Under review as a conference paper at ICLR 2025

PLSEMANTICSBENCH: LARGE LANGUAGE MODELS
AS PROGRAMMING LANGUAGE INTERPRETERS

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models (LLMs) excel at code reasoning, a natural question
arises: can an LLM execute programs (i.e., act as an interpreter) purely based on a
programming language’s formal semantics? If so, it will enable rapid prototyping
of new programming languages and language features. We study this question using
the imperative language IMP (a subset of C), formalized via small-step operational
semantics (SOS) and rewriting-based operational semantics (K-semantics). We
introduce three evaluation sets—Human-Written, LLM-Translated, and Fuzzer-
Generated-whose difficulty is controlled by code-complexity metrics spanning
the size, control-flow, and data-flow axes. Given a program and its semantics
formalized with SOS/K-semantics, models are evaluated on three tasks ranging
from coarse to fine: (1) final-state prediction, (2) semantic rule prediction, and (3)
execution trace prediction. To distinguish pretraining memorization from semantic
competence, we define two nonstandard semantics obtained through systematic
mutations of the standard rules. Across strong code/reasoning LLMs, performance
drops under nonstandard semantics despite high performance under the standard
one. We further find that (i) there are patterns to different model failures, (ii) most
reasoning models perform exceptionally well on coarse grained tasks involving
reasoning about highly complex programs often containing nested loop depths
beyond five, and surprisingly, (iii) providing formal semantics helps on simple
programs but often hurts on more complex ones. Overall, the results show a
promise that LLMs could serve as programming language interpreters, but points
to the lack of their robust semantics understanding.

1 INTRODUCTION

Programming language (PL) semantics formally defines the computational meaning of the program—
i.e., how the program executes (Schmidt, 1996). It is common that the process of executing a program
relies on an interpreter—a handcrafted engine that maps syntactic elements of a programming
language to operational behavior defined by the PL semantics. Basically, the interpreter executes
the given program step by step following the defined PL semantics rules. For decades, interpreters
have served as indispensable tools in both the design and implementation of programming lan-
guages (Reynolds, 1972), enabling everything from debugging environments and educational tools to
production systems. Yet despite their ubiquity, and unlike lexers and parsers (Appel, 1997), writing
interpreters remains a labor-intensive (Peyton Jones, 1987; Aho & Johnson, 1976; Alfred et al.,
2007), error-prone (Zang et al., 2024; Godefroid et al., 2008) task that requires deep expertise in
programming languages and low-level execution models. This cost of development poses a challenge
to the ongoing push to develop new domain-specific languages (Rocha Silva, 2022; Mernik et al.,
2005) and enhance existing ones with new features (Castagna & Peyrot, 2025; Thimmaiah et al.,
2024).

Large language models (LLMs) have shown promising performance in both code understanding and
generation tasks such as code generation and code completion (Chen et al., 2021; El-Kishky et al.,
2025; Team et al., 2023; Roziere et al., 2023; Zhang et al., 2022; Zhu et al., 2024; Hui et al., 2024).
We ask the following question: whether LLMs truly understand the PL semantics and whether they
are good enough to replace the handcrafted interpreters—i.e., to simulate the operational behavior of
a program solely based on the PL semantics. If so, LLMs could be used (a) in early stages of rapid
prototyping new programming languages or language features, (b) during debugging to understand
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Figure 1: The PLSEMANTICSBENCH construction workflow and the proposed three tasks. Each program
is written in IMP with syntax specified in EBNF, and its standard PL semantics defined using both SOS and
K-semantics (@)). The standard semantics can be systematically transformed into one of two nonstandard
semantics, KeywordSwap and KeywordObf (@). The standard IMP programs and their semantics will be
transformed accordingly. The transformed K-semantics is then used to build a traditional interpreter with the
K-framework (@), which generates an output trace (@) for each transformed IMP program, serving as ground
truth (GT) for the tasks. The transformed IMP program, its K-semantics (@) are used to construct prompts for
the tasks. Tasks (@ - @) span from coarse-grained evaluation (PredState) to fine-grained evaluation (PredRule,
PredTrace). An almost identical flow can also be achieved using the SOS and EBNF syntax by just replacing the
K-framework interpreter with our custom built ANTLR4-based interpreter to evaluate the models on the tasks
using SOS instead of K-semantics.

execution traces and program states, and (c) as a reference “implementation” for differential testing
during development of the actual interpreter.

We introduce PLSEMANTICSBENCH, a benchmark designed to evaluate how LLMs handle code
across distinct distributions. It includes a Human-Written split, reflecting natural programmer style,
an LLM-Translated split, representing model-generated code, and a novel Fuzzer-Generated split. The
fuzzer systematically produces rare control-flow patterns and edge-case semantics that are unlikely
to appear in human code. Together, these datasets enable controlled and comprehensive evaluation
of models on both realistic and adversarially challenging programs. Each split contains a number
of programs written in the IMP language—a subset of C and a canonical imperative language used
extensively in PL research—with the accompanying PL semantic rules. PLSEMANTICSBENCH fo-
cuses on probing an LLM’s capability in serving as an interpreter which executes programs according
to the specified PL semantics. As shown in Figure 1 (@), each example in PLSEMANTICSBENCH
consists of a program written in IMP, its syntax and the corresponding PL semantics specified
formally using the small-step structural operational semantics (SOS) or rewriting-based operational
semantics (K-semantics). Both SOS and K-semantics are included to evaluate robustness across
different semantics styles.

Task design. PLSEMANTICSBENCH defines three tasks: i) final-state prediction (PredState): predict
the final program state (values of all the declared variables) under the given PL semantics (@),
ii) semantic-rule prediction (PredRule): identify the ordered sequence of semantic rules required to
evaluate the given statement (@), iii) execution-trace prediction (PredTrace): generate a step-by-step
program execution trace, tuples of semantic rules and program states (€)). Each task targets a distinct
aspect of the interpreter, collectively covering a broad spectrum of interpreter functionalities—from
coarse-grained semantic check (PredState) to fine-grained symbolic execution (PredTrace).
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Rule assgn_rred := Rule assgn := Rule decl :=
(e,o0) = (e, 0)
(x = e1,0) = (x = e';,0) (x = v;,o) = (€, 0[x — v]) (int x;,0) = (€, 0[x — 0])
Rule add_lred := Rule add_rred := Rule addition :=
(el,o) — (el’, o) (e2,0) — (e2’,0) v3 = vl + v2
(el + e2,0) = (el’ + e2,0) (vl + e2,0) = (vl + e2’,0) (vl + v2,0) = v3

(a) Small-step (SOS) inference rules.
module SEMANTICS

1

2 imports SYNTAX //syntax is defined in a separate module, and looks similar to (a)
3 configuration <T> <k> $PGM:program </k> <state> .Map </state> </T>

4 rule <k> X = I:Int; => . ...</k> <state>... X |-> (_ => I) ...</state>

5 rule <k> int (X,Xs); => int Xs; ... </k> <state> Rho:Map (.Map => X|->0) </state>
6 rule <k> int .Ids; => . ...</k>

7 rule <k> X:Id => I ...</k> <state>... X |-> I ...</state>

8 rule I1 + I2 => Il +Int I2

9 endmodule

(b) Rewriting rules as used in the K-framework.
Figure 2: The Small-step operational semantics (SOS) and rewriting-based operational semantics (K-semantics)
for formalizing the semantics of a subset of the IMP programming language.

Semantics mutation. A critical challenge is to determine whether LLMs are truly interpreting
programs based on the provided PL semantics, or merely relying on knowledge implicitly acquired
during their pretraining (on popular programming languages). Specifically, the ability to generate
functionally-correct programs or predict the outcomes of programs in the existing programming
languages does not indicate an understanding of PL semantics, let alone acting as an interpreter. To
address this challenge, we introduce two novel semantic mutations (@) to derive the previously unseen
nonstandard PL semantics from the standard one: 1) KeywordSwap (s}.,): the semantic meanings of
the operators are swapped (e.g., swap the semantic meanings of + and -), and 2) KeywordObf (s}, ):
common keywords and operators are replaced with rarely-seen symbols (e.g., using & instead of +).
Success on tasks under nonstandard PL semantics requires a deep understanding of the PL semantics
rather than just surface-level pattern matching.

We evaluate 11 state-of-the-art LLMs on PLSEMANTICSBENCH, covering models of various sizes,
including both open-weight and closed-source models, as well as reasoning and non-reasoning
models. Our findings show that LLMs generally perform well under standard PL semantics. Given
the previously unseen nonstandard PL semantics, all models experience a decline across all the tasks
compared to the standard one. The degradation is more noticeable in smaller and non-reasoning
models. Reasoning models perform exceedingly well under standard semantics on the coarse grained
task PredState with some of them passing the task on exceptionally complex programs involving
nested loops with a nesting depth of five and greater. However, all models suffer on the fine-grained
tasks PredRule and PredTrace. Overall, PLSEMANTICSBENCH reveals that models with strong
performance on existing code generation benchmarks, such as BigCodeBench (Zhuo et al., 2024) and
LiveCodeBench (Jain et al., 2024), does not imply that they possess an inherent understanding of PL
semantics.

PLSEMANTICSBENCH is the first benchmark that evaluates the usability of LLMs as interpreters,
laying the foundation for this novel line of research. Our empirical studies show that most state-of-
the-art LLMs have a shallow understanding of PL semantics. We will publicly release the benchmark
and supporting code after the review process.

2 BACKGROUND

The IMP programming language. IMP (a subset of C) is an imperative language that has been
used extensively in PL research (Lesbre & Lemerre, 2024; Liu et al., 2024b). It supports the int
and bool types, conditional statements (1 f-else), and looping constructs (while). It excludes
functions and arrays for simplicity. We focus (in this section only) on a subset of IMP (only integer
type, only literal addition expressions, variables can be re-declared, and no undeclared variables) to
illustrate key concepts behind formalizing the semantics of a programming language.

The semantics of a programming language formally defines the behavior of its programs. In this
work, we employ two styles for writing semantics.
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Structural operational semantics defines a language’s behavior through inference rules that describe
transitions between machine or program states. Key concepts include: 1) Configurations, representing
the program and its execution context (e.g., the heap); 2) Transitions, denoting state changes driven by
rule applications; and 3) Inference rules, specifying the semantics of language constructs. Depending
on the granularity of transitions, operational semantics is categorized as small-step (SOS) or big-step.
In SOS (Plotkin, 2004), each rule captures a minimal atomic computation step.

‘We now formalize the semantics of (a subset of) IMP using SOS. Table 1 gives a primer of the notations
and their definitions which we use in our formalization. We use the configuration (operation, o).
The operation can be a statement or an expression. The o is the program state and maps a variable
to an integer value. A one-step transition (e, o) — (e’, o) implies that an expression e reduces to
another expression e’ through a single atomic computation step (e.g., (1+1) +1 reducing to 2+1).

The core SOS rules are shown in Figure 2a, using Gentzen-style infer-  Table 1: Notation primer.
ence notation (Gentzen, 1964). Each rule consists of premises, side

L _ N . o Notation Definition
conditions, and a conclusion: premises and side conditions appear
. . . . o Program state
above the fractional-line, and the conclusion below it. For example, . Int variable
the assgn_rred and assgn rules handle the assignment statement. e Int expression
v Int literal

The former has a premise that matches a compound integer addition ) e

. . . .. . . . . operation, o) Configuration
expression which is reduced in its conclusion. This rule is applied re- 5[x s v] Store v in x
peatedly until the expression reduces to an integer literal which is then (e,o) — (e’,0)  Transition
assigned to the variable by the latter. The rules for the addition operation {e,0) Nop
(add_1lred and add_rred) similarly, reduce both the left and the right hand expressions until
they reduce to integer literals. The addition rule is then applied to perform the addition operation.
Our complete formalization of IMP using SOS is provided in Appendix A.

—~

Rewriting-based operational semantics (Rosu & Serbanutd, 2010) is used in the K-framework, an
executable semantic framework based on rewriting logic (Meseguer, 1992). K-framework is used for
building interpreters given the syntax and semantics of programming languages. Figure 2b shows the
semantics of the subset of IMP language defined using the K-semantics. The SEMANTICS module
imports the SYNTAX module (line 2, omitted for brevity). The configuration (line 3) models the
program state as a map-based store. Semantics is defined via rewrite rules (lines 4-8) that apply when
their precondition patterns match.

3 BENCHMARK CONSTRUCTION

An overview of the benchmark construction process is shown in Figure 1. We formalize IMP in
both SOS and K-semantics (@)). On experiments with K-semantics, we use the K-framework (@) to
obtain the ground-truths (@) for all the tasks (we use our custom built ANTLR4-based interpreter
for SOS). The IMP program along with the K-semantics (or SOS) is used to prompt the LLMs (@).
The rest of the section details the curation of the three datasets (Section 3.1) and the derivation of
nonstandard semantics (Section 3.2).

3.1 DATASET CURATION

PLSEMANTICSBENCH contains three datasets namely, the Human-Written, the LLM-Translated,
and the Fuzzer-Generated.

Human-Written. The IMP programs are manually adapted from C++ solutions to coding problems
sourced from LeetCode (LeetCode, 2024), HumanEval (Chen et al., 2021; Zheng et al., 2023),
CodeContests (Li et al., 2022), and MBPP (Austin et al., 2021; Orlanski et al., 2023). We use public
test cases as input and their corresponding oracles as expected outcomes. C++ programs with for
loops are rewritten to while loops to match IMP’s capabilities. Additionally, we obfuscate variable
names by replacing semantically meaningful identifiers (e.g., maxIter) with random strings (e.g.,
a). We show one example C++ and IMP program in Appendix B.1. To validate correctness, we
execute the IMP programs using K-framework and verify that the outputs match the test oracles.

LLM-Translated. The IMP programs are translated from C++ programs using LLMs. Specifically,
we collect the C++ programs from the CodeForces solutions published on Hugging Face (Penedo
et al., 2025). We prompt QWEN2.5-INSTRUCT 32B with the IMP syntax, semantics constraints, the
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Table 2: Median code-complexity statistics summarizing the datasets used in our experiments. Control-flow
complexity is characterized using extended cyclomatic complexity ({2cc), maximum nested if—else () and
nested loop (Q2L00p) depths , maximum taken nested if—else (Qn-), and taken nested loop (QLOOP) depths . Data-flow
complexity is analyzed using DepDegree({2pp) and the total number of assignments to variables in execution
traces (QAssigu). Program size complexity is measured using lines of code (€21.0c), Halstead metrics Volume (2vo1)
and Vocabulary(Q2v,c), and execution trace length (Q1race). All metrics computed under dynamic-analysis are
shown with a hat.

Dataset #Prog Control-flow Data-flow Size

QCC Qlf QLoop Qlf QLoop QDD QAssign ﬂLoc QVol QVoc QTmce
Human-Written 162 3 1 1 1 1 12 9 19 320 22 20
LLM-Translated 165 9 1 1 1 1 48 62 106 2K 35 180
Fuzzer-Generated 165 100 7 6 2 1 6K 86 794 63K 112 190

C++ solution and one corresponding public test case to instruct it to generate a valid IMP program.
We filter the generated IMP programs with the K-framework to retain only those that are executable
and have normal termination.

Fuzzer-Generated. We construct this with a depth-controlled, semantics-aware, grammar-based
fuzzer (Yang et al., 2011; Han et al., 2019); a fuzzer is a tool that automatically generates pro-
grams and it is commonly used for testing compilers and interpreters. At each block, the fuzzer
samples a statement from {assign, if-else, while, break, continue, halt} using depth-
tapered probabilities—a cosine decay reduces the chance of generating new if/while as nesting
grows—and legality masks that forbid break/cont inue outside loops. To encourage termination,
every while is instrumented with a private loop-breaker variable that is monotonically updated in
the body and whose bound is conjoined with the loop predicate (cond A bound). More details
about the fuzzer’s settings and the generated IMP programs is discussed in Appendix B.2.

Program complexity and data statistics. We characterize program complexity along three
axes—control-flow, data-flow, and size. For control-flow, we use extended cyclomatic complexity
(Qcc) McCabe, 1976); the static maximum nesting depths of if—else and while (€, €1 o0p); and their

dynamic counterparts measured along executed paths s, QLOOP). For data-flow, we use DepDegree
(Qpp), which quantifies uses and redefinitions of declared variables (Beyer & Fararooy, 2010), and
the total number of executed assignments (Q Assign)- For size, we use Halstead Vocabulary and Volume
(Qvoc, Qvor) (Halstead, 1977) which captures the symbol variety and program information in bits
respectively, lines of code (2 .c), and execution-trace length (flnaee) under SOS.

Table 2 reports median values of the complexity metrics per dataset. Across ~165 programs per
split, the median complexity increases progressively from Human-Written to LLM-Translated to
Fuzzer-Generated along all three axes. The distributions of these complexity metrics for the three
datasets is given in Appendix C.

3.2 NONSTANDARD SEMANTICS

We introduce two nonstandard semantics, KeywordSwap and KeywordObf, to assess the models’
ability to truly interpret the programs according to the provided PL semantics rather than relying on
the knowledge obtained during training on large existing code corpora. These nonstandard semantics
are derived from the standard IMP PL semantics through operator and keyword mutations and
obfuscations.

KeywordSwap (s}..). We derive KeywordSwap by swapping the semantic meanings of the syntactic
operators in the standard semantics to their KeywordSwap counterparts as shown in Table 3. For
example, KeywordSwap swaps the semantics of the addition (+) and the subtraction (-) operators.
Therefore, an integer addition expression (e.g., x+y) under the standard IMP semantics is evaluated
as if it were a subtraction expression (e.g., x-v) under KeywordSwap.

KeywordObf (s ). We derive KeywordObf through obfuscation by replacing keywords and opera-
tors in the standard semantics with characters from the rare Caucasian-Albanian script (Gippert &
Schulze, 2023). Some of the obfuscations used are shown in Table 3, which replaces the syntactic
operators and keywords defined in the standard semantics with their KeywordObf counterparts. After
applying this obfuscation, the expression (e.g., x & y) under KeywordObf would execute identically
as the integer addition expression (e.g., x+y) under the standard IMP semantics.
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Table 3: Some of the mutations and obfuscations applied to the standard semantics to derive the nonstandard
semantics KeywordSwap and KeywordObf. The complete list is given in Appendix D.4.

Type | Arithmetic | Relational | Logical | Keyword
Standard + - * / % < <= > >= == = ! && Il while
KeywordSwap - + / * % > >= < <= = == ! Il && while
KeywordObf 3 oL g J N Q P b k T q 2 P A 4

The KeywordSwap nonstandard semantics explores the impact of pretraining bias (e.g., redefining,
the typically encountered mapping of the symbol (+) to addition operation) on LLMs’ understanding
of PL semantics by swapping the semantic meanings of standard operators, while retaining the
familiar symbols. In contrast, the KeywordObf nonstandard semantics examines LLMs’ performance
in the context of mitigating pretraining bias. This is achieved by obfuscating standard operators and
keywords with symbols from the rarely encountered Caucasian-Albanian script.

4 EXPERIMENTS
Table 4: Evaluated Models.

Evaluation settings. We benchmark each model under six
semantics—program configurations: (s, p) (standard seman-
tics and program), (s, pj,) (KeywordSwap), and (s},
Pl,) (KeywordObf), each instantiated for both SOS and the
K-semantics variants. For the PredState task we addition-
ally report a no-semantics baseline (p) that provides only
the standard program. Table 4 shows the code-centric non-
reasoning and reasoning models used in our experiments.
For non-reasoning models we report both direct (no-CoT)
and CoT prompting (explain step-by-step, then answer).

Model

Reference

LLAMA-3.3 70B
QWEN2.5-INSTRUCT 14B
QWEN2.5-INSTRUCT 32B

Grattafiori et al. (2024)
Hui et al. (2024)

GPT-40-MINI Achiam et al. (2023)
03-MINI
GPT-5-MINI OpenAl (2025)

DEEPSEEK-LLAMA 70B
DEEPSEEK-QWEN 14B
DEEPSEEK-QWEN 32B
QwQ 32B
GEMINI-2.5-PRO

Guo et al. (2025)

Team (2025b)
Kavukcuoglu (2025)

Datasets and tasks. We evaluate all models on the Human-Written split for all tasks. For the
more complex LLM-Translated and Fuzzer-Generated splits, we restrict evaluation to the best-
performing models on the PredState task (top-3 from different families by Human-Written accuracy)
for several reasons: (i) PredState task performance on Human-Written is near-saturated, motivating
evaluation on harder distributions; (ii) PredRule task is largely agnostic to program complexity (see
Appendix E.2.1); (iii) performance on PredTrace task remains uniformly low even on Human-Written
split, offering limited additional insight on harder splits; and (iv) reduce cost of experiments. We only
average all reasoning model experiments (and GPT-40-MINI) over three runs. The temperature for
all the non-reasoning models (except GPT-40-MINI) is set to 0. Prompt templates and experiment
details are given in Appendix D.

4.1 FINAL-STATE PREDICTION (PREDSTATE)

Task. As a coarse-grained measure of LLMs’ performance as an interpreter, we challenge them with
predicting the final states of all the declared variables in a given program (Figure 1 @). We explore
this under the cases when no-semantics is provided and when the semantics are provided using the
K-semantics and SOS styles.

Data curation and results. The IMP programs in all the three datasets are executed with the K-
framework to obtain the gold execution traces. Every element in the execution trace is a tuple of a
semantic rule (K-semantics or SOS) needed to evaluate a statement and the program state (values of
all declared variables) after executing that rule. Thus the state of the final element from the execution
trace is used as the ground-truth for the PredState task. Table 5 shows the accuracies of the models
on the PredState task. More details, such as the average percentage of variables predicted correctly
etc., is discussed in Appendix E.1.3.

Does providing semantics help? On the Human-Written dataset we see that providing semantics
(K-semantics or SOS) generally hurts the performance of non-reasoning models but significantly
improves the performance of reasoning models. The trend is similar on the LLM-Translated dataset
but to a lesser extent, while in the Fuzzer-Generated dataset, the trend reverses and providing
semantics hurts the performances of even the reasoning models.
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Table 5: Accuracies of the models on the PredState task, using SOS and K-semantics, for both the standard and
nonstandard variants across the Human-Written, the LLM-Translated, and the Fuzzer-Generated datasets. The
cases where models under standard semantics perform better/worse than with no-semantics are shaded green/red.

Models p K-semantics SOS
(8,P)  (8hasPhs)  (ShosPro)  (8D)  (8LasPhs)  (Skos Pho)
Human-Written
QWEN2.5-INSTRUCT 14B 33 27 6 14 28 6 8
o0 QWEN2.5-INSTRUCT 14B-CoT 73 70 2 48 68 4 41
= QWEN2.5-INSTRUCT 32B 50 29 4 12 33 4 19
% QWEN2.5-INSTRUCT 32B-CoT 81 77 8 56 69 3 33
2 LLAMA-3.3 70B 32 29 4 12 25 5 12
§  LLAMA-3.3 70B-CoT 75 75 3 56 77 2 48
7 GPT-40-MINI 31 26 6 8 24 6 8
GPT-40-MINI-CoT 68 78 2 38 65 3 27
DEEPSEEK-QWEN 14B 65 81 2 40 58 2 29
o  DEEPSEEK-QWEN 32B 84 93 21 72 95 3 77
E DEEPSEEK-LLAMA 70B 80 88 2 58 89 2 59
2 QwQ 32B 93 98 71 82 98 7 86
S o3 9% 100 41 84 100 63 95
GPT-5-MINI 100 99 79 94 100 79 99
GEMINI-2.5-PRO 93 100 97 94 99 98 100
LLM-Translated
QwQ 32B 82 83 31 61 82 4 63
GPT-5-MINI 94 926 76 86 95 65 90
GEMINI-2.5-PRO 91 94 85 91 94 87 93
Fuzzer-Generated
QwQ 32B 16 16 0 3 15 0 1
GPT-5-MINI 57 51 14 23 55 17 23
GEMINI-2.5-PRO 73 69 26 49 69 39 47

How well do models perform on nonstandard semantics? On all the datasets, models perform better
under standard than under nonstandard semantics (only exception is GEMINI-2.5-PRO under SOS on
the Human-Written split). For the nonstandard semantics, the models perform significantly better with
KeywordObf than KeywordSwap. Only GEMINI-2.5-PRO performs on par for both the nonstandard
semantics’. Manual inspection of the KeywordSwap failure samples indicated models failing to use
the re-defined semantics of the well known operators (e.g., re-defining (+) as subtraction) as the
primary reason for poor performance.

Which code-complexity metrics best predict LLM mispredictions? To answer this, we train an Elastic
Net logistic regression classifier using the IMP programs’ complexity metrics as features and the
LLMs’ pass/fail outcomes as labels. The regression coefficients are transformed into odds ratios per
interquartile range, ©(A), which quantify how the odds of success change as a metric increases from
its 25" to 75™ percentile, holding all other metrics constant. A negative O(A) indicates performance
degradation, while a positive value suggests improvement. Our analysis (Appendix E.1.1) shows
that nearly all metrics consistently correlate with worse performance as they increase. In particular,
deeper control-flow structures most strongly harm accuracy on human-written code, whereas larger
data-flow and size-related metrics dominate the degradation on code translated and generated by
LLMs and fuzzers repectively.

Is there a systematic pattern in how complexity metrics impact different models? To investigate, we
apply hierarchical clustering (Johnson, 1967) to the standardized regression coefficients (from the
logistic regression analysis) across metrics. We then use a one-vs-rest Cohen’s d test (Cohen, 1988) to
identify the two most distinguishing metrics for each cluster. This analysis (Appendix E.1.2) reveals
three clear groups: (i) non-reasoning models without CoT prompting, (ii) primarily reasoning and
CoT-augmented non-reasoning models under K-semantics, and (iii) reasoning and CoT-augmented
non-reasoning models under SOS semantics.

4.2 SEMANTIC-RULE PREDICTION (PREDRULE)

Task. Traditional interpreters follow predefined semantic rules to execute programs. The PredRule
task evaluates whether LLMs can correctly select the specific PL. semantic rules to execute the
program. Given the PL semantics, a program statement, and the program state (variables and their
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Table 6: The exact-match accuracies of the models on the semantic-rule prediction task under SOS and K-
semantics on the Human-Written dataset. The cases where the models under one of the nonstandard semantics
perform better/worse relative to their counterpart are shaded green/red.

Models K-semantics SOS
’ ’ ’ ’ ’ ’ ’ /
(8P)  (SkssPhs) (SkosPro)  (8:P)  (Skgs Prs)  (Skos Pko)
LLAMA-3.3 70B 45 42 45 32 32 27
e  LLAMA-3.3 70B-CoT 69 46 50 28 28 17
2 QWEN2.5-INSTRUCT 14B 49 45 45 19 19 17
% QWEN2.5-INSTRUCT 14B-CoT 50 32 27 12 10 6
2 QWEN2.5-INSTRUCT 32B 58 52 46 17 24 19
g QWEN2.5-INSTRUCT 32B-CoT 64 47 47 29 26 24
Z GPT-40-MINI 38 34 27 27 27 21
GPT-40-MINI-CoT 57 46 37 27 26 24
DEEPSEEK-QWEN 14B 57 45 48 22 21 20
on  DEEPSEEK-QWEN 32B 79 66 65 47 38 38
€ DEEPSEEK-LLAMA 70B 34 10 27 1 1 1
% GEMINI-2.5-PRO 99 98 90 94 96 98
§ 03-MINI 93 65 84 80 72 67
QwQ 32B 92 85 76 49 44 41
GPT-5-MINI 92 83 82 80 81 81

values) before the statement’s execution, the LLMs are expected to predict the correct sequence
of semantic rules, both in terms of the rules and their application order, to accurately evaluate the
statement. We show one example of a model’s expected output in Figure 1 (@). Some statements
may require just a single rule whereas others may need a sequence of several rules.

Data curation and results. To obtain the ground-truth list of K-semantics and SOS rules, we execute
the IMP programs with the K-framework and our ANTLR4-based interpreter respectively. For each
program, we select a subset of statements for evaluation. To balance diversity and the number of
chosen statements, we group together statements requiring identical sequences of semantic rules and
randomly select one from each group, with a maximum of 10 statements per program. Table 6 shows
the exact-match accuracy, i.e., the percentage of predicted semantic rule sequences that exactly match
the ground-truth sequences.

How does the models’ performances compare between the K-semantics and SOS? From Table 6 we
see that models perform slightly better when provided with K-semantics relative to SOS. This could
be due to two contributing factors: 1) SOS on average requires more rules (e.g., left reduction, right
reduction and the application of the operator itself are all different rules for the addition operation
in SOS, whereas it is just a single rule in K-semantics) to evaluate a statement than its K-semantics
counterpart (see Appendix E.2.2), and 2) several large examples of formalizing languages such as
C (K Framework Team, 2025a), Java (K Framework Team, 2025b), and Python (Runtime Verification,
2025) etc. exist for K-semantics but none for SOS, therefore models may be more familiar with
K-semantics than SOS.

How does the models’ performances compare for the nonstandard semantics? For the non-reasoning
models, the performances are consistenly better for KeywordSwap under SOS and generally better
for KeywordSwap under K-semantics than their corresponding KeywordObf counterparts. On the
other hand, the differences in performances between the two nonstandard semantics for the reasoning
models is less apparent under both, K-semantics and SOS. Furthermore, with the exception of the
DEEPSEEK-LLAMA 70B model, reasoning models outperform the non-reasoning ones for all the
cases.

4.3 EXECUTION-TRACE PREDICTION (PREDTRACE)

Task. In addition to executing individual statements, an interpreter maintains the program state and
determines the next statement to execute throughout a program’s execution. The PredTrace task
challenges LLMs to predict the complete execution trace, which is defined as an ordered sequence of
execution steps. Each step is a tuple of a semantic rule (K-semantics or SOS needed to evaluate the
statement being executed currently) and the program state after applying the rule. An example of a
predicted execution trace is given in Figure 1 (@).

Data curation and results. We use the K-framework and our ANTLR4-based IMP interpreter to
generate execution traces for the K-semantics and SOS variants respectively—which we post-process
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Table 7: The exact-match accuracies of the models on the execution-trace prediction task under SOS and
K-semantics on the Human-Written dataset. All non-reasoning models (not shown) scored near zero.

Models K-semantics SOS
(8P)  (SharDPha) (ShorPho)  (85P)  (SherPrs)  (Sko» Pro)

DEEPSEEK-QWEN 14B 1 0 0 0 0 0

a0 DEEPSEEK-QWEN 32B 8 2 3 0 0 1

€ DEEPSEEK-LLAMA 70B 3 0 3 0 0 0

2 GEMINI-2.5-PRO 25 25 25 32 35 35

g o3mm 19 3 13 5 3 2
QwQ 32B 18 16 15 0 0 0
GPT-5-MINI 20 14 17 17 15 17

into XML. Table 7 shows the exact-match accuracies across models. All the models perform poorly
on the PredTrace task.

How do non-reasoning models compare against reasoning models? The peformance of non-reasoning
models is significantly worse than their reasoning counterparts. Most of the non-reasoning models
with the exception of LLAMA-3.3 70B-family of models, fail to correctly predict the complete
execution trace for even a single program in the Human-Written dataset. Reasoning capability
is therefore observed to be an important factor in understanding of the semantics and program
interpretation.

How do performances on K-semantics compare against SOS? Both non-reasoning and reasoning
models perform better on K-semantics than on SOS. Most models score near zero under SOS. This
could be due to them being more familiar with K-semantics formalization structure and due to the
execution trace lengths under SOS being longer. The only exception is the GEMINI-2.5-PRO model
which consistently performs better under SOS semantics and is also the best performing model in
this task.

5 RELATED WORK

Code reasoning and execution benchmarks. Several benchmarks assess LLMs’ ability to reason
about program execution. CRUXeval (Gu et al., 2024) evaluates test output prediction for Python
programs. LiveCodeBench (Jain et al., 2024) adds test prediction and program repair. REval (Chen
et al., 2024) tests understanding of runtime behavior via program states, paths, and outputs. Co-
conut (Beger & Dutta, 2025) targets control-flow reasoning by predicting execution line sequences,
and CodeMind (Liu et al., 2024a) introduces inductive program-simulation tasks. Most recently,
CWM (Team, 2025a) releases a 32B open-weights LLM for code generation with world-model
style training on execution traces, aiming to internalize program dynamics. However, none of these
benchmarks are designed to evaluate LLMs strictly as interpreters of user-defined PL semantics.

Semantics-oriented training and evaluation. SemCoder (Ding et al., 2024) trains LLMs on
symbolic, operational, and abstract semantics tasks. SpecEval (Ma et al., 2024) evaluates semantic
understanding of JML specifications, while LMS (Ma et al., 2023) tests structural recovery of ASTs
and CFGs. Other efforts, such as Code ARC (Wei et al., 2025b) and EquiBench (Wei et al., 2025a),
study robustness under semantic-preserving mutations. In contrast, our benchmark frames evaluation
as an interpreter task, requiring models to execute programs according to formal semantics (SOS)
and its variants.

To our knowledge, this is the first work to measure executability, trace simulation, and rule-level
reasoning in a unified, semantics-driven framework.

6 CONCLUSION

We introduced PLSEMANTICSBENCH, the first benchmark for evaluating LLMs as PL interpreters
guided by formal semantics. The benchmark spans three dataset splits, two semantic variants, and
three tasks that probe different dimensions of interpreter functionality. While some LLMs achieve
strong performance on coarse-grained tasks and simpler programs—and can even generalize across
different semantic rule notations such as SOS —we uncover substantial gaps on fine-grained tasks,
nonstandard semantics, and complex programs. These findings highlight both the promise and the
current limitations of semantics-aware LLMs. Looking forward, we believe that explicitly teaching
language semantics to LLMs can pave the way for rapid prototyping of new programming languages
and the extension of existing ones.



Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Alan Agresti. Categorical Data Analysis. Wiley, 3 edition, 2013.

Alfred V Aho and Stephen C Johnson. Optimal code generation for expression trees. Journal of the
ACM (JACM), 23(3):488-501, 1976.

V Aho Alfred, S Lam Monica, and D Ullman Jeffrey. Compilers principles, techniques & tools.
pearson Education, 2007.

Andrew W. Appel. Modern Compiler Implementation in C. Cambridge University Press, 1997.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Claas Beger and Saikat Dutta. Coconut: Structural code understanding does not fall out of a tree. In
International Workshop on Large Language Models for Code (LLM4Code), 2025.

Dirk Beyer and Ashgan Fararooy. A simple and effective measure for complex low-level dependencies.
In ICPC, pp. 80-83, 2010.

Giuseppe Castagna and Loic Peyrot. Polymorphic records for dynamic languages. pp. 1464-1491,
2025.

Junkai Chen, Zhiyuan Pan, Xing Hu, Zhenhao Li, Ge Li, and Xin Xia. Reasoning runtime behavior
of a program with 1lm: How far are we? pp. 140-152, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Jacob Cohen. Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates,
2nd edition, 1988.

Jerome Cornfield. A method of estimating comparative rates from clinical data; applications to cancer
of the lung, breast, and cervix. Journal of the National Cancer Institute, 11:1269-1275, 1951.

Yangruibo Ding, Jinjun Peng, Marcus Min, Gail Kaiser, Junfeng Yang, and Baishakhi Ray. Semcoder:
Training code language models with comprehensive semantics reasoning. volume 37, pp. 60275—
60308, 2024.

Ahmed El-Kishky, Alexander Wei, Andre Saraiva, Borys Minaiev, Daniel Selsam, David Dohan,
Francis Song, Hunter Lightman, Ignasi Clavera, Jakub Pachocki, et al. Competitive programming
with large reasoning models. arXiv preprint arXiv:2502.06807, 2025.

Jerome H. Friedman, Trevor Hastie, and Robert Tibshirani. Regularization paths for generalized
linear models via coordinate descent. Journal of Statistical Software, 33:1-22, 2010.

Gerhard Gentzen. Investigations into logical deduction. American philosophical quarterly, 1(4):
288-306, 1964.

Jost Gippert and Wolfgang Schulze. The Language of the Caucasian Albanians, pp. 167-230. 2023.
ISBN 9783110794687.

Patrice Godefroid, Adam Kiezun, and Michael Y Levin. Grammar-based whitebox fuzzing. pp.
206-215, 2008.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

10



Under review as a conference paper at ICLR 2025

Alex Gu, Baptiste Roziere, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I
Wang. CRUXEval: A benchmark for code reasoning, understanding and execution. arXiv preprint
arXiv:2401.03065, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-R1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Maurice H. Halstead. Elements of Software Science. Operating and Programming Systems Series.
Elsevier North-Holland, Inc., 1977.

HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. Codealchemist: Semantics-aware code
generation to find vulnerabilities in JavaScript engines. In NDSS, 2019.

Jr. Harrell, Frank E. Regression Modeling Strategies: With Applications to Linear Models, Logistic
and Ordinal Regression, and Survival Analysis. Springer, 2 edition, 2015.

Arthur E. Hoerl and Robert W. Kennard. Ridge regression: Applications to nonorthogonal problems.
Technometrics, 12:69-82, 1970.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2.5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Stephen C. Johnson. Hierarchical clustering schemes. Psychometrika, 32:241-254, 1967.

K Framework Team. c-semantics: Semantics of cink. https://github.com/kframework/
c—-semantics, 2025a. GitHub repository; accessed Sep 23, 2025.

K Framework Team. java-semantics: Semantics of java in k. https://github.com/
kframework/java-semantics, 2025b. GitHub repository; accessed Sep 23, 2025.

Koray Kavukcuoglu. Gemini 2.5: Our most intelligent AI model, 2025.
URL https://blog.google/technology/google-deepmind/
gemini-model-thinking-updates-march-2025/. Accessed: 2025-05-21.

LeetCode. LeetCode Online Judge, 2024. URL https://leetcode.com. Accessed: 2025-05-
16.

Dorian Lesbre and Matthieu Lemerre. Compiling with abstract interpretation. PLDI, pp. 368-393,
2024.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’ Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with AlphaCode. Science, 378(6624):1092—-1097, 2022. doi: 10.1126/science.abql158.
URL https://www.science.org/doi/abs/10.1126/science.abgll58.

Changshu Liu, Shizhuo Dylan Zhang, Ali Reza Ibrahimzada, and Reyhaneh Jabbarvand. Code-
mind: A framework to challenge large language models for code reasoning. arXiv preprint
arXiv:2402.09664, 2024a.

Jiangyi Liu, Charlie Murphy, Anvay Grover, Keith J.C. Johnson, Thomas Reps, and Loris D’ Antoni.
Synthesizing formal semantics from executable interpreters. OOPSLA2, pp. 362-388, 2024b.

Lezhi Ma, Shangqing Liu, Lei Bu, Shangru Li, Yida Wang, and Yang Liu. Speceval: Evaluat-
ing code comprehension in large language models via program specifications. arXiv preprint
arXiv:2409.12866, 2024.

11


https://github.com/kframework/c-semantics
https://github.com/kframework/c-semantics
https://github.com/kframework/java-semantics
https://github.com/kframework/java-semantics
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://leetcode.com
https://www.science.org/doi/abs/10.1126/science.abq1158

Under review as a conference paper at ICLR 2025

Wei Ma, Shangqing Liu, Zhihao Lin, Wenhan Wang, Qiang Hu, Ye Liu, Cen Zhang, Liming Nie,
Li Li, and Yang Liu. LMs: Understanding code syntax and semantics for code analysis. arXiv
preprint arXiv:2305.12138, 2023.

T.J. McCabe. A complexity measure. I[EEE Transactions on Software Engineering, SE-2:308-320,
1976.

Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop domain-specific
languages. ACM Comput. Surv., 37:316-344, 2005.

José Meseguer. Conditional rewriting logic as a unified model of concurrency. Theor. Comput. Sci.,
96(1):73-155, 1992.

OpenAl. Gpt-5 mini. https://platform.openai.com/docs/guides/reasoning,
2025. Reasoning models guide; mentions gpt —5-mini. Accessed Sep 24, 2025.

Gabriel Orlanski, Kefan Xiao, Xavier Garcia, Jeffrey Hui, Joshua Howland, Jonathan Malmaud,
Jacob Austin, Rishah Singh, and Michele Catasta. Measuring the impact of programming language
distribution. In ICML, pp. 26619-26645, 2023.

Guilherme Penedo, Anton Lozhkov, Hynek Kydlicek, Loubna Ben Allal, Edward Beeching,
Agustin Piqueres Lajarin, Quentin Gallouédec, Nathan Habib, Lewis Tunstall, and Leandro von
Werra. Codeforces. https://huggingface.co/datasets/open-rl/codeforces,
2025.

Simon L Peyton Jones. The implementation of functional programming languages (prentice-hall
international series in computer science). Prentice-Hall, Inc., 1987.

Gordon D. Plotkin. A structural approach to operational semantics. J. Log. Algebraic Methods
Program., pp. 17-139, 2004.

John C. Reynolds. Definitional interpreters for higher-order programming languages. In Proceedings
of the ACM Annual Conference - Volume 2, pp. 717-740, 1972.

Thiago Rocha Silva. Towards a domain-specific language to specify interaction scenarios for web-
based graphical user interfaces. In EICS, pp. 48-53, 2022.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code Llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Grigore Rosu and Traian Florin Serbanutd. An overview of the k semantic framework. The Journal
of Logic and Algebraic Programming, 79(6):397-434, 2010.

Runtime Verification. python-semantics: Semantics of python in k. https://github.com/
runtimeverification/python-semantics, 2025. GitHub repository; accessed Sep 23,
2025.

David A Schmidt. Programming language semantics. ACM Computing Surveys (CSUR), pp. 265-267,
1996.

Robert R. Sokal and F. James Rohlf. The comparison of dendrograms by objective methods. Taxon,
11:33-40, 1962.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Meta FAIR CodeGen Team. Cwm: An open-weights llm for research on code genera-
tion with world models. https://ai.meta.com/research/publications/
cwm—an-open-weights—-1lm-for-research-on-code-generation-with-world-models/,
2025a. Accessed: 2025-09-24.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025b. URL
https://gqwenlm.github.io/blog/qwg-32b/.

12


https://platform.openai.com/docs/guides/reasoning
https://huggingface.co/datasets/open-r1/codeforces
https://github.com/runtimeverification/python-semantics
https://github.com/runtimeverification/python-semantics
https://ai.meta.com/research/publications/cwm-an-open-weights-llm-for-research-on-code-generation-with-world-models/
https://ai.meta.com/research/publications/cwm-an-open-weights-llm-for-research-on-code-generation-with-world-models/
https://qwenlm.github.io/blog/qwq-32b/

Under review as a conference paper at ICLR 2025

Aditya Thimmaiah, Leonidas Lampropoulos, Christopher Rossbach, and Milos Gligoric. Object
graph programming. In /CSE, 2024.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58:267-288, 1996.

Anjiang Wei, Jiannan Cao, Ran Li, Hongyu Chen, Yuhui Zhang, Ziheng Wang, Yaofeng Sun, Yuan
Liu, Thiago SFX Teixeira, Diyi Yang, et al. EquiBench: Benchmarking code reasoning capabilities
of large language models via equivalence checking. arXiv preprint arXiv:2502.12466, 2025a.

Anjiang Wei, Tarun Suresh, Jiannan Cao, Naveen Kannan, Yuheng Wu, Kai Yan, Thiago SFX
Teixeira, Ke Wang, and Alex Aiken. Code ARC: Benchmarking reasoning capabilities of 1lm agents
for inductive program synthesis. arXiv preprint arXiv:2503.23145, 2025b.

Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemometrics and
Intelligent Laboratory Systems, 2:37-52, 1987.

Svante Wold, Michael Sjostrom, and Lennart Eriksson. Pls-regression: A basic tool of chemometrics.
Chemometrics and Intelligent Laboratory Systems, 58:109—130, 2001.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding bugs in ¢ compilers.
In PLDI, pp. 283—-294, 2011.

Zhiqgiang Zang, Fu-Yao Yu, Aditya Thimmaiah, August Shi, and Milos Gligoric. Java JIT testing
with template extraction. pp. 1129 — 1151, 2024.

Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric. CoditT5:
Pretraining for source code and natural language editing. pp. 1-12, 2022.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi
Wang, Yang Li, et al. Codegeex: A pre-trained model for code generation with multilingual bench-
marking on humaneval-x. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 5673-5684, 2023.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code
generation with diverse function calls and complex instructions. 2024.

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 67:301-320, 2005.

13



Under review as a conference paper at ICLR 2025

Appendix

A IMP Formalization
A.1 IMP Syntax Description . . . . . . . . . . . e
A.2 Small-step Operational Semantics Rules forIMP . . . . . .. ... ... .....

B IMP Program Example
B.1 Human-Written Dataset . . . . . . . . . . . . .. .. ... .. ...

B.2 Fuzzer-Generated Dataset . . . . . . . . . . . . . . . . . ...
C Code-Complexity Distributions

D Experiments Details
D.1 Parameters . . . . . . . . . .. e e e e
D.2 Compute Resources . . . . . . . . . . . . . e e
D3 Prompts . . . . . . e e
D.4 KeywordObf Obfuscation Table . . . . . ... ... ... ... ..........

E Task Extended Analysis
E.1 Final-State Prediction . . . . . . . . . . . . . . .
E.2 Semantic-Rule Prediction . . . . . . . . . . .. .. ... .

E.3 Execution-Trace Prediction . . . . . . . .. . .. ... .. ... ... . ... ...
F Limitations

G Use of External Assets

14



Under review as a conference paper at ICLR 2025

A IMP FORMALIZATION

Here we describe the syntax and the semantics rules for IMP used in all our experiments.

A.1 IMP SYNTAX DESCRIPTION

The IMP syntax used in all our experiments is given in EBNF in Figure 3. The terminals are shown
in red while the non-terminals are shown in blue.

1 <program> c:= <stmt_list>

2 <stmt_list> : (<stmt> '; ')«

3 <stmt> ci= 'int' <id>

4 | <id> '=' <aexp>

5 | "if" " (' <bexp> ")' '"{' <stmt_list> '}' 'else' '{' <stmt_list> '}’
6 | 'while' '"(' <bexp> ')' '{' <stmt_list> '}’
7 | 'loop' '(' <bexp> ')' '"{' <stmt_list> '}
8 | 'halt'

9 | 'continue'

10 | 'break'

11 | 'LE'

12 <aexp> 1= <id>

13 | <literal>

14 | ' (' <aexp>? <mathop> <aexp> ')'

15 <bexp> = '(' <bool> ")"

16 | '"(' <aexp> <relop> <aexp> ')'

17 | '"(' <lognot> <bexp> ')'

18 | "('" <bexp> <logicalop> <bexp> ')'

19 <bool> ::= 'true' | 'false'

20 <mathop> R R A DR VARNERE

21 <relop> R e B B e B B vi=r

22 <lognot> v

23 <logicalop> : & | ]!

24 <id> 1= <letter>+

25 <literal> = <digit>+

26 <letter> ti='a' | D' te' | otd' o te' | 'E' | 'g' | 'h' | it | '3
27 ‘ VkV ‘ ll' | |mV ‘ an | 'O‘ ‘ VpV ‘ lq' | |rV ‘ VSI | 't!
28 IR B A B AN S S A A

29 [ 'A" | 'B' | 'C' | 'D' | 'E' | 'F' | 'G' | 'H' | 'I' | 'J"
30 [ "K' | 'LU | ™' | 'N' | 'O' | 'P' | Q' | 'R' ] 'S' | 'T!
31 | gVt opotwe X oyt | 'z

32 <digit> tr= 00 | LYo 20 | '3 tAv | S| ote' | 7' | '8 | ‘9!

Figure 3: Complete syntax of IMP used in our experiments in EBNF.

A.2 SMALL-STEP OPERATIONAL SEMANTICS RULES FOR IMP

Table 8: Metavariables used in the SOS formalization of IMP.

Meta-var  Sort Ranges over / Domain

X id Identifiers (program variable names)

v literal Integer literals

aq bool Boolean literals

a aexp Integer expressions

b bexp Boolean expressions

s stmt Statements of the language

SL stmt_list  Finite statement lists (SL ::= €| s :: SL’)

We formalize IMP using a small-step structural operational semantics (SOS). A configuration is a
triple
(operation, o, X),

where 0 : id — literal is the program store mapping identifiers to values, and  is a last-in,
first-out control stack of loop headers that records the dynamic nesting of currently active loops:

X =€ | sux.
The top of  is the innermost executing loop.

We use standard metavariables x, v, g, a, b, s, SL with their sorts summarized in Table 8. For
example, a ranges over arithmetic expressions, so rules mentioning al, a2, . .. concern arithmetic
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Table 9: Metafunctions for control stack and statement-list concatenation.

Function  Signature Definition
push stmt x Stack — Stack push(s, x) L5y
pop Stackx. — Stack pop(s :: x) ERY%
iy —
top Stack — stmt U {e} top(x) £ Hx=e ,
s ifx=s:ux
SL2 if SL1 =€
stmt_list X stmt_list — stmt_list ~ SL1 SL2 2 ’
A Stmp_list X stmplist = stmt s t {s:: (SL1’ ++4 SL2) ifSL1=s: SL1'.

evaluation. Auxiliary metafunctions for manipulating the control stack (push, pop, top) and
concatenating statement lists (4 ) are given in Table 9.

Program execution proceeds by repeatedly applying the transition relation — to configurations,
starting from (SL, o, x), where SL is the program’s statement list, until a terminal configuration is
reached. We treat (e, 0, x), (halt,o, x), and (ERROR, 0, ) as terminal.

The complete set of small-step SOS rules defining the semantics of IMP appears in Table 10.

Table 10: Small-step SOS rules used to formalize IMP.

Rule Formalization | Description|
Rule 1 Variable
lookup
o(x)=v returns
(x,0,x) = v value.
Rule 2 Read of
undefined
o(x) =1 variable
(x,0,x) = (ERROR, 0, X) errors.
Rule 3 Declared
int  vari-
X able
(int x :: SL,o,x) = (SL,o[x — 0], x) initialized
to 0.
Rule 4 Assignment
expres-
(a,0,x) = {a’,0,x) sion
(x :=a :: SLyo,x) — {(x :=a’ :: SL,o,X) steps.
Rule 5 Writeback
to existing
o(x) # L variable.
(x := v :: SL,o,x) — (SL,ox — v],x)
Rule 6 Assign to
undefined
o(x) =1 variable
(x := v :: SL,0,x) = (ERROR, 0, X) errors.
Rule 7 Plus —
step left
(al,o,x) = (al’, 0, x) operand.
(al + a2,0,x) = (al’ + a2,0,%)
Rule 8 Plus —
step right
(a2,0,x) = (a2",0,x) operand.
(vl + a2,0,x) = (vl + a2’,0,x)
Rule 9 Plus  —
compute.
v3=vl+4+v2
(vl + v2,0,x) = v3
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Rule 10 Minus —
step left
(al,o,x) = (al’, o, x) operand.
(al - a2,0,x) = (al’ - a2,0,x)
Rule 11 Minus —
step right
(a2,0,x) = (a2’,0,x) operand.
(vl - a2,0,x) = (vl - a2’,0,x)
Rule 12 Minus —
compute.
v3=vl—v2
(vl - v2,0,x) = v3
Rule 13 Times —
step left
(al,o,x) = (al’,0,x) operand.
(al % a2,0,x) = (al’ * a2,0,X)
Rule 14 Times —
step right
(a2,0,x) = (a2’,0,x) operand.
(vl % a2,0,x) = (vl * a2’,0,X)
Rule 15 Times —
compute.
v3 =vl*v2
(vl * v2,0,%) = v3
Rule 16 Division
— step left
(al,o,x) = (al’,0,x) operand.
(al / a2,0,x) = (al’ / a2,0,X)
Rule 17 Division
—  step
(a2,0,x) = (a2",0,x) right
(vl / a2,0,x) = (vl / a2’,0,Xx) operand.
Rule 18 Division
—  com-
v2 #0 v3 =vl/v2 pute
(vl / v2,0,x) = v3 (nonzero).
Rule 19 Division
by zero
v2 =0 €ITors.
(vl / v2,0,Xx) — (ERROR, 7, X)
Rule 20 Modulus
— step left
(al,o,x) = (al’,0,x) operand.
(al % a2,0,x) — (al’ % a2,0,X)
Rule 21 Modulus
—  step
(a2,0,x) = (a2",0,x) right
(vl % a2,0,x) = (vl % a2’,0,X) operand.
Rule 22 Modulus
i —  com-
v2 #0 v3i=vl % v2 pute
(vl % v2,0,x) = v3 (nonzero).
Rule 23 Modulus
by zero
v2 =0 €rTors.
(vl % v2,0,Xx) — (ERROR, 7, X)
Rule 24 Unary
minus —
(a,0,x) = {a’,0,x) step.

(- a,o,x) > (- a’,0,x)
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Rule 25 Unary
minus —
v2 = —vl compute.
(- v1,0,x) = v2
Rule 26 Unary
plus —
(a,0,x) = {a’,0,x) step.
(+ a,o,x) = (+ a’,0,X)
Rule 27 Unary
plus —
(+ v,o,Xx) > Vv 110-0p-
Rule 28 Less-than
— stej
(al,0.%) = (a1, 0,%) e
(al < a2,0,x) = (al’ < a2,0,%)
Rule 29 Less-than
—  step
(a2,0,x) = (a2’,0,x) right.
(vl < a2,0,x) = (vl < a2’,0,x)
Rule 30 Less-than
L true.
v v
(vl < v2,0,x) — true
Rule 31 Less-than
LS false.
vl>v
(vl < v2,0,x) — false
Rule 32 Less-than-
equal —
(al,o,x) = (al’,0,x) step left.
(al <= a2,0,x) = (al’ <= a2,0,x)
Rule 33 Less-than-
equal —
(a2,0,x) = (a2’,0,x) step right.
(vl <= a2,0,x) — (vl <= a2’,0,x)
Rule 34 Less-than-
equal
vl < v2
= true.
(vl <= v2,0,X) — true
Rule 35 Less-than-
equal
vl >wv2 false.
(vl <= v2,0,x) — false
Rule 36 Greater-
than —
(al,o,x) = (al’, o, x) step left.
(al > a2,0,x) = (al’ > a2,0,x)
Rule 37 Greater-
than —
(a2,0,x) = (a2’,0,x) step right.
(vl > a2,0,x) = (vl > a2’,0,x)
Rule 38 Greater-
than
vl > v2 true.
vl > v2,0, — true
X
Rule 39 Greater-
than
vl <wv2 false.
(vl > v2,0,x) — false
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Rule 40 Greater-
than-
(al,o,x) = (al’, o, x) equal —
(al >= a2,0,x) — (al’ >= a2,0,X) step left.
Rule 41 Greater-
than-
(a2,0,x) = (a2’,0,x) equal —
(vl >= a2,0,x) — (vl >= a2’,0,%) step right.
Rule 42 Greater-
than-
vl >v2 equal
(vl >= v2,0,Xx) — true true.
Rule 43 Greater-
than-
vl <v2 equal
(vl >= v2,0,x) — false false.
Rule 44 Equality
, —  step
(al, o, x) = (al’,0,x) left.
(al == a2,0,x) — (al’ == a2,0,x)
Rule 45 Equality
, —  step
(a2,0,x) = (a2’,0,x) right.
(vl == a2,0,x) — (vl == a2’,0,%)
Rule 46 Equality
true.
vl=v2
(vl == v2,0,Xx) — true
Rule 47 Equality
false.
vl # v2
(vl == v2,0,x) — false
Rule 48 Not-equal
—  step
(al,o,x) = (al’,0,x) left.
(al !'= a2,0,x) — (al’ != a2,0,%)
Rule 49 Not-equal
—  step
(a2,0,x) = (a2’,0,x) right.
(vl '= a2,0,x) — (vl != a2’,0,%)
Rule 50 Not-equal
true.
vl # v2
(vl !'= v2,0,Xx) — true
Rule 51 Not-equal
false.
vl =v2
(vl != v2,0,x) — false
Rule 52 AND —
step left.
(b1,0,x) = (01", 0,Xx)
(bl && b2,0,Xx) — (bl’ && b2,0,X)
Rule 53 AND —
step right.
(02,0,x) = (027, 0,X)
(ql && b2,0,x) — {(ql && b2’,0,%)
Rule 54 AND
true.

gl = true A g2 = true

(ql && g2,0,X) — true
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Rule 55 AND
false.
gl = false Vg2 = false
(gl && g2,0,x) — false
Rule 56 OR —
step left.
(b1,0,x) = (b1",0,x)
(b1 11 b2,0,x) = (b1’ || b2,0,X)
Rule 57 OR —
step right.
(b2,0,x) = (b2",0,X)
(al 11 b2,0,x) = (al || b2',0,x)
Rule 58 OR true.
gl = true Vg2 = true
(ql || g2,0,Xx) — true
Rule 59 OR false.
gl = false A g2 = false
(al 1l g2,0,x) — false
Rule 60 NOT —
step.
(B, 0,x) = (07, 0,%)
(b, 0,x) = (!b",0,x)
Rule 61 NOT of
false s
g = false true.
(lg,0,x) — true
Rule 62 NOT of
true is
q = true false.
(lq,0,x) — false
Rule 63 Sequence
, head
(s,0,x) > (s",0,x") steps.
(s :: SLyo,x) = (s’ :: sL,o’,x')
Rule 64 If-else
predicate
(b,0,x) = (b", 0, x) steps.
(if (b) {SL1} else {SL2} :: SL3,0,x) — (if(b’) {SL1l} else {SL2} SL3, 0, X)
Rule 65 If-else
takes then-
g =true branch.
(if(q) {SL1l} else {SL2} :: SL3,0,x) — (SL1 ++ SL3,0,X)
Rule 66 If-else
takes else-
q = false branch.
(if(q) {SL1l} else {SL2} :: SL3,0,x%x) — (SL2 ++ SL3,0,%)
Rule 67 ‘While cre-
ates loop
(while(b) {SL} :: SLL,o,x) — (loop(b) (SL} :: SLL,o,push(while(b) (SLI,x)) | ™
Rule 68 Loop
predicate
(b,0,x) = (p",0,Xx) steps.
(loop (b) {SL} :: SLl1,0,x) — (loop(b’) {SL} :: SLI1,o,X)
Rule 69 Loop
exits on
q = false false.
(loop(q) {SL} :: SLl,o0,x) — (SL1,o,pop(x))
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Rule 70 Insert
loop-

q = true body into
(loop(q) {SL} :: SLl,o,x) — (SL ++ (LE :: SL1),0,X) statement
list while
adding a
loop-end
(LE)
marker in
between.

Rule 71 break

propa-
XF#€ N s#LE gates  to

(break :: s :: SL,o,x) — (break :: SL,o,X) LE inside
loop.

Rule 72 break at
LE pops
X#€Ns=1E x and ter-
(break :: s :: SL,o,x) — (SL, o, pop(x)) minates
loop.

Rule 73 break out-
side loop
errors.

X =¢€
(break :: SL,o,x) — (ERROR, 0, X)

Rule 74 continue
propa-
X#€Ns#LE gates to
(continue :: s :: SL,o,x) — (continue :: SL,o0,X) LE inside
loop.

Rule 75 continue
at LE
X#€ N s=LE sl = top(x) pops
(continue :: s :: SL,o,x) — (sl :: SL,o,pop(x)) x  and
restarts
loop.

Rule 76 continue

outside
X=¢ loop

(continue :: SL,o,x) — (ERROR, 0, X) errors.

Rule 77 LE pops
X and
s = top(x) restarts

(LE :: SL,o,x) = (s :: SL,o,pop(x)) loop.

Rule 78 Halt
statement
termi-
nates
program
execu-
tion.

(halt :: SL,o0,x) — (halt,o,x)
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B IMP PROGRAM EXAMPLE

In this section we describe the collection of IMP programs for: (1) the Human-Written, (2) the
LLM-Translated, (3) and the Fuzzer-Generated datasets and provide examples.

B.1 HUMAN-WRITTEN DATASET

1 int sumEven (int
2

3 int sum = 0;
4 for (int i =
5 {

6 if (1 % 2
7 {

8 sum +=
9 }

10 }

11 return sum;

12}

1, int r)

1; 1 <= r; i++)

(a) The C++ solution to the problem “MBCPP/962” in
BabelCode MBPP and one public test case. The public
test we use is sumEven (3, 8)==18.

1 int sum;

2 int i;

3 int 1;

4 int r;

5 1= 3;

6 r = 8;

7 i=1;

8 while(i <= r)

9

10 if((i & 2) == 0)
11 {

12 sum = (sum + 1);
13 }

14 else

15 {

16

17 }i

18 i=(1i+ 1);

19 };

(b) The IMP program (mbpp_962 . imp in the
Human-Written dataset) re-written from the
C++ solution.

Figure 4: An example of re-writing a C++ program into an IMP program in the Human-Written dataset.

In Figure 4, we show an example C++ solution to a problem from the BabelCode MBPP benchmark
(Figure 4a) and its corresponding IMP program re-written by us (Figure 4b). To convert the C++
program into an IMP program, we remove the function definitions (e.g.,, sumEven), while keeping
the body of the function. Unsupported syntactic constructs are either re-written (e.g.,, replacing the
for loop with a while loop) or removed (e.g.,, removing the return statement). One public test
case is adopted as the program input and its output is used to verify correctness. In this example, 1 is
assigned to 3 and r is assigned to 8, the test oracle 18 is used to verify the final-state of sum after

program execution.

The code-complexity profile of the IMP program in Figure 4b is: control-flow complexity (2cc
=3, Q¢ =1, QLoop =1, Qe =1, QLoop = 1), data-flow complexity Qpp =12, QAssign = 12), and
program-size complexity (Qpoc = 19, Qvor = 294, Qvoe = 23, Qrrace = 29).
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B.2 FUZZER-GENERATED DATASET

The Fuzzer-Generated dataset is constructed us- Table 11: Settings for the fuzzer knobs used to generate
ing a semantic aware grammar based fuzzer with  IMP programs for the Fuzzer-Generated dataset.
knobs for: (1) the generation probabilities of
different statements, (2) the maximum nesting Knob Value
depth of the program (nested loops and condi- Structural limits
tionals), (3) the maximum and the minimum — X
Minimum number of statements per block

number of statements to generate per blOCk, (4) Maximum number of statements per block
the maximum number of terms and variable = Minimum block depth
terms in arithmetic expressions, (5) the maxi-  aximumblock depth

N . Minimum number of variables 5
mum number of terms in boolean expressions Maximum number of variables 10
(relational and logical), and (6) the maximum
and the minimum number of variable declara-

W W =

—_
(=}

Statement generation probabilities

. . . Assignment 0.4
tions in a program. We use the settings as shown While 03
in Table 11. If 0.2

Break 0.09
The fuzzer starts by randomly sampling an inte- E{OFU“W 8882
alt 003

ger from the range defined by the minimum and
maximum number of variable declarations. This
integer specifies the number of variables to be ~ Maximum number of terms in arithmetic expr 6
declared and used for the IMP program being x:xzﬁz EEEE: gg :::z:’ii . zifr’mem expr 3
generated. The fuzzer next samples alphabets

from the set {a-z} and { A-Z} until the required number of unique alphabets to use as variables is
obtained. Declaration statments are then generated to declare these variables. Following this, one
assignment statement is generated per declared variable to assign it with a randomly generated arith-
metic expression. The arithmetic expression itself is generated using the pool of declared variables
and integer constants (sampled from the set {0-9}).

Expression limits

The fuzzer next generates statements from the set { Assignment, While, If, Break, Continue, Halt}
in accordance with the statement probabilities given in Table 11. No more than three statements
are generated per block. These probabilities are used until the generation block depth reaches the
specified minimum block depth (5). Beyond this, the statement probabilities are cosine-tapered to
decrease the probabilities of generating while and i f—else statements. For generation processes
where the block depth reaches the maximum specified block depth (10), the probabilities of further
generating while and i f-else is reduced to zero.

To ensure high probability in termination of loops, the fuzzer generates one new variable (prefixed
with ble) per loop. A monotone update type (incrementing or decrementing) is chosen for this
variable each with a 50% probability of being chosen. The bounds, initial (before iteration) and
expected final (after loop termination) values are then chosen from the range [-20,20] and the size
of the update per iteration from the range [1 step, (final / 3) step]. The variable monotone update
statement is inserted towards the end of the loop body and the bound is conjoined with the loop
predicate. This prevents infinite loops. The declaration and assignment statements for these new
generated variables is inserted right after the assignment statements for the intially chosen variables.

The fuzzer can be used to generate extremely complex IMP programs (as measured by the code-
complexity metrics introduced earlier) with high probability of normal program termination. Figure 5
shows an example IMP program (fuzz_100.imp) from the Fuzzer-Generated dataset that was
generated using our fuzzer. Its code-complexity metric profile is: control-flow complexity (Qcc =
62, Qi =5, Qroop = 6, ir = 3, Qrogp = 5), data-flow complexity (2pp = 2603, Qign = 86), and
program-size complexity (Qpo = 492, Qvor = 37140, Qyoe = 91, Orace = 249). This shows that
out of the maximum loop nesting depth six (£20p) present in the program, the execution reaches a
maximum loop nesting depth of five (£ op) implying that the execution reached a loop contining
four outer loops.

This is one of the programs from the Fuzzer-Generated dataset that the GEMINI-2.5-PRO model
succesfully predicted the final-state of in the final-state prediction task.

1 int L;
2 int p;
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3 int y;

4 int d;

5 int K;

6 int h;

7 int T;

8 int Y;

9 int ble0;
10 int blel;
11 int ble2;
12 int ble3;
13  int ble4;
14 int ble5;
15 int bleb;
16 int ble7;
17 int bles;
18 int ble9;
19 int blelO;
20 int blell;
21 int blel2;
22 int blel3;
23 int bleld;
24 int blel5;
25 int blels;
26 int blel7;
27 int blel$;
28 int blel9;
29 int ble20;
30 int ble2l;
31 int ble22;
32 int ble23;
33 int ble24;
34 int ble25;
35 int ble26;
36 int ble27;
37 int ble28;
38 int ble29;
39 int ble30;
40 int ble3l;
41  int ble32;
42 int ble33;
43  int ble34;
44  int ble35;
45 int ble36;
46 int ble37;

48 L (((=y) / 4) - p);

49 T = ((((3+K) +1) -3) + (8/ 8));
50 L= ((((((=p) 1) 7 = (-=1)) - (-9) - 3);
51 K= (((((d * (=5)) +y) + (-5)) (= K)) -
52 Y = (((9 + 3) - T) + 5);

53 K= ((7/ 7) = L);

54 y = ((((L+1L) +8) +3) +1);

55 p = ((((-8) x 9) - ((-6) % (-8))) -7T);
56 ble0 = (- 1);

57 blel (- 1);

58 Dble2 = (- 1);

59 ble3 = (- 1);

60 bled = (- 1);

61 ble5 = (- 1);

62 ble6 = (- 1);

63 ble7 = (- 1);

64 ble8 = (- 1);

65 ble9 (- 1);

66 bleld = (- 1);

67 blell = (- 1);

68 blel2 = (- 1);

69 blel3 = (- 1);

70 bleld = (- 1);

71 blel5 = (- 1);

72  blelé = (- 1);

73 blel7 = (- 1);

74  blel8 = (- 1);

75 blel9 = (- 1);

76  ble20 = (- 1);

77 ble2l = (- 1);

78 ble22 = (- 1);

79 ble23 = (- 1);

80 Dble2d = (- 1);

81 Dble25 = (- 1);

82 Dble26 = (- 1);

83 Dble27 = (- 1);
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d))) I (T (=3))))
98 {
99 while ((((y +

<= 5))

(= K)) <= (((= 1) +p) + 1)) Il (=1L)) -9 >

100 {
h =
blel =

((h - (4 %
(blel +
103 i

while (((((h - p)
< 20))

+ 2) >

105 {

while (((! (((0 - d)
< 15))

107 {

T = (((((L + (=Y)) - 0)

ble3 = (ble3 + 5);

110 bi

Y= (1+ (5/ 6));

while (((!((d - L)
< 9))

<= ((L = p) +1L))) |l >= ((9 - d) -
113 {

iE((L(((=T) -
115 {

116 T = ((9 -Y) +
while (((((- L) + y) <

))) && (ble5 <

+ p) >

I
=) -
~

118 {
119 K= ((9+9) +
ble5 =

(5 % 9));
(ble5 + 3);
(((5 =5) = 1) = (3 % 1));

126 p= ((7/
break;

(= 3)) + 8);
128 bi
if(((d - L) <
130 {

((5 % 9) % 1)) & (! ((T » K) <= (Y - K))))

while ((((T / 4) >
))) &&

((-Y) - && (= T))) <

(ble6 < 13))

T)) (((=4) = ((=y) =
132 {
133 Y o= (7 +

(Y / 9));
ble6 = ;

(ble6 + 1);
135 i
if((((d + h) - 2)
137 {

<= ((L = T) +8)) & (((7 + (= h)) - h) ==

while (((! ((((- y) - p) <= &&

ble7 > (- 12)))

+7) (d + d))) (Y +y) > (¥
139 {

break;
ble7 =

(ble7 + (= 3));

((=0) / 4)) + 2);

while ((((T /
(= 20)))

(- 6)) < + h)))

155 {

25

(T - p)))

(= h))))

(K +

+ h)))

(ble0 < 0))

&& (blel

&& (ble2

&& (bled

(p % Y)))

(37 3)

(L + T)))

&& (

&& (ble8 >
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156 while ((((T - d) > (T + p)) && (((h = 9) + p) == ((p + 1) - p))) && (ble9 >

157 {
6)) +0) + (4 7/ 8));

) + 7))+ (9 / 2)) - T);
1le9 + (- 4));

7
=)
o =T

161 }i

162 ble8 = (ble8 + (- 1));
163 }i

164 bled = (bled + 3);

165 };

166 ble2 = (ble2 + 6);

167 };

168 ble0 = (ble0 + 2);

173 p= (L -y) - 4) +53);
174 while((((p + p) <= (d + h)) && (((L — L) = (= 1)) <= (((=h) +7) —p))) && (bleld <=
20))
175 {
176 while((((y / 7) >= ((5 = p) + (= Y))) || ((Y + (= Y)) >= ((4 » d) + (- Y)))) && (
blell >= (- 9)))
177 {
178 if(((d - y) >= (h - K)) && ((T » (- T)) != ((-=T) + (- Y))))
179 {
180 break;
181 break;
182 AE((((=Y) % 9) > (p+vy)) & (L(((3%6) +vy) != (L +K))))
183 {
184 break;
185 K= (6 - ((-6) % 5));
186 Af((((K+ 6) + L) <= ((4 /8 +Y)) || ((T*T) > (y +K)))
187 {
188 L= (d+ (3 *6));
189 while (((((T = L) + 2) > (Y + T)) || (!((K + h) <= ((d + vy) - 5)))) && (
blel2 < 11))
190 {
191 y = ((Y xh) = ((3 x8) /8));
192 break;
193 while (((((3 + d) - y) != (p / (- 6))) && (((- T) - h) >= (L / 1))) &&
(blel3 >= (- 17)))
194 {

199 bi
200 blel2 = (blel2 + 3);

}
202 P = ((((Kx (=6)) = 3) —2) +7);

207 if((((d+ (= d)) +0) == (((=d) /7 4) =K) [l ((¥Yry > ((1%8 + (-

209 vy = (((5 xp) +T) -d);
210 p=((0%0) - (((0/3) %1)/9);

212 else

213 {

214 while ((((K - (d * 2)) !'= (p / 2)) |l (((L/ 9 —-y) < (Y -T))) & (
bleld < 20))

215 {

216 y = ((p - (0% (- h))) + L);

217 P = (((((-4) -6 —y) +1) +1T);

218 break;

219 bleld = (bleld + 1);

221 h = ((T - 4) + 9);
222 T = (((((—5) =-3) +2) —-1) + 8);

}
224 y = ((((2+ (97 9) +4) - (-0)) +1);

227 else
228 {
229 break;
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bi

231 }

else

233 {

while ((((((- h) +
blel5 < 9))

4) (((6 = p) + d) <
235 {
236 L =
237 K= (
da = (
blel5
bi
while (((! ((((= 1)
h)))) &&

* P) (CC(=4) / (=
(blel6 >

242 {

T = (((((0 =T
break;
break;
blel7 =

+ 0) + 6) +2) - 2);

(blel7 + (- 3));
}i
blel6 = (blel6 + (- 2));
bi

while ((((Y +

&& (blel8 >=

(T * 3))
(= 12)))
255 {

d= (((6% (- 6)) -
if((((5 * d) + h) >

259 K =

((d + p) >=

275 K =
276 h =

(6 + ((=0) % 2));
(((8 + T) +8) - 2);

278 }
else
280 {

if(((((= 3) + h) —p) < ((9 +d) + L)) &&

if(((h / 6) < ((y —d) —4)) [l ((h+ 1) != (v -

((=8) + ((=5) % 7));

(= 6));

((6 + L) - p))
&& (blel9 < 12))

break;
294 T = (Y +
blel9 =

(T / 5));
(blel9 + 1);
i
Y = ((L - (5% 8)) +
298 }
else
300 {
'= (((= L)
<= 18))

while ((((p = d) + T) + 9)) &&
) && (ble20

302 {

if(((d -

)))

(3 L)) < ((p+d -6)) Il ((T-d

27

((8 + d) +

>=

((K + d) >

(M (8 + d)

(T / (=2))))

5)) + d) <=

&&

(= K))))

((y + 1)

(d % y)))

(T / 3))))

- y) <

<= ((T %

&&

(y +

(blel7 >

- h)))

(

(-

(-
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304 {

305 break;

306 }

307 else

308 {

309 break;

310 h = ((((5+9) —1) - (4/3)) - 3);
311 L= (((p+ (0% 8)) +0) + 8);
312 };

313 ble20 = (ble20 + 5);

314 Vi

315 }i

316 };

317 blel8 = (blel8 + (- 3));

318 bi

319 bi

320 iE(((Y » (= K)) == (T - h)) || (((L % 6) - (-K)) > ((K/ (-2)) / 6)))

321 {

322 h= ((((4%6) + (6%1

323 while ((((K + y) == ((
ble2l >= (- 8)))

+3) + (= 1))

324 {
325 AE((N(((4 % 6) % 6) > (p/ 8))) & (((2 +y) - K) > ((1 +y)

327 T = ((((=L) »1) = (5 (=8))) +6);

(98]
W
=
o
I
>
I
<
4
=
+

5) + T) + 5);

333 AE(((Y » p) <= ((4 %5 2) +T)) && ((d + L) >= ((y - (= 1)) + h)))

339 d= ((((L* (=5)) -T) - (-L) - (2/ 8));
340 while (((((K + (= K)) + 8) != (d + h)) |
(ble22 > (- 20)))

341 {

342 while ((((y % 3) >= ((6 - (- Y)) + T)) && ((y + (- K)) >=
))) && (ble23 < 18))

343 {

344 K= (((4% (-9) (= K)) +vy);

345 h = (27 - (7%7));

346 break;

347 ble23 = (ble23 + 1);

348 }yi

349 y = (((T - 8) + ((9

350 ble22 = (ble22 + (-

351 };

352 bi

353 y= (T +2) - ((((—y) /9 %56/ (-9));

354 ble2l = (ble2l + (- 3));

+

5 3) %5 1)) + (= 8));
2))i

}i
356 y = ((d-4) - 7);
357 }
358 else
359 {
360 while ((((y *» K) != (L + (- Y))) ||
4)))

(((3/2) —p) > (K/ 4))) &&

361 {

362 while ((((d + Y) < (h = L)) || (((Y + (- h)) + 7) >= (T - d)))
363 {

364 while ((((K — T) <= (T - (- Y))) ||

365 {

366 break;

367 ble26 = (ble26 + (- 2));

368 }i

369 ble25 = (ble25 + 2);

370 Vi

371 d= (((((-~= L) —h) + K) + (3 x2)) +7);

372 while (((! (((T = L) + (= 5)) >= ((2 » (= K)) + T))) I
) <= (y / 4))) && (ble27 > (- 19)))

373 {

374 while ((((8 + (L % y)) >= (d / 8)) ||

) && (ble28 > (- 9)))
375 {
376 break;

28

((Y » (= K)) < (T -

((y +d) >= ((p % 9) » T)))

((y / 3) +T) < ((7 = h)

- (= L)) && ((Y / 9) != (((=p) x h) +7))) && (

(= K)))) &&

((K + 8) +p

(ble24 >= (-

(ble25 <=

&& (ble26

(((8 + (= T)) - (- v)
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while ((((Y + (Y » (= 5))) >= ((p * (= h)) - 4)) & ((p % 3) > (Y - h)
)) && (ble29 >= (- 10)))
{
break;
ble29 = (ble29 + (- 2));
bi
ble28 = (ble28 + (- 1));
bi

K= (((((p+d +0)+ (=9) -0 +9);
if((((h » 2) +T) == (y -h)) |l (y $7) < (L+p))
{
while ((((y = (Y % 5)) == ((L » (= L)) +0)) [l (((=7) + (p*xT)) > (

L/ 5))) & (ble30 >= (- 2))

h = (3 + (=d)) - ((=T) » Y));
T (((((=6) » L) —y) +7) +6);
ble30 = (ble30 + (- 2));

Y = (((3 +7) +3) - 9);
T=(3+1L - (y% (=6)) = (-h)));
h = ((h +xT) - (7/ 4));
}
else
{
Y = ((((0 = (= 8)) +5) +6) = (5% 9));
T=((Y+ (=5)) + (-6));

Y= (((3-K —-Y) + (0/ 1));
while ((((L - h) < (y + v)) && ((p * y) == (((-~ h) = K) % (- 2)))) &&
(ble3l <= 17)
{
K= (({y »y) —d) +7);
while ((((L / 7) '= ((=p) / 6)) && (! (((4 —p) = T) == ((5 » K) /
(= 2))))) && (ble32 > (- 6))
{

L= ((((=K + (=4)) —p) + (=d));
d= (y +9 - 1);
h = ((((K/ 4) =8) - (=4)) + ((-6) x 5));

ble32 = (ble32 + (- 2));
bi
K= (((6+6) -6) + (p/ 2);
ble3l = (ble3l + 6);
bi
while ((((8 — (h * (- p))) != (((-Y) / 2) +d)) & (((h - T) - (- 6)
> (y = d))) && (ble33 <= 0)
{
T = (((((=2) +7) + (=9) +0) + 0);
break;
ble33 = (ble33 + 2);
}i
}i
ble27 = (ble27 + (- 5));
}i
ble24 = (ble24 + (- 2));
}i
}i

while (((((L » 2) = T) != (d + L)) [l (((2 + (= T)) —d) == ((6 -~ h) - 1L))) && (
ble3d > (- 7)))
{
d= ((K YY) + L);
L= ((4%8)%4);
ble34 = (ble3d4 + (- 1));

T = ((((=3) » (=K) +4) - (=7));
h = (((((7 +4) +4) - (=9) +p) - 2);
blel0 = (blel0 + 5);
bi
AE((((Y » (= 5)) + L) > (((-9) -Y) =T)) [l (((L/ 8 %4) == (K- K))
{
while (((! ((h + T) != (K + ((=Y) » 7)))) ||l (I(((L / 9) - T) < ((Y +T) + (- 8)))))

&& (ble35 <= (- 3)))
{
Y = ((0/ 7)) - 2);
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450 Y = ((T + 2) + 8);

451 ble35 = (ble35 + 2);

452 };

453 while (((((3 + K) + L) != ((3 - h) +d)) && ((d + (- L)) > ((K - 8) - y))) & (ble36
< (= 1))

454 {

455 if(((K+ T) > (d+K)) Il ((y —K == ((L+1) +p)))

456 {

457 L= (((8 % p) *p) » L);

461 IE(CC((((=K) » T) +8) != (L +K))) [l (((6%1) —-p) = (y+1) -K)))

462 {

463 y = ((((Y = 0) +5) —h) + (- 1L));

464 break;

465 while ((((((= Y) - h) + 9) <= (Y x p)) || ((((=6) - K) +Y) <= (Y - vy))) &&

(ble37 < 20))

466 {

467 K= ((p%7) + ((d/ 6) (-3
Y) == ((=d) + T)) || ((h % h) > (6 + (L » Y)))) &&
)))

468 while ((((y + (K * 7
(ble38 > (- 18

3 - (L% 9));
(p +Y) + L);
= (ble38 + (- 2));

474 K= ((p-Y) - (((=T) =1) / 3));
475 ble37 = (ble37 + 6);

481 y = ((

484 h = (((L+ (2*6)) —1) + (- 3));
485 ble36 = (ble36 + 2);

490 Y= (((6-p) - (4 (-Y))) - L);

492 3;

Figure 5: An example IMP program (fuzz_100.imp) from the Fuzzer-Generated dataset. Its code-
complexity metric profile is: control-flow complexity (Qcc = 62, Qi = 5, Qroop = 6, s = 3, Qroop = 9),

data-flow complexity (2pp = 2603, QAssign = 86), and program-size complexity (roc = 492, Qvor = 37140, Qvoc
=91, Qrrace = 249).
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C CODE-COMPLEXITY DISTRIBUTIONS

The distributions of the code-complexity metrics used to characterize the control-flow, data-flow, and
the program size complexity are given in Figure 6. We mark the median and the extremas for each
distribution. We see that the median €jr and €0y oop is similar for the Human-Written and the LLM-
Translated datasets, whereas for every other metric, the LLM-Translated has slightly higher median
values than Human-Written and thus more complex programs. The Fuzzer-Generated dataset on the
other hand has median values significantly higher for every metric except QTmce and O Assign» than
the other two datasets. This implies that programs in the Fuzzer-Generated and the LLM-Translated
datasets run for roughly the same number of execution steps (measured as per the SOS semantics)
but the programs in the former are significantly more complex than those in the latter.

[ | Human-Written LLM-Translated Fuzzer-Generated
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Figure 6: Distributions of the code-complexity metrics extended cyclomatic complexity (£2cc), maximum nested
if-else (€2ir) and nested loop (2Loop) depths , maximum taken nested if-else (Cu), and taken nested loop (QLoop)
depths, the program data-flow complexity metrics DepDegree (£2pp) and the total number of assignments to
variables in execution traces (QAssign), and finally the program size complexity metrics, lines of code (Qpoc),
Halstead metrics Volume (2vo1) and Vocabulary($2vec), and execution trace length (Qrrace)-

D EXPERIMENTS DETAILS

D.1 PARAMETERS
We use a temperature of 0.6 for DeepSeek distilled models and QwWQ 32B for improved reasoning.
We use the default temperature settings for 03-MINI,GPT-5-MINI, and GEMINI-2.5-PRO by not

specifying a specific temperature. For other non-reasoning models, we set the temperature to zero.
All models are evaluated under the zero-shot setting.

D.2 COMPUTE RESOURCES

The experiments on open-weight models with fewer than 70 billion parameters are conducted on
a single compute node equipped with one NVIDIA H200 GPU (96 GB memory), an NVIDIA
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Grace CPU @ 3.1 GHz with 72 cores, and 116 GB LPDDRS memory. For experiments involving
70B-parameter models, we use four compute nodes.

D.3 PROMPTS

D.3.1 Prompt for PredState task.

No-semantics :
You are an interpreter for my language called {language}.

Here is the {language} program
{program}

SOS:

You are an interpreter for a language called {language}. I will
describe the syntax for {language} in EBNF and its semantics using
small-step operational semantics. You will use this to execute a
{language} program. You will only use the rules described in the
semantics I provide. Assume all the rules in the semantics I give are
correct. A program has finished execution when one of the terminal
configurations (€0,x), ({HALT},0,Xx), ({ERROR},0,X) is reached.

Here is the syntax of {language} in EBNF
{syntax}

Here is the small-step operational semantics of {language}
{semantics}

Here is the {language} program
{program}

K-semantics :

You are an interpreter for a language called {language}. I will
describe the syntax and the semantics of the language using the
K-framework. You will use this to execute a {language} program. You
will only use the rules described in the semantics I provide. Assume
all the rules in the semantics I give are correct.

Here is the K-framework formalization of {language}
{semantics}

Here is the {language} program

{program}

## TASK: predict the values of all the declared variables after
executing the above program.
— If you think the program will never terminate, answer with the
special word ’##timeout##’ :

<answer>##timeout##</answer>

— If you believe the program has an error or has undefined behavior,
answer with the special word ’##error##’ :

<answer>ff#error##</answer>

— Otherwise, provide the predicted values of all the declared variables
in the following format:

<answer>[Your answer]</answer>

Here is one example:

32



Under review as a conference paper at ICLR 2025

** Program xx*

int a;

int b;

int ans;

int c;

a {ASSIGN_OP} 10;

b {ASSIGN_OP} 23;

c {ASSIGN_OP} 12;

ans {ASSIGN_OP} a {ADD_OP} b;

The final expected output is:
<answer>

<a>10</a>

<b>23</b>

<c>12</c>

<ans>33</ans>
</answer>

Non-CoT: Only write the answer. You *x*MUSTx* wrap your prediction with
‘<ans>’ tags.

CoT: Explain your reasoning step-by-step x*beforex* answering. Wrap
your reasoning in ‘<reason>’ tags. Note that you x*MUST*x wrap your
reasoning steps with ‘<reason>’ tags and the prediction with ‘<ans>’
tags.

D.3.2 Prompt for PredRule task.

SOS:

You are an interpreter for a language called {language}. I will
describe the syntax for {language} in EBNF and its semantics using
small-step operational semantics. You will use this to execute a

{language} program. You will only use the rules described in the
semantics I provide. Assume all the rules in the semantics I give are
correct. A program has finished execution when one of the terminal
configurations (€0,x), ({HALT},0,X), ({ERROR},0,X) is reached.

Here is the syntax of {language} in EBNF
{syntax}

Here is the small-step operational semantics of {language}
{semantics}

Here is the {language} program
{program}

## TASK:
For each question below, you’ll be given:
1. A program

2. The program state (o) (variable values) before executing the
program
3. The control stack (x) before executing the program

Assume that all necessary variables have been declared and have the
values as indicated in the provided program state.

You must:

— Correctly identify and apply the small-step operational semantic
rules required to evaluate the program to completion

— List them in the correct order of application

A program is executed completely when its evaluation reaches one of
the terminal configurations (e0,x), ({HALT},0,X), ({ERROR},0,X).
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Here is one example:
**% Program: xx*
{WHILE} (n {LTEQ_OP} 0)
{{

{HALT};
Phi

*xProgram state (o) before execution:*x*
{{"'n’": 100, "sum’: O0}}

*xControl stack(x) before execution:xx*
€

This is the sequence of steps:

1. First, we transform the {WHILE} into {LOOP} using x*Rule 67xx.

2. Reduce the loop predicate using *xRule 68x*x.

3. The loop predicate is a {LTEQ_OP} operator which triggers =xxRule
32xx to first reduce the left-hand side 'n’ to a literal using x*xRule

Ixx.

4. The right-hand side is already a literal and since 100’ is not
less-than or equal to "0’. We use **xRule 35x* to evaluate this
operation to ’'false’.

5. Since the loop predicate is ’false’, we use **Rule 69%% to
terminate the loop.

6. Since there are no more statements left, we have reached the

terminal configuration (€,0,X) and the program evaluation terminates.

Therefore, the final answer is:
<ans>
<answer id="1">
<rule>67</rule>
<rule>68</rule>
<rule>32</rule>
<rule>1</rule>
<rule>35</rule>
<rule>69</rule>
</answer>
</ans>

## Questions:
{questions}

## Response Format:
Respond with an XML block structured as follows:

<ans>
<answer id="1">
<rule>1</rule>
<rule>2</rule>
</answer>
<answer id="2">
<rule>1</rule>
<rule>2</rule>
</answer>
</ans>
### Notes:
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— Each <answer id="N"> element corresponds to the N-th question.
— Inside each <answer> block, list each semantic rule in the correct
order using <rule> tags.

## Important Notes:

— The xxorderxx of rules matters and should reflect the evaluation
sequence.

- A single rule may be needed to be applied multiple times during
evaluation.

— You must include x+*allx*x semantic rules required for complete
execution.

— Base your analysis solely on the provided semantics, not on general
programming knowledge.

K-semantics :

You are an interpreter for a language called {language}. I will
describe the syntax and the semantics of the language using the
K-framework. You will use this to execute a {language} program. You
will only use the rules described in the semantics I provide. Assume
all the rules in the semantics I give are correct.

Here is the K-framework formalization of {language}
{semantics}

Here is the {language} program
{program}

## TASK:
For each question below, you’ll be given:
1. A program

2. The program state (o) (variable values) before executing the
program
3. The control stack (x) before executing the program

Assume that all necessary variables have been declared and have the
values as
indicated in the provided program state.

You must:

— Correctly identify and apply the K-semantic rules required to
evaluate the program to completion

— List them in the correct order of application

Here is one example:
**% Program: *x*
{WHILE} (n {LTEQ_OP} 0)
{{

{HALT};
bYi

**Program state (o) before execution:*x
{{'n": 100, "sum’: O0}}

*xControl stack (x) before execution:xx*
€

This is the sequence of steps:

1. First, we transform the ’"{WHILE}’ into ’"{WHILE}1l’ while also
inserting a ’'breakMarker’ after ’{WHILE}1l’ using **Rule 24x*x.

2. Next we transform the ' {WHILE}1l’ into an ' {IF}-{ELSE}’ with the
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"{WHILE}1l’ as the body of the ’{IF}’ using **Rule 25xx.

3. We then reduce the loop predicate to a boolean by first reducing
left-hand-side which is a variable using **Rule 1lx* and then applying
the ' {LTEQ_OP}’ using x*Rule 13x.

4. Since the loop predicate evaluates to ’false’, we apply the ’'{IF}’
not taken rule x*Rule 23xx to take the ’{ELSE}’ branch which is empty.
5. Finally, we evaluate the ’'breakMarker’ statement using xxRule 27xx
to conclude the program execution.

Therefore, the final answer is:
<ans>
<answer id="1">
<rule>24</rule>
<rule>25</rule>
<rule>1</rule>
<rule>13</rule>
<rule>23</rule>
<rule>27</rule>
</answer>
</ans>

## Questions:
{questions}

## Response Format:
Respond with an XML block structured as follows:

<ans>
<answer id="1">
<rule>1</rule>
<rule>2</rule>
</answer>
<answer id="2">
<rule>1</rule>
<rule>2</rule>
</answer>
</ans>
### Notes:

- Each ’<answer id="N">’ element corresponds to the N-th question.
— Inside each ’'<answer>’ block, list each semantic rule in the correct
order using ’<rule>’ tags.

## Important Notes:

— The xxorderxx of rules matters and should reflect the evaluation
sequence.

— Only rules that have names indicated in ’[]’ adjacent to it must be
reported in the answer.

- A single rule may be needed to be applied multiple times during
evaluation.

— You must include x*allx*x semantic rules required for complete
execution.

- Base your analysis solely on the provided semantics, not on general
programming knowledge.

Non-CoT: Only output the ’‘<ans>’ XML block. Do not include any other
content.
CoT: Explain your reasoning step-by-step *x*beforex* answering. Wrap
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your reasoning in ’<reason>’ tags.

D.3.3 Prompt for PredTrace task.

SOS:

You are an interpreter for a language called {language}. I will
describe the syntax for {language} in EBNF and its semantics using
small-step operational semantics. You will use this to execute a
{language} program. You will only use the rules described in the
semantics I provide. Assume all the rules in the semantics I give are
correct. A program has finished execution when one of the terminal
configurations (e 0,x), ({HALT},0,Xx), ({ERROR},0,X) is reached.

Here is the syntax of {language} in EBNF
{syntax}

Here is the small-step operational semantics of {language}
{semantics}

Here is the {language} program
{program}

## TASK:

Given a program and its semantics, predict the execution trace. Your
goal is to simulate execution, step by step of executing the program
using the given small-step operational semantics rules. Do not skip
any rules that is needed to evaluate the program. You will output your
answer in the following format.

## Response Format:
Respond with an XML block structured as follows:

<answer>
<step>
<rule>1</rule>
<program_state>
<n>0</n>
<sum>0</sum>
</program_state>
</step>
<step>
<rule>2</rule>
<program_state>
<n>100</n>
<sum>0</sum>
</program_state>
</step>

</answer>
## Here is an example:

Here is the {language} program:
int 1i;

int 3j;

i {ASSIGN_OP} O;

{WHILE} (i {LT_OP} 2)

{{ {HALT};

bYi

## Expected output:
<answer>
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<step>
<rule>3</rule>
<program_state>
<i>0</i>
</program_state>
</step
<step>
<rule>3</rule>
<program_state>
<i>0</i>
<j>0</73>
</program_state>
</step>
<step>
<rule>5</rule>
<program_state>
<i>0</1i>
<j>0</ 3>
</program_state>
</step>
<step>
<rule>67</rule>
<program_state>
<i>0</i>
<j>0</73>
</program_state>
</step>
<step>
<rule>68</rule>
<program_state>
<i>0</i>
<3j>0</3>
</program_state>
</step>
<step>
<rule>28</rule>
<program_state>
<i>0</i>
<3j>0</3>
</program_state>
</step>
<step>
<rule>1</rule>
<program_state>
<i>0</i>
<3j>0</3>
</program_state>
</step>
<step>
<rule>30</rule>
<program_state>
<i>0</i>
<3j>0</3>
</program_state>
</step>
<step>
<rule>70</rule>
<program_state>
<i>0</i>
<j>0</73>
</program_state>
</step>
<step>
<rule>78</rule>
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<program_state>
<i>0</i>
<3j>0</3>
</program_state>
</step>
</answer>

## Notes:

- Each ’<step>’ must correspond to **exactly one small-step operational
semantics rulexx that is needed to evaluate a statement in the given
program.

— The ’'<rule>’ must indicate a rule used in the evaluation of a
statement.

— The ’<program_state>’ must represent the **entire program state
immediately afterxx the execution of that rule.

— The program state must list x+xall variables currently in scopexx,
using the variable names as XML tags and their current values as tag
content.

— Include variables even if they did not change.

— Do not skip any step or merge multiple steps into one.

— Do not skip any rules (including those used to reduce expressions and
variables) that are needed to evaluate the program.

— The program execution is complete when on of the terminal
configurations (e 0,x), ({HALT},0,Xx), ({ERROR},0,Xx) is reached

K-semantics :

You are an interpreter for a language called {language}. I will
describe the syntax and the semantics of the language using the
K-framework. You will use this to execute a {language} program. You
will only use the rules described in the semantics I provide. Assume
all the rules in the semantics I give are correct.

Here is the K-framework formalization of {language}
{semantics}

Here is the {language} program
{program}

## TASK:

Given a program and its semantics, predict the execution trace. Your
goal is to simulate execution, step by step of executing the program
using the given small-step operational semantics rules. Do not skip
any rules that is needed to evaluate the program. You will output your
answer in the following format.

## Response Format:
Respond with an XML block structured as follows:

<answer>
<step>
<rule>1</rule>
<program_state>
<n>0</n>
<sum>0</sum>
</program_state>
</step>
<step>
<rule>2</rule>
<program_state>
<n>100</n>
<sum>0</sum>
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</program_state>
</step>

</answer>
## Here is an example:

Here is the {language}
int 1i;
int j;
i {ASSIGN_OP} 0;
{WHILE} (i {LT_OP} 2)
{{

{HALT};
Fhi

## Expected output:

<answer>
<step>
<rule>36</rule>
<program_state>
<i>0</i>
</program_state>
</step>
<step>
<rule>36</rule>
<program_state>
<i>0</i>
<3j>0</3>
</program_state>
</step>
<step>
<rule>21</rule>
<program_state>
<i>0</i>
<3j>0</3>
</program_state>
</step>
<step>
<rule>24</rule>
<program_state>
<i>0</i>
<3j>0</3>
</program_state>
</step>
<step>
<rule>25</rule>
<program_state>
<i>0</i>
<j>0</73>
</program_state>
</step>
<step>
<rule>1</rule>
<program_state>
<i>0</1i>
<j>0</3>
</program_state>
</step>
<step>
<rule>12</rule>
<program_state>

program:
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<i>0</i>
<3j>0</3>
</program_state>
</step>
<step>
<rule>22</rule>
<program_state>
<i>0</i>
<j>0</73>
</program_state>
</step>
<step>
<rule>26</rule>
<program_state>
<i>0</1i>
<j>0</3>
</program_state>
</step>
</answer>

## Notes:

— Each ’<step>’ must correspond to *xxexactly one K-semantics re-write
rulexx that is needed to evaluate a statement in the given program.
— Only rules that have names indicated in ’[]’ adjacent to it must be
reported in the answer.

— The ’"<rule>’ must indicate a rule used in the evaluation of a
statement.

— The ’<program_state>’ must represent the **entire program state
immediately after** the execution of that rule.

— The program state must list x*xall variables currently in scopexx,
using the variable names as XML tags and their current values as tag
content.

— Include variables even if they did not change.

— Do not skip any step or merge multiple steps into one.

— Do not skip any rules (including those used to reduce expressions and
variables) that are needed to evaluate the program.

Non-CoT: Only output the ‘<answer>’ XML block. Do not include
explanations, comments, or any other text.

CoT: Explain your reasoning step-by-step *xbeforexx answering. Wrap
your reasoning in ’‘<reason>’ tags. Note that you x*MUST*x wrap your
reasoning steps with ’<reason>’ tags, the prediction with ’<answer>’
tags.

D.4 KEYWORDOBF OBFUSCATION TABLE

We provide the complete list of the mapping between the keywords and operators from standard

PL semantics to the Caucasian-Albanian symbols of KeywordObf in Table 12. The keywords

and operators in the original IMP program (p) under standard semantics will be replaced with the
corresponding Caucasian-Albanian symbols to get the semantically equivalent transformed program

(P},) under KeywordObf semantics.
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Table 12: Complete list of obfuscations of operators and keywords in standard semantics to KeywordObf
semantics.

Type | Standard —  KeywordObf
Arithmetic + 3
- &L
* g
/ ¢
% N
Assignment ‘ = 2
Relational < Q
> b
<= 3
> ko
== T
1= q
Logical ! 2
&& P
[ A
Keyword break 1
if-else J -4
while 4
halt b
continue §
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E TASK EXTENDED ANALYSIS

E.1 FINAL-STATE PREDICTION

This section analyzes (1) the impact of code-complexity metrics on LLM performance in the final-
state prediction task, and (2) the average percentage of variables per program whose final states are
predicted correctly.

E.1.1 IMPACT OF CODE-COMPLEXITY METRICS

e + B + a @ Em No-Diff l

Programs Semantics  Syntax K-framework Gold

l Final-states el 0]
- Result

- &= 1 L]

Diff
Prompt LLM Predicted
Final-states

-«

(a) Workflow of the final-state prediction task. IMP programs, along with optional semantics (K-framework or
SOS) and syntax, are: (1) executed in the K-framework to obtain the gold final states of all declared variables,
and (2) used to construct a prompt for the LLMs to predict those final states. The gold and predicted states are
then compared, scored as 1 for a match and 0 otherwise, and accumulated into a result vector.

[...1...0...]
Result A
— &% — il
e o am Elastic Net Predictor
oc ——> Partial Least Squares — Regression Importance
EEE N
Programs Code-complexity Code-complexity/ ~ Dimensionality Reduction &

Calculator Predictor Matrix Handle Multicollinearity

(b) Modeling LLM performance on IMP programs. We treat each LLLM as a black box and apply Elastic
Net regression using code-complexity metrics as predictors. Partial Least Squares (PLS) is employed for
dimensionality reduction and to address multicollinearity. The magnitude and sign of the regression weights
provide insight into the potential impact of each metric on the classifier’s performance and hence to an extent the
LLM'’s performance.

Figure 7: Analyzing the impact of different code-complexity metrics on LLM performance in the final-state
prediction task.

Figure 7a illustrates the workflow of the final-state prediction task. An IMP program, together with
optional semantics (K-framework or SOS) and syntax, is used both to construct prompts for the
LLMs and to obtain gold final states by executing the program in the K-framework. The LLM’s
predicted final states are then compared with the gold states for each declared variable. A match is
recorded as 1 (pass), and a mismatch as 0 (fail).

Different LLMs naturally excel on different IMP programs. To understand why an LLM may predict
all final states correctly for one program but fail on another, we cast this task as a classification problem
as shown in Figure 7b. Each IMP program is mapped to a predictor vector that characterizes its
complexity, using the code-complexity metrics introduced earlier. Each predictor is then normalized
using z-score normalization to ensure fair contribution from all the variables. The resulting predictor
matrix, together with the LLM’s binary result vector of passes and fails, is then used to train a
classifier.

Because these complexity metrics are often highly correlated (multicollinearity), we apply Partial
Least Squares (PLS) (Wold et al., 2001) for dimensionality reduction. Unlike the unsupervised
Principal Component Analysis (PCA) (Wold et al., 1987), which identifies linear combinations
of predictors that maximize variance, PLS is supervised: it reduces dimensionality by finding
components that maximize the covariance between predictors and the response variables (the result
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Table 13: Odds ratio per interquartile range (9 (A)) for each code-complexity metric for the final-state prediction
task without semantics. ©(A) for a metric is the odds ratio for a correct final-state prediction when that metric
increases from its 25™ to its 75" percentile, holding other metrics fixed. Reported only for models with <90%
accuracy on the final-state prediction task (Table 5) to mitigate class imbalance. The largest absolute values in
each row is shown in boldface font.

Models Control-flow Data-flow Size
QCC QIf QLoop QDD QAssign QLoc QVol QVoc QTrace
Human-Written
LLAMA-3.3 70B -19 -5 -29 -17 -2 -16 =22 -25 -1
LLAMA-3.3 70B-CoT 221 -14 -28 -16 -2 -17 -19 -20 -1
QWEN2.5-INSTRUCT 14B -17 -5 -27 -16 -2 -14 -20 -25 -1
QWEN2.5-INSTRUCT 14B-CoT -25 -18 =27 -15 -3 -20 =21 -20 -2
QWEN2.5-INSTRUCT 32B -12 -11 -12 -9 -1 -12 -14 -17 -1
QWEN2.5-INSTRUCT 32B-CoT -23 -7 -33 -17 -4 -19 -21 -20 2
GPT-40-MINI -18 -7 -30 -16 -2 -13 -18 -22 -1
GPT-40-MINI-CoT -15 -2 -28 -14 -2 -11 -15 -16 -1
DEEPSEEK-QWEN 14B -13 -10 -16 -9 -2 -11 -13 -10 -1
DEEPSEEK-LLAMA 70B -14 -5 =22 -12 -3 -11 -14 -10 -2
LLM-Translated
QwQ 32B -1 -5 5 =20 -4 -13 -20 -7 -4
Fuzzer-Generated
QwQ 32B -25 -25 -25 -14 -33 -25 -24 -28 -31
GPT-5-MINI 221 -14 -19 -12 -27 -20 -20 -21 =27
GEMINI-2.5-PRO -6 -5 -8 -5 -12 -6 -6 -5 -12

vector). This makes PLS more suitable in our setting, as it better mitigates multicollinearity while
preserving predictive power.

We next apply Elastic Net regression (Zou & Hastie, 2005) on the PLS-transformed predictors and
the result vector to train a classifier. In regression, each predictor is assigned a coefficient whose
magnitude reflects its relative importance and whose sign indicates whether it contributes positively or
negatively to prediction accuracy. Elastic Net is chosen because it combines Lasso (Tibshirani, 1996)
and Ridge (Hoerl & Kennard, 1970) regularization: the Lasso component drives irrelevant coefficients
to zero, enabling feature selection, while the Ridge component shrinks correlated coefficients, thereby
mitigating multicollinearity.

We now briefly describe the Elastic Net regression process to explain how we use the regression
coefficients to determine the impact of different metrics. Let n, p, y, and X be the total number of
samples, the total number of predictors, the response vector, and the predictor matrix (we will use
boldface font to denote vectors and matrices) respectively. Then,

1
n . . p (1 = ) = —
yeR® y € {071}5 x; € RP, pz<yz 1|$z) 1+e—([30+w:,3)
Where p;(y; = 1|x;) along with p; (y; = 0|z;) = (1—p;(y; = 1|z;)) represent the class-conditional
probabilities and 3 is the vector of coefficients. The Elastic Net objective function for a Negative
Log-Likelihood loss is given as (Friedman et al., 2010):

n

arg min [% > [ —yilogp; — (1 —yi) log(1 —pi)} + Azp: [1 5 =B + a\ﬂjl} ]
i=1 j=1

Ridge and Lasso penalties

Let 3 be the coefficient vector that minimizes this objective function. Then the percentage odds
ratio (Agresti, 2013; Cornfield, 1951; Harrell, 2015) © for the inter-quartile-range A; of the jth
predictor can be computed as:

O(4;) =100 x (exp(B; A;) — 1).
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Table 14: Odds ratio per interquartile range (9 (A)) for each code-complexity metric for the final-state prediction
task with the standard IMP semantics (K-framework and SOS). ©(A) for a metric is the odds ratio for a
correct final-state prediction when that metric increases from its 25 to its 75" percentile, holding other metrics
fixed. Reported only for models with <90% accuracy on the final-state prediction task (Table 5) to mitigate class
imbalance. The largest absolute values in each row is shown in boldface font.

Models Control-flow Data-flow Size
QCC QIf QLoop QDD QAssign QLoc QVol QVoc QTrace
Human-Written
LLAMA-3.3 70B -25 -4 -35 -19 -2 -20 -25 -29 -1
LLAMA-3.3 70B-CoT =27 -10 -33 -20 -3 -24 -26 225 2
QWEN2.5-INSTRUCT 14B -24 0 -39 -22 -2 -19 -26 -28 -1
QWEN2.5-INSTRUCT 14B-CoT -25 -8 -35 -16 -3 -20 -22 =22 -2
v QWEN2.5-INSTRUCT 32B -23 -7 -35 -19 -2 -19 -25 -30 -1
QWEN2.5-INSTRUCT 32B-CoT -21 -15 =27 -12 -3 -16 -17 -16 2
GPT-40-MINI -24 -14 -32 21 -2 222 =27 -30 -1
GPT-40-MINI-CoT 21 -14 -26 -15 -3 -18 -20 -19 -2
DEEPSEEK-QWEN 14B -29 -21 =27 -20 -3 -26 =27 -23 -2
DEEPSEEK-LLAMA 70B -26 -14 -33 -14 -5 -19 -19 -15 -3
LLAMA-3.370B 24 0 -40 21 -2 -18 -26 -32 -1
LLAMA-3.3 70B-CoT 21 -11 -32 -16 -4 -18 -20 21 2
QWEN2.5-INSTRUCT 14B -19 2 -39 -19 -2 -13 221 225 -1
QWEN2.5-INSTRUCT 14B-CoT -26 -17 -25 -16 -3 =22 =22 -20 -2
8 QWEN2.5-INSTRUCT 32B -19 -9 -28 -16 -1 -17 221 =27 -1
7] QWEN2.5-INSTRUCT 32B-CoT -19 -14 =22 -12 -2 -17 -17 -18 -1
GPT-40-MINI -19 4 -37 -19 -2 -16 -23 -29 -1
GPT-40-MINI-CoT -15 -9 -14 -7 -2 -12 -12 -12 -1
DEEPSEEK-QWEN 14B -11 -4 -14 -9 -1 -10 -12 -9 -1
DEEPSEEK-LLAMA 70B -23 -12 -32 -14 -5 -18 221 -18 -3
LLM-Translated
¥  QwQ 32B -11 -6 7 =22 0 -24 -27 -8 0
8 QwQ 32B -14 -9 -6 -28 -4 -18 -20 -1 -4
%)
Fuzzer-Generated
QwQ 32B 21 =27 -25 -10 -30 -20 -20 -23 -29
¥  GPT-5-MINI -23 -20 21 -13 -31 -22 -22 -23 -30
GEMINI-2.5-PRO -14 -10 -14 -8 -21 -13 -13 -14 -21
»n QwQ32B 22 -23 -24 -11 -31 =22 221 -25 -30
8 GPT-5-MINI -22 -19 21 -11 -29 221 221 222 -28
GEMINI-2.5-PRO -7 -20 -24 -3 -25 -7 -7 -7 -26

The percentage odds ratio per inter-quartile-range ©(A) gives the percentage change in the odds of
the classifier’s positive outcome (predicting a 1) for the predictor ranging from its typical low value
(25™ percentile) to its typical high value (75™ percentile) in the dataset when all other predictors are
held constant. Thus if ©(A;) for the jM predictor is -37%, this implies that one quartile increase in
the j" predictor lowers the odds of the classifier’s positive outcome by 37%.

To quantify each metric’s effect on accuracy, we report the odds-ratio per interquartile range, ©(A),
in Tables 13-14 for all LLMs with and without semantics (K-framework, SOS). Overall patterns
are similar across settings. On the Human-Written dataset, 21,0, —the maximum executed loop-
nesting depth—is the most influential predictor: larger € o0p is associated with lower odds of a
correct final-state prediction. On the LLM-Translated dataset, ()pp (data-flow complexity) and 2y
(size) dominate without semantics; with semantics, {2pp remains dominant under SOS, whereas Qv
dominates under K-framework. On the Fuzzer-Generated split, O Assign (total variable assignments) is
the strongest predictor both without and with semantics, with one exception: for GEMINI-2.5-PRO
under SOS, Qrrace (execution-trace length) is most predictive. Collectively, these O(A) trends suggest
that increasing control-flow depth harms models on human code, whereas data-flow/size factors are
more limiting on translated or synthetic code.
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Cluster 1: Vocabulary { (d=-2.63)
DepDegree | (d=-1.63)

Cluster 2: TraceLength { (d=-2.97)
NumAssignments | (d=-2.75)

Cluster 3: Volume 1 (d=2.62)

= L CC 1 (d=2.31)
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Figure 8: Dendrogram of models for the final-state prediction task on the Human-Written dataset under no-
semantics and standard semantics (K-framework and SOS). We show the top two most distinguishable metrics
per cluster, identified using the Cohen’s d one-vs-rest test.

E.1.2 COMPLEXITY-METRIC IMPACT PATTERNS

To identify if there is a pattern to how models perform on increasing different code-complexity metrics,
we perform hierarchical clustering (Johnson, 1967) on the standardized regression coefficients (BSD)
of the metrics for the models on the Human-Written dataset. We perform this for the no-semantics and
with standard semantics (K-framework and SOS) cases. We use the cosine-distance as the pair-wise
distance metric and the Cohen’s d one-vs-rest test (Cohen, 1988) to identify the most distinguishing
metric of each cluster. Figure 8 shows the dendrogram (Sokal & Rohlf, 1962) of the clustering
process.

We see that there are three clusters. All the non-reasoning models without CoT prompting are in
Cluster 1 with the exception of QWEN2.5-INSTRUCT 32B (under no-semantics case). Cluster 1
responds more negatively to increases in the complexity metrics Vocabulary (£2v,.) and DepDegree
(Qpp) relative to the other two clusters. Cluster 2 contains only the reasoning models and the non-
reasoning models with CoT prompting. It predominantly contains models under the K-framework
semantics and responds more negatively to the dynamically computed metrics, TraceLength (Q1race)
and NumAssignments (Q Assign) Telative to the rest of the clusters. The last cluster, Cluster 3 also only
contains reasoning models and non-reasoning models with CoT prompting (QWEN2.5-INSTRUCT
32B is an exception). It predominantly contains models under SOS semantics and responds positively
to increases in the metrics, Volume ({2y,)) and cyclomatic-code complexity (£2cc) relative to the rest.

E.1.3 AVERAGE PERCENTAGE OF VARIABLES PREDICTED CORRECTLY
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Table 15: Average percentage of variables predicted correctly per program on the final-state prediction task.
Results are shown for both, SOS and K-semantics, under standard and nonstandard variants, across the Human-
Written, LLM-Translated, and Fuzzer-Generated datasets. The best performing models in every column within a
dataset are shown in boldface font. Only the top three best performing models (from different families) on the
Human-Written dataset are evaluated on the LLM-Translated and the Fuzzer-Generated datasets.

Models p K-semantics SOS
(80)  (8}erPha) (ShorDPho) (85P)  (8harDPra)  (Sko»Pro)
Human-Written

QWEN2.5-INSTRUCT 14B 70 67 37 53 67 33 50
en QWEN2.5-INSTRUCT 14B-CoT 85 83 36 75 82 35 63
g QWEN2.5-INSTRUCT 32B 77 69 32 53 71 32 55
] QWEN2.5-INSTRUCT 32B-CoT 90 89 39 78 84 33 65
2 LLAMA-3.3 70B 70 66 38 52 64 34 52
g LLAMA-3.3 70B-CoT 87 86 33 78 86 28 66
Z  GPT-40-MINI 67 64 38 47 61 38 41

GPT-40-MINI-CoT 75 89 30 62 82 31 54

DEEPSEEK-QWEN 14B 66 83 27 53 60 20 43
o  DEEPSEEK-QWEN 32B 85 97 45 85 98 36 88
; DEEPSEEK-LLAMA 70B 81 92 33 73 90 34 65
% QwQ 32B 94 99 82 91 100 38 92
2 03-MINI 95 100 59 92 100 74 98

GPT-5-MINI 100 100 86 97 100 85 99

GEMINI-2.5-PRO 93 100 98 97 100 99 100

LLM-Translated

QwQ 32B 90 96 66 86 95 45 87

GPT-5-MINI 98 98 88 96 98 81 97

GEMINI-2.5-PRO 96 98 95 96 98 96 97

Fuzzer-Generated

QwQ 32B 65 70 7 22 69 0 17

GPT-5-MINI 91 82 22 33 84 33 34

GEMINI-2.5-PRO 96 94 53 85 95 71 82
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E.2 SEMANTIC-RULE PREDICTION

In this section, we discuss: (1) how the statements sampled from IMP programs are processed for the
PredRule task, (2) identify the most mis-predicted rule (first-point-of-mismatch) categories in the

PredRule task, and (3) the rule categories the models are most likely to predict correctly.

E.2.1 PROCESSING IMP STATEMENTS FOR PREDRULE
Table 16: Processing of statements sampled from IMP programs for the PredRule task.
Type | Statement | State || PredRule Program | PredRule State
Declaration o o
int <VAR>; int <VAR>;
Assignment o g
<VAR> = <EXP>; <VAR> = <EXP>;
While o o
while (<PREDICATE>) while (<PREDICATE>)
{ {
<BODY> - <BODY>
"
’ + halt;
}i
If-else o o
if (KPREDICATE>) if (KPREDICATE>)
{ {
<BODY> — <BODY>
}
else + halt;
{ }
<BODY> else
}i {
- <BODY>
+ halt;
}i
Halt o o
halt; halt;
Break o o
while (<PREDICATE>) while (<PREDICATE>)
{ {
break; break;
}i };
Continue . o o U {ble: 0}
while (<PREDICATE>) - while (<PREDICATE>)
{
+ while (<PREDICATE> && (ble != 1))
continue; {
bi +ble = ble + 1;
continue;
}i

The objective of the PredRule task is to challenge LLMs with predicting the ordered sequence of
semantic rules that is required to evaluate an IMP statement when the program state before the
execution of that statement is given. Ideally, we want to avoid requiring the LLMs from needing
to track program state since that capability is specifically tested for in the PredTrace task and we
want to avoid any overlaps/redundancies. This is trivial for statements that are self-contained, such
as declaration, assignment, and halt. However statements such as while, if-else,
break, and cont inue require some processing to make them suitable for this task.

48



Under review as a conference paper at ICLR 2025

Table 16 shows how each type of statement is processed to make it suitable for the PredRule task.
The primary objective behind processing is to make edits to the sampled statements such that they
can be completely evaluated by requiring the least amount of program state updates. The first, second,
and third columns lists the type of the sampled statement, its minimal representative skeleton, and
the program state captured before its evaluation respectively. The fourth and the fifth columns list
the sampled statement after processing and the corresponding processed program state which can
now be used in the PredRule task. For the sampled declaration, assignment, and halt
statements, the statements and the collected program state before their executions are used as is in the
PredRule task because their evaluation does not require tracking program state nor do they require the
execution of other statements. For while statements, we replace the body with a halt statement.
This removes any possibility of needing state updates to correctly and completely evaluate the while
statement. A similar approach is used for processing the i f-else statement. For the break
statement, we capture its closest enclosing loop and remove all statements from its body up until
the break statement. A similar approach is taken for processing the cont inue statement but in
addition, we modify the loop guard such that the loop executes for exactly one iteration which allows
us to observe the semantic rules predicted by the models for evaluating the cont inue statement
with requiring just one state update thereby ensuring minimal overlap with the PredTrace task.

Since the PredRule task is scoped to a statement level of granularity, it is relatively agnostic to the
complexity of the program as a whole.

E.2.2 MoST MIs-PREDICTED RULES

—— Assignment ~—— Relational Declaration Halt —— Conditional
—— Arithmetic —— Logical —— Loop —— Id & Literal —— Break & Continue
QwQ 32B DeepSeek

QwQ 32B DeepSeek QwQ 32B DeepSeek

03-mini 03-mini 03-mini
Qwen 328 328 Qwen 328,
GPT-40-mini rgffeasfi'é GPT-d0-mini by GPT-d0-mini rgaiislefg

GPT-40-mini DeepSeek GPT-40-mini DeepSeek GPT-40-mini DeepSeek
CoT Llama 70B CoT Llama 70B CoT Llama 70B
- Llama-3.3 70B L Llama-3.3 70B . Llama-3.3 70B
GPT-5-mini CoT GPT-5-mini CoT GPT-5-mini CoT
Gemini-2.5 Gemini-2.5 Gemini-2.5
pro Llama-3.3 70B pro Llama-3.3 70B pro Llama-3.3 70B
Qwen?2.5-Inst Qwen2.5-Inst Qwen2.5-Inst Qwen2.5-Inst Qwen2.5-Inst Qwen2.5-Inst
141 32B CoT 14B 32B CoT 14B 32B CoT
Qwen2.5-Inst Qwen2.5-Inst Qwen2.5-Inst Qwen2.5-Inst Qwen2.5-Inst Qwen2.5-Inst
14B CoT 32B 14B CoT 32B 14B CoT 32B
(a) Standard semantics. (b) KeywordSwap semantics. (c) KeywordObf semantics.
03-mini QwQ 32B eepSeek 03-mini QwQ 32B DeepSeek 03-mini QwQ 32B DeepSeek
3285 K Q 3ZBS K Werb3285 K
GPT-40-mini ohene GPT-40-mini eepsee GPT-40-mini eepSee

GPT-40-mini DeepSeek GPT-40-mini DeepSeek GPT-40-mini DeepSeek
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(d) Standard semantics. (e) KeywordSwap semantics. (f) KeywordObf semantics.

Figure 9: First-point-of-mismatch rate by category for the semantic-rule prediction task with the K-framework
semantics (above) and SOS (below) on the Human-Written dataset.

To identify the semantic rules that models Table 17: Rule categorization for PredRule task.
struggle with, we compute the first-point-of-
mismatch rate for each rule, which is the fre-  cagegory K-framework  SOS
quency of the rule as the first mlsr.na.tch betwe;en Assignment Rule 21 Rules2-6
ground truth and the model prediction, relative  Arithmetic Rules 3 - 11 Rules 7 - 27
to its total number of occurrences in the Pre- Eeléﬁolnal E“ies 152;;(7) E“:es §§2§
. ogical ules - ules -
dque dataset..We group the rules into the fol-  pearation Rule 36 Rule 3
lowing categories: Assignment, Relational, Dec-  Loop Rules24-25  Rules 67 - 70 & Rule 77
laration, Halt, Conditional, Arithmetic, Logical, gﬁ‘k & Continue EE}TZ? -35 EE}Z%I - 76
Loop, Id, and Break & Continue. The mapping d Rules 1 -2 Rules 1 -2
between the semantic rules and these categories ~ Conditional Rules22-23  Rules 64 - 66

for the K-framework and SOS is shown in Ta-
ble 17. The first-point-of-mismatch rate for a category is the maximum across all the rules within this
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category. Figure 9 shows the first-point-of-mismatch rate across categories for all the models on the
Human-Written dataset for the standard and nonstandard semantics, for both their K-framework and
SOS variants.

Firstly, we observe that models in general mis-predict rules to a larger extent for SOS relative to
when provided with the K-framework semantics.

E.2.3 MoST CORRECT RULES

To identify which rules the LLMs are most likely to predict correctly in the PredRule task, we
compute the frequency with which each rule appears in the ground-truth rule list before the first-
point-of-mismatch with the predicted list. These frequencies are then grouped by rule category, and
the most-correct category rate is defined as the maximum frequency among its constituent rules.
Figure 10 highlights the categories most accurately predicted by the LLMs. We see that most models
are likely to predict rules belonging to Halt and Declaration categories correctly.

—— Assignment ~—— Relational Declaration Halt —— Conditional
—— Arithmetic —— Logical —— Loop —— Id & Literal —— Break & Continue
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Figure 10: Most correctly predicted rules by category. All rules up until the first-point-of-mismatch between
ground truth and predicted is defined as predicted correctly.

E.3 EXECUTION-TRACE PREDICTION

In this section we perform extended analysis on the execution-trace prediction task through: (1)
comparing only the final-states from the predicted and gold execution-traces, (2) identifying what per-
centages of the predicted and gold execution-traces match, and finally, (3) computing an approximate
match metric between the predicted and gold execution-traces.

E.3.1 FINAL-STATE ONLY COMPARISON

In the PredTrace task, we challenge the models with predicting the complete execution traces of
the given programs. Some of the reasons the models can perform poorly on this task are due to: 1)
predicting the program state incorrectly (computation error), 2) error in predicting the next statement
to execute (control-flow error), 3) incorrect choice of semantic rules needed to evaluate a statement,
and 4) failing to apply all the semantic rules necessary to evaluate a statement. To analyze this,
we perform a final-state only comparison where we compare only the program states from the last
step of the predicted and gold execution-traces. The results are shown in Table 18. We see that
these numbers are significantly higher than the models’ performances on the actual PredTrace task
(Table 7). Therefore, computation related errors may not be the only type of errors models make
on the PredTrace task Furthermore, we observe that most models’ generally perform worse under
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Table 18: Models’ final-state-match accuracies on the PredTrace task with SOS and K-semantics.

Models IMP-K IMP-SOS
0(8,p)  0(8},4:Prs)  0(ShosPro)  0(8P)  0(84e,Prs)  0(Shos Pro)

LLAMA-3.3 70B 19 4 10 9 2 4
e LLAMA-3.3 70B-CoT 19 3 14 14 2 12
'E  QWEN2.5-INSTRUCT 14B 15 3 6 4 2 0
% QWEN2.5-INSTRUCT 14B-CoT 22 2 12 9 2 3
2 QWEN2.5-INSTRUCT 32B 20 2 10 17 2 4
5 QWEN2.5-INSTRUCT 32B-CoT 27 3 15 27 1 8
Z  GPT-40-MINI 7 4 2 4 2 0

GPT-40-MINI-CoT 21 3 10 16 2 1

DEEPSEEK-QWEN 14B 40 8 22 33 2 13
o  DEEPSEEK-QWEN 32B 47 26 31 36 3 25
€ DEEPSEEK-LLAMA 70B 10 1 7 1 0 2
% GEMINI-2.5-PRO 85 78 81 77 73 73
g o3-MiNI 68 11 39 64 54 53

QwQ 32B 67 58 42 53 12 34

GPT-5-MINI 88 55 77 84 76 80

KeywordSwap relative to the standard and KeywordObf semantics, which is similar to the trend
observed on the PredState task.

E.3.2 TRACE PERCENTAGE COMPARISON

E.3.3 APPROXIMATE MATCH OF THE EXECUTION-TRACE
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Table 19: Percentage of execution-trace match for PredTrace for (8,p), (Sks» Pks)> a0d (Sko» Pro) With SOS.

Models <10% <20% <30% <40% <50% <60% <70% <80% <90% <100%
(s,p)
LLAMA-3.3 70B 14 5 3 1 1 1 1 1 0 0
e LLAMA-3.3 70B-CoT 14 7 3 1 0 0 0 0 0 0
= QWEN2.5-INSTRUCT 14B 12 8 4 1 0 0 0 0 0 0
% QWEN2.5-INSTRUCT 14B-CoT 17 6 3 1 1 0 0 0 0 0
& QWEN2.5-INSTRUCT 32B 28 17 7 2 1 0 0 0 0 0
£  QWEN2.5-INSTRUCT 32B-CoT 27 14 4 1 0 0 0 0 0 0
Z  GPT-40-MINI 9 4 1 1 0 0 0 0 0 0
GPT-40-MINI-CoT 12 9 3 1 0 0 0 0 0 0
DEEPSEEK-QWEN 14B 20 9 3 0 0 0 0 0 0 0
oo  DEEPSEEK-QWEN 32B 27 13 7 2 0 0 0 0 0 0
€ DEEPSEEK-LLAMA 70B 1 1 1 0 0 0 0 0 0 0
% GEMINI-2.5-PRO 57 46 39 34 34 33 33 33 33 32
K 03-MINI 37 24 17 13 9 8 7 6 6 5
QwQ 32B 28 16 7 4 1 0 0 0 0 0
GPT-5-MINI 56 38 30 25 21 19 19 18 18 17
(s;es’ p;cs)
LLAMA-3.3 70B 16 4 3 1 1 1 1 1 1 0
e LLAMA-3.3 70B-CoT 24 10 5 2 1 0 0 0 0 0
'g QWEN2.5-INSTRUCT 14B 15 9 3 1 0 0 0 0 0 0
z QWEN2.5-INSTRUCT 14B-CoT 12 4 0 0 0 0 0 0 0 0
= QWEN2.5-INSTRUCT 32B 30 15 7 3 0 0 0 0 0 0
5 QWEN2.5-INSTRUCT 32B-CoT 31 15 6 1 0 0 0 0 0 0
Z  GPT-40-MINI 7 4 1 1 0 0 0 0 0 0
GPT-40-MINI-CoT 8 3 2 1 0 0 0 0 0 0
DEEPSEEK-QWEN 14B 21 9 3 1 0 0 0 0 0 0
o  DEEPSEEK-QWEN 32B 31 16 7 1 0 0 0 0 0 0
§ DEEPSEEK-LLAMA 70B 5 2 2 1 0 0 0 0 0 0
% GEMINI-2.5-PRO 58 48 41 37 36 36 36 36 35 35
g 03-MINI 35 20 14 10 7 5 5 4 4 3
QwQ 32B 21 13 6 2 1 0 0 0 0 0
GPT-5-MINI 55 38 30 23 21 17 17 16 15 15
(8%0s Plo)
LLAMA-3.3 70B 14 8 1 1 0 0 0 0 0 0
e LLAMA-3.3 70B-CoT 12 7 3 1 1 1 0 0 0 0
‘2 QWEN2.5-INSTRUCT 14B 8 6 2 1 0 0 0 0 0 0
% QWEN2.5-INSTRUCT 14B-CoT 12 6 1 0 0 0 0 0 0 0
2 QWEN2.5-INSTRUCT 32B 22 10 6 3 0 0 0 0 0 0
£  QWEN2.5-INSTRUCT 32B-CoT 27 14 6 1 0 0 0 0 0 0
Z GPT-40-MINI 8 5 2 1 0 0 0 0 0 0
GPT-40-MINI-CoT 9 6 2 2 0 0 0 0 0 0
DEEPSEEK-QWEN 14B 15 8 3 1 0 0 0 0 0 0
o  DEEPSEEK-QWEN 32B 26 13 7 3 2 1 1 1 1 1
£ DEEPSEEK-LLAMA 70B 3 1 1 1 0 0 0 0 0 0
% GEMINI-2.5-PRO 56 45 39 36 35 35 35 35 35 35
2 03-MINI 32 18 11 6 4 2 2 2 2 2
QwQ 32B 22 13 6 2 1 0 0 0 0 0
GPT-5-MINI 53 39 30 25 22 20 20 18 17 17
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Table 20: Percentage of execution-trace match for PredTrace for (s,p), (Sks> Phs)> and (%o, Pro) With the

K-framework semantics.

Models <10% <20% <30% <40% <50% <60% <70% <80% <90% <100%
(s,p)
LLAMA-3.3 70B 28 21 14 10 9 6 4 3 2 2
o0 LLAMA-3.3 70B-CoT 18 15 11 9 9 7 7 6 6 6
=
= QWEN2.5-INSTRUCT 14B 14 12 10 7 3 0 0 0 0 0
% QWEN2.5-INSTRUCT 14B-CoT 20 15 12 8 4 1 0 0 0 0
= QWEN2.5-INSTRUCT 32B 37 22 15 8 4 1 0 0 0 0
é QWEN2.5-INSTRUCT 32B-CoT 35 22 15 7 4 2 2 1 1 1
GPT-40-MINI 35 23 15 10 6 2 1 0 0 0
GPT-40-MINI-CoT 34 21 14 8 4 2 0 0 0 0
DEEPSEEK-QWEN 14B 30 19 12 7 3 1 1 1 1 1
oo  DEEPSEEK-QWEN 32B 38 26 20 15 12 10 9 8 8 8
=
g DEEPSEEK-LLAMA 70B 9 8 7 7 6 4 4 4 3 3
2 GEMINI-2.5-PRO 52 35 31 26 26 25 25 25 25 25
§ 03-MINI 45 29 25 21 21 20 20 19 19 19
QwQ 32B 43 31 27 23 21 20 20 19 18 18
GPT-5-MINI 50 33 28 25 23 22 21 21 20 20
(8% 4> Phos)
LLAMA-3.3 70B 31 17 9 7 4 3 2 1 0 0
e LLAMA-3.3 70B-CoT 31 19 14 10 7 4 2 0 0 0
‘2 QWEN2.5-INSTRUCT 14B 7 7 6 4 2 0 0 0 0 0
% QWEN2.5-INSTRUCT 14B-CoT 22 17 12 9 4 2 1 0 0 0
2 QWEN2.5-INSTRUCT 32B 38 21 16 9 4 2 1 0 0 0
§ QWEN2.5-INSTRUCT 32B-CoT 36 22 14 6 4 1 1 1 1 1
GPT-40-MINI 35 23 14 8 5 2 1 1 0 0
GPT-40-MINI-CoT 28 16 11 6 3 1 1 0 0 0
DEEPSEEK-QWEN 14B 35 20 13 7 3 0 0 0 0 0
o  DEEPSEEK-QWEN 32B 34 24 17 10 7 4 3 2 2 2
£ DEEPSEEK-LLAMA 70B 4 4 4 2 2 1 1 1 0 0
=
% GEMINI-2.5-PRO 53 35 31 26 26 25 25 25 25 25
2 03-MINI 45 27 21 16 14 9 7 4 3 3
QwQ 32B 35 27 23 20 19 17 17 17 16 16
GPT-5-MINI 47 31 27 23 21 18 17 15 14 14
(S;co’ p;co)
LLAMA-3.3 70B 27 19 15 12 10 6 5 4 4 3
e LLAMA-3.3 70B-CoT 17 16 13 10 6 4 3 3 3 3
2 QWEN2.5-INSTRUCT 14B 11 9 7 6 3 0 0 0 0 0
% QWEN2.5-INSTRUCT 14B-CoT 18 13 8 6 2 0 0 0 0 0
& QWEN2.5-INSTRUCT 32B 32 19 13 7 3 0 0 0 0 0
£  QWEN2.5-INSTRUCT 32B-CoT 29 16 11 7 3 0 0 0 0 0
Zz GPT-40-MINI 31 19 11 8 4 2 1 1 0 0
GPT-40-MINI-CoT 23 15 10 6 3 0 0 0 0 0
DEEPSEEK-QWEN 14B 29 17 12 6 3 0 0 0 0 0
oo  DEEPSEEK-QWEN 32B 35 23 17 10 7 5 5 4 3 3
£ DEEPSEEK-LLAMA 70B 9 7 7 6 5 4 3 3 3 3
2 GEMINI-2.5-PRO 52 35 32 28 26 26 26 26 26 25
&rﬁ 03-MINI 43 26 23 19 17 16 15 14 14 13
QwQ 32B 42 29 25 22 21 20 19 17 16 15
GPT-5-MINI 48 33 29 25 24 22 22 21 20 17
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Table 21: Models’ approximate-match accuracies on the PredTrace task with SOS and K-semantics.

Models IMP-K IMP-SOS
~(8P)  ~M8has Pha)  ~(ShorPho)  ~(ED)  ~(SkasPha)  ~(Skos Pho)
LLAMA-3.3 70B 4 0 4 0 0 0
= LLAMA-3.3 70B-CoT 8 0 7 2 0 3
= QWEN2.5-INSTRUCT 14B 1 0 0 0 1 0
% QWEN2.5-INSTRUCT 14B-CoT 1 0 1 1 0 0
2 QWEN2.5-INSTRUCT 32B 3 1 3 1 0 1
g QWEN2.5-INSTRUCT 32B-CoT 7 1 5 1 0 1
7 GPT-40-MINI 1 1 0 0 0 0
GPT-40-MINI-CoT 5 0 3 1 0 0
DEEPSEEK-QWEN 14B 12 5 7 3 0 2
o  DEEPSEEK-QWEN 32B 17 11 13 10 1 8
£ DEEPSEEK-LLAMA 70B 6 1 4 1 0 1
% GEMINI-2.5-PRO 25 25 26 66 60 66
& 03-MINI 21 5 16 27 23 22
QwQ 32B 21 19 19 15 6 11
GPT-5-MINI 21 15 19 46 43 42
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F LIMITATIONS

PLSEMANTICSBENCH evaluates models on programs written in IMP which is limited in complex
semantic features. Strong performance on PLSEMANTICSBENCH does not necessarily generalize to
more sophisticated programming languages. Nonetheless, PLSEMANTICSBENCH serves as an initial
step toward evaluating the effectiveness of using LLMs as interpreters.

We formalize the semantics of the IMP language using small-step Structural Operational Semantics
(SOS) and K-semantics, which may not be the most suitable PL. semantics representation for LLMs.
Our choice of using formal semantics was to avoid ambiguities while describing the semantics as it is
easier to check for in formal semantics. Investigating LLMs’ performance under alternative semantics
specification including natural language, big-step or denotational semantics, is left as future work.

G USE OF EXTERNAL ASSETS

In this work, we make use of several external assets, including datasets, and pretrained models. We
acknowledge and credit the original creators of these assets as follows:

G.1 DATA

We construct the Human-Written dataset by rewriting the existing code solutions from the following
sources:

1. HumanEval-X
(a) License: Apache 2.0
(b) URL: https://huggingface.co/datasets/THUDM/humaneval—-x
2. BabelCode MBPP
(a) License: CC 4.0
(b) URL: https://huggingface.co/datasets/gabeorlanski/bc-mbpp
3. CodeContests
(a) License: CC 4.0
(b) URL: https://github.com/google-deepmind/code_contests
4. Leetcode

(a) We scrape only the ground-truth solutions and public test cases from leetcode. We use
the collected problems for academic purposes only.

(b) URL: https://leetcode.com/

We construct the LLM-Translated dataset by using QWEN2.5-INSTRUCT 32B to translate the C++
solutions to problems from:

1. CodeForces

(a) License: CC 4.0
(b) URL: https://huggingface.co/datasets/open-rl/codeforces

G.2 MODELS

We evaluate LLMs designed for coding tasks and enhanced reasoning ability on our PLSEMANTICS-
BENCH:

1. LLAMA-3.3 70B (Grattafiori et al., 2024),

(a) License: llama3.3
(b) URL:
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct

2. Qwen2.5-Coder Models (Hui et al., 2024),

55


https://huggingface.co/datasets/THUDM/humaneval-x
https://huggingface.co/datasets/gabeorlanski/bc-mbpp
https://github.com/google-deepmind/code_contests
https://leetcode.com/
https://huggingface.co/datasets/open-r1/codeforces
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct

Under review as a conference paper at ICLR 2025

(a) License: Apache 2.0

(b) URLs:
https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct
https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct

3. DeepSeek-R1 distilled models (Guo et al., 2025)
(a) License: MIT
(b) URLs:
https://huggingface.co/deepseek—ai/DeepSeek-R1-Distill-Llama-70B
https://huggingface.co/deepseek—-ai/DeepSeek-R1-Distill-Qwen—-32B
https://huggingface.co/deepseek—ai/DeepSeek-R1-Distill-Qwen—-14B

4. QwQ 32B (Team, 2025b)

(a) License: Apache 2.0
(b) URL: https://huggingface.co/Qwen/QwQ—-32B

5. GEMINI-2.5-PRO. In this study, we utilized the GEMINI-2.5-PRO model provided by
Google Al The use of this model is subject to the Generative Al Preview Terms and
Conditions, as outlined in the Google Cloud Service Specific Terms for Pre-GA Offerings.

(a) URL: https://cloud.google.com/terms/service-terms
6. OpenAl Models. In this study, the use of OpenAI’s models is subject to the term of use.
(a) URL: https://openai.com/policies/row-terms—of-use/
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