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ABSTRACT

Category-level object pose estimation aims to determine the pose and size of novel
objects in specific categories. Existing correspondence-based approaches typi-
cally adopt point-based representations to establish the correspondences between
primitive observed points and normalized object coordinates. However, due to the
inherent shape-dependence of canonical coordinates, these methods suffer from
semantic incoherence across diverse object shapes. To resolve this issue, we in-
novatively leverage the sphere as a shared proxy shape of objects to learn shape-
independent transformation via spherical representations. Based on this insight,
we introduce a novel architecture called SpherePose, which yields precise corre-
spondence prediction through three core designs. Firstly, We endow the point-
wise feature extraction with SO(3)-invariance, which facilitates robust mapping
between camera coordinate space and object coordinate space regardless of rota-
tion transformation. Secondly, the spherical attention mechanism is designed to
propagate and integrate features among spherical anchors from a comprehensive
perspective, thus mitigating the interference of noise and incomplete point cloud.
Lastly, a hyperbolic correspondence loss function is designed to distinguish sub-
tle distinctions, which can promote the precision of correspondence prediction.
Experimental results on CAMERA25, REAL275 and HouseCat6D benchmarks
demonstrate the superior performance of our method, verifying the effectiveness
of spherical representations and architectural innovations.

1 INTRODUCTION

Object pose estimation, which involves predicting the 3D rotation R ∈ SO(3) and 3D translation
t ∈ R3 of observed objects, has received considerable attention from the research community due
to its crucial applications in augmented reality (Marchand et al., 2015; Su et al., 2019), robotic
manipulation (Liu et al., 2023a; Wen et al., 2022), and hand-object interaction (Lin et al., 2023c;
Rezazadeh et al., 2023), etc. While many prior instance-level object pose estimation methods (Peng
et al., 2019; Wang et al., 2019a; 2021a; Su et al., 2022) have achieved promising performance, their
dependence on CAD models restricts the generalization ability. To mitigate this problem, category-
level object pose estimation has been introduced in Wang et al. (2019b), which aims to reason about
the 6D pose {R, t} ∈ SE(3) and 3D size s ∈ R3 of unseen objects in specific categories, without
the need for their CAD models.

Existing category-level methods can be mainly divided into two groups, i.e., direct regression-based
methods (Chen et al., 2021; Di et al., 2022; Lin et al., 2023b) and correspondence-based meth-
ods (Wang et al., 2019b; Tian et al., 2020; Lin et al., 2022b; 2024). The former approaches seek
to directly regress object pose in an end-to-end manner. Although conceptually simple, they strug-
gle with the pose-sensitive feature learning due to the non-linearity of the entire pose search space
SE(3) (Lin et al., 2022a; 2023b). While the latter methods aim to establish the correspondence
between camera coordinate space and the Normalized Object Coordinate Space (NOCS) (Wang
et al., 2019b), and then acquire the pose through the Umeyama algorithm (Umeyama, 1991) or deep
estimators (Lin et al., 2022b), as illustrated in Figure 1(a). We follow this paradigm, where the cor-
respondences in the linear coordinate search space R3 are easier to learn, and outliers can be further
eliminated by robust estimators such as the RANSAC algorithm (Fischler & Bolles, 1981) .
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Figure 1: We propose a novel approach for category-level object pose estimation based on spherical
representations. (a) The classical pipeline of correspondence-based methods, where representations
denote the organization form of observation data, e.g., point-based representations in R3, which is
straightforward and commonly adopted in previous methods. (b) The overview of comparison be-
tween our method and previous methods. Note that each XYZ position of representations and NOCS
coordinates is visualized as an RGB tuple. Our method employs spherical representations to learn
shape-independent transformation, yielding smaller NOCS angle errors compared to DPDN (Lin
et al., 2022b), which adopts point-based representations and suffers from the shape-dependence.

Nevertheless, existing correspondence-based methods typically adopt point-based representations,
where discrete points back-projected from observed depth maps serve as the representations of ob-
servation data. Subsequently, the NOCS coordinates of these points are derived by geometric nor-
malization and alignment of object shapes, which are inherently shape-dependent. As a result,
observed points with similar semantics across diverse object shapes are mapped to distinct NOCS
coordinates, also known as semantic incoherence in Wan et al. (2023). For example, points on the
camera lens are mapped to different coordinates in NOCS if the camera length is different. Since
the correspondence prediction need to take into account both pose information and large shape vari-
ation, it is hard to learn and generalize, which results in large NOCS angle errors as demonstrated
in Figure 1(b)(Top). To resolve the above issue, we propose to innovatively leverage the sphere
as a shared proxy shape of objects to learn shape-independent transformation via spherical rep-
resentations. Specifically, we first uniformly divide the sphere with the Hierarchical Equal Area
iso-Latitude Pixelation (HEALPix) grids (Gorski et al., 2005), each of which is represented by its
center anchor. Then observed points are projected onto the spherical grids, with point-wise fea-
tures assigned to the corresponding spherical anchors, which serves as the new representations of
observation. Since these spherical anchors are coherent across various object shapes, the spherical
NOCS coordinates are shape-independent, and thus more precise correspondence prediction can be
achieved by focusing only on the pose information, as shown in Figure 1(b)(Bottom).

Based on the sphere representations, we introduce a novel architecture for category-level object pose
estimation, termed SpherePose. Given a centralized and scale-normalized observation1, point-wise
features are first extracted and then assigned to spherical anchors with HEALPix spherical projec-
tion, yielding the spherical representations. The shape-independent transformation is subsequently
learned between the spherical anchors and the spherical NOCS coordinates for rotation estimation.
In order to boost the precision of correspondence prediction, we further present three core designs.

1Note that since translation and size are relatively easier to be estimated, we follow VI-Net (Lin et al.,
2023b) to leverage a lightweight PointNet++ for prediction, and focus on more challenging rotation estimation.
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The first design is the SO(3)-invariant point-wise feature extraction. It is intuitive that no mat-
ter how an object is rotated, the feature of a specific point on that object should remain invariant as
it is mapped to a static coordinate in NOCS. Driven by this insight, for deep image features, we em-
ploy pretrained DINOv2 (Oquab et al., 2024) features with patch-wise consensus semantics, which
are robust to rotations (Chen et al., 2024). As for deep point cloud features, we propose the Color-
PointNet++ network by making minimal adjustments to PointNet++ (Qi et al., 2017), which derives
input features from RGB values rather than absolute XYZ coordinates, inherently ensuring SO(3)-
invariance by focusing on the color information and relative proximity of point cloud. The second
design is the spherical feature interaction. Due to self-occlusion, depth cameras fail to perceive
the occluded regions on the backside of objects, resulting in incomplete point cloud. Consequently,
after projecting point-wise features onto the sphere, there exist numerous spherical anchors with no
assigned features. To this end, we adopt the attention mechanism (Vaswani, 2017) with learnable
position embedding to facilitate the interaction and propagation of features among anchors, where
initially unassigned spherical features can be reasoned out. Moreover, by holistically integrating the
relationship among spherical anchors, we acquire comprehensive spherical features which are ro-
bust to noise. The third design is a hyperbolic correspondence loss function. For the supervision
of correspondences, we derive the gradients of several typical loss functions and realize that they
exhibit minor gradients around zero, which is prone to yield ambiguous prediction. To achieve more
precise prediction, we leverage the computation of correspondence distance in hyperbolic space (Lin
et al., 2023a), which yields higher gradients near zero and can discern more subtle distinctions.

To sum up, the main contributions of this paper are as follows:
• We present an innovative approach that utilizes the sphere as a proxy shape of objects to

learn shape-independent transformation via HEALPix spherical representations, which ad-
dresses the semantic inconsistency of shape-dependent canonical coordinates that plagues
existing correspondence-based methods with point-based representations.

• We introduce an architecture for category-level object pose estimation that achieves precise
correspondence prediction through three core designs: SO(3)-invariant point-wise feature
extraction, spherical feature interaction, and a hyperbolic correspondence loss function.

• Extensive experiments on existing benchmarks demonstrate the superior performance of
our method over state-of-the-art approaches, verifying the effectiveness of spherical repre-
sentations and architectural innovations.

2 RELATED WORK

The task of category-level object pose estimation is first introduced in Wang et al. (2019b) to predict
the 6D pose and size of unseen objects in a given category, and existing methods can be categorized
into two groups, i.e., direct regression-based methods and correspondence-based methods.

Direct Regression-based Methods. This category of approaches intends to directly regress the ob-
ject pose in an end-to-end manner. FS-Net (Chen et al., 2021) proposes to decouple the rotation
into two perpendicular vectors that simplifies the prediction, and utilizes a 3D graph convolution
(3D-GC) autoencoder for feature extraction. GPV-Pose (Di et al., 2022) enhances the learning of
pose-sensitive features with geometric consistency, and HS-Pose (Zheng et al., 2023) further extends
3D-GC to extract hybrid scope latent features that combine both global and local geometric infor-
mation. GenPose (Zhang et al., 2023) introduces a generative approach to model the conditional
distribution of object poses, providing a new paradigm to solve the multi-hypothesis issue. VI-
Net (Lin et al., 2023b) presents a novel rotation estimation network that decouples the rotation into
a viewpoint rotation and an in-plane rotation, simplifying the task by leveraging spherical represen-
tations. Based on the decoupled rotation, SecondPose (Chen et al., 2024) extracts SE(3)-consistent
semantic features and geometric features to further enhance the pose estimation. Nevertheless, these
methods struggle with the pose-sensitive feature learning due to the non-linearity of SE(3).

Correspondence-based Methods. This group of approaches aims to establish the correspondence
between camera coordinate space and object coordinate space, and then acquire the pose through
pose fitting algorithm, such as Umeyama (Umeyama, 1991). As a cornerstone, the Normalized
Object Coordinate Space (NOCS) is introduced in Wang et al. (2019b), which serves as a shared
canonical representation to align object instances within a given category. Later, SPD (Tian et al.,
2020) proposes to handle the intra-class shape variation by reconstructing the 3D object model from
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a pre-learned categorical shape prior, and then match the observed point cloud to the reconstructed
3D model. Inspired by it, CR-Net (Wang et al., 2021b) and SGPA (Chen & Dou, 2021) are presented
to improve the reconstruction quality. DPDN (Lin et al., 2022b) learns the shape prior deformation in
the feature space, and replaces the traditional Umeyama algorithm with a deep estimator to directly
regress the pose and size. Query6DoF (Wang et al., 2023) and IST-Net (Liu et al., 2023b) eliminate
the dependence on explicit shape priors with implicit counterparts and implicit space transforma-
tion, respectively. More recently, AG-Pose (Lin et al., 2024) proposes to detect a set of sparse
keypoints to represent the geometric structures of objects and establish robust keypoint-level corre-
spondences for pose estimation. Although these methods have demonstrated strong performance,
they all adopt point-based representations, where the NOCS coordinates are derived by geometric
normalization and alignment of object shapes. When handling diverse object shapes, the NOCS
coordinates become semantically incoherent, which are hard to learn and generalize. To tackle this
issue, Semantically-aware Object Coordinate Space (SOCS) is presented in Wan et al. (2023), where
semantically meaningful SOCS coordinates are built by keypoint-guided non-rigid object alignment
to the categorical average shape. However, due to the non-rigid alignment process, there is a mis-
match between the geometric structure of the observed point cloud and the SOCS coordinates. This
discrepancy plagues the pose fitting, as the transformation may not be optimal for all parts of the
object. In this work, we instead resort to spherical representations, where the sphere is leveraged as a
shared proxy shape of objects to learn shape-independent transformation between spherical anchors
and spherical NOCS coordinates. Thus precise correspondence prediction can be achieved without
the need to account for large shape variation, thereby enhancing subsequent pose estimation.

3 METHOD

Target. Given an RGB-D image, we first acquire the instance segmentation masks with an offline
Mask R-CNN (He et al., 2017), which then yield the cropped RGB image I ∈ RH×W×3 and
segmented depth image for each instance. Partially observed point cloud PO ∈ RN×3 is derived
by back-projecting and downsampling the segmented depth image, where N denotes the number of
points. With I and PO as inputs, our method predicts the rotation R ∈ SO(3), translation t ∈ R3,
and size s ∈ R3 of the observed instance.

Overview. As illustrated in Figure 2, the proposed method mainly consists of two components.
First, in the spherical representation projection phase (Section 3.1), point-wise features are extracted
and then assigned to spherical anchors with HEALPix spherical projection, yielding the spherical
representations. Subsequently, in the spherical rotation estimation phase (Section 3.2), spherical
anchors perform feature interaction with each other through the attention mechanism, and then they
are mapped to the spherical NOCS coordinates for rotation estimation. In Section 3.3, we elaborate
on the training and testing workflow, including additional translation and size prediction for com-
plete category-level object pose estimation. Finally, in Section 3.4, we emphasize the distinctions
between our method and some relevant works on spherical representations and the proxy shape.

3.1 SPHERICAL REPRESENTATION PROJECTION

SO(3)-invariant Point-wise Feature Extraction. Taking image I and normalized points P 2 as
inputs, we start with point-wise feature extraction. Note that for point-wise image features, we
first employ a 2D feature extractor to I and then leverage P to perform point-wise selection on
the extracted features. To facilitate the transformation between camera coordinate space and object
coordinate space, we recognize that the point-wise features F P ∈ RN×C should be SO(3)-invariant:

ψG(F P ) = F P , ∀G ∈ SO(3), (1)

where ψG indicates the transformation of features when rotating points P by rotation G. Intuitively,
the feature of a particular point on an object should remain invariant regardless of the object’s ro-
tation, given that the point is mapped to a fixed coordinate in NOCS. To this end, we synthesize
the features of observation with SO(3)-invariance from a comprehensive perspective. Specifically,
for image features, we employ RGB values with low-level texture information and the pretrained
DINOv2 (Oquab et al., 2024) features with high-level semantic information. Owing to the pretrain-
ing on large-scale datasets, DINOv2 possesses robust generalization capabilities and can provide

2P ∈ RN×3 is centralized and scale-normalized from PO with a lightweight PointNet++ (Qi et al., 2017).
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Figure 2: Overview of the proposed SpherePose. Given the observation I and P , we first extract
SO(3)-invariant point-wise features from four distinct perspectives and assign them to the spherical
anchors A with HEALPix spherical projection, yielding initial spherical features FA. Then, the
Transformer encoder module is employed for spherical feature interaction and integrates compre-
hensive spherical features F . Finally, we predict the corresponding spherical NOCS coordinates O
via a NOCS predictor, which is applied to the estimation of rotation R.

semantically consistent patch-wise features that are robust to rotations (Chen et al., 2024). As for
point cloud features, we adopt radius3 values with low-level spatial information, along with fea-
tures with high-level geometric information from the proposed ColorPointNet++, which is a variant
of PointNet++ (Qi et al., 2017). The input features of the original PointNet++ are derived from
absolute XYZ coordinates, which are inherently SO(3)-equivariant. To validate the importance of
SO(3)-invariance for correspondence prediction, we make minimal adjustments to adapt the archi-
tecture for extracting SO(3)-invariant features, by replacing raw XYZ coordinates with RGB values.
Given the SO(3)-invariance of color attributes and kNN operation in grouping and interpolating, our
ColorPointNet++ yields SO(3)-invariant point-wise features, as detailed in Appendix A.1. The final
point-wise features F P ∈ RN×C are the concatenation of all four point-wise features that capture
distinct information from the observation, followed by feature dimension reduction to C.

HEALPix Spherical Projection. Once point-wise features are extracted, previous methods adopt
point-based representations to directly predict the NOCS coordinates corresponding to the observed
points, which causes semantic incoherence across diverse object shapes, as introduced in Section 1.
Instead, we propose to employ the sphere as a shared proxy shape of objects to learn shape-
independent transformation via spherical representations. Specifically, we first uniformly divide
the sphere with HEALPix grids (Gorski et al., 2005) as illustrated in Figure 4(b), each of which is
equal in area and represented by its center anchor Am ∈ R3,m ∈ {1, . . . ,M}, where M denotes
the number of grids. We then project the normalized points P onto the spherical grids, and assign
point-wise features F P to the corresponding spherical anchors, which serve as the new represen-
tations of observation with spherical features FA ∈ RM×C . In detail, consider a grid indexed by
m, we follow VI-Net (Lin et al., 2023b) to search within this grid region for the point with the
largest radius value, denoted as Pn, and assign its feature F P

n to the anchor Am. If there is no point
projected onto the grid, we set FA

m = 0. Since these spherical anchors are coherent across diverse
objects, the corresponding spherical NOCS coordinates are shape-independent.

3.2 SPHERICAL ROTATION ESTIMATION

Spherical Feature Interaction. Due to self-occlusion, depth cameras fail to perceive the occluded
regions on the backside of objects, causing incomplete point cloud. This phenomenon deteriorates
when projected onto spherical grids, leaving almost half of the spherical anchors without assigned
features. To this end, we employ a Transformer encoder with attention mechanism (Vaswani, 2017)
to facilitate feature interaction and propagation among spherical anchors A ∈ RM×3 in a global per-
spective, yielding comprehensive spherical features F ∈ RM×C from the initial spherical features
FA with a sequence of self-attention layers and MLP blocks, formulated as follows:

F l+1 = MLP(F̂ l+1) + F̂ l+1,

F̂ l+1 = Attention(F l) + F l,
l ∈ {0, . . . , L− 1}, (2)

3Radius refers to the Euclidean distance from the origin, i.e., the L2 norm of 3D point’s coordinates.
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where L is the number of layers and F = FL, F 0 = FA. Due to the disorder of spherical
anchors, the learnable position embeddings Epos ∈ RM×C are assigned to corresponding anchors
and contribute to the computation of attention for feature propagation. In formula, the self-attention
in l-th layer is defined as:

Attention(F l) = Softmax

((
QlWQ

) (
KlWK

)⊤
√
C

)(
V lW V

)
, (3)

Ql = F l +Epos, Kl = F l +Epos, V l = F l, (4)
whereWQ/K/V ∈ RC×C denotes learnable projection matrix for query, key and value, respectively,
with independent parameters across layers. Through global feature interaction and propagation,
those spherical features that are initially unassigned can be reasoned out. Moreover, by attending
to the relationship among spherical anchors from a holistic perspective, we integrate pose-coherent
spherical features which can alleviate the interference of noise.

Correspondence-based Rotation Estimation. Given the spherical features F , we follow previous
methods (Lin et al., 2022b; 2024) to first predict the spherical NOCS coordinates O ∈ RM×3

corresponding to spherical anchors A with an MLP-based NOCS predictor. Since the spherical
anchors and NOCS coordinates are on the unit sphere, we L2 normalize the output of MLP:

Om =
MLP(Fm)

∥MLP(Fm)∥2
, m ∈ {1, . . . ,M}. (5)

After acquiring the correspondences between spherical anchors and spherical NOCS coordinates,
there are several approaches to acquire the rotation R ∈ SO(3), such as the Umeyama algo-
rithm (Umeyama, 1991) or deep estimators (Lin et al., 2022b). We adopt the Umeyama algorithm
with RANSAC (Fischler & Bolles, 1981) for outlier removal as it does not require extra training.

3.3 CATEGORY-LEVEL OBJECT POSE ESTIMATION

Training. For the estimation of translation t ∈ R3 and size s ∈ R3, we follow VI-Net (Lin et al.,
2023b) to employ a simple and lightweight PointNet++ (Qi et al., 2017). It takes the observed point
cloud PO and the point-wise selected RGB attributes from image I as input, and directly regresses
t and s with L1 loss as follows:

Lts = ∥t− tgt∥1 + ∥s− sgt∥1. (6)
As for the estimation of rotation R ∈ SO(3), we adopt the correspondence-based paradigm to su-
pervise the spherical NOCS coordinates O. Specifically, we generate ground truth spherical NOCS
coordinates Ogt by mapping spherical anchors A into NOCS using the ground truth rotation Rgt:

Ogt
m = (Rgt)⊤Am, m ∈ {1, . . . ,M}, (7)

and the prediction errors e can then be measured by the distance between them, defined as:

em =

{
∥Om −Ogt

m∥1, as L1 distance
∥Om −Ogt

m∥2, as L2 distance , m ∈ {1, . . . ,M}. (8)

Previous methods employ either e directly as the loss function or the smooth L1 loss (Wang et al.,
2019b), which uses a squared term e2 if e fall below a certain threshold and the term e otherwise.
However, we examine the gradients of these loss functions in Figure 3 and discover that they ex-
hibit minor gradients around zero, which is prone to generate ambiguous prediction. To promote
the precision of correspondence prediction, we leverage the computation of distance in hyperbolic
space (Lin et al., 2023a), which yields higher gradients near zero and can discern more subtle dis-
tinctions. In detail, the arcosh(1+x) function is employed to the errors e with L2 distance, and the
final hyperbolic correspondence loss function for O is formulated as follows:

Lcorr =
1

M

M∑
m=1

arcosh (1 + em) =
1

M

M∑
m=1

arcosh
(
1 + ∥Om −Ogt

m∥2
)
. (9)

Inference. Given the cropped RGB image I and point cloud PO, we first predict the translation t
and size s via PointNet++, and then normalize4 the point cloud as P = (PO − t)/∥s∥2, which is
fed into our SpherePose for the estimation of rotation R.

4Note that the predicted t and s are used for centralization and scale-normalization in the inference stage,
while the ground truth tgt and sgt are used instead during the training stage.
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Figure 3: Illustration of several correspondence
loss functions and their gradients.

(a) Equirectangular Grids (b) HEALPix Grids

Non-uniform Area Uniform Area

Figure 4: Overview of (a) equirectangular grids
and (b) HEALPix grids.

3.4 DISCUSSION

Spherical Representations. Although several previous methods (Lin et al., 2021; 2023b; Chen
et al., 2024) have also adopted spherical representations for category-level object pose estimation,
there are two fundamental distinctions. Firstly, they employ the equirectangular grids (Driscoll &
Healy, 1994), which are evenly divided along latitude and longitude, as shown in Figure 4(a). How-
ever, this partition of sphere is non-uniform in area, with a higher sampling density near the poles,
which is suboptimal for representing the point cloud data. This characteristic is particularly detri-
mental for objects with diverse poses, as non-uniform sampling of distinct semantic components re-
sults in a biased distribution of sampled data. Instead, we resort to the HEALPix grids (Gorski et al.,
2005), which consistently yield the uniformly sampled spherical representations across various ob-
ject poses, as illustrated in Figure 4(b). This uniform spherical partition is a more appropriate choice
for the capture of point cloud structures, thereby enhancing the performance of pose estimation. Sec-
ondly, they intend to directly regress the pose in an end-to-end manner, which struggle with the pose-
sensitive feature learning due to the non-linearity of SE(3)/SO(3). DualPoseNet (Lin et al., 2021)
employs spherical convolution in the spectral domain to learn SO(3)-equivariant features. However,
the Fourier transforms require tensors in the Fourier domain of SO(3) that scale with the cube of the
bandwidth, limiting the resolution. VI-Net (Lin et al., 2023b) utilizes spherical convolution in the
spatial domain to learn viewpoint-equivariant features. Although it simplifies the regression process
by decoupling the rotation into viewpoint rotation and in-plane rotation, the spatial convolution has
a limited receptive field. Different from them, we follow with the correspondence-based paradigm
to establish the correspondences between spherical anchors and spherical NOCS coordinates, which
is easier to learn in the linear space R3. As for the spherical feature extraction, we adopt the atten-
tion mechanism to facilitate the feature interaction and propagation among spherical anchors from a
holistic perspective, yielding the comprehensive spherical features.

Proxy Shape. SAR-Net (Lin et al., 2022a) aims to deform the category-level proxy template point
cloud to align with the observed point cloud for implicitly representing its rotational state. The ob-
ject rotation is then solved from the categorical and deformed template point clouds by Umeyama
algorithm. Although it learns shape-independent transformation by leveraging the category-shared
template shape, the representations of the proxy shape are not well exploited to facilitate corre-
spondence prediction. Specifically, the rotation information for guidance during the deformation
process is derived from a single global feature vector of the observed point cloud, which leads to
difficulties with rotation-sensitive feature learning. In contrast, we resort to the sphere as a shared
proxy shape to learn shape-independent transformation via spherical representations. By projecting
the observed point cloud onto the spherical grids, we preserve the intact information from the ob-
servation. The comprehensive spherical features are further extracted through the interaction and
integration of features among spherical anchors from a holistic perspective, which can mitigate the
interference of noise and promote the correspondence prediction. The proxy shape is also incorpo-
rated in MFOS (Lee et al., 2024) for image-aligned pose representation, which transforms the pose
into a 2D image by rendering the 3D coordinates of a proxy shape (e.g., a cuboid or an ellipsoid)
positioned according to the pose. Since MFOS operates with only 2D images as input, the proxy
shape provides a mechanism for achieving 3D geometric perception, and the object pose is recov-
ered by solving a PnP problem from the dense 2D-3D mapping. We differ by directly learning the
3D-3D transformation of the proxy sphere between the camera and object coordinate spaces.
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Table 1: Performance comparison with state-of-the-art methods on REAL275 dataset.

Method Representation IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

Direct Regression

GPV-Pose (Di et al., 2022) Point-based - 64.4 32.0 42.9 - 73.3
HS-Pose (Zheng et al., 2023) Point-based 82.1 74.7 46.5 55.2 68.6 82.7
GenPose (Zhang et al., 2023) Point-based - - 52.1 60.9 72.4 84.0

DualPoseNet (Lin et al., 2021) Spherical 79.8 62.2 29.3 35.9 50.0 66.8
VI-Net (Lin et al., 2023b) Spherical - - 50.0 57.6 70.8 82.1
SecondPose (Chen et al., 2024) Spherical - - 56.2 63.6 74.7 86.0

Correspondence

NOCS (Wang et al., 2019b) Point-based 78.0 30.1 7.2 10.0 13.8 25.2
SPD (Tian et al., 2020) Point-based 77.3 53.2 19.3 21.4 43.2 54.1
SGPA (Chen & Dou, 2021) Point-based 80.1 61.9 35.9 39.6 61.3 70.7
DPDN (Lin et al., 2022b) Point-based 83.4 76.0 46.0 50.7 70.4 78.4
IST-Net (Liu et al., 2023b) Point-based 82.5 76.6 47.5 53.4 72.1 80.5
Query6DoF (Wang et al., 2023) Point-based 82.5 76.1 49.0 58.9 68.7 83.0
AG-Pose (Lin et al., 2024) Point-based 83.7 79.5 54.7 61.7 74.7 83.1

SpherePose Spherical 84.0 79.0 58.2 67.4 76.2 88.2

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our methods on three benchmarks including CAMERA25, REAL275 (Wang
et al., 2019b) and HouseCat6D (Jung et al., 2024). CAMERA25 is a synthetic dataset that con-
tains 275K training images and 25K testing images from 6 object categories, which are generated
by rendering foreground objects with real-world backgrounds using the mixed-reality technique.
REAL275 is a real-world dataset that consists of 4.3K training images of 7 scenes and 2.75K test-
ing images of 6 scenes, which shares the same categories with CAMERA25. HouseCat6D is an
emerging real-world dataset that comprises 20K training frames of 34 scenes, 3K testing frames
of 5 scenes and 1.4K validation frames of 2 scenes from 10 household categories. This collection
encompasses a diverse range of photometrically challenging objects, including glass and cutlery,
which are captured in a comprehensive manner across various viewpoints and occlusions.

Evaluation Metrics. Following previous works (Wang et al., 2019b; Chen et al., 2024), we report
the mean Average Precision (mAP) of n◦m cm for 6D pose estimation, which denotes the percentage
of prediction with rotation error less than n◦ and translation error less than m cm. We also report
the mAP of Intersection over Union (IoUx) for 3D bounding boxes with thresholds of x%.

Implementation Details. For a fair comparison, we employ the same instance segmentation masks
as DPDN (Lin et al., 2022b) from Mask R-CNN (He et al., 2017). The number of sampled points is
N = 2, 048. For DINOv2 features, images are first cropped and resized to 224 × 224 and then fed
into the frozen DINOv2, followed by bilinear interpolation upsampling to the original resolution for
point-wise selection. After extracting four point-wise features, we concatenate them at the feature
dimension, followed by a linear layer activated by GeLU (Hendrycks & Gimpel, 2016) that reduces
the dimension to C = 128. The resolution of HEALPix grids is expressed by the parameter Nside,
and we set it to 8, which results in M = 768 grids. The number of the Transformer encoder layers
is set to L = 6 by default. All experiments are conducted on a single RTX3090Ti GPU with a batch
size of 64 for 200K iterations. More details can be found in Appendix A.2.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Results on REAL275 and CAMERA25 Datasets. Table 1 shows the comparison of our method
with existing direct regression-based methods and correspondence-based methods on REAL275
dataset. It should be noted that our approach represents a pioneering application of spherical repre-
sentations within the correspondence-based paradigm. From the results we can see that SpherePose
outperforms the prior state-of-the-art methods on the precision of 6D pose estimation. Specifically,
when compared with direct regression-based methods, SpherePose surpasses SecondPose (Chen
et al., 2024) by 2.0% on 5◦2cm and 2.2% on 10◦5cm, which also employs spherical representations
and DINOv2 (Oquab et al., 2024) backbone. And when compared with correspondence-based meth-
ods, SpherePose outperforms AG-Pose (Lin et al., 2024) by 3.5% on 5◦2cm and 5.1% on 10◦5cm,
which encounters the intra-class semantic incoherence arising from point-based representations. As
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Table 2: Performance comparison with state-of-the-art methods on HouseCat6D dataset.

Method Representation IoU25 IoU50 5◦2cm 5◦5cm 10◦2cm 10◦5cm

Direct Regression

FS-Net (Chen et al., 2021) Point-based 74.9 48.0 3.3 4.2 17.1 21.6
GPV-Pose (Di et al., 2022) Point-based 74.9 50.7 3.5 4.6 17.8 22.7

VI-Net (Lin et al., 2023b) Spherical 80.7 56.4 8.4 10.3 20.5 29.1
SecondPose (Chen et al., 2024) Spherical 83.7 66.1 11.0 13.4 25.3 35.7

Correspondence
AG-Pose (Lin et al., 2024) Point-based 81.8 62.5 11.5 12.0 32.7 35.8

SpherePose Spherical 88.8 72.2 19.3 25.9 40.9 55.3

for the precision of 3D bounding boxes, we achieve comparable performance. Similar results on
CAMERA25 dataset can be found in Table 8, please refer to Appendix A.3 for the details.

Results on HouseCat6D Dataset. Table 2 provides the quantitative results of existing methods on
HouseCat6D dataset. As can be seen from the table, SpherePose achieves the best performance
against state-of-the-art approaches by a large margin under all metrics. Specifically, SpherePose
surpasses SecondPose (Chen et al., 2024) by 6.1% on IoU50 and 8.3% on 5◦2cm, and outperforms
AG-Pose (Lin et al., 2024) by 10.3% on IoU50 and 7.8% on 5◦2cm. When compared under the
10◦5cm metric, our method surpasses them by almost 20% (19.6% and 19.5%, respectively). It
is notable that this dataset includes objects with photometric complexities and extensive viewpoint
distributions, which is extremely challenging. The significant improvements on this benchmark
further demonstrate the effectiveness of the proposed method.

Table 3: Comparison of correspondence errors.

Method
Mean NOCS Error

Angle (◦) Distance (cm)

DPDN (Lin et al., 2022b) 16.62 10.50
AG-Pose (Lin et al., 2024) 10.36 5.88
SpherePose 4.52 3.89

Results of Correspondence Errors. To validate
the effectiveness of the proposed spherical rep-
resentations compared to point-based representa-
tions in correspondence prediction, we calculate
the mean NOCS errors on the REAL275 dataset.
As shown in Table 3, the NOCS errors of Sphere-
Pose are lower than DPDN (Lin et al., 2022b) and
AG-Pose (Lin et al., 2024) on both the angle and
Euclidean distance, which indicates that the proposed method achieves more accurate correspon-
dence prediction by learning shape-independent transformation on the proxy sphere.

4.3 ABLATION STUDIES

To shed more light on the superiority of our method, we conduct comprehensive ablation studies on
REAL275 dataset, as detailed below.

Table 4: Ablation studies on the deep point cloud backbone.

Point Cloud Backbone 5◦2cm 5◦5cm 10◦2cm 10◦5cm Parameters

None 55.9 64.6 74.3 86.7 0
PointNet++ 56.3 64.7 73.2 84.4 1,391,104

ColorPointNet++ 58.2 67.4 76.2 88.2 1,389,664

Efficacy of SO(3)-invariant
Point-wise Feature Extraction.
Table 4 illustrates the impact of
different deep point cloud back-
bones on the performance of ob-
ject pose estimation. The origi-
nal PointNet++ (Qi et al., 2017)
inherently lacks SO(3)-invariance due to the injection of SO(3)-equivariant absolute XYZ coordi-
nates. To validate the importance of SO(3)-invariant features for correspondence-based methods,
we introduce minimal adaptations to PointNet++ to derive our ColorPointNet++, which enables the
extraction of inherently SO(3)-invariant point cloud features while maintaining the architecture and
the number of parameters almost unchanged. As shown in the table, with comparable number of
parameters, our ColorPointNet++ outperforms the original PointNet++ by 1.9% on 5◦2cm and 3.8%
on 10◦5cm. Notably, PointNet++ performs even worse than no point cloud backbone at all, showing
a 2.3% drop on 10◦5cm. These results demonstrate the effectiveness of SO(3)-invariant point-wise
features for correspondence-based object pose estimation methods.

Efficacy of Spherical Feature Interaction. Table 5 illustrates the impact of varying numbers L
of the Transformer encoder layers. When the Transformer encoder is not employed, there is a
significant drop in performance to 20.7% on 5◦2cm, while when two layers of encoder are applied,
the performance on 5◦2cm goes up to 53.6%. This result demonstrates the effectiveness of spherical
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Table 5: Impact of the number of encoder layers.

Encoder Layers 5◦2cm 5◦5cm 10◦2cm 10◦5cm

0 20.7 23.9 56.2 65.8
2 53.6 61.3 74.0 85.8
4 55.7 64.5 75.2 86.5
6 58.2 67.4 76.2 88.2
8 57.9 66.7 74.9 86.2

Table 6: Impact of distinct loss functions.

Loss Function 5◦2cm 5◦5cm 10◦2cm 10◦5cm

L1 56.0 64.6 74.4 86.1
Smooth L1 54.6 63.2 72.6 83.3

Hyperbolic L1 58.0 66.5 73.5 85.0
L2 54.2 62.6 72.2 83.2

Hyperbolic L2 58.2 67.4 76.2 88.2

feature interaction, which yields comprehensive spherical features from a holistic perspective. As
the number of encoder layers increases, the precision of pose estimation is also improved, reaching
a saturation at six layers. Further increasing the number of encoder layers does not lead to enhanced
performance, but rather increases the inference overhead. Therefore, we set L = 6 in our method.

Efficacy of the Hyperbolic Correspondence Loss Function. Table 6 presents the impact of dis-
tinct loss functions on correspondence. As for the error with L1 distance in Equation 8, we conduct
evaluations using L1 loss, smooth L1 loss and hyperbolic L1 loss, respectively. Since the smooth
L1 loss has minor gradients near zero, it exhibits the worst performance of 54.6% on 5◦2cm. Con-
versely, the hyperbolic L1 loss augments the gradients around zero to distinguish subtle distinctions,
which improves the 5◦2cm metric from 56.0% of the L1 loss to 58.0%. With regard to the error with
L2 distance in Equation 8, we also derive the hyperbolicL2 loss, which results in an improvement on
5◦2cm from 54.2% of the L2 loss to 58.2%. We assume that the L2 distance in Euclidean space is a
better measure of the correspondence errors, so we adopt the hyperbolic L2 loss for correspondence
prediction. For detailed formulas of these loss functions, please refer to Appendix A.2.

Table 7: Impact of the choice of spherical grids.

Spherical Grids 5◦2cm 5◦5cm 10◦2cm 10◦5cm

HEALPix 58.2 67.4 76.2 88.2
Equirectangular 55.7 64.7 72.1 83.6

Super-Fibonacci Spirals 56.5 65.0 75.8 87.2

Choice of Spherical Grids. Table 7
provides the performance comparison of
adopting different spherical grids. To en-
sure a fair comparison, we use M = 768
grids for both HEALPix (Gorski et al.,
2005) and Super-Fibonacci Spirals (Alexa,
2022) grids. For Equirectangular (Driscoll
& Healy, 1994) grids, the latitude and longitude resolution is set to 28× 28, resulting in 784 grids,
which is close to 768 in number. Since the HEALPix grids are area-uniform for the partition of
sphere and can better capture the structure of point cloud, it achieves 2.5% and 4.6% higher per-
formance on the 5◦2cm and 10◦5cm metrics, respectively, compared to the Equirectangular grids.
In addition, we experiment with other nearly uniform spherical partitions, such as Super-Fibonacci
Spirals, which also outperforms Equirectangular grids with a 3.6% gain on 10◦5cm, though still
slightly below the performance of HEALPix.

5 CONCLUSION

In this work, we investigate the prevalent issue of intra-class semantic inconsistency of the canon-
ical coordinates within existing correspondence-based approaches for category-level object pose
estimation. We attribute this issue to shape-dependent point-based representations and propose to
leverage the sphere as a shared proxy shape of objects to learn shape-independent transformation via
spherical representations. In light of this insight, we introduce SpherePose, a novel architecture that
achieves precise correspondence prediction through three core designs: SO(3)-invariant point-wise
feature extraction for robust mapping between camera and object coordinate space, spherical fea-
ture interaction for holistic relationship integration, and a hyperbolic correspondence loss function
for diagnosis of subtle correspondence errors. Experimental evaluations on existing benchmarks
demonstrate the superiority of our method over state-of-the-art approaches.

Limitations and Future Works. Although the employment of spherical representations equipped
with spherical attention mechanism yields superior performance, the computational complexity of
the attention mechanism, which scales quadratically with the number of tokens, limits the resolution
of spherical grids. When the sphere is evenly partitioned intoM = 768 grids, each grid corresponds
to an area of approximately 53.71 square degrees. For future work, we may explore linear attention
mechanism (Wang et al., 2020) to facilitate spherical feature interaction. This could potentially
enhance the resolution of spherical partitioning and improve the quality of spherical representations.
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A APPENDIX

A.1 CLARIFICATIONS ON SO(3)-INVARIANCE

In this section, we first provide a detailed explanation of SO(3)-invariance and equivariance. Subse-
quently, we elaborate on the SO(3)-invariance of DINOv2 and ColorPointNet++, respectively.

SO(3)-Invariance/Equivariance. (1) Rotation estimation network should be SO(3)-equivariant.
The rotation estimation task can be defined as R = Net(P ), where Net denotes the rotation esti-
mation network. The SO(3)-equivariance between the input observed point cloud P ∈ RN×3 and
the output estimated rotation R ∈ SO(3) is then formulated as:

Net(ψG(P )) = ψG(Net(P )). (10)

(2) Correspondence predictor should ensure SO(3)-invariance. Correspondence-based methods
can be expressed as R = Net(P ) = Φ(P ,Corr(P )), where Φ is the rotation solver (e.g., the
Umeyama (Umeyama, 1991) algorithm) and Corr is the correspondence (NOCS) predictor. Then,
SO(3)-equivariance between the network input and output is formulated as:

Φ(ψG(P ),Corr(ψG(P ))) = ψG(Φ(P ,Corr(P ))). (11)

Given fixed reference coordinates Corr(P ) ∈ RN×3, the rotation solver Φ is SO(3)-equivariant
with respect to the other input P , which is written as:

Φ(ψG(P ),Corr(P )) = ψG(Φ(P ,Corr(P ))). (12)

Consequently, the correspondence predictor Corr needs to be designed to ensure SO(3)-invariance:

Corr(ψG(P )) = Corr(P ). (13)

It means that no matter how an object is rotated, a specific point on that object should be mapped to
a static coordinate in NOCS.

(3) Feature extractor in correspondence-based methods should be SO(3)-invariant. Since the cor-
respondence predictor is typically defined as Corr(P ) = MLP(f(P )), the point-wise feature ex-
tractor f(P ) in correspondence-based approaches also needs to be SO(3)-invariant, formulated as:

f(ψG(P )) = f(P ), (14)

which is consistent with Equation 1.

Figure 5: PCA visualization of DINOv2 features.

SO(3)-invariance of DINOv2. To illustrate
the SO(3)-invariance of DINOv2 (Oquab et al.,
2024), Figure 5 presents a PCA visualization of
DINOv2 features from the same instance under
different rotations. The visualization shows that
the DINOv2 features of the camera lens remain
relatively consistent across various rotations, in-
dicating their robustness to rotation variations.
However, since DINOv2 does not strictly guar-
antee such semantic consistency, we conclude
the features as approximately SO(3)-invariant,
in line with the terminology stated in Second-
Pose (Chen et al., 2024).

SO(3)-invariance of ColorPointNet++. To further illustrate the SO(3)-invariance of the proposed
ColorPointNet++ network, we show the pipeline comparison between ColorPointNet++ and Point-
Net++ (Qi et al., 2017) in Figure 6. Given the input points P ∈ RN×d, where d denotes the coordi-
nate dimension and is equal to 3 in Euclidean space, and associated point attributes F attr ∈ RN×C0

(e.g., RGB colors with C0 = 3), PointNet++ first concatenates them to yield the input features
F in ∈ RN×(d+C0), and then aggregates the point-wise features F out ∈ RN×C by a hierarchical
grouping and propagation strategy. It should be noted that in each set abstraction level and feature
propagation level, PointNet++ concatenates the absolute XYZ coordinates onto the output features.
The injection of SO(3)-equivariant XYZ coordinates on features results in the output features of
PointNet++ lacking SO(3)-invariance. In contrast, the proposed ColorPointNet++ is structured to
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Figure 6: Overview of comparison between the PointNet++ and our ColorPointNet++ network.

achieve SO(3)-invariant feature extraction by avoiding the injection of absolute XYZ coordinates on
the features. Specifically, XYZ coordinates are not used for input features and are not concatenated
in each level, where the input features are derived exclusively from RGB values. Given that the k
Nearest Neighbor (kNN) operation employed in the grouping and interpolation processes is SO(3)-
invariant, the output features of our ColorPointNet++ network therefore exhibit SO(3)-invariance.

A.2 MORE IMPLEMENTATION DETAILS

Training Details. For deep image feature extraction, we use the DINOv2 (Oquab et al., 2024)
model with a ViT-S/14 (Dosovitskiy et al., 2020) architecture and feature dimension of 384. And
for deep point cloud feature extraction, we implement the ColorPointNet++ network incorporating
4 set abstraction levels with multi-scale grouping, and the output feature dimension is 256. In terms
of HEALPix grids (Gorski et al., 2005), the resolution is expressed by the parameter Nside and the
number of grids is equal to Npix = 12N2

side, where we set Nside = 8 and yield M = Npix = 768.
For data augmentation, we follow previous works (Lin et al., 2023b; 2024) to use perturbations with
random translation ∆t ∼ U(−0.02, 0.02), random scale ∆s ∼ U(0.8, 1.2), and random rotational
degree sampled from U(0, 20) for each axis. Regarding network optimization, we train SpherePose
using the Adam (Kingma & Ba, 2015) optimizer for 200K iterations, with an initial learning rate of
0.001 and a cosine annealing schedule.

Correspondence Loss Functions. The specific formulas corresponding to the loss functions in
Table 6 within the ablation study section (Section 4.3) are provided below:

LL1 =
1

M

M∑
m=1

∥Om −Ogt
m∥1, (15)

LSmooth L1 =
1

M

M∑
m=1

{
5∥Om −Ogt

m∥21, ∥Om −Ogt
m∥1 ≤ 0.1

∥Om −Ogt
m∥1 − 0.05, ∥Om −Ogt

m∥1 > 0.1
, (16)

LHyperbolic L1 =
1

M

M∑
m=1

arcosh
(
1 + ∥Om −Ogt

m∥1
)
, (17)

LL2 =
1

M

M∑
m=1

∥Om −Ogt
m∥2, (18)

LHyperbolic L2 =
1

M

M∑
m=1

arcosh
(
1 + ∥Om −Ogt

m∥2
)
, (19)
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Table 8: Performance comparison with state-of-the-art methods on CAMERA25 dataset.

Method Representation IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

Direct Regression

GPV-Pose (Di et al., 2022) Point-based 93.4 88.3 72.1 79.1 - 89.0
HS-Pose (Zheng et al., 2023) Point-based 93.3 89.4 73.3 80.5 80.4 89.4

DualPoseNet (Lin et al., 2021) Spherical 92.4 86.4 64.7 70.7 77.2 84.7
VI-Net (Lin et al., 2023b) Spherical - - 74.1 81.4 79.3 87.3

Correspondence

NOCS (Wang et al., 2019b) Point-based 83.9 69.5 32.3 40.9 48.2 64.4
SPD (Tian et al., 2020) Point-based 93.2 83.1 54.3 59.0 73.3 81.5
SGPA (Chen & Dou, 2021) Point-based 93.2 88.1 70.7 74.5 82.7 88.4
IST-Net (Liu et al., 2023b) Point-based 93.7 90.8 71.3 79.9 79.4 89.9
Query6DoF (Wang et al., 2023) Point-based 91.9 88.1 78.0 83.1 83.9 90.0
AG-Pose (Lin et al., 2024) Point-based 93.8 91.3 77.8 82.8 85.5 91.6

SpherePose Spherical 94.8 92.4 78.3 84.3 84.8 92.3

Table 9: IoU metric comparison with state-of-the-art methods on HouseCat6D dataset.
Method Representation IoU25 / IoU50 Bottle Box Can Cup Remote Teapot Cutlery Glass Tube Shoe

Direct Regression

FS-Net(Chen et al., 2021) Point-based 74.9 / 48.0 65.3 / 45.0 31.7 / 1.2 98.3 / 73.8 96.4 / 68.1 65.6 / 46.8 69.9 / 59.8 71.0 / 51.6 99.4 / 32.4 79.7 / 46.0 71.4 / 55.4
GPV-Pose(Di et al., 2022) Point-based 74.9 / 50.7 66.8 / 45.6 31.4 / 1.1 98.6 / 75.2 96.7 / 69.0 65.7 / 46.9 75.4 / 61.6 70.9 / 52.0 99.6 / 62.7 76.9 / 42.4 67.4 / 50.2

VI-Net(Lin et al., 2023b) Spherical 80.7 / 56.4 90.6 / 79.6 44.8 / 12.7 99.0 / 67.0 96.7 / 72.1 54.9 / 17.1 52.6 / 47.3 89.2 / 76.4 99.1 / 93.7 94.9 / 36.0 85.2 / 62.4
SecondPose(Chen et al., 2024) Spherical 83.7 / 66.1 94.5 / 79.8 54.5 / 23.7 98.5 / 93.2 99.8 / 82.9 53.6 / 35.4 81.0 / 71.0 93.5 / 74.4 99.3 / 92.5 75.6 / 35.6 86.9 / 73.0

Correspondence
NOCS(Wang et al., 2019b) Point-based 50.0 / 21.2 41.9 / 5.0 43.3 / 6.5 81.9 / 62.4 68.8 / 2.0 81.8 / 59.8 24.3 / 0.1 14.7 / 6.0 95.4 / 49.6 21.0 / 4.6 26.4 / 16.5
AG-Pose(Lin et al., 2024) Point-based 81.8 / 62.5 82.3 / 62.8 57.2 / 7.7 97.1 / 83.6 97.9 / 79.6 87.0 / 66.2 63.4 / 60.9 77.2 / 62.0 100.0 / 99.4 83.4 / 53.4 72.0 / 50.0

SpherePose Spherical 88.8 / 72.2 98.6 / 87.4 58.9 / 5.6 97.4 / 87.2 100.0 / 97.7 79.0 / 63.5 94.8 / 87.3 85.5 / 74.5 99.6 / 98.0 74.5 / 30.0 99.8 / 90.8

A.3 ADDITIONAL EXPERIMENTAL RESULTS

Results on CAMERA25 Dataset. In Table 8, we compare our method with the existing ones for
category-level object pose estimation on CAMERA25 (Wang et al., 2019b) dataset. From the results
we can see that SpherePose achieves the best performance. In detail, SpherePose outperforms the
state-of-the-art correspondence-based method AG-Pose (Lin et al., 2024) by 1.0% on IoU50, 1.1%
on IoU75, 0.5% on 5◦2cm and 1.5% on 5◦5cm, respectively.

Results of IoU Metric on HouseCat6D Dataset. Table 9 presents the quantitative comparison of
IoU metrics between our method and existing methods on HouseCat6D (Jung et al., 2024) dataset.
Once again, our SpherePose attains the state-of-the-art performance, surpassing the second-best
method SecondPose (Chen et al., 2024) by 5.1% on IoU25 and 6.1% on IoU50.

Table 10: Ablation studies on point-wise features.

Point-wise Features 5◦2cm 5◦5cm 10◦2cm 10◦5cm

Low-level Image RGB 58.2 67.4 76.2 88.2
None 56.8 65.9 75.9 87.7

High-level Image
DINOv2 58.2 67.4 76.2 88.2

None 48.7 57.1 69.2 80.3
ResNet18 53.8 62.5 72.8 83.8

Low-level Point Cloud Radius 58.2 67.4 76.2 88.2
None 52.3 58.9 72.3 83.6

High-level Point Cloud

ColorPointNet++ 58.2 67.4 76.2 88.2
None 55.9 64.6 74.3 86.7

PointNet++ 56.3 64.7 73.2 84.4
HP-PPF 55.1 64.2 74.2 85.9

Ablation Studies on Point-wise
Features. Table 10 presents
the results of detailed ablation
studies on point-wise features.
For low-level image features,
RGB values provide the low-
level texture information, bring-
ing a performance gain of 1.4%
on 5◦2cm. For high-level image
features, the frozen pretrained
DINOv2 (Oquab et al., 2024)
achieves a 4.4% higher perfor-
mance on 5◦2cm compared to
the end-to-end trained ResNet18 (He et al., 2016). Due to the large-scale pretraining, DINOv2
produces semantically consistent patch-wise features that are robust to rotations, which facilitates
correspondence prediction. For low-level point cloud features, removing the radius information
results in a 5.9% drop on 5◦2cm, which highlights the importance of spatial structure awareness.
Since the proposed ColorPointNet++ eliminates the injection of raw XYZ coordinates, its features
lack implicit encoding of the underlying spatial structure, making explicit SO(3)-invariant radius in-
formation essential. For high-level point cloud features, ColorPointNet++ outperforms the original
PointNet++ (Qi et al., 2017) by 3.8% on 10◦5cm, emphasizing the significance of SO(3)-invariant
features. Additionally, We have tried HP-PPF (Chen et al., 2024), which is also SO(3)-invariant,
but the performance is suboptimal compared to not using it. This might stem from the fact that HP-
PPF samples 300 points from 2048 observed points to estimate point-wise normal vectors, making
it prone to noise due to the sparse sampling. Moreover, as a parameter-free approach, HP-PPF lacks
the deep feature extraction capabilities compared to the learnable architecture of ColorPointNet++.
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Table 11: Per-category results of our Sphere-
Pose on REAL275 dataset.

Category IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

bottle 57.6 51.3 71.7 76.8 81.4 88.7
bowl 100.0 100.0 87.7 96.9 90.8 100.0
camera 90.9 77.5 5.4 5.7 43.9 50.1
can 71.4 70.6 76.5 81.6 91.9 98.4
laptop 84.8 75.5 59.5 92.7 60.0 97.0
mug 99.6 99.3 48.5 50.3 89.2 94.9

average 84.0 79.0 58.2 67.4 76.2 88.2

Table 12: Per-category results of AG-Pose (Lin
et al., 2024) on REAL275 dataset.

Category IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

bottle 57.7 50.3 62.0 64.9 83.4 88.0
bowl 100.0 100.0 88.7 94.3 94.1 99.7
camera 90.8 82.9 1.2 1.3 24.8 27.3
can 71.3 71.2 83.4 85.3 96.3 98.6
laptop 83.3 74.1 59.6 91.1 61.2 95.6
mug 99.4 98.5 32.9 33.4 88.3 89.3

average 83.7 79.5 54.7 61.7 74.7 83.1

Table 13: Per-category results of our Sphere-
Pose on CAMERA25 dataset.

Category IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

bottle 93.8 90.6 78.0 93.3 79.5 96.4
bowl 97.0 96.7 95.1 95.6 98.6 99.2
camera 94.5 91.6 69.2 72.8 78.9 86.9
can 92.2 91.7 96.7 97.9 97.2 98.6
laptop 97.9 91.4 73.1 87.4 75.6 92.1
mug 93.6 92.3 57.6 58.9 78.7 80.4

average 94.8 92.4 78.3 84.3 84.8 92.3

Table 14: Per-category results of AG-Pose (Lin
et al., 2024) on CAMERA25 dataset.

Category IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

bottle 93.7 91.4 80.9 96.4 82.3 99.0
bowl 96.9 96.7 98.7 99.0 99.7 99.8
camera 89.2 84.3 57.0 60.9 73.6 81.1
can 92.1 92.0 99.7 99.8 99.7 99.9
laptop 97.5 90.8 76.1 85.9 80.6 92.4
mug 93.6 92.7 54.5 54.6 77.1 77.3

average 93.8 91.3 77.8 82.8 85.5 91.6

Table 15: Per-category results of our Sphere-
Pose on HouseCat6D dataset.

Category IoU25 IoU50 5◦2cm 5◦5cm 10◦2cm 10◦5cm

bottle 98.6 87.4 51.0 55.7 67.9 79.1
box 58.9 5.6 0.0 0.0 0.2 0.2
can 97.4 87.2 33.9 41.4 63.0 79.2
cup 100.0 97.7 2.8 3.0 60.6 68.4
remote 79.0 63.5 15.7 16.3 46.9 50.1
teapot 94.8 87.3 25.2 44.4 53.6 86.8
cutlery 85.5 74.5 1.4 1.6 8.2 13.0
glass 99.6 98.0 54.8 66.3 78.5 96.4
tube 74.5 30.0 1.0 1.2 5.3 6.7
shoe 99.8 90.8 7.3 29.3 24.5 73.2

average 88.8 72.2 19.3 25.9 40.9 55.3

Per-category Results. The REAL275 and CAM-
ERA25 datasets share the same categories, in-
cluding bottle, bowl, camera, can, laptop and
mug. In order to conduct an in-depth analysis of
the relative merits of our method, we show the
per-category and average results of our Sphere-
Pose and AG-Pose (Lin et al., 2024) on REAL275
dataset in Table 11 and Table 12, and on CAM-
ERA dataset in Table 13 and Table 14, respec-
tively. It can be observed that SpherePose outper-
forms AG-Pose mainly in the camera and mug
categories, which have large intra-class shape
variations. This result demonstrates the effective-
ness of our approach to learn shape-independent transformation via spherical representations, which
can resolve the issue of intra-class semantic incoherence arising from point-based representations.
We also provide the per-category results on HouseCat6D dataset in Table 15, which contains 10
household categories: bottle, box, can, cup, remote, teapot, cutlery, glass, tube and shoe. Note that
we deal with all categories by a single model as in Lin et al. (2022b; 2023b; 2024).

Figure 7: Training comparison between the hy-
perbolic L2 and traditional L2 loss functions.

Convergence Speed of the Hyperbolic Corre-
spondence Loss Function. Figure 7 visual-
izes the training convergence speed and accu-
racy comparison between our hyperbolic corre-
spondence loss function and the traditional loss
function. As discussed in Section 3.3, the hy-
perbolic L2 loss function is designed to improve
the gradient of the traditional L2 loss function
around zero, facilitating more fine-grained cor-
respondence prediction. As shown in the figure,
the hyperbolic L2 loss not only accelerates con-
vergence during training but also achieves higher
accuracy, demonstrating its effectiveness in im-
proving correspondence prediction precision.

Inference Speed and Overhead. Table 16 shows the comparison of the pose estimation perfor-
mance, total number of parameters, and inference speed on REAL275 dataset. As demonstrated by
the results, the increase in the number L of encoder layers leads to enhanced performance, reaching
saturation at six layers. A further increase in the number of layers does not result in further perfor-
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Table 16: Comparison of different methods in terms of performance on REAL275, inference speed
and overhead. All the experiments for inference speed are conducted on a single RTX3090Ti GPU.

Method 5◦2cm 5◦5cm 10◦2cm 10◦5cm Parameters (M) Speed (FPS)

VI-Net (Lin et al., 2023b) 50.0 57.6 70.8 82.1 28.9 29.7
SecondPose (Chen et al., 2024) 56.2 63.6 74.7 86.0 60.2 14.3
DPDN (Lin et al., 2022b) 46.0 50.7 70.4 78.4 24.6 27.4
AG-Pose (Lin et al., 2024) 54.7 61.7 74.7 83.1 28.9 27.5

SpherePose with L = 2 53.6 61.3 74.0 85.8 25.7 26.4
SpherePose with L = 4 55.7 64.5 75.2 86.5 26.1 25.9
SpherePose with L = 6 58.2 67.4 76.2 88.2 26.5 25.3
SpherePose with L = 8 57.9 66.7 74.9 86.2 26.9 24.5

mance gains, but rather increases the number of parameters and slows down the inference. There-
fore, we set L = 6 in our method. Moreover, our approach demonstrates superior performance over
existing methods, retaining a comparable number of parameters and inference speed. Specifically,
in comparison to the leading correspondence-based method AG-Pose (Lin et al., 2024), our Sphere-
Pose achieves a 3.5% improvement on 5◦2cm, with 2.4 million fewer parameters and only a slight
decrease in FPS. When compared to the direct regression-based methods, SpherePose outperforms
the advanced SecondPose (Chen et al., 2024) by 2% on 5◦2cm, with substantially fewer parameters
(26.5 million and 60.2 million, respectively) and higher FPS (25.3 and 14.3, respectively).

A.4 CONCURRENT RELATED WORKS

In this section, we discuss the distinctions between our approach and two concurrent related works.

Correspondence-based work. Mariotti et al. (2024) propose a semantic correspondence estimation
approach, which deal with the challenges of object symmetries and repeated parts by incorporating
a weak geometric spherical prior to supplement leading self-supervised features with 3D perception
capabilities. They project image features onto a spherical map and use viewpoint information to
guide correspondence prediction. While both this work and ours utilize spherical representations,
the primary focus and application are different. Mariotti et al. (2024) aim to improve semantic cor-
respondence estimation, which involves finding local regions that correspond to the same semantic
entities across images. In contrast, our SpherePose focuses on correspondence-based category-level
object pose estimation, which involves establishing correspondences between observed points and
normalized object coordinates, and then fitting the object pose. Mariotti et al. (2024) use spher-
ical representations to learn 3D perception-driven semantic features, while we leverage spherical
representations to learn shape-independent transformation, which is beneficial for handling large
intra-class shape variations.

Regression-based work. Lee & Cho (2024) propose a 3D rotation regression approach that directly
predicts Wigner-D coefficients in the frequency domain, aligning with the operations of spherical
CNNs. They uses an SO(3)-equivariant pose harmonics predictor to ensure consistent pose estima-
tion under arbitrary rotations, overcoming limitations of spatial parameterizations such as discon-
tinuities and singularities. While both this work and ours aim to improve 3D rotation estimation,
the operating domains and the way to estimate rotation are different. Lee & Cho (2024) focus on
predicting Wigner-D coefficients in the frequency domain to capture 3D rotations, which is useful
for ensuring consistent pose estimation under different rotations. Instead, our method operates in
the spatial domain, leveraging spherical representations to learn shape-independent transformation
rather than directly predicting rotations through the network.

A.5 VISUALIZATION

Qualitative Comparison. In Figure 8, we provide the qualitative comparison of existing
correspondence-based methods, i.e., DPDN (Lin et al., 2022b), AG-Pose (Lin et al., 2024) and our
SpherePose on REAL275 dataset. The visualization results indicate that previous methods adopting
point-based representations do not perform well when dealing with novel objects with large shape
variations, such as the length variation in camera lenses and the curvature distinctions in mug han-
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DPDN

AG-Pose

SpherePose

Figure 8: Qualitative comparison of DPDN (Lin et al., 2022b), AG-Pose (Lin et al., 2024) and our
SpherePose on REAL275 dataset. Red/Green indicates the predicted/GT results.

dles. By learning shape-independent transformation on the sphere, the proposed method allows for
enhanced pose estimation.

More Visualization. We provide more visualization results of pose estimation from our SpherePose,
including successful cases in Figure 9 and failed cases in Figure 10. We visualize all six previously
unseen scenes within the REAL275 testing dataset, with three images for each scene. It can be
observed that failures predominantly occur due to the omission of objects in the detection process
and significant viewpoint variations that result in incomplete capture of some objects.
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Scene 1

Scene 2

Scene 3

Scene 4

Scene 5

Scene 6

Figure 9: Visualization of successful cases from our SpherePose on the 6 testing scenes of REAL275
dataset. Red/Green indicates the predicted/GT results.
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Scene 1

Scene 2

Scene 3

Scene 4

Scene 5

Scene 6

Figure 10: Visualization of failed cases from our SpherePose on the 6 testing scenes of REAL275
dataset. Red/Green indicates the predicted/GT results.
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