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ABSTRACT

We introduce BriLLM, the first brain-inspired large language model that estab-
lishes a genuinely biology- and neuroscience-grounded machine learning paradigm.
Unlike previous approaches that primarily mimic local neural features, BriLLM
implements Signal Fully-connected flowing (SiFu) learning—the first framework
to authentically replicate the brain’s macroscopic information processing principles
at scale. Our approach is uniquely validated by two core neurocognitive facts:
(1) static semantic mapping to dedicated cortical regions, and (2) dynamic sig-
nal propagation through electrophysiological activity. This foundation enables
transformative capabilities: inherent multi-modal compatibility, full node-level
interpretability, context-length independent scaling, and global-scale simulation of
brain-like language processing. Our 1-2B parameter models demonstrate stable
learning dynamics while replicating GPT-1-level generative performance. Scalabil-
ity analysis confirms feasibility of 100-200B parameter variants. BriLLM repre-
sents a paradigm shift from representation learning toward biologically-validated
AGI foundations, offering a principled solution to current AI’s fundamental limita-
tions.

1 INTRODUCTION

The pursuit of Artificial General Intelligence (AGI) faces fundamental limitations rooted in current
machine learning paradigms. While human-level AGI requires seamless integration of the complete
"perception—reasoning—action" cognitive chain, existing approaches—including Large Language
Models (LLMs) and world models—remain constrained by the representation learning paradigm
that underlies all modern deep learning systems, even those SOTA achitectures and models like
Transformer and GPT(Radford et al.,[2018; [Vaswani et al.l [2017).

The core challenge extends beyond technical bottlenecks to paradigm-level constraints. Current
systems struggle with: (1) the multimodality bottleneck, requiring expensive data alignment for
cross-modal integration; (2) inherent opacity of black-box models; and (3) quadratic complexity
limitations of Transformer architectures. These are not mere architectural issues but fundamental
limitations of the vector shape-based representation learning foundation.

BriLLM introduces a paradigm shift through Signal Fully-connected flowing (SiFu) learning—the
first machine learning framework genuinely grounded in established biological and neuroscientific
facts. Unlike spiking neural networks (SNNs) that mimic only local neural signaling mechanisms,
SiFu authentically replicates the brain’s macroscopic organization principles validated by cognitive
neuroscience:

1. Static semantic mapping: Semantic information consistently maps to dedicated cortical
regions, with each area serving interpretable functions |[Huth et al.| (2016)). This contrasts
with representation learning’s opaque vector encodings.

2. Dynamic signal propagation: Cognition emerges from electrophysiological signal flow
(e.g., EEG patterns) across regions, not fixed vector transformations, enabling flexible,
context-independent processing.

These principles are absent in all existing ML/DL systems, including those labeled as "brain-inspired."
Crucially, SNNs primarily capture specific aspects of biological neural signaling but operate within
the representation learning paradigm and fail to replicate the brain’s global architectural organization.
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In biological systems, neural information processing involves hybrid spiking and continuous signals
throughout the nervous system, not exclusively within the brain.

SiFu learning establishes the first genuinely brain-inspired paradigm by implementing both macro-
scopic principles at scale. This approach finds dual validation from empirical neuroscience and
theoretical parsimony (Occam’s Razor). The brain’s direct semantic mapping to dedicated compo-
nents represents a fundamentally simpler mechanism than representation learning’s indirect vector
encoding, aligning with evolutionary efficiency.

We implement SiFu through BriLLM, demonstrating three paradigm-shifting contributions:

e SiFu learning: A non-representation learning paradigm replacing vector shape-based foun-
dations with biologically validated principles of semantic mapping and signal propagation;

e BriLLM implementation: The first LLM authentically replicating brain-like information
processing at global scale, achieving full interpretability and context-independent scaling;

e AGI pathway: A principled foundation for overcoming multimodality bottlenecks and
architectural limitations of current approaches.

Table([I]situates this work within ML evolution, highlighting SiFu’s divergence toward biologically
aligned AGI foundations.

Table 1: Evolution from machine learning to brain-inspired learning

Level \ Conventional ML/DL.  Brain-inspired (SiFu/BrilLLM)
Application Task-specific models Generalist AGI systems
Architecture Transformer/GPT BriLLM
Framework Deep learning SiFu learning

(representation learning) (non-representation)
Foundation Machine learning Neurocognitive principles
(vector shape-based) (biologically validated)

2 S1FU MECHANISM

The SiFu learning paradigm fundamentally redefines machine learning foundations by implementing
two core principles validated by cognitive neuroscience: dedicated semantic mapping and dynamic
signal propagation. These principles establish SiFu as the first genuinely biology-grounded frame-
work, contrasting with previous approaches that operated within representation learning constraints.

Table [2 and Figure [I] systematically compare traditional paradigms with SiFu, referencing the brain’s
organizational pattern.
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Figure 1: SiFu learning: Direct semantic mapping (left) vs representation learning: vector re-encoding
(right)
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Table 2: Conventional Machine Learning Paradigm vs SiFu Learning Paradigm

| ML/DL | SiFu Learning | Human Brain Pattern

Para- | Semantic Shape of Vector | Different Nodes Repre- | Cortical Regions Rep-
digm | Representa- | Flow sent Different Seman- | resent Different Seman-

tion Mode tics tics
Definit Prediction | Vector Re-encoding | Signal Propagation to | EEG-driven Regional
tion | Mechanism Activated Nodes Activation
Key | Input- Single-sided I/O Bidirectional = Node | Cortical Bidirectional

Output Communication Activation

Flow Con-

trol
Feat- | Model Ar- | Unidirectional Flow | Fully Connected Bidi- | Neural Interconnection
ures | chitecture rectional Flow

The distinction between paradigms hinges on semantic representation methods. Traditional ML/DL
employs time-based representation, where semantics evolve through vector state changes. SiFu
implements space-based representation, where different components represent different seman-
tics—aligning with the brain’s cortical specialization.

This spatial mechanism enables SiFu’s unique properties. While traditional paradigms require single
models to repeatedly encode vector states, SiFu’s component-based design supports bidirectional
information flow and inherent interpretability.

2.1 FORMAL FOUNDATION

We formalize SiFu’s generative framework. Traditional language modeling predicts token w; from
sequence ws, ..., w;_1 through models requiring full sequence processing. SiFu redesigns this
around neurodynamic principles:

Definition 1 (SiFu Directed Graph). Semantic processing as fully-connected graph G = {V, E’}:

o V = {v1,vs,...,un}: Nodes uniquely mapping to semantic units, replicating cortical
specialization;
o E ={e;;}: Directed edges governing signal transmission, analogous to synaptic pathways.
Definition 2 (Signal Tensor). r € R measures node activity level, simulating electrophysiological
dynamics through parameters 0y, (node biases) and 0 (edge weights).

Semantic units map directly to nodes (e.g., ve, = "cat"), ensuring full interpretability. Prediction
proceeds through neurodynamic stages:

(1) Signal Initiation: Input tokens activate corresponding nodes with initial signal r;

(2) Signal Propagation: Signals flow through edges with weight modulation and node bias
integration;

(3) Competitive Activation: Next token wy, corresponds to node v;, with maximum signal
energy:

L-1
v = arg max g ag - |Irk ® vk @ g BV,
v’ eV
k=1
with attention weights o modeling selective focus.

Figure [2]illustrates this biologically grounded mechanism.

2.2 BIOLOGICALLY GROUNDED ADVANTAGES

SiFu’s design yields advantages directly validated by neural principles:
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Figure 2: SiFu mechanism: Neurodynamic signal propagation

Full interpretability: Direct node-semantic mapping eliminates black-box opacity, replicat-
ing cortical functional transparency;

Component-level editing: User-defined node semantics enable seamless model modification
without full retraining;

Natural multimodality: Native support for cross-modal integration through unified seman-
tic mapping;

Unbounded context: Signal propagation handles arbitrary sequences without model scaling;
Linear complexity: O(L) time and O(1) space complexity versus Transformers’ O(L?);

Cognitive traceability: Signal paths enable error localization akin to neuroimaging analysis.

Figures [3a and [3b] illustrate SiFu’s operational modes, demonstrating its alignment with efficient
neural computation.
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(a) Forward inference: Neurodynamic activation (b) Training: Pathway optimization

Figure 3: SiFu operating modes (Node numbers indicate signal energy)

Theoretical validation comes from Occam’s Razor: SiFu’s direct semantic mapping represents a
simpler, more parsimonious approach than representation learning’s indirect encoding. This simplicity,
combined with the brain’s proven AGI capabilities, provides compelling dual support for SiFu as an
AGTI foundation.
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3 BRILLM FORMULATION

BriLLM instantiates SiFu mechanism for language tasks with three biologically inspired assumptions:

e Node Design: Each node models a "cortical region"—implemented as a GeLU-activated
layer with bias b € R (captures baseline "neural activity").

e Edge Design: Edges are bidirectional (mimicking reciprocal neural connections) with weight
matrices Wy, o, Wy, ., € IR ode X dhnode (govern signal transmission in both directions).

e Positional Encoding: To preserve sequence order (critical for language), a sine-cosine
positional encoding (PE) is added to signals—mimicking the brain’s temporal processing of
language.

3.1 SIGNAL PROPAGATION IN BRILLM

For a sequence vy, vs, ...,vr—1 , signal propagation proceeds as follows.
The initial signal for the first node(token) v is:
r1 = GeLU(rg + b,, + PEp) @)

where o = [1,1, ..., 1]T € Rfnoae | by, is the bias of node v, and P Ej is the positional encoding for
the first token.

For subsequent v; (¢ > 1), the signal propagates from v;_; to v;:
ri = GeLU(Wy,_, 0, *Tim1 + by, 0, + PE;i_1) )

where W,, | ,, is the edge weight matrix from v;_1 to v;, and b,, , ,, is the edge-specific bias.

Figure 4: The architecture of BriLLM.

3.2 NEXT-TOKEN PREDICTION

To predict the next token wr,, BriLLM integrates signals from all prior nodes using attention weights
a € REL:

(1) Attention normalization: A = softmax(«;.7,_1) (prioritizes relevant context);

(2) Signal aggregation: Sy, = Zé;ll Ay - 1, (combines weighted signals);

(3) Prediction: Among all candidate nodes v’, find the predicted node vy, corresponding to the

maximum signal energy in terms of L2 norm:

’
v, = arg max 5"
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3.3 BRILLM TRAINING PROCESS

Training BriLLM involves optimizing parameters to maximize signal energy for correct sequences —
analogous to the brain strengthening neural pathways through experience. Unlike conventional deep
learning, BriLLM constructs a dynamic network for each training sequence (Figure 3)), rather than
maintaining a fixed architecture.

For a training sequence v1, ..., v 1, v1,, With each node corresponding to a hidden neuron layer, we
construct a multilayer perceptron network (MLP) with L + 2 layers. The first L — 1 layers are formed
by connecting nodes vy, ..., vr,—1 sequentially. The L-th layer concatenates all vocabulary nodes,
output to an L2 norm layer followed by a softmax layer.

In this MLP, the first L layers are fully connected. The initial signal (Equation I) propagates through
this network, with cross-entropy loss rewarding cases where the correct node vy, exhibits highest
energy (encoded as one-hot ground-truth vector).

Softmax

Figure 5: The training network of BriLLM for one training sample .

When employing backpropagation training, the network construction depends on two hyperparame-
ters: sequence length L and whether signal propagation is continuous. For continuous propagation,
the training network depth becomes L + 2 layers, creating positive correlation between sequence
length and network depth. To address this, we introduce a "signal reset" strategy: after signals propa-
gate to a fixed-depth layer, they reset to the initial signal (Equation[I). This controls backpropagation
depth by terminating gradient computation at the last reset layer, making training feasible for long
sequences.

Future optimization directions include: (1) investigating improved network architectures (e.g., residual
connections) to optimize BriLLM training network construction; (2) developing non-backpropagation
brain-inspired training algorithms aligned with SiFu’s competitive activation nature rather than
representation learning, potentially overcoming limitations of current artificial neural network training
models.
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Table 3: Model sizes before and after sparse training.

BriLLM-Chinese ~ BriLLM-English

original 16.90B 16.90B
sparse 2.19B 0.96B
ratio 13.0% 5.7%

4 EXPERIMENTS

BriLLM is designed as a generative model targeting supervised fine-tuning (SFT) capabilities,
distinct from early small-scale pre-trained language models like GPT-1 (which focused on deep
representation learning). SiFu’s departure from representation learning further precludes direct
comparisons to GPT-1’s benchmarking or standard LLM fine-tuning metrics. Additionally, current
computational constraints limit our checkpoints to sub-scale sizes (1-2B parameters), insufficient to
demonstrate emergent abilities (e.g., few-shot learning) typical of larger LLMs. Thus, our experiments
validate two core properties of the SiFu paradigm: stable learning dynamics and functional sequence
continuation—sufficient to confirm BriLLM’s design feasibility.

4.1 SETUP

Datasets: BriLLM-Chinese and BriLLM-English were trained on Chinese and English Wikipedia
(each >100M tokens), with sequences truncated to 32 tokens and a 4,000-token vocabulary. This
setup tests the model’s ability to process natural language while maintaining the brain-like property
of fixed size regardless of sequence length.

Implementation Details: Implemented in PyTorch, BriLLM uses sine-cosine positional encoding,
GeLU activation, and cross-entropy loss. Nodes have dimension d,,,4.=32 (neurons per node), with
edges as 32 x 32 matrices. Training used the AdamW optimizer (5;=0.9, 52=0.999) on 8§ NVIDIA
A800 GPUs for 1.5k steps. The theoretical parameter count (=16B) reflects the fully connected
graph, but sparse training (below) greatly reduces this, demonstrating efficiency akin to the brain’s
sparse connectivity.

Sparse Training: Consistent with the brain’s sparse neural connections, BriLLM leverages low-
frequency token co-occurrences to reduce parameters. Low-frequency edges share fixed matrices,
reducing size to 2B (Chinese) and 1B (English)—90% smaller than theoretical (Table [3). This
mirrors the brain’s ability to reuse neural pathways for infrequent concepts, balancing efficiency and
functionality.

4.2 RESULTS

Learning Stability: Training loss (Figure [6) decreases steadily and monotonically (albeit with
periodic fluctuations) across iterations—confirming that BriLLM effectively learns language patterns
only via signal energy optimization, rather than vector shape re-encoding.

Sequence Continuation: Tables [5|and [6| demonstrate contextually relevant completions for both Chi-
nese and English, replicating GPT-1’s core generative capability (its most impactful feature, despite
its original focus on representation learning). These results validate that SiFu’s non-representation
framework can support functional language modeling, even in sub-scale implementations.

4.3 SCALABILITY

BriLLM'’s size scales quadratically with node dimension: O(n? - d2,,.), where n is vocabulary size.
However, as a global brain simulation, mature BriLLM models do not require drastic scaling for
diverse AGI tasks—unlike GPT-style LLMs that need continuous expansion for new capabilities.
Even with 40,000-token vocabularies (comparable to GPT-4), sparse training constrains BriLLM
to 100-200B parameters, making it competitive with state-of-the-art models while retaining unique
advantages regarding context length L:
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Figure 6: The training loss (PPL vs. Training Steps).

o Context-length independence: O(1) model size complexity decouples model scaling from
context length, as longer inputs are accommodated through signal propagation rather than
parameter expansion;

e Linear computational complexity: Time complexity scales linearly with context length L,
while space complexity remains constant—contrasting sharply with Transformers’ quadratic
O(L?) complexity.

Although Transformer model size scales quadratically with embedding dimension (not directly with
L), its practical computational complexity remains O(L?) due to self-attention mechanism. BriLLM
eliminates this bottleneck, enabling efficient long-sequence processing critical for AGI applications
like book-length document analysis and lifelong learning.

5 CONCLUSION, LIMITATION AND THE FUTURE

BriLLM represents a fundamental paradigm shift from representation learning toward genuinely
biology-grounded machine learning. By implementing two core neurocognitive principles empirically
validated by neuroscience—static semantic mapping (analogous to cortical specialization [Huth et al.
(2016)) and dynamic signal propagation (mirroring EEG activity)—BriLLLM establishes the first
authentic large-scale replication of brain-like information processing.

Our work demonstrates that true brain-inspired computing requires global architectural alignment,
not merely local feature mimicry. While previous approaches like SNNs captured specific neural
signaling aspects, they remained constrained within the representation learning paradigm and failed to
replicate the brain’s macroscopic organization. BriLLM addresses this critical gap by implementing
system-level principles that enable three transformative capabilities absent in current LLMs:

o Full node-level interpretability: Direct semantic mapping ensures complete transparency
versus black-box representation learning;

o Context-length independent scaling: Model size decouples from sequence length through
neurodynamic signal propagation;



Under review as a conference paper at ICLR 2026

o Global-scale brain-like processing: Authentic simulation of system-level information dy-
namics beyond local neural features.

Our 1-2B parameter models validate SiFu’s feasibility, demonstrating stable learning dynamics and
functional sequence completion. Current limitations—sub-scale size and training refinements—reflect
early development stages analogous to early deep learning prototypes, rather than paradigm flaws.
As the paradigm matures, SiFu will undoubtedly spawn advanced models beyond this initial imple-
mentation.

A useful analogy contextualizes BriLLM’s significance: imagine a 2003—-2018 paper proposing the
deep learning paradigm, introducing the first Transformer prototype, and training an early "GPT-
0.5" (comparable to BriLLM-0.5)—while predicting scaling would yield systems like ChatGPT.
This highlights that BriLLM represents the first LLM implementation of a new non-representation
paradigm—not merely a competitor to existing representation-learning models.

The paradigm’s biological grounding provides unique dual validation, aligning with both empirical
neuroscience (cortical specialization, electrophysiological dynamics) and theoretical parsimony
(direct mapping simplicity). This foundation offers a principled pathway toward AGI that transcends
current constraints, particularly addressing the multimodal data dependency problem and architectural
limitations of Transformer-based systems.

Future work will advance this biologically validated foundation through four key directions:
(1) Scaling to 100-200B parameters to test emergent capabilities;
(2) Implementing multi-modal nodes for seamless cross-modal integration;

(3) Developing plasticity mechanisms for experience-dependent adaptation;

(4) Creating embodied variants with sensorimotor integration.

Table @] summarizes BriLLM’s comparative advantages, highlighting its breakthrough in replicating
the brain’s global properties.

Table 4: GPT-LLM & SNN-LLM vs. Biologically Grounded BriLLM Comparison

| GPT-LLM

SNN-(LLM)

BriLLM

Paradigm

Representation Learn-
ing

Representation Learn-
ing

Non-Representation
Learning

Biological Ba-

Local features only

Local signaling only

Global Architectural

sis Principles
Multimodality | Data alignment re- Limited alignment Native Cross-modal
quired Support

Context-dependent Context-dependent

Model Scaling | Context-Independent

Interpretability \ I/0 only Partial local Full Node-level
Complexity | O(L?) O(L) | O(L)
Error Analysis | Attention-based Spike-based | Signal Path Tracing

BriLLM pioneers a new direction in Al research: establishing a foundation validated by the only
proven AGI system—the human brain—rather than engineering solutions within existing paradigms.
This biologically grounded approach provides a principled pathway to overcome fundamental limita-
tions of current Al systems, positioning BriLLM as a transformative framework for genuine AGI
development.
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A EXPERIMENTS

Sequence Continuation: Tables[3]and [6] demonstrate contextually relevant completions for both Chi-
nese and English, replicating GPT-1’s core generative capability (its most impactful feature, despite
its original focus on representation learning). These results validate that SiFu’s non-representation
framework can support functional language modeling, even in sub-scale implementations.
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Table 5: Case study of BriLLM-Chinese decoding results.
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Table 6: Case study of BriLLM-English decoding results.
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