 2.02 1.95 1.92 1.96 1.85 1.93 1.93
Avg Time (s) 0.194 0.190 0.189 0.191 0.185 0.190 0.190
Sim(at,a

gt
t) 94.76 94.88 94.92 94.90 94.92 94.92 94.92

C.4 Additional Ablation Study of Constraints

Our adaptive threshold optimization incorporates three constraints designed to jointly enhance
model efficiency across FLOPs, time, and memory usage. To evaluate their individual contributions,
we conducted an ablation study by removing each constraint separately.

As shown in Table 9, enforcing the FLOPs constraint encourages more frequent layer skipping,
effectively reducing inference time and memory consumption. However, removing either the time or
memory constraint results in noticeable degradation across all efficiency metrics. This confirms that
jointly optimizing all three constraints achieves the best overall performance and balanced resource
utilization.

23

Table 9: Ablation Study On RECON Dataset

Setting FLOPs (109) Time (s/traj) Memory (GB)

Ours 1.93 0.228 13.35
w/o FLOPs constrain 2.84 0.291 15.62
w/o Time constrain 2.55 0.273 15.09
w/o Memory constrain 2.16 0.255 14.75

C.5 Study on Robustness

We conducted each navigation trajectory in CARLA 10 times to evaluate the robustness of our
method. Table 10 reports the FLOPs, average execution time, and average successful rate for se-
lected trajectories across these runs. As shown, the results exhibit minimal variance, indicating
strong consistency and low randomness. This stability is attributed to the synergy between our fea-
ture selector and Bayesian optimization, which together enable adaptive yet reliable behavior across
diverse scenarios.

Table 10: Results of different separation simulations.
No. of Trajectory 1 2 3 4 5 6 7 8 9 10

FLOPs (109) 1.91 1.93 1.92 1.91 1.90 1.92 1.94 1.93 1.93 1.91
Avg Time (s) 0.258 0.260 0.258 0.257 0.260 0.257 0.262 0.260 0.257 0.258
Success Rate 0.725 0.727 0.727 0.726 0.726 0.726 0.728 0.727 0.726 0.727

D More Visualizations

In this section, we added more visualizations of saliency maps. Such a saliency map helps to identify
the interest area after being processed by our proposed feature selector. From Figure 7 to Figure 10,
we can tell that the region of interest is not always located in the biggest common object between
observation and goal images. The model “considers” more spatial information, which results in
higher “attention” along the target direction. These findings support our claims in Section 1 that
there is redundant information in the observation and goal. In other words, it proves the rationality
of using the proposed feature selector to filter features.

24

Figure 7: Salieny map of observation and goal images.

25

Figure 8: Salieny map of observation and goal images.

26

Figure 9: Salieny map of observation and goal images.

27

Figure 10: Salieny map of observation and goal images.

28

	Introduction
	Related Work
	End-to-end Visual Navigation
	Dynamic Network and Early Exit

	Dynamic Visual Navigation Model
	Framework Overview
	Dynamic Sparse Feature Selection
	Dynamic Transformer Layer Inference
	Feature-Aware Early Exit Strategy
	Adaptive Threshold Optimization

	Experiment
	Experimental Setups
	Datasets
	Evaluation Metrics

	Evaluation in Real-world Benchmarks
	Real-time Robotic Navigation in CARLA Simulation Environment
	Ablation Study

	Conclusion
	Acknowledgement
	Overview
	Implementation Details
	Hyper-parameter Setting

	More Experiment Result
	Results with Mamba Decoder
	Goal Image Viewpoint Investigation
	Timestep-wise Consistency
	Additional Ablation Study of Constraints
	Study on Robustness

	More Visualizations

