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Abstract

We study the problem of finding the equilibrium
of a mean field game (MFG) — a policy per-
forming optimally in a Markov decision process
(MDP) determined by the mean field, which is
a distribution over a population of agents and
a function of the policy. Prior solution tech-
niques build upon fixed-point iteration and are
only guaranteed to solve a regularized approx-
imation of the problem, with a regularization
constant large enough to ensure that the equi-
librium is the unique fixed point of a contrac-
tion mapping. This leads to a regularized solu-
tion that can deviate arbitrarily from the original
equilibrium. In this work, for the first time, we
demonstrate how direct gradient-based policy op-
timization instead of fixed-point iteration, may
solve the original, unregularized infinite-horizon
average-reward MFG. In particular, we propose
Accelerated Single-loop Actor Critic Algorithm
for Mean Field Games (ASAC-MFG), which by
its namesake, is completely data-driven, single-
loop, and single-sample-path. We characterize
the finite-time and finite-sample convergence of
the ASAC-MFG algorithm to a mean field equilib-
rium building on a novel multi-time-scale analysis
without regularization. We support the theoretical
results with numerical simulations that illustrate
the superior convergence of the proposed algo-
rithm.

1. Introduction

The mean field game (MFG) framework, introduced in
Huang et al. (2006); Lasry & Lions (2007), provides an
infinite-population approximation to the N-agent Markov
game with a large number of homogeneous agents. It ad-
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dresses the increasing difficulty in solving Markov games
as NV scales up and finds practical applications in many do-
mains including resource allocation (Li et al., 2020; Mao
et al., 2022), wireless communication (Xu et al., 2018;
Narasimha et al., 2019; Jiang et al., 2019), and the man-
agement of power grids (Alasseur et al., 2020; Zhang et al.,
2021b).

A mean field equilibrium describes the notion of solution
in an MFG, and is a pair of policy and mean field such that
the policy performs optimally in a Markov decision process
(MDP) determined by the mean field and the mean field
is the induced stationary distribution of the states when
every agent in the infinite population adopts the policy.
In the discrete-time setting without explicit knowledge of
the environment dynamics, reinforcement learning (RL)
provides an important tool for finding a mean field equi-
librium using samples of the state transition and reward. A
series of recent works have proposed finite-time convergent
RL solutions to MFGs (Guo et al., 2019; Xie et al., 2021;
Anabhtarci et al., 2023; Mao et al., 2022; Zaman et al., 2023;
Yardim et al., 2023), which all make an assumption on the
contraction of a mean field optimality-consistency operator.
The assumption guarantees the uniqueness of the mean field
equilibrium and allows fixed-point-iteration-type algorithms
to converge. However, as pointed out in Yardim et al.
(2024), the assumption only holds if an impractically large
regularization is added. Since the policy at the regularized
equilibrium quickly approaches a uniform distribution as the
regularization weight increases, solving such a regularized
problem is usually uninformative about the original game.

‘We summarize our main contributions and include a detailed
literature comparison in Table 1.

Main Contributions

e We design a finite-time convergent algorithm ASAC-MFG
that provably finds a mean field equilibrium without regular-
ization or imposing the aforementioned contraction assump-
tion. However, it is shown in Yardim et al. (2024) that find-
ing an equilibrium in a general MFGs (even with Lipschitz
transition kernel and reward function) is a PPAD-complete
problem conjectured to be computationally intractable
(Daskalakis et al., 2009). We identify a subclass of MFGs
satisfying a proposed “herding condition” (Assumption 4)
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with A = 0, where ASAC-MFG converges to the exact mean
field equilibrium. For MFG instances not within this sub-
class, our algorithm converges to a A—neighborhood around
the mean field equilibrium. In this sense, this work comple-
ments and expands on the finding of Yardim et al. (2024).

e ASAC-MFG is single-loop, single-sample path policy op-
timization algorithm that finds the equilibrium in the tabular
infinite-horizon average-reward MFG, and has finite-time
complexity. Specifically, for a subclass of MFGs satisfy-
ing the herding condition with A = 0, ASAC-MFG finds a
global mean field equilibrium with a convergence rate of
O(k=1/2); for A > 0, it converges to a v/A—approximate
MEFE with the same rate. To our knowledge, this work
is the first to study a finite-time convergent algorithm for
MFGs without the contraction assumption, and is also
the first to propose a completely sample-based single-loop
single-sample-path algorithm for MFGs. Single-loop single-
sample-path RL algorithms are widely used in practice due
to convenience and simplicity but their theoretical under-
standing is not as complete as their nested-loop counterparts.
Our work fills in this important gap in the context of MFGs.

Gradient-Based
Policy Optimization
Approach

Fixed-Point
Iteration

Figure 1. Possible trajectories of gradient-based versus fixed-point
iteration methods in the landscape of MFG cumulative return with-
out the contraction assumption. Fixed-point iteration may diverge
on the unregularized problem, while gradient-based method con-
verges.

e Our proof is based on a novel multi-time-scale analysis.
We extend the techniques of analyzing two-time-scale actor-
critic algorithms (Wu et al., 2020; Chen & Zhao, 2024) to
the three-time-scale case where the additional time scale
is introduced to carry out the mean field updates. The ad-
ditional time scale may prevent the selection of the most
suitable step sizes and result in convergence rate degrada-
tion if not treated properly'. We overcome the challenge by
incorporating the latest innovation in convergence accelera-
tion through smoothed gradient estimators (Zeng & Doan,
2024). Our multi-time-scale algorithm design methodology
and analysis can be of independent interest and potentially
applicable to other problems where the goal is to solve a

'The restriction in step size selection when moving from a
single time scale to two time scales is discussed in Zeng et al.
(2024).

coupled system of optimization problems.

1.1. Related Work

The classic works on MFGs study the continuous-time set-
ting where the equilibrium point simultaneously satisfies
a Hamilton—Jacobi—-Bellman equation on the optimality of
the policy and a Fokker—Planck equation that describes the
dynamics of the mean field and have proposed optimal con-
trol techniques that provably find the solution (Huang et al.,
2006; 2007; Lasry & Lions, 2007). In discrete time, MFGs
can be considered a generalization of MDPs and are widely
solved using RL. Among the latest representative works,
Yang et al. (2018); Carmona et al. (2021) build upon pol-
icy optimization and Anahtarci et al. (2020); Angiuli et al.
(2022; 2023); Gu et al. (2023); An et al. (2024) consider
valued-based methods. The algorithms proposed in these
works, however, either do not come with convergence anal-
ysis or are only shown to converge asymptotically.

The aim of our paper is to design a finite-time convergent
algorithm for finding the equilibrium of an MFG. Com-
pared to the literature on this subject (Guo et al., 2019; Xie
et al., 2021; Anahtarci et al., 2023; Mao et al., 2022; Zaman
et al., 2023; Yardim et al., 2023), we base our algorithm on
gradient-based policy optimization instead of fixed-point
iteration, which allows us to remove the contraction as-
sumption on a mean field optimality-consistency operator.
Without the assumption, algorithms designed in the existing
works, which leverage fixed-point iteration at the core, lose
convergence/stability guarantees and may in theory exhibit
arbitrary behaviors even when close to an equilibrium, as
illustrated in Figure. 1. In contrast, a gradient-based algo-
rithm can move more stably in the optimization landscape
of the MFG objective due to the Lipschitz continuity.

It is worth pointing out the relevant works (Carmona et al.,
2019; Fu et al., 2020; Zaman et al., 2020; Wang, 2024,
Zaman et al., 2024) on linear-quadrtic MFGs (i.e. the state
and action are continuous, the cost is a quadratic function
of state and action, and the state transition is linear), which
can be regarded as an extension of the single-agent linear-
quadratic regulator. The linear-quadratic structure makes
this class of problems more convenient to study and efficient
to solve.

Finally, we note the separate line of works (Guo et al., 2024;
Mandal et al., 2023) that reformulate the MFG policy op-
timization problem as a constrained program with convex
constraints and a bounded objective. The simple projected
gradient descent algorithm provably solves the constrained
program, leading to a solution of the MFG. However, a
finite-time convergence guarantee is not established, unless
again a sufficiently large regularization is added.

The rest of the paper is organized as follows. Sec.2
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presents the MFG formulation. Sec.3 develops the pro-
posed ASAC-MFG algorithm. In Sec.4 we introduce the
technical assumptions and state our main theoretical results.
Simulation results are presented in Sec.5.

2. Formulation

We study MFGs in the stationary infinite-horizon average-
reward setting, in which we denote the finife state and action
spaces by S and A. From the perspective of a single repre-
sentative agent, the state transition depends not only on its
own action but also on the aggregate behavior of all other
agents. Mathematically, we describe this aggregate behavior
by the mean field i € As?, which conceptually measures
the percentage of population in each state. The transition
kernel of an MFG is represented by P : S x Ax Ag — Ag,
where P(s" | s, a, i) describes the probability that the state
of the representative agent transitions from s to s’ when
it takes action a and mean field is . The mean field also
affects the reward function 7 : § x A x Ag — [0,1] —the
agent receives reward (s, a, u) when it takes action a in
state s under mean field p. Not directly observing the mean
field, the agent takes actions according to policy 7 : S — A,
which is represented as A§ C RISIXIAL

Under a given policy m and mean field p, the states se-
quentially generated form a Markov chain with transition
matrix P™# € RISIXISI where Pl =3, caP(s |
s,a,p)m(a | s). We denote by v™# € Ag the station-
ary distribution of the Markov chain, which is the right
singular vector of P™# associated with singular value 1,
ie. v H = P FY™F When the mean field is ¢ and the
agent generates actions according to 7, the agent can expect
to collect the cumulative reward J (7, 1)

J(m, p)

. 1 K-1
2 Khjnoo K}Eak’\’ﬂ'("Sk)a5k+1"’7)('|5k7ak7lb) [Zkzo (8K, Gk, 1))
= Eswu“-ﬂ,a~7r(-|s) [T(S,CLM)]. M

As J is independent of the initial state sg, we use the differ-
ential value function V™ # € RIS! to quantify the relative
value of each initial state

T, A
Vv H(s) = ]EakNTF('|Sk)73k+1N7’('\Skﬂlmﬂ)

[0 (s an ) = T () | 50 = 5]

If the mean field were fixed to a given p, the goal of the
agent would be to find a policy 7 that maximizes J(m, u).
However, when every agent in the infinite population fol-
lows the same policy as the representative agent, the mean
field evolves as a function of . We use p* : A5 — Ag

2We use As and A 4 to denote the probability simplex over
the state and action spaces.

to denote the mapping from a policy to the induced mean
field, which is the stationary distribution of states when the
infinite number of players in the game all adopt policy 7.
The following consistency equation needs to be satisfied by

wr(m)
() = v T = (P )T (). 2)

The goal of the representative agent in an MFG is to find a
policy optimal under the mean field induced by the policy.
Mathematically, the objective is to find a pair of policy
and mean field (7, i), known to exist under mild regularity
assumptions (Saldi et al., 2018), as the solution to the system

{ J(7,p) = J(m,p),  Vw 3)
= (7). )

We assume that the induced mean field p*(7) is unique
for any 7. Note that this does not imply the mean field
equilibrium (7, /i) is unique.

Definition 1. The pair of policy and mean field (m, 11) is an
e-mean field equilibrium if

J(r' pu) — J(m,p) < e,Va', and ||p — p* ()] <e. (5)

We usually cannot hope to find the exact equilibrium. Defi-
nition 1 quantifies the distance between an exact equilibrium
and any solution pair (7, ;) that we may find in finite time.
It says that (7, 1) is an approximate mean field equilibrium
if m approximately optimizes the cumulative return in the
MDP determined by p and p is close to the mean field in-
duced by policy 7. If a given solution (7, i) satisfies (5)
with € = 0, it is obviously an exact mean field equilibrium
as a solution to (3)-(4).

3. Algorithm

Our algorithm departs from the existing literature in that
we approach MFGs from the perspective of direct policy
optimization rather than fixed-point iteration. As we do not
directly deal with the mean field optimality-consistency
operator, we bypass the need to impose strong and un-
realistic assumptions. It is obvious from (3) that if the
optimal policy under i were unique and we knew ji, we
could easily find 7 through policy optimization with the
mean field fixed to zi. On the other hand, if we knew the
equilibrium policy 7, we could obtain fi by finding p* (7).
However, we do not know either 7 or i and that the opti-
mal policy under i may not be unique. However, inspired
by the discussion above we take the approach of simul-
taneous learning. We maintain a parameter § € RISIIAl
that encodes the policy 7y via the softmax function i.e.
mo(a | 5) = exp(0(5,0))/ Y e exp(0s,a’)), and a
mean field iterate /i to estimate the mean field induced by
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Contraction

Assumption Sample Path Loop

Single  Single

Convergence Rate

Guo et al. (2019) Required
Anabhtarci et al. (2020) Required
Xie et al. (2021) Required
Mao et al. (2022) Required
Zaman et al. (2023) Required
Yardim et al. (2023) Required

Our Work (on MFG subclass A =01) No
Our Work (on other MFG instances ) No

No No Regularization Dependent
No No -

Yes* Yes* O(k~1/°)$, regularized solution
No No  O(k~1/®)8, regularized solution
Yes No  O(k~'/*)8, regularized solution
No No  O(k~'/?)8, regularized solution
Yes Yes  O(k~'/*), original solution
Yes Yes O(k~'/*), /A-optimal solution

Table 1. Existing algorithms and their assumption, structure, and complexity. * The algorithm in Xie et al. (2021) is single-loop and
single-sample-path under an oracle that returns the stationary distribution of states for any m, u. Mao et al. (2022) also relies on such an
oracle. Our work, in comparison, is oracle-free. T We introduce A to characterize the difficulty of a MFG in Assumption 4. § If these
works could choose the regularization weight freely (note that they actually cannot since the contraction operator assumption only holds
when the weight is sufficiently large), the algorithms can be used to solve the original unregularized game by making the weight small
enough. The complexities, however, at least double, i.e. become O(k~'/19), O(k~1/®), O(k~/*) to the original solution.

the current policy. We improve 6 and /i with respect to each
other by iteratively taking the steps below

Or1 = Ok + Vo (mo,, i), fuky1 = p*(mg,) (6)

where k is the iteration index and v is a properly selected

step sizes.

By the policy gradient theorem (Sutton et al., 1999), a
closed-form expression for Vg.J (g, p1) is

VGJ(W(% ,Uf) :ESNV"G=*‘,aNTrg(~|s),s’~77(~|s,a,u) [(7‘(8, a, M)—’_
V() =V () Vg log ma(a | 5)|.

In large and/or unknown environments in the real life,
performing (6) poses computational challenges. The up-
dates require the knowledge of p* (7, ) and value func-
tion V7™ (To,) neither of which can be exactly deter-
mined instantaneously. We propose learning p* (7, ) and
Vs 1 (Toy) simultaneously with the policy update using
the same path of samples. We recognize that

M*(Trek) @)
= M7y 00 7Eaymmg, (1505051 ~PClsean s (ma, ) €k ]

where e, € RIS! is the indicator vector whose entry s is 1
if s’ = s and 0 otherwise. Solving Eq. (7) with multi-time-
scale stochastic approximation, we iteratively perform

fer1 = fie + Ex(es, — fix) (8)

for some step size &, > aj. Due to the difference in
time scales (step size), [ix becomes an increasingly accurate
estimate of p*(my, ) as the iterations proceed.

It is well-known that V™ 7% satisfies the Bellman equation

Ve ik = 3" wg, (a | (-, a, i) + I (e, )|

+ (Pﬂ'9k7ﬂk)—rv7"9k>/}k. 9)

Here 15| denotes the all-one vector of length |S|. We

introduce an auxiliary variable V to track V™ also by
stochastic approximation. The following update solves (9)

Viey1(sk) (10)
= V() + B (r(sk, an, fir) — Ji+Vi(sk41)—Vie(sk)),

where the unknown J (g, * (9)) is replaced with an esti-
mate that itself is iteratively refined

(11

Here we make the step size 8, much larger than ; for
Viet1 and Jiy1 to chase the targets V™0 ## and J (7, , fix)
which evolve with the step size &j.

Combining Egs. (8), (10), and (11) with the 8 update in (6)
results in a single-loop single-sample-path algorithm where
in the slowest time scale we ascend the policy parameter 6y,
along the gradient direction and the fast time scales are used
to compute the quantities necessary for the gradient evalu-
ation. While such an algorithm can be shown to converge
to a mean field equilibrium (under proper assumptions), the
convergence does not occur at the best possible rate due to
the coupling between iterates — 0, fir, Vk, and jk — directly
affect each other’s update, causing potential noise in any
variable to be immediately propagated to others. Zeng &
Doan (2024) details the degradation in algorithm complex-
ity resulting from such coupling effect when two variables
are simultaneously updated. In this work we need to deal
with three time scales (o, Bk, &), which makes coupling
worse. To alleviate the issue, Zeng & Doan (2024) proposes
an improved algorithm that accelerates convergence by in-
troducing a denoising step. We adopt this technique and
extend it to handle the three-time-scale updates. The idea be-
hind the acceleration is simple — we first estimate smoothed

Jir1 = T + Bi(r(se, an, i) — Ji).
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and denoised versions of the gradients before using them
to update the policy, mean field, and value function iterates.
We present the full details in Algorithm 1, in which the
smoothed gradient estimates are fy, gy , gi, and hy, updated
recursively according to (15).

In (14), IIB,, : RISl — RISl denotes the projection to the
f5-norm ball with radius By, and H[O,l] : R — Ris the
projection of a scalar to the range [0,1]. The projection
operators guarantee the stability of the critic iterates in (14)
and are a frequently used tool in the analysis of actor-critic
algorithms in the literature (Wu et al., 2020; Chen & Zhao,
2024; Panda & Bhatnagar, 2024).

Algorithm 1 Accelerated Single-loop Actor Critic Algo-
rithm for Mean Field Games (ASAC-MFG)

1: Initialize: policy parameter 6, value function estimate
‘70, jo, mean field estimate 1o € Ag, gradient/operator
estimates fo = 0 € R'S“A|,gf‘f =0¢ R|5|,g(‘)] =0¢
R, ho =0 € RIS!

2: Sample: initial state sy € S randomly

3: for iteration K =0,1,2, ... do

4:  Take action ay, ~ g, (- | sx). Observe r(sg, ak, fir)

and Sk+1 ™~ P( | Sk, Ak, ,[Lk)

5:  Policy (actor) update:

Ok+1 = Ok + o f. (12)
6:  Mean field update:
frt1 = e + S (13)
7. Value function (critic) update:
Vi1 = g, (Vi + Brgl),
k+1 By (Vi + Bray ) (14)

Jerr = o1y (Ji + Brgil)-
8:  Gradient/Operator estimate update:

Sevr = (1= Ae) i + Ak (T(Sk, ar, fi) + Vi (sk41)
- Vk(sk))VIngek (ak | sk)

gip1 = (1= A)gy +Ax (T(Smak,ﬂk) — Jk
+ Vio(skt1) — Vk(sk))es;c

g1 = (L= Mgl + Mecs (r(s, ar, fue) — Ji)
hiv1 = (1= Xp)he + Ai(es,, — fin)
(15)

9: end for

4. Main Results

This section presents the finite-time convergence of Algo-
rithm 1 to a mean field equilibrium. We start by introducing
the technical assumptions made in this paper, most of which

are standard.

Assumption 1. Given any 7, u, the Markov chain {sy}
generated by P™* according to sgy1 ~ P™H(- | sg) is
irreducible and aperiodic. In addition, there exist Cy > 1
and Cy € (0, 1) such that

sup, drv(P(Sk =-|so= 5),V”’”(-)) < CoCF, Yk >0,
(16)
where dpy denotes the total variation (TV) distance’.

Eq. (16) states that the ky, sample of the Markov chain
exponentially approaches the stationary distribution as k
goes up. In other words, the Markov chain generated under
P7™# is geometrically ergodic for any 7r, u. This assumption
is important and common among the papers that study the
complexity of sample-based single-loop RL algorithms (Zou
etal., 2019; Wu et al., 2020; Zeng et al., 2022; Chen & Zhao,
2024).

Assumption 2. Given two distributions dy, ds over S, poli-
cies w1, T, and mean fields 1, o, we draw samples ac-
cording to s ~ dy,s ~ P™:HM(. | s)and § ~ dy,§ ~
Pr2:b2(. | §). We assume that there exists a constant L > 0
such that

drv(P(s' =),P(8' =) < dry(di,dz) (18)
+ L||m — w2 + Ll — pal],
dpy (VT v E2) < Ly — mo|| + L — pell,
r(s,a, 1) — (s, a, pa)| < Ll — poll,
[ (m1) — p*(m2)|| < L|my — m2|.

In addition, there exist a constant By > 0 such that
[V™H|| < By, forall m, .

Eq. (18) amounts to a regularity condition on the transi-
tion probability matrix P™# as a function of 7 and p and
can be shown to hold if the transition kernel P(- | -, -, )
is Lipschitz in p (using an argument similar to Wu et al.
(2020)[Lemma B.2]). The rest of Assumption 2 imposes the
Lipschitz continuity of the stationary distribution, reward
function, and induced mean field, as well as the boundedness
of the differential value function. Importantly, Assumption 2
guarantees the Lipschitz continuity of the cuamulative reward
and differential value function, which we show in Lemma 1.
All conditions in this assumption are common in the litera-
ture of MFGs and RL (Yardim et al., 2023; Anahtarci et al.,
2023; Wu et al., 2020; Zeng et al., 2024).

Assumption 3. There is a constant § € (0,1) such that
([t — k2| < 6|y — pell, Y, s po.

3Given two probability distributions ¢; and ¢» over space X,
their TV distance is defined as

drv(¢1, ¢2) = %Supw:x%[fl,l] |[¥dpr — [wdpe|. (17)
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Assumption 3 states that for any 7 the stationary distribution
™ # is a contractive mapping in u. The assumption allows
us to estimate the induced mean field p* () by measuring
the stationary distribution of the Markov chain formed under
the control of 7. The validity of this assumption only de-
pends on the transition kernel P. To contrast, the common
assumption in the existing literature on MFGs amounts to
requiring the mapping v (“)# to be contractive (Xie et al.,
2021; Zaman et al., 2023; Yardim et al., 2023), where 7* (1)
is the (assumed unique) optimal policy under mean field y,
i.e. 7 (u) = argmax, J(m, p). Specifically, they assume
the existence of § € (0, 1) such that

o™ b — T w2k < G|y — pa]l. (19)

It is pointed out in Yardim et al. (2024) that (19) is a strong
assumption whose validity depends on both the transition
kernel and reward function, and does not hold in MFGs
unless a large regularization is added. Assumption 3 made
in this paper is much milder.

The approach we take in this paper is to iteratively refine the
policy parameter # along a direction that may improve the
cumulative reward under the induced mean field p*(mg). If
we take 0" = 04-aVgJ (7o, 1) |+ (x,) With a sufficiently
small step size o, we can approximately guarantee

J(mor, p*(mg)) 2 J (o, 11" (me))-

However, the induced mean field shifts from p*(my) to
1*(mg:) as the policy changes. Due to the lack of strong
structure on p*(mg) besides the Lipschitz condition, pre-
dicting/controlling whether .J(mg/, u*(mg:)) improves over
J(mg, w*(mp)) is difficult. In this work, we characterize the
difficulty of an MFG by the mean field shift error A intro-
duced in the following assumption. A problem with a small
or zero A is considered easier to solve. In fact, we later
show in our analysis that the ASAC-MFG algorithm solves
a MFG up to a sub-optimality gap proportional to A.

Assumption 4 (Herding Condition). There exists bounded
constants p, A > 0 such that Vr, '

J(n', p*(m)) = J (7', p* (7))

< p(J(m (1) = I 1 ())) + Allr = 7]l (20)
Conceptually, the MFGs with a small or zero A are those
in which the reward is higher when the representative agent
“follows the crowd” or displays a “herding” behavior. We

discuss more on the interpretation, implication, and structure
of the condition in Sec.4.2.

We denote by IF(6) the Fisher information matrix at policy
parameter 6

F(6)

= Eg it (mo),ammo (s) [V log mg(a | s) (Vg logme(a | s)'].

6

Assumption 5. There is a constant o > 0 such that F(6) —
ols||.4|x|5||A| s positive definite V0.

Our final assumption on Fisher non-degenerate policy im-
plies a “gradient domination” condition — for any policy T,
every stationary point of the cumulative reward J (7, p* (7))
is globally optimal. This is again a standard assumption
in the existing literature on policy optimization (Liu et al.,
2020; Fatkhullin et al., 2023; Ganesh et al., 2024).

4.1. Finite-Time Analysis
Each variable in Algorithm 1 has a target to chase. The
target of fj is a policy parameter optimal under its induced
mean field, whereas i, and Vk, J, . aim to converge to the
mean field induced by 7y, and the value functions under
T, , fle- We quantify the gap between these variables and
their targets by the convergence metrics below, and will
shortly show that they all decay at a sublinear rate.
52: £ ||V9J(7T9k 3 :U') |u:u*(7r9k) ”27 5ﬁé ||ﬂk - H’*(7T9k)||27
ex £le, (Vi = Vo) |2, el £ (Jy — I (o, , ).
2D

We would like Vj, to converge to V™ ¢ which solves the
Bellman equation (9). However, the solution is not unique.
If V e RISl solves (9), so does V + cl,s) for any scalar
c. We denote by £ the subspace spanned by 1,5/ in RISI
and by & its orthogonal complement, i.e. forany V € £
we have VTl‘ s| = 0. To make the convergence of the
value function well-defined, we consider {—:kv in (21) where
II¢, is the orthogonal projection to £, . It is easy to see
e, = Iisjxis| — Lis/1s/ISI-

Theorem 1. Consider the iterates generated by Algorithm 1
with the step sizes satisfying

/\0 (7))
)\k = , O = ’

k+1 k+1

8 ¢ 22
By = —= & = ——2

VE+1 VE+1

with constants X\, o, Bo, &o and a sufficiently large c j spec-
ified in Appendix B.2. Under Assumptions 1-4, we have for
<log3(k +1)

allk > 7,
+A,
vEk+1 )

where Ty, denotes the mixing time, which is a linear function
of log(k + 1) defined in Appendix A.1.

min E[s] +¢f +¢) +¢]] <O
T <t<k ’ .

Theorem 1 states that all main variables of Algorithm 1 con-
verge to their learning targets with a rate of O(k’l/ ) up to
an error linear in A, under a single trajectory of Markovian
samples. Since Algorithm 1 draws exactly one sample in
each iteration, this translates to a finite-sample complexity



A Policy Optimization Approach to the Solution of Unregularized Mean Field Games

of the same order. We defer the detailed proof of the theorem
to Appendix B but point out that the convergence rate is de-
rived through a careful multi-time-scale analysis. The step
sizes have the same dependency on k, but need to observe
ag < & < By < Ag. Such a requirement makes intuitive
sense: 1) the learning targets of fi, Vk, J, i are depend on 6,
which requires 6, to be relatively stable and hence updated
with the smallest step size; 2) similarly, the learning target
of Vk, Jj, is a function of [ik, SO fij; has to move slower; 3)
we need the auxiliary variables f, b, gy , g to be updated
the fastest to track the moving gradients/operators.

Our ultimate goal is to find an e-mean field equilibrium in
the sense of Definition 1. This requires us to connect the
convergence of €, to the optimality gap below

maXs J(,’Tv :U‘* (7r9k- )) - J(ﬂ—ek ) ,LL* (7r9k )) (23)

Under Assumption 5 a “gradient domination” condition
holds, which upper bounds (23) by \/ﬁ . We take advan-
tage of the gradient domination property to establish the
convergence of Algorithm 1 to an approximate mean field
equilibrium, as a corollary of Theorem 1.

Corollary 1. Consider the policy my, generated by Algo-
rithm I under any initialization with the step sizes satisfying
(22). Under Assumptions 1-5, we have for all k > Ty,

min E [mas.J (x5 (v9,)) = (7, 1" (75,

<O((k+1)7"*) + O
min E[l|jix — p*(m,)ll] < O((k + 1)71/4) + O(

T <t<k

Corollary 1 guarantees that Algorithm 1 finds an (e +
O(v/A))-mean field equilibrium in the sense of Definition 1
within at most O(e~%) iterations. This is the first result
showing that an algorithm provably (approximately) solves
the MFG without regularization in finite time.

4.2. More On the Herding Condition

It can be shown that due to the Lipschitz continuity of J
and p*, Assumption 4 always holds in the worst case with
p = 0and A = LLy, where L is from Assumption 2
and Ly is the Lipschitz constant of V and J introduced
in Lemma 1. However, specific MFG problems may be so
structured that it satisfies (20) with a smaller A (or even
A = 0). The algorithm we propose solves MFGs to a
precision proportional to A, i.e., we have convergence to
an exact mean field equilibrium for MFGs with A = 0,
and to a neighborhood around an equilibrium when A > 0.
In Example 1 we present a subclass of MFGs satisfying
Assumption 4 but not (19), for which our algorithm finds
an equilibrium but prior algorithms proposed in Xie et al.
(2021); Anahtarci et al. (2023); Mao et al. (2022); Zaman
et al. (2023); Yardim et al. (2023) theoretically fail.

Example 1. Consider MFGs in which the transition proba-
bility kernel independent of the mean field and the reward
Sunction is r(s,a, 1) = p(s). This subclass of MFGs satis-
fies Assumption 4 with p = 1 and A = 0, which we justify
in Appendix F. However, (19) does not have to hold. Take
a simple example with |S| = | A| = 2, where the transition
kernel is such that in either state s € {s1, s2}, the action a,
(resp. az) leads the next state to sy (resp. sa) with probabil-
ity p = 3/4. There exist an infinite number of equilibria in
this MFG. They occur at policies 71, T2

1(a | s) 1, Vs,ifa=a
s =

! 0, Vs,ifa=ag
7o(a | ) 0, Vs,ifa=aq
ﬂ- =

2 1, Vs,ifa=ag

with the induced mean field iy = [3/4,1/4]7, po =
[1/4,3/4]T, and at all policies that induce [1/2,1/2]" as
the mean field (such as T3(a | s) = 1/2 for all s,a). The
contraction assumption (19) does not hold as the equilib-
rium is not unique. The detailed derivation can be found in
Appendix F.

5. Numerical Simulations

We numerically verify the convergence of the proposed algo-
rithm through simulations on small-scale synthetic MFGs.
We consider two environments, first of dimension |S| =
|A| = 10 and second |S| = |.A| = 20, both of which have a
randomly generated transition kernel and reward function.*
Due to the unknown equilibria, we measure the convergence
of the policy by ||V J (e, , fix)|| and the convergence of the
mean field by ||z — ™" || as a proxy for ||, — p* (g, ) ||-

We compare ASAC-MFG with the algorithm proposed in Za-
man et al. (2020) as the information oracles are similar and
enables a fair comparison. We consider two variations of
their algorithm: 1) with regularization large enough that the
contraction assumption holds, and 2) with regularization
set to 0 which breaks the assumption. The environments
do not satisfy Assumption 4 with A = 0, so the theoretical
result in Sec.4.1 guarantees the convergence of ASAC-MFG
up to an error proportional to A. As shown in Figure 2,
all algorithms have their mean field iterates converge to
the mean field induced by the latest policy iterate, while
the convergence of the policy varies. For the considered
examples, ASAC-MFG and Zaman et al. (2023) with no reg-
ularization exhibit convergence to a global MFE. However,
ASAC-MFG converges at a faster rate, which we believe can
be attributed to the single-loop updates as well as the fact

*More discussion of the experimental setup can be found in
Appendix H. The implementation code is also submitted as a part
of the supplementary material.
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Figure 2. Algorithm Performance in Synthetic Games. Averaged over 100 trials. First columns shows sub-optimality gap of policy under
latest mean field estimate. Second column shows convergence of mean field estimate to mean field induced by latest policy iterate. Large
regularization is required for theoretical analyses by Zaman et al. (2023), which manifests in persistent bias.

that our work still enjoys convergence guarantees on this
problem (though not to the exactly optimal solution) while
Zaman et al. (2023) under no regularization loses any guar-
antee. ASAC-MFG is also superior in that the convergence
path has a much smaller variance. The blue curve in Fig-
ure 2 shows that while Zaman et al. (2023) with sufficiently
large regularization may converge to a solution of the regu-
larized problem, the bias caused by the large regularization
prevents it from finding an equilibrium of the original game.

Disclaimer

This paper was prepared for informational purposes in part
by the Artificial Intelligence Research group of JP Morgan
Chase & Co and its affiliates (“JP Morgan”), and is not a
product of the Research Department of JP Morgan. JP Mor-
gan makes no representation and warranty whatsoever and
disclaims all liability, for the completeness, accuracy or reli-
ability of the information contained herein. This document
is not intended as investment research or investment advice,
or a recommendation, offer or solicitation for the purchase
or sale of any security, financial instrument, financial prod-
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merits of participating in any transaction, and shall not con-
stitute a solicitation under any jurisdiction or to any person,
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Contents

A. Notations and Frequently Used Identities
We first introduce a few more shorthand notations frequently used in the analysis. First, we define
F(aa V7 K, s, a, 8/) é (T
GY(V. J. . 5,0, )
GJ(Ja S, a)

.0, + V(') V() Vo logmala | ),
sya,p) —J+ V(') —V(s))es,
CJ(T(Sv a,u) - J)v

GYV(V. J,p,8,a,5") } _ [ (r(s,a,p) = J + V(s') = V(s))es
G'(J,p, 5,a) cy(r(s,a,p) —J)

H(p,s) = e — p.

(
(

(1>

r

lI>

24
G(‘/v J7 Ky S5 a, 8/) =

Then, the update of f, g}C/, gg , and hy in Algorithm 1 can be alternatively expressed as

Forr = (1= M) fie + MeF (O, Vi, fi, Sk s Sk1),
g1 = (L= X)g + MGV (Vi Ju, fu, ks Qs Skr1)
9l = (L= )gil + MG (T, fur, s, ar),
hry1 = (1 — Mp)hg + A H (fg, sk)-

Denote g;, = [(g)/) ", 9] . The update of gy is

V ~ A~
Jkt1 = { 2’13+1 ] = (1= Me)gr + MG Vi, Ji, [k, Sy Qs Skt1)-
1

We also define
F(Ga V; N) £ Eswu"ﬂf Hoantg(+|s),s' ~P(:|s,a,p) [F(aa ‘/a u, s, a, 5/)]a
GV (97 Vi J, M) £ Espme. Hanmg(-|s),s' ~P(-]s,a,pm) [GV(M J, My S, @, S/)]a

~J J
G (9, ‘]7 ,LL) = ESNV’TG’ Hanme (-|s) [G (‘]7 Hy S, CL)], (25)

¢ GV 0,‘/, Ja
G(o"/’J’ u) 2 ESNVWG’”L»a"’ﬂ'e("S)7S’NP("S,G,M)[G(Va Jnu',s»avsl)] = |: ( 'u) :| s

G7(0,J, )
H(0, 1) & Esmo v [H(p1, 8)] = Egnpmon[es — pi].
We measure the convergence of auxiliary variables f, gX, ng , and hy, by

Afy 2 o — F0r, Vi i), AgY 2 g7 — GV (0r, Vi, T, fin),
Angéng_GJ(ek7jkaﬂk)a Ahkéhk_g(ekaﬂk)a

and denote
Agy, = [ Agi } = gk — G (O, Vi, i, fur)-
Ang ) ) )
We use £(7) to denote the cumulative reward collected by policy 7 under the induced mean field p* ()
U(m) = J(m, 1" ().

This is well-defined since p*(7) is unique.

We denote by Fj, = {so, ag, $1,a1 - - - , Sk, ax } denote the filtration (set of all randomness information) up to iteration k.
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We use the notation P,,(s" | s,a) = P(s’ | s,a, 1). Under Assumptions 1 and 2, it can be shown using an argument similar
to Lemma B.1 of Wu et al. (2020) that there exists a constant Ly depending only on |A|, L, Cy, and C; such that for all

T, T2, 1, 42

dpy (V™ @ @ Py v @ @ Py,) < Lyv([lm = mol + [l — pel])- (26)
Without loss of generality, we assume L > 1, a condition that we will sometimes use to simplify and combine terms.

A.1. Mixing Time

An immediate consequence of Assumption 1 is that the Markov chain under any policy and mean field has a geometric
mixing time.

Definition 2. Consider a Markov chain {3} generated according to §, ~ P™ F(- | §_1), for which v™ " is the stationary
distribution. For any c > 0, the c-mixing time of the Markov chain is

7™ H(c) £ min {k € N : sup, drv (P(3;, = - | 59 = s), v #()) < c}.
The mixing time measures time for the samples of the Markov chain to approach its stationary distribution in TV distance.
We define 75, £ sup, , 7™ #(ay) as the time when the TV distance drops below ay, where ay, is a step size for the policy

parameter update in Algorithm 1. Under Assumption 1, it is obvious that there exists a constant C' as a function of Cy, Cy

such that
(k+1)2  C

T < Clog (1/ay) = Clog( )= 5 log(k + 1) — C'log(wp).-

@

A.2. Supporting Lemmas

The value function V™ # is Lipschitz in both 6 and p, as shown in the lemma below.

Lemma 1. Under Assumption 2, there exist a bounded constant Ly, > 1 such that for any policy parameter 61,0, and
mean field pi1, po, we have

[, (Vb — Vo2 b2) | < Ly ([|61 — 02| + (|1 — pal])
(70, 1) — J(mo,, p2)|| < L (|61 — Oz + 1 — pall) 5
Vo (7, s 111) — Vo (o, pi2)ll < Ly ([|01 — b2 + |11 — pall)
IVud(mo,s p1) = Vud (woy, p2)ll < Ly (101 — Oa + (|1 — p2l]) -

We establish the boundedness of the operators F', G, and H.
Lemma 2. For any 0 € RISIALV e RIS| with norm bounded by By, J € [0,1], u € As, and s,a, s, we have

I1F(0,V,p,5,a,8")| < Bp,[|G(V. J, u,5,a,8)|| < Bg, |H(u,s)| < B,
where Br = By + 1, Ba = 2(By + ¢y +2), By = 2.
Since fx, g}, gi, and hy, are simply convex combination with the operators ', GV, G”, and H, Lemma 2 implies for all &
Il < Br, o'l < Bo, |9l < Ba, |l < B

We also establish the Lipschitz continuity of these operators.
Lemma 3. We have for any 61,05 € RISIAL i, o € Ag, V1, V5 € RIS and J,, Jo € R

|F (61, Vi, 1) = F (2, Ve, a2)l| < Lie (162 = al] + [Mle, (Vi = Va) | + [l = pal])

|G (01, Vi, J1, 1) — G (02, Va, J2, o) |

< L (161 — 02l + ITe, (Vi = Va)ll + 11 = | + [l — g )
|01, 12) = H O, )| < L (101 = 0] + Il = ] )

where the constants are Lp = 10By + L+ 2BpLry +5, Lg = 2BgLrv + (L+1)(cy+ 1)+ 2, and Ly = L + 1.
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As a result of Lemma 3, we can establish the following results that bound the energy of the auxiliary variables fx, g, and
R

Lemma 4. We have for any k > 0

[fell < IAfkll + Ley/ey + Le(Lv + 1)y /e; + V/eR,

lgkll < IAgkll + La/ei + Lay/eil,

1kl < [|ARk] + Liy/ €

Also as a consequence of Assumption 1, the following lemma holds which states that the Bellman backup operator of the
value function is almost everywhere contractive (except along the direction of the all-one vector). This lemma is adapted
from Zhang et al. (2021a)[Lemma 2] and Tsitsiklis & Van Roy (1999)[Lemma 7].

Lemma 5. Recall the definition of £, in Sec.4.1. There exists a constant v € (0, 1) such that for any 0, ppand V€ £

VTESNVﬂQ’“,aNﬂg(‘ls),S/NP(‘|S7a,M) [65(651 - BS)T]V < 77HVH2'

B. Proof of Main Theorem
B.1. Intermediate Results

The proof of Theorem 1 relies critically on the iteration-wise convergence of policy iterate 8, mean field iterate fix, value
function estimate V},, Ji, and auxiliary variables fy, hy, and g, which we bound individually in the propositions below.

B.1.1. CONVERGENCE OF POLICY ITERATE

Proposition 1. Under Assumptions 1-2, we have

(1+p)ag

E(ﬂ—ek) - E(W0k+1) < - 9

er + (1+ p)al|Afil?

1 Ly B2a?
—( +p)Ly Fak+BFOékA.

+ (14 p)LEak(ey +ef) + 5

Proposition 2. Under Assumptions 1-2, we have for all k > 7y
E[||A fir1]1?)

A 48L% 02

< (1= M)E[ASIP) + (-5 —

2 A
361232 241212, €2
7;]? LE[| Agr®] + —LEE[|| Ahy 7] +

Ak
N 96L‘}T\L2GB,§ E 48LALE B2 E
k

Ak

+ A%+ JE[IA full]
48L% 216L}L‘2/§,3E

0 e ’
- Bef] + — L Lk Ry
k k

A

[eX] + [e]] + (28L + 2| A|) Ly Lyv B3 B BE 2 Ak Mg —r, -

The proofs of Propositions 1 and 2 can be found in Sec.D.1 and D.2.

B.1.2. CONVERGENCE OF MEAN FIELD ESTIMATE

Proposition 3. Under Assumptions 1-3, we have for all k

(1 —=6)& 8k
s LoDy, 56

32L2aﬁ
(1—0)&k

Proposition 4. Under Assumptions 1-2, we have for all k > 1y,

| Ahg|? + (|Afell® + L) +€f) + 9L*BE B &

E[| Aha ]
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Ak 16L2%,¢? 32L% 02
< (L= AENAI?] + (=5 + A + =L B Ah 2] + ZSEE A £
32121202 14412 L3 L4 ¢2 32L2
+P§7ME[5]€V]+%—VHQE[5Z] /\HO‘kE[ T 4 24L Bp BL T2 N Mo—ry -
k k k

The proofs of Propositions 3 and 4 can be found in Sec.D.3 and D 4.

B.1.3. CONVERGENCE OF VALUATION FUNCTION ESTIMATE

Proposition 5. Under Assumptions 1-2,

B 128 L% a2 ﬁk 64L2 &2
e el <(1- 7)(% +ef) + #HM kI + — 1 Agel® + VBV ——k || A |?
1282 19212
+ 7VO"<(L%E,€V +eT) + 192L36¢ el + 2812 B%BZ B} 5.
Bk Bk

Proposition 6. Under Assumptions 1-2, we have for all k > 7y

A 72|S| 2,32
Bl Agin ) < (1= MBI g2+ (3 + 32 + P g, 2]+

20128
Ak

48LG°‘kE[||Af 2

48LGakE 216L%. L% L? L%,ng
— . Eler] + €3]
Ak Ak

E[l| Ahg|?] +

120|S|L%. L B2
+ %E[EZ +&7] + (30L + 2| A|)LpLry Br BE BuTi Ak Ak—r, -
The proofs of Propositions 5 and 6 can be found in Sec.D.5 and D.6.

B.2. Proof of Theorem 1

The exact requirements on A, g, 5o, &o include ¢; > 1/7, ag < & < By < Ao, and

1
< mi A
o mm{192(L2F—|—L%;+L%{—|—L%/+L2/(1—5)—|—p+1) 0, CpBo, C&f{)},
€ < min{ Ao (1—98)7vBo }
= GA(L% L% 1 L% + L2 jy + 1/(1—0)) 6912(LELY + LALEL% LY + LAL5 LS + 15) )

1_
5o<rmn{ Ao 7 6} !

Xo < -
72IS|LL + 36L% + 8/ 4L 212 [ T 4

i (1-9) 1-96 Ly
where C¢ = min{ 32(1+p) L% 4(14p) 2Lp Ly’ 16LLFLV} and

(L+p)y
Cs = mm{4 "512(L% + L% + L%, + L3, + L2/(1 - 0)’

gl 2 }
\/34568|(L‘;L4G + L2L% + (p+ 1)L + L% /vy + L2L%(1—46)) 2(1+p) J°
We note that such parameters can always chosen with no conflict in any MFG.

‘We consider the potential function

Ly, = E[Afull? + | Agull® + [|ARg[* — £(mo,) + €} + il + ).
Collecting the bounds from Propositions 1-6, we have for all k£ > 7,
L1
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= E[IA fsl® + 1Agk41 [ + [ Ahsr|[* = €(ro,,,) +Xsq +€ilsy +€li]

Ak 48L2 a?
< (1= MBIIASIZ + (5 + 2 + LR A7)
361232 2412 L2 €2 ASL% 02 216 L4 L2, €2
+ S0P g g, o) 4 2L gy A7) 4 BLECk gy ORIV oy
Ak Ak Ak Ak
96L% LE 4813, L% 57
TG&E[ ]+ i\ikcﬁk]E[Eﬁ + (28L + 2| A|)Lp Ly By Ba B A Ak—r,
At 79|S|L2,82 481202
+ (0= MBI + (3 4 + G g, 21 4 LGk

A8Lg0R o o OLILELYLYE o
[ek] + [€%)
)\k )\k

24L2.¢2
+ 2GEeg Ay P) +
k

120|S|L% L, B2
+ ME[@Z + €]+ (30L + 2|A|) Ly Lrv Br BA B MM —r,

Ak
(= ARSI + (-5 + A2+ 2 E ey ] + 2Pk g
732]“2 L%akE[Ek]+—144L%‘L%/L%q€kﬂ3[€] ME[ 7]+ 24LBr BTN No—ry
Ak Ak Ak
~ Bfl(mo)] — M E] (14 panElI AL

2
1 Ly B%a?2
+ (1 + p)L%axE[e) + el + A+ )Ly Bray 2V PO

12812 a2

+ Brai A

Bk

+0- Dymel o)+ B g g7 + Lempiag) + ML pgan
+ 2LV iy + i) + P2 ket + 281 B2 B3 B
+ - gy B g am )+ ZE LB A P+ Lol +<1)+927 B} B
< (1= MEIIAAI + [ Agell + |Ahel?] ~ Eftms, )] — LF 2% plegy
F 0= D0met v 0 - U8R ¢ peaya

+ (281 + 2| A|)Lp L1y B3 Ba BT M Ak—r, + (30L + 2| A|)Lp Ly Bp BABuTi MMz,

(1+ p)Lv Biaj

+ 24LBp BT NN k—r, + +2813% B%BZ B} 87 + 9L? B% B3}

2
A 1o 48L2Fa§ 48L%a2  32L%a3 128027  32L%a3
+ + A2 + + +(1+ p)ay + -
) M M ST R N ()
Ay
Ak o T2|S|L%BE 36L Bk 88k 9
+ + i + —) E[||A
(5 TR 4 2 Bl A
Az
N o, 16LYEE | ULFLEEG | AULZG | ARG 86
+ A Ah
R L GRSy B AR
As
(14 p)ax = 48L%a3  48L%4a2  32L%ai  128L%a3 32L%a3 .
4 (- 4 F%  20bgQ) | S2LpQy | V% = kY E[en]
4 Ak Ak Ak VB (L—=8)A
Ay
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vBx N 96L%LZ 57 N 120|S|L3. L 57 N 32L%L% o} 128L% a3 ~ 32L°L%.a3

+ (- + 1+ p) LIy + Eley +¢i
As
1-946 216 L% L2 216L%. L2 L% L3 &2 14412 L% L3 &2 192132 €2
+(_( )gk ng + FYG~H ng + F~H ng +(1+p)L§:ak+ ng)E[Eg].
16 Ak Ak Ak Bk
Ag
(28)

We show that the terms A;-Ag are all non- positive under the step size conditions in (27). First, under the step size condition
< 2B Ak < 1/d,and oy < (192(L3 + LZ + LY + L3 + L2 /(1 —0) +p+ 1)) 71N,

Ne 1o A8L%ai  48L%ai  32L% R 128L% a3  32L%a3
Ar=-ZE 2y t + (14 p)ay, + :
! 2 ¥ Ak Ak Ak (L plask VB (1 =)k
A 48(L% + L% + L2 + L% /(1 —0))a?
S*ZkJr 8(Lp + Lg + ;\{*‘ /( ))ak+(1+p)ak+32L%ak
K

A
<_Ik FA8(LY + L&+ L3 + L2 + L2 /(1= 6) + p+ Do

<0. (29)

Next, under the step size condition A\, < 1/4 and S, < (72|S|LZ + 36L% + 8/v) ' Ak

Ak

: 72|S|LEBE | 36LESE | 8Pk
a = M 2 GPLk FFEk =
2 D) + >‘k + A + Ak + Y
A
< =T+ (T2I8|L% + 36L% +8/7)64
o (30)

Next, under the step size condition A\, < 1/4 and &, < (64(L% L% + LE + L2 /v +1/(1—6))) ' X\g

Ak

dyo M e OLRE | NIFLLG  ALZG  GAYE | SG
2 )\k )\k >\k ’y)\k 1-— (5
A
< =T H ALY LE + L+ LY/ +1/(1 - 0)
<O0. (€29)

Next, we have

A, (A +p)ow n 48L%.a3 48LGak n 32L% a2 N 128L% a2 32L%a}
4 Ak Ak Ak ¥ Bk (1—=8)A

1 12 2

< 7% v B 212 412 4 120 75))%
v k

<0, (32)

under the step size condition
N (I+p)y
kS 51212 F L5+ L% + L2 + L2/(1—6)

B-

Then,

VB N 96L%. L2 5} N 120|S|L3.LE B2 N 32L% L% a3

As = —
8 )\k /\k )\k
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128L% a3 32L2L%.a3
VB (1 =0)Ae

+(1+ p)Lyay +

2
@
< —% +432|S|(LELe + L3 LY + (p+ 1) L3 + LY /vy + L*LE(1 — 5))F:
<0,
due to the condition
ag 7 Br-
=\ 3456|S|(LLLE + L3 L% + (p+ 1)L + L3, /v + L2L%(1 - §))
Finally, as a result of o, < (176& and &, < (1-9)y B
’ = 32(1+p)L% 6912(Ly, LY + L LE L, LY + L Ly LY +LY)
Ag= (1 —96)¢& . 216 L% L2,€2 n 216L% L2 L% L3 &2
16 Ak Ak
144L% L3 L3,€2 192L2,¢2
n rim vfk+(1+p)L%ak_~_ v
Ak VB
1-— 21 2
< (=00 6(L4 L3 + L2115 L% + L2 L4 L% + L%/)f—’“
32 v B
<0.
Plugging (29)-(34) into (28), we have for all & > 7y,
L1
1+ p)ay .
< (L= ADE(IASI? + | Agell® + |k 2] — Elt(mg,)] — L2 ey
1-6
F0-0mey 2+ - D8 mp 4 Braga
+ (28L42|A|) Ly L1y B2 Ba B3 i A M1y, + (30L+2|A|) L Ly B BABuTE A A7,
1 LyB
+ 24LBp B2 Nk Ab—r, (+p)+pak +28L% B2 B2 B% 3} + 9L* B3 B4 6}
[ (+p)ow B (1-6)& . Vo log?(k +1)
Sﬁkmm{ 1 ,?, 16 E[€k +€Z+5k +5k]+BFO£kA+O(k7H)
14+ p)a log?(k + 1
<Ly — wﬂi[sg +el +ef +el] + BragA + C’)(M)7
4 k+1
where the last inequality follows from the step size condition o < 5 (1 ) Br and oy < 5 (1 T )gk
Re-arranging the terms and summing over iterations, we have
k—1 k—1 k—1
™ 4 log?(t + 1)
Z BleT + e +ef +ef] < —— T Z(Lt Liv1) + BRA Z ap + Z O( T)
t=T1 t=T1 t=T1 =T
4 k—1
<37 - — Ly + 1)+ BFAtZ oy + O(log® (k + 1)),
Tk

where the second inequality follows from —Lj41 < —¢(7g, . ,) < 1 and the well-known relation that

>
|
—
>
|
—

o~
Il
3
>
~
—+
—_
o~
Il
(=)
~
+
—_

(33)

(34)

(35)
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Due to 7, < O(log(k + 1)), it is also a standard result that (for example, see Zeng et al. (2024)[Lemma 3])

k—1 k—1
Qo
20T v oY

Dividing both sides of the inequality by Zf:_:k ay, we get

k-1 T w 14 J
o oyE[eT + et +ef + €]
. t= t t t t
minE[e] + & +¢/ +¢/] < ° —
t<k P o

1 4

Since the updates of all iterates in Algorithm 1 are bounded, £,, < O(7x) < O(log(k 4+ 1)). As a result, we eventually
have

min E[e] +ef +e} +¢/] <0
T <t<k

<log3(k +1)

N ) +O(A).

C. Proof of Corollaries
C.1. Proof of Corollary 1

As aresult of Assumption 5, we have the following gradient domination condition, which is adapted from Lemma 19 of
Ganesh et al. (2024).

Lemma 6. Under Assumption 5, we have the following gradient domination condition for any policy parameter 6 and mean
field

1
m‘lg’x J(ﬁ-nu) - J(ﬂ-@a,u) < g”vaJ(WeaM)H

Since €7, e}, e}, ¢/ are all non-negative, we have

- log® (k + 1) ~ (log*(k +1)
2 Y = —_—
mr[glﬁk]E IVoJ (o, 1t) |u=p= (xo,) | }S(’)( N +0(A)=0 T +O(A),
: - 10g3(/€ +1) ~ 10g3(k +1)
o 2 log™(k+1) _
min Bl — p* (m,) 7] < O ( ) +0(0) =0 (= ==7) +0(a)

Applying Lemma 6 with = 0; and pu = p*(m, ),
* * 1
max J (7, 1" (e, )) — J (mo, 1 (70,)) < — Vo (0., 1) lu=p (o, Il

By Jensen’s inequality,

2
( min E [max J(m, 1*(mp,)) — J(Wet,u*(ﬂet))})

T <t<k ™

< min E[(mﬁxJ(ﬂ»M*(ﬂet))—J(Ww“*(”‘“))>2]

T <t<k

1 .
< — min B [[Vod (7o, 1) lumps(ma,) ]

02 rp<t<k
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<6<wi4>+0@)

Taking square root on both sides of this inequality leads to the claimed result on the convergence of the policy.

Similarly, we have

e e
min B i u(ﬂok)ll]_\/T:gng[lluk (o, 2

~ (log?(k+1)
<o (M EDY oy

<6<%¥;W)+m¢m.

D. Proof of Propositions
D.1. Proof of Proposition 1

By the Ly -Lipschitz continuity of the function J
J(ﬂ-ak ) :u* (7T9k )) - J(Tr9k-+1 ) #* (7r9k ))

Ly
< (Vo (7o, 1) |u=p(ma, )» Ok+1 — Ok) + 7\\9k+1 — 037

Lvai 2
= —ap(Vod (7o, 1) lu=p(mq, ) [&) + 5 Il fxll

— ~ R LVO/,2
=—ax(VoJ (o, 1) == (ro, )» D) —r (Vo (To, s 10) | = pu (g, ) £ (Oks Vs i) + 5 1| fell?
= *Oék<V0J(7T6mM) ‘u:u*(wek)vAfk’> - Otk”VgJ(ngk,,u,) |u:u*(7r9k) ||2

_ . _ N Lya?
—|—ak<V9J(7T9k,,u)|u:#*(ﬂ9k),F(@k,Vﬂek’“ (ﬂek)7ﬂ*(7rek))_F(9k7Vk7:uk)>+ V2 k”fk”Q

< —ap||[Vod (o, 1) lumpps (mo, ) |12 = % (VoI (Top s 18) [ (o, s A )
n wo, 1 (mo, ) , * n N LVB%'ai
+ak<v9J(7T9kaM) |H:u*(7r9k)7F(9k7V O Ok s (77916)) - F(ekvvka,uk)>+Ta

where the third equation follows from Vg J (g, 1) |z (g) = F (0, V™ w(m0) 1*(mp)) for any 6.

To bound the second term on the right hand side of (36), we use the fact that (@, b) < gllal® + 5 ||b]|2 for any vectors @, b

and scalar ¢ > 0

ok
~ar{Vod (To0s 1) lu=ps (mo)» Afk) < -1V (Tor, 1) lu=p (moy.) 12+ al| A fil|>.

Similarly, for the third term of (36), we have
O‘k<v9J(7T9k7:u) ‘#:ll«*(ﬂek)7/'l’*(ﬂ-0k)) - F(9k7 Vk?ﬂk»
A n e W r( n 9 ~
< Ve (mos 1) mper (o) 12+ | F(Or, Vo 1 o) i* (g, ) — F (O, Vi, fur) |

< 90T (o0 1) e (r) P+ el (Vi — V0" o)) |2 4 D, — o (0, )|
= SV 0T (700, 1) iz ) 17 + L (& +£5).

Plugging (37)-(38) into (36), we have
I (o, 1 (T0,)) — J(Toy 05 1" (m0,.)
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< 7ak||v9‘](7r‘9mu) ‘M:M*(ﬂ'ek) ”2 - O‘k<v‘9‘](ﬂ'9k7,u) |M:u*(7rgk)aAfk>
LvB%ai

+ (Vo J (o, , 1) |u w*(moy,) (ek Vo 1 (m0,) s 1 (7o, ) _F(ekﬂvkaﬂk)> + B

IN

_ak”VeJ(TerM) ‘M:ll«*(ﬂek) ||2 + ZHVOJ(T(@;MIU’) |#:#*(‘ﬂ'9k) ||2 + ak||Aka2

oy Ly B2a?
+ Ve (Tous 1) L=y (o) 12+ LEan(ey +ep) + %
LVBFak

2

IN

o
= Vo (o, 1) lpmpes () 1>+ arl| Afill® + Liar(ey +<h) + (39)

By Assumption 4, we have
J(ﬂ9k+1 ) /.L* (7r9k )) - J(w9k+1 ’ M*(W0k+1 ))
< (I (T 1 (70,)) = T (R 1 (70,)) ) + A Ohr = O

LvBFOLk)

(0%
<p(- 7k||V0J(7T9ka 1) |y (o) 1P| AfRl P+ Lian(e] +ei)+ + BragA. (40)

Combining (39) and (40),

J(ﬂ-gk ) :U‘*(’/Tek )) - J(W9k+1 ’ ﬂ’* (7T9k+1 ))
LvBFOék

< =S V0T (o 1) lumpr oy 2+l Sl + Lran(el + ) + ==

L\/B%Oéi)

0= SV 0T o ) bumi sy P + k| AP + Dra(el, + ) + =

+ BFOékA

(I+p)ow
< = VeI (0 1) Lumper (o) 1P+ (L4 )| ASI* + (1+ p)Lhar (el + )

(1+p)Lv BRag

> + +BragA.

D.2. Proof of Proposition 2

The proof of Proposition 2 relies on the lemma below. We defer the proof of the lemma to Sec.E.7.
Lemma 7. We have for all k > Ty,

E[(A fr, F(Or, Vi, fie, Sty akes Sk1)—F (Or, Vi, fir))] < (20L+2|A|)Lp Ly B3 Ba BHTENe— 7y -
By the update rule of fy,
Afisr = firr = FOrir, Virr fingr)
= (1= M) + M F (O, Vies fires 1r @l Si1) — F(On1, Vier 1, fuis1)
= (1= Xe) fie + AF Ok, Vies fir) = F(Oxr1, Viey, fiky1)
+ Ak (F Ok, Vi, furs ks ak, S141) — F (O, Vk,ﬂk))
=1 = )ASk + (F(ka Vie, k) — F(Oy1, Vk+1,ﬂk+1))
+ Ak (F Ok, Ve, v, Sk @iy Sk41) — F (O, Vk,ﬂk))-
Taking the norm, we have

1A frga]?
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= (1= M)A Fel1? + | F Ok, Viey i) — FOks1s Vs, fns1) |2
N2\ F (O, Vi, fie, Sty Qs Sk1) — F (O, Vi, fure) |2
+ (1= M) (Afiy F(Ors Vies fir) = F(Ors1, Vier1, fires))
+ (1= M)Ak (A F F(Or, Vi, fies Sk @y S541) — F Ok, Vi, itn))
+ M AE Ok, Viey fik) — F(Ort1, Vi1 k1) F Oy Viey fies Sk @k $541) — F Ok, Vi, fin))
< (1= M)A FRl? + 211 F Ok, Viey fix) — F(Ori1, Vies 1, fin) ||
+ 20| F Ok, Vs fies Sk @y St1) — F (O, Vi, i) |12
A 2 - N _ R .
+ 7]€||Afk||2 + Yk”F(elm Vies fue) — F (01, Vier 1, 1) |2
+ (1 - Ak))\k<A.fk7F(0k7Vk7ﬂk7skaak7sk+1) - F(9k7Vk7ﬂk)>
A 4 N _ R .
< (L= MIASl? + (=55 + ADIAL + L IF O Vi k) = PO, Vi, )|
+ 83125‘)‘% + (1 - )\k))\k<Aka F<9ka Vk}aﬂka Sk, Ak, Sk-l-l) - F(ekn Vkaﬂk»a (41)
where the final inequality follows from the step size condition \;; < 1 and the boundedness of operator ' which implies

IE Ok, Vie, i) — F(Ok1, Vi1, fins1)|| < 2Bp.

Taking the expectation, we can simplify (41) as

E[|A fes1]l?]

A ~ R
<E[1 = )ASI2+ (=2 + 2| A S + 7HF(9k7Vk7Nk) F (011, Vier1, fuerr) ||

2
+8BZNZ + (1 — M)Ak (A fr, F Ok, Vi, i, Sks any Sk41) — F (O, Vi fix))

< (1= MIE(IARIP) + (<5 + MBI A + 83

412 . . . R 2
+ S BL(10k — Oiall + 1V = Viewal| + s — el
+ (1 = M)Ak - (20L + 2| A|) Lp Ly By Ba B3 A1y

A
< (L= ME[JAfl) + (=5 5 T MEASI] + (28242 A L Lrv B Ba BETE A Ak —r,

412

+ TFE[(OékakH + Bicllgkll + &llhel)?]

Ak
< (1= M)E[IA S]] + (—* + AOEA fill*] + (28L+2[A)) L L1y B Be By i A A—r,

121
+E[ Fak(||Afk||+LF\/ek+LFLV+1,/ +./>
12128, ? 12L2£k
L <||A9k||+LG 6X+La\/e;{) + 5 ( ull AR + /e )] (42)

where the second inequality plugs in the result of Lemma 7 and bounds ||F(9;€7 Vi, i) — F(Opi1, f/kﬂ, fir+1)||? using the
Lipschitz condition established in Lemma 3.

The sum of the last three terms can be bounded as
<||Afk||+LF el + Lp(Lv + 1)y\/ehk + /¢ )
12L 2 1212
+ P (gl 4 10+ toyfl) + 228 (Lapan + )
k
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48172 48L4 o2 19204 L2 o2 481202
< FakHAf ”2 )\Fakgg + i vakgg + )\Fakgg
k k k
36L2 481312 481312
+ F/Bk ||A HZ Gﬁk k: + Gﬁk k
Ak &
24L2 L? 24172
+ Hgk ||Ah H2 ng
/\k )\k
48L2% a2 2 32 2412 12,2 48L%.03
< F ElAf? + /\F ’“IIAngZ)Jrii = ’“IIAhkll2+7AF kel
k k k
216L4 L? 96 L% L2,32 4812 L2
o HOLEIVE: | S0Tlobe y | BTelee 43)
k k k
Combining (42) and (43), we get
E[||A fes1]]
A
< (U= AEIASIP + (=5 + ADENIAS]*) + (28L + 21 A) Lr Lrv B Ba By AeAie—r,
48172 361232 2413212 €2 481202
VAL L T s L LTI ARl
k k
N 216L4% L%,fk b 96 L% Lgﬁk N 4812 L2 7 o
e “k e ek ok
)\k 48L2 Oé
= A= AE[ASIP]+ (-5 + X3 + A: B)ENA 7]
36L2 32 24L2 L?,¢2 48L%a3 . 216L%LL3 &}
+ )\F EE[|| Agkl®] + i*“ﬁ[llﬁhkllz] + /\F EE[e] + TV’CE[ 2l
k k k k
96L% L2 A8L2 L2
TG@CE[ ]+ TG/B’CE[ {1+ (28L 4 2|A|) L Lyy By Ba BHTE A k—ry -
O

D.3. Proof of Proposition 3

We first introduce the following lemma, which will be used in the proof of Proposition 3. The proof of Lemma 8 is presented
in Sec.E.8.

Lemma 8. Under Assumption 3, we have for any policy parameter 0 and mean field
(= p*(mo), H(9, 1) — H(9. " (m9))) < —(1 = 8)[lpe — p* (o).

By the definition of ¢/,

€Z+1 = ”ﬂkJrl - N*(W9k+1)||2

= |l + Eehi — 1 (7o, ) |I?
= || — p* (7o) + EAhk + & H Ok, i) — (1" (mo,. ) — 1 (ma,.) ) [I°
= |l — p* (70,) + EH (Or, i) 1> + &R AR| + (| (7o, ., ) — 1" (70,12
+ 26k, — p* (mo,,) + & H (O, fir), Ahg)
+ 2(jix — p* (7o, ) + & H Ok, fir), 1" (mo,.,, ) — 1 (7e,))
+ 26 (Ahg, p* (7o, ) — 1 (7o), ))- (44)

To bound the first term of (44),
| — 1 (me,.) + &6 H (O, fine) ||
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= |l — p* (m9,) + & (H Ok, fir) — H (6, p* (a,))) I”
= |l — p* (o, )|I> + &N H Ok, fur) — H (O, p* (m0,)) ||
+ 285 (i, — p* (mo, ), H Ok, fire) — H (O, n* (79,,)))

< e — p*(m ak)||2 + L&l — p* (mo)1* — (1 = 8)&lliw — 1 (7o, ) |12
S (45)

where the first equation uses H (6, u* (7)) = 0 for any 6, the first inequality is a result of Lemma 8 and the Lipschitz
continuity of /, and the second inequality follows from the step size condition &, < B < 1 2.
H

We next treat the second and third term of (44) using the fact that ||hg|| < By, ||H (0, fix)|| < Bu, || fx]| < Br and that
the operator p* is Lipschitz

Gl ARLIP + [|* (mo,1,) — " (mo)I* < 280 il + 26811 H Ok, ) II” + L7, — 7o, |1
<ABRE + LI fil?
< 4B%€E + L*Bial. (46)

The fourth term of (44) can be bounded leveraging the result in (45) as follows

265 ik — 1" (ma,,) + & H Ok, fur), Ahy)

156 ) 8
< %Hﬂk — 1" (ma,) + & H (O, e )||* + gk <A 12

1-4 1-6 8
< . )€k - ( . )ﬁk)gg gk o, ”2
< B+ P @

Similarly, for the fifth term of (44), we have

2<ﬂk - M*(ﬂ—Ok) + §kﬁ(9k7 ﬂk)v M*(Trek-H) - :U’*(T‘—ek»
(1 —0)& T
3 k

< I

ik — 1 (o) + T (B ) |2 + ﬁumem) — i*(ma,)

(1—=96)& " 8L? 9
< _
> 3 €k + (1 — 5)£k ||7T9k+1 Oy ”

< (1 - 5)5!@ m 8L205i

< €k+(1 e

-5 2
< ey SO (Jagul o Loy + Loty + 0y + AT

(1—0)& ,  32L%3
s T 0

Il

< k(| Afell? + Lyl +4L%L3 el +€F), (48)

where the fourth inequality follows from Lemma 4.

The final term of (44) can be bounded simply with the Cauchy-Schwarz inequality

2§k<Ahk7:u*(7T9k+1> - lu’*(ﬂ-ek)> < 2£kl|Ath”p‘*(7T9k+1) - /’L*(ﬂ-el«)”
<4Bg& - L||7T9k+1 — T, ”
S 4LBFBHOék§k. (49)

Plugging (45)-(49) into (44), we get
8Z+1
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— 0)&k
8

1-4 1 8
<(1- (ﬂ)sg L ABYE + [PBRad + e+ 1 fk(s“Ah’“"?

1-0 3212
+( 2 )& ot (1_(;"6 ([Afell® + Lie) +4LE LY el + ef) + ALBrBrogéy,
1-6 fk 8§k 32L 04
<= S0 S P + 4Bh€ + P Bhat+ s (IARIP+ Ll +47)

(1-0)& | 128L2L3 [}
8 (1—0)&
3212 ozk

(1 —0)&k

+ 4LBFBHCW€£]€ + (—

e

< LDy B2

(IAfel® + Liey + er) +9L? By By &R,

where the last inequality is a result of the step size condition o, < & and o, < mg e

D.4. Proof of Proposition 4

The proof of Proposition 4 uses an intermediate result established in the lemma below. We defer the proof of the lemma to
Sec.E.9.

Lemma 9. We have for all k > Ty,

E[(Ahy,es, —E__ ro, i [es])) < 16LBp BETE Ak, -

By the update rule of Ay,

Ahjir = hiyr — H(Ops1, g1
= (1= Me)he + Ai(es, — fin) — H(Okt1, flet1)
= (1= A+ N (B o) = H (B, fcn) + M (e, = i) = H (B i)
= (1= M)Ay + (B Ok, ) = H (O, 1)) + M (e — ) = H (0, i) ).
This implies
[ AR ]|
= (1= Xe)* | ARg||? + | H Ok, fir) — H(Opg1, i) I + A (es,, — fi) — H (O, i) I
+ (1 — Xg)(Ahg, H(O, fir,) — H(Opt1, fiit1))
+ (1= )M (A, (e, — i) — H(O, fir,))
+ Mo (H Ok, fix) — H(Okt1, fikr1), (€s, — ) — H (O, fur))
< (1= M) AR 4 2 H Ok, i) — H(Okr1, 1) |* 4 227 | (es, — fir) — H(Ok, fur) |I”
A 2 - . — N
+ IR S H O ) = H B, )|
+ (1 — )\k)/\k<Ahk,6gk 7ES o0 P [eg]>
)\ .
< (1= M)l AR + (=55 + A2) [ Ak |12 + 7||H(9k7/$k) H(Os1, s
+ (1 - )\k>)\k<Ahk, €s, — ESNVW%,@,C [es]> + SBH)\k;

where the final inequality follows from the step size choice Ay, < 1. Taking the expectation and applying Lemma 9 and the
Lipschitz continuity of operator H, we further have

E[|| Ahg1]|?]
A

< (L-A)E[AR*] + (= 5 +ADE]

4 R .
E[|Ahg|?] + EE[(LHH@k — i1 || + L fure — firesa )]
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+ (1 = M)Ak - 16LBp BH TN k—r, + 8By}

A

82
< (L= AE[AR]*) + (=5 + ADE Ak |[*] + =2

Ak

Elo | fxll* + &l x]|’]
+ 16LBFB?,T,§AkAk . +8Bg);

A
S ADE(| AR

8L2 a2
+ f —HRE[(||Afull + Lrpy/e) + Lr(Ly + 1)y /el + \/eF

< (1= M)E[[|Ahg[1?] + (-

82 -
+ TiEkE[(HAhk” + Ly eg) |+ 16 LB BETE M Ak—r, + 8B )i
A

< (L= ME[AR]*) + (=5 + ADE] A ]
- Wﬁmmﬁ + L%EX FALRLY <) + <]
+ OB Any 2 4 L) + LB BTN,
< (- AEARI + (- 437 + LB g 4 by a g,
?QL%if%akE[ I+ WlLiﬂij‘izfiE[gm ?Qii:%m ™|+ 24LBrBYTE NN e,

where the third inequality bounds || fx|| and || || with Lemma 4. The step size condition ay, < &, is used a few times to
simplify and combine terms.

O

D.5. Proof of Proposition 5

We use the following lemma in our analysis. The proof of the lemma is deferred to Sec.E.10.

Lemma 10. Under Assumption 1, it holds for any 0, u, and V' that

(P50 Gt masmvmwrsn

where v € (0, 1) is the discount factor in Lemma 5.

By the definition of &},

1% J
S
HSL (Vk:+1 Vﬂek+17ﬂk+1
i1 — J(To,405 flkt1)

_ ) 2
HEJ_ (HBV (Vk + Bkgk ) Vﬂ9k+1 ) Hk+1
o1 (Jk + Brgil) — J (W6, 41 firs1)

[ Y ; 2
< e, (Vie + Bng — V”%Hvﬂkﬂ)
< Ji + Bryil — J (Mo, flk41)

- Ve, J 7 - 2
_ H&_(Vk *Vﬂ'eklﬂk +6kG (eka‘/km]kaﬂk) +5kAgl‘c/ — (Vﬂg’“*l’l%*lfvﬂek,uk)) ~|

Jk J(ﬂ'@khuk) +BkG‘](9kaJk7,uk) +,6kAgk ('](ﬂ-elpru,&k-l,-l) . J(ﬂ'ek,ﬂk))
_ 2
Ve ik - A

[ ey (7 =y ] 5| M6 0T i) | gz agur?

Jr — J(mo,, fur) G (Or, T fine)
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HEL (Vﬂ'akJrl s k41 Vﬂ'ek’”k ‘| H
4

J(Trgk+1?,[l/k?+1) Trak?/’(‘k

+25k<

HELGV(ekavkaJkauk) HSJ_A!J;‘;
) Agk]

HEL(V]C - Vﬂgk’uk) ‘| +8

jk—J(ﬂ'ek,/lk) G (0]67‘]1477/1‘]6)
+2 e, (Vi — V7o fix) 1+ e, GV (Ok, Vi, i, firs) g, (V7o et — ymogs i)
Je — J(Wekvﬂk) i G (ekv kaﬂk) J(W9k+1>ﬂk+1) - J(ﬂ-ekﬂﬂk)

Mg, (V7orrn et — Yo ik ]> (50)

+ 28k { Agr, N -
ﬂk< Ik J(W9k+1’/‘k+1)_‘](7r9knuk)

where the last inequality follows from the fact that II¢, has all singular values smaller than or equal to 1.
To bound the first term of (50),

N R _ N ~ 2
Hc‘:f_(vk—vﬂ—ek’#k) +6k HSLQV(GIWYIWJIW,QIC)
Jy — J (7o, iix) G’ Ok, Jy, fu)

< ey (Ve = Vo B2 4 (g, = T (ma,., ) + BT, GV (Ok, Viy iy i) |
ng_ (‘A/k - Vﬂekyﬂk) HEJ_GV(HIWVIH jkm[j’k) ] >

Jx — J (7o, fir) G Ok, i, fux)
< Mg, (Vie = V™o 2|2 4 (g — I (ma,., r))? + BEING Ok, Vi Jr, i) |

— VBklITe, (Vie = Vs P9) |2 — 5By (S, — J (e, fin))
= (1= 81 I[Me, (Vi = V7o M0 [2 + (1= 384) (Jk — J (0, , fr))?

+ BRNIG Ok, Viey T, fire) — G (O, VTor P T (g, i), i) |1
< (1 =B He, (Vi = V7o B9 |12 4 (1 = yB) (Jk — I (way.» fir))°

L3567 (IWe, (Vi — V7o) | e — S, )]

< (1 =Bk + 2L B ITe, (Vi = Voo P) |12 4 (1 = vy, + 2LEB7) (i — J (ma,, )

(1= 256l + ), 51)

+ ﬂk( 7 (O, kaﬂk))Q + 28y <

IN

where the second inequality applies Lemma 10, the first equation uses the G0, V™ J(mg, ), p) = 0 for any 6, u, third
inequality follows from the Lipschitz continuity of operator GG established in Lemma 3, and the final inequality follows from
the step size condition 3;, < ﬁ.

G

To treat the second and third term of (50), we use the boundedness of Agy and the Lipschitz continuity conditions from
Lemma 1

. R 2
HS Vﬂek+17uk+1 — VTR ke
B2 agel)? + ||| T )

J(W6k+uﬂk+1) - J(Trak7ﬂk)
< BRIAGN? + e, (VTomsr Pt — Vo )2 4 (J (mg, s firrr) — J (o, fux))?

< ABEBE + (L [|0k41 — Ol + Ly [l k1 — fl)® + (Lv 10k1 — Okll + Ly [lfiksr — finl)”

= ABZB} + 2L% (al fio]l + &ellhl])®

= 4BG5k + 212 fk (Br + BH)

< 4LY, (B + B¢ + BBy, (52)

where we combine terms using the step size condition ay, < &, < S.
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HEJ_ Agl‘c/
) Agk]

The fourth term of (50) can be bounded leveraging the result in (51) as follows

28% <

ng_év(gk,v]m jkhak)

Ji — J(mo,, fun) G (O, T, fur)

)
k

N . 2 2
< B ||| Me, (Vi = VTowrix) 5, e, GV (ak,vk,Jk,uk) +% [ e, AgY ]H
-8 Ji. — J (7o, fix) G? (O, Ty, o) v 91
B 8 86
<5 0= E +a) + =S llAgl?
8
< ek el + %HAgkll - (53)

Similarly, for the fifth term of (50), we have

2<

HgL(Vk — Vﬂsk’ﬂk)
Jk - J(”Gmﬂk)

e, (Vi — V™or: i) ] B
k

Hsi(_?v(gk, ‘:/k, T, fur)
G’ Ok, Ji, fu)

g, GV (Qk,Vka,,uk H‘

+ Bk

Hg (Vﬁ9k+1$ﬂk+1 Vﬂgk,,&k)
7T9k+1 slky1) — J(ﬂ-@k s i)

7Bk

8

IN

G (eka Jk‘v,uk
2

T — J (o, i)

8

Bk

7B (5,‘; + e,{

Mg, (V“9k+1 s Ak41 V7o /lk)
J(ﬂ9k+1 ) ﬂk+1) - J(ﬂ.ek ) lak)

IN

_° ||V7T9k+1 skt ymey s ik ||2

Yk
8 N X
+ (J(?T@k+1 ) ,uk-l-l) - J(T(gk, ,uk))Q
Bk

Bk 16L% N .
?(51‘; +el) + wkv (176, r — 7o, 1> + kg1 — e ll)

8 )+

IN

16L3% S o
+ mo, .. — 7o, |I° + | fiks1 — [l
'Yﬁk (H k41 kH ||M +1 — M H )

Bk 3212
S (el +el)+ B

Bk
3 = (ef

I /\

(il fl” + €&l 1)

I /\

€k + Ek)
32[12
VB
\%
€k

+ 2 (4o (1A Sl + Lel + L (Ly +1)%¢) + €f) + 268 (| AR ||* + Lise}))

128L%.a?
’Yﬁk
(IARg|* + Lieh) | (54)

Vﬁk(

< J
=g +€k)+

64367
7B

where the third inequality applies Lemma 1 and the fifth inequality applies Lemma 4.

(IAJell? + L3el +AL3LEel + <)

+

The final term of (50) can be bounded simply with the Cauchy-Schwarz inequality

0 (g, | Ten (V7o ieet = yrowiny
k ks ~ ~
J(W9k+17uk+1) - J(ﬂ—ek7p'k)
Mg, (V™o bt — o)
< 28 |A -
< 206 || Agkl| J(?Tek+1,ﬂk+1) — J(mo,,, o)

< 20 ||Agk|| (HHEL (V7'r9k+1’ﬂk+1 o Vﬂ'ekvﬂk)H + |J(7Tak+1,ﬂk+1) — J(ﬂ'@k, ﬂk)|)
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<4BaBr - (Lv (I1meyy, — 7o, | + k41 — awll) + Ly (170, ., — 7o, || + lie+1 — fiel))
< 8Ly Bafr(Brax + Brék)
< 16Ly BrBgBu Brék.

(55)
Plugging (51)-(55) into (50), we get
Ekv+1 + Eiﬂ
Br Br 85k
< (1= T30 o) + ALY (BR + BE + BR)SE + TE L + e+ Aa?
128L%,a2
+ B0 o) 4 T (AR + e+ AL3 Ll + <)
64L3%.¢2
+ ’}/Bk — ok (HAhk”Q + L%IEZ) + 16LvBFBgBHBk£k
VBE v J 12815 o} 2, 80k 2, 64L37 fk 2
1——)(ef +ep) + ——=|Afx Agyg Ahy,
< (1= )(ek +ei) B A fill” + 5 — [ AgelI” + B [Ahy||
128L% a2
bV (2 Y oy 192L5¢; ell + 2813 B} BB} 52,
Y Bk VB
where we use the conditions &, < 8 and a < 7@@ in the last inequality to simplify and combine terms.
O

D.6. Proof of Proposition 6

The proof of Proposition 6 relies on the following lemma, the proof of which is presented in Sec.E.11.
Lemma 11. We have for all k > T
E[<Agk7 G(eka Vkv jk, ﬂ]ﬁ Sk, Ak, Sk?-‘rl) (9k7 Vk7 Jk) /J/k)>]
< (22L +2|A|)Lp Ly Bp BABumiNe—r, -

By the update rule of fy,

Agii1 = o1 — GOkr1, Vierts Jis 1, flir)
= (1= M)k + MG Ok, Viey Ty firer Sky @y Sk41) — GOkt Viert, Jht1, fler1)
= (1= Xe)gk + MG Ok, Vi, Ji, fir) — GOks1, Virr, Jogs k1)
+)\k(G Ok, Vies Jis fks Sky Aoy Sht1) — G(ak,vkajka/lk)>
= (1-)Agr + ( Ok, Vie, s k) — GOt 1, Vier 1, jk+1aﬂk+1))

+ M (GO, Vi, Ty i, Sky @y Spi1) — G(9k>Vk7jk7ﬂk))-

Taking the norm, we have

[Agri|?
= (1= ) AGK? + |G Ok, Vi, T fi) = G(Okr1, Vit Jnsrs firsn) ||
+ ARG (On, Vies Tios fies Sk @y Skt1) — G (O, Vie, T, i) |12
+ (1= M) (Agr, G0k, Vi, Ji, fir) = G(Oks1, Viepr, Joga, finr))
+ (1= M) M Agr, GOk, Vie, Jies fies Sy s Sks1) — GOk, Vi, T, fur))
+ MG Ok, Vies i fin) = G(Okr1, Virns Jurs fisr)s GOk, Vies T, fis Sk, @y Sks1) — GO, Ve T, i)
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< (1= M) Agwl? + 201G Ok, Viey T, i) — GOnst, Vier 1, Jir1s finir) ||
+ 2)‘iHG(9k7 Vkv jkvﬂkv Sk, Ak, Sk—‘rl) - G(ekv Vka jkvﬂk)”z
A 2
+ 71€||Agk||2 + )Tk”G(ek’ Viey ey fik) — G(Ok41, Vi1, Tt 1, fin1)|?
+ (1 = M)Ak (Agr, G(Or, Vi, T, i, Sk ks 851) — GOk, Vi, Ji, i)

Ak
< (1= M) Agel + (—7 + A0 Ag?
4 N 3 7 ~ —~ 'y z A~
+ )\*kHG(ek, Viey Jies fik) — G(Oks1, Vi1, Tt 1, fie1) ||

+8B222 + (1 — M) Me(Agr, GOk, Viey Jis fiks Sky @i Sks1) — GO, Vie T, i) (56)
where the final inequality follows from the step size condition \;, < 1 and the boundedness of operator F.
Taking expectation and plugging in the result of Lemma 7, we can simplify (56) as
E[|Agk+1]?]

<E[(L= A Agel® + (=5 + 2Dl Ag 2

4 ~ > 7 ~ ~ 2, z A~
+ )\*kHG(Qk, Vies Jies i) — G(Ok1, Vi1, Jes1, fet1)|)?

+8BZA2 4 (1 — M)Ak (Agi, GOk, Vie, Tk, fiks 1y g, Skt1) — GOk, Vi, jkaﬂk»]

A
< (1= AE[AgelP] + (=5 + ADE( Agx]*] +8BEA;

AL%, L . e
+ R (065 = Ouall + V5 = Vicsal + 1 = Jusal + e = e )

+ (1= M)A - (22L + 2| A|) Ly L7y Bp BEBarmiAer,

/\
< (1= ME[|Agel*] + (=5 + ADE[|Agel*] + (30L + 2| A L Ly Br B& BuTi e M —r,

4132 2
+ TG [(all fell + 5k||91¥|| + Belgi| + &llhwel) 7]
A
< (1= M)E[||Agwl?] + (—l + ADE[Agell*] + (30L + 2| A|) Ly Lrv Br BEBuTi Ak Ak—r,

4L
+ Gl (anllful + VIST+ el + &l )

A
< (1= MWEIAGHP) + (=5 + X)E[|Agel?) + (0L +2LA) Lp Ly B BEBrri A r,

12L2
)\G&kE[<HAka + Lp Ek +Lp(Ly +1) \/7_|_ \/>>
| AISILEAE \/* 212038 -2
T]E[ |Agk|l + Lay/e) + La ]+ TE[ | Ahg| JFLH\/; ], (57)
where the fourth inequality follows from [|g," || + [g/| < llgy [l + lgil| = llgxllx < V/IST+ 1l gxl-

We can simplify the sum of the last three terms as follows

12L2,02 2
)\i kE [(HAfk;” —|—LF Ek +LF(LV + Ek + Ek)

L 24ISIL 21212
WE[(”AQIC”"‘LG or +Lc;\/>> ] éthE[(HAth-‘v-LH\/>>

48LGak 72|S|L B
>\k /\k

E[|Afel? + LEey +ALELY el + ef] + N Agkl® + LEey + Leey]
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24L2,£2
+ TG A + Lyl
48L%.a2 72|S|LZ3 24L2§ 48L%a3
<[ 2La0k a g2 4 PASEGL £ 2y 2GR 2 4 L0k g
Ak Ak
216L2 L2 L2172 120|S|L2. L4
+ 3 nLVE el + | |AF Gﬁk(skVJreg). (58)
k k

Combining (57) and (58), we have

E[||Agk+1]|?]
/\
< (1= A)E[Agel?] + (=25 + A)E[[| Age]|?] + (30L + 2| A|) L Lrv Br BABrmi A A —r,

12L2a
G k(HAkaJrLF el + Lp(Ly + 1)y/eh + /¢ )
24|S\L 2 12L g
4+ —— =" " (|Ag I+ La EkV—FLG\/Ei) k |Ahk|| + L/

)\

< (1= M)E[|Ag|P] + (=25 + A2)E[[| Agk|?] + (30L + 2|A|)LFLTVBFB?;BHT;?Ak)\Hk
ASL2,02 72|S|L23 241262 48202 .
1 L0k B A 2 + ME[HA o]+ ZECSi gy, 2 4 BLe%k gy
A Ak A Ak
2 212 2 2174
§ POLRLELY LYy ISIGLER gy |
Ak Ak
Ak 72|S| 12,52 A8L2.02
< (1= MR g + (<3 + 3 + LGPy, 2y 4 0%y
2 ¢2 2 2 2 2
LG gy 4 BLEOR gy 2LRIEIRINE "
Ak Ak Ak

| 120[SIER L

" e +&l]+ (30L 4 2| A|) Ly Ly BrBE Byt M Ae—r, -

E. Proof of Lemmas
E.1. Proof of Lemma 1

The Lipschitz continuity conditions of the value function and J function in the policy are proved in Lemma 3 and Lemma
2 of Kumar et al. (2024), respectively. The Lipschitz continuity in the mean field can be proved using the same line of
argument under Assumption 2.

The Lipschitz gradient condition of .J in  is proved in Lemma 4 of Kumar et al. (2024) and can be extended to the gradient
of J in y by a similar argument.

O

E.2. Proof of Lemma 2
First, by definition in (24),
|F(0,V,p,5,a,8")|| = [|(r(s,a, n) + V(")) Vo log ma(a | s)|
< (Ir(s,a, W)+ [V(s")DII Vo log ma(a | s)||

<(1+By)-1
SBV+17
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where the second inequality is due to the softmax function being Lipschitz with constant 1.

Similarly, we have

IGY (V. Ty 5,0, )| = [|(r(s, 0, 0) = T+ V(') = V(s))es|
(Ir(s a, )l + 11+ V()] = V(s)])les]
(1414 By + By) - 1]

9By + 2,

IA A CIA

and
|GJ(J7,U/7870')‘ = |CJ(T(S,G7/,L) - J)‘ < 2cy,
which implies
|GV, J, i, s,a,8)|| < |GV (V, T, 1, 8,a,8)|| + |G (J, i, 5,a)| < 2(By + ¢y +2).
Finally, we have

[H (1, )| = lles — pll < llesll + [[ull < 2.

L]
E.3. Proof of Lemma 3
By the definition of (6, V, 1) in (25),
|1F (61, V1, p1) — F(02, Va, p2) |
= ||]Es~1/7r91 1 sanvg, (+|s),s'~P(-|s,a,u1) [F(alv Vla Ui, S, a, S/)]
- ESNVWGQ 2 anmey (¢]s),s' ~P(c|s,a,12) [F(027 Va, H2, S, a, 3/)] H
= ||E8NVW91 VH1 sa~tg, (-|s),8' ~P(-|s,a,u1) [F(el’ HSLVYI’ H1,8,a, 8/)]
— By menm2 ,a~gy (]s),s' ~P(-|s,a ;1.2)[ (GQ’HSJ_‘/Q’MQ? $,a, 8/)]”
= Z " (5)mg, (0 | 8Py, - | 5,0) = v ()0, @ | 5)Pya (- | ,0)) F (6, e, Va, o, 5,0, ')
+ ESNV”QI M anme, (¢|8),8' ~P(-|s,a,pm1) [F(Ql’ He, Vi, pa, s, a, 8/) - F(027 Ue, Va, p2, s, a, SI)} H
S ||Es~y7r91 Bl ,any, (.‘3)75’,\,73”1 (-Is,a,p1) [F<917 HSL‘/I) M1, S, a, S/) - F(027 HEL‘/Qv H2,S,a, S/)] H
+ 2Bpdry (V™00 M @ mp, @ Ppy, V022 @ mo, @ Py ), 59)

where the inequality comes from the definition of TV distance in (17) and the second equation is a result of the fact that for
any constant ¢

Esvmo v ammg(-|5),5' ~P(-|s:a.0) [F(6,V + clis), iy 8, @, 8/)}

= Eoumo i ammy(]),5'~P(|sagn)[(1(8: a5 1) + (V(s) +¢) = (V(s) + ¢)) Vg log m(a | 5)]
= Egnvmo i ammg(-|s),s'~P(|s,san) [(1(8, 0, ) + V (s") = V(s)) Vg logma(a | s)]

= Egvmor v ammy(-|s),s'~P(|ssa,) [ (0, Vi 1y 5,0, 8")].

For any s, a, s’ we have from (24)

||F(917HSLV1,H175,075/) - F(923H5L%7N2357aa S,)”
= [[(r(s, a, u1) + Mg, Vi(s") — e, Vi(s)) Vo log e, (a | 5)
— (r(s,a, p2) + e, Va(s') — e, Va(s)) Ve log e, (a | 5)||
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< |r(s,a,pn) = (s, a,p2)[[[Volog me, (a | 5)||
+ [r(s, a, p2)[[[Volog mg, (a | s) = Vo logmg, (a | s)]|
+ e Va(s') — e, Vi(s) — e, Va(s') + e, Va(s)[[[ Vg log 7o, (a | 5)]|
+ e, Va(s") — e, Va(s)[| Vo log o, (a | s) — Vg logmg, (a | )|
< |r(s,a,pn) = (s, a,p2)| + (L +2[VI)[IVolog o, (a | s) — Vg log ma,(a | 5)]|
< Llpa = pell + [[Vologmg, (a | s) — Vg logme, (a | s)]|
+2|[Me, Vi — e, Vo[ + 2[[Tle, Val[[[ Vo log e, (a | s) — Vi logma, (a | 5)]|
<5(2Bv +1)||6h — 02| + L1 — pel| + 2[Te, Vi — IIe, V2, (60)
where the second inequality bounds || log g, (a | s)|| by 1 due to the softmax function being Lipschitz with constant 1, the

third inequality follows from Assumption 2, and the final inequality is a result of the fact that the softmax function is smooth
with constant 5 (see Agarwal et al. (2021)[Lemma 52]).

Plugging (60) and the relation in (26) into (59), we have

|1F (01, Vi, 1) — F(62, Va, po)||

<|E [F(61,11g, Vi, p1,8,a,8) — F(0, g, Va, ua, s,a,s")]||
+ 2Bpdry (V00 M @ mo, @ Py, 00212 @ mo, @ Ppy)

<5(2Bv +1)||01 — 02| + L1 — pal| + 2|, V1 — g, V2|
+2BpLyv([|6h — 02 + |11 — p2l))

< (10By + L+ 2BrLpy +5) (|0 — o]l + 1 — pol] + |TTe, Vi — e, Vo).

O, M1

s~v sty (+18),8"~ Py (t1s,a,01)

Following a line of argument similar to (59),
G (61, V1, J1, 1) — G(02, Va, Ja, o) |
< ”E sartgy (]8),8" ~ Py (+]s,a,p1) [G(H&_ Vi, Ji, 8, a, 5/) - G(HEJ_ Va, J2, p2, 8, a, 5/)] ”
+ 2Bgdry (V"0 M @ mo, @ Py, 0202 @ mp, @ P, ). (61)

s 01 L

The first term of (61) can be bounded in a manner similar to (60). For any s, a, s’, we have

|G(Tlg Vi, J1, p1,8,a,8) — G(Ug, Va, Jo, 2, 8, a,8")||
< |l(r(s,a, 1) — Ji + g, Vi(s') — e, Vi(s))es
= (r(s,a, p2) = Jo + e, Va(s') = Ilg, Va(s))es||

+eglr(s,a,pr) — J1 — (s, a, uz) + Jo

< |r(s,a, p) = (s, a, po)lllesl| + [Ty — Jallles]| + 2[[Te, Vi — e, Val|[es]]
+eglr(s,a,pr) —r(s,a, u2)| + cg|J1 — Ja|

< (cs +Dr(s,a, ) = r(s,a, p2)| + (cs + 1)1 = Jo| + 2[[He Vi — Il V2|

< (cs + DL{px — pol + (cs + D]J1 = Jo| + 2[[Te Vi — IIg, V2. (62)

Plugging (62) into (61), we get

|G (01, V1, Ju, 1) — G (02, Va, Ja, o)
<|E G(Ilg, Vi, J1, a1, 8,a,8") — G(llg, Va, Ja, iz, 5, a,8")]|
+ 2Badry (V™0 M @ mg, @ Py, v M2 @ o, @ P,)
< (es+D)L|p1 = po| + (cg + )|J1 — Jo| + 2||lg, Vi — IIg, V2|
+ 2B Lry ([|6h — b2 + (|1 — pe2|))
< Lg ([[6h = Ol + [l1 — p2ll + 2| 1Le, Vi — IIe, Va|[ + [J1 — ),

01 H1

smr ™0 gy (1), ~ Py, (Clssann) |
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with Lg = 2BgLry + (L4 1)(cy + 1) + 2.

Finally, again following steps similar to (59) we can show

||H(917M1) - ﬁ(%ua)H
<NEqo, 7oy [H(p1,8) — H(pz, s)]|| + 2Brdpy (V™0 1 v 12), (63)

From the definition of H (u, s) in (24), we have for any s
[H (g1, 8) = H(pz, s)ll = l[(es — pa) = (es — p2) | = 2 — - (64)
By Assumption 2,

dTV<V7T917/L1’V7r927H2) — %Hy”‘h’/‘l — Tz H2 ||1

L(llwe, = mo, | + 111 = pall)

<
< L([|01 — 02| + [|p2 — p2]l), (65)

where the final inequality is a result of the 1-Lipschitz continuity of the softmax function.
Plugging (64) and (65) into (63), we have

|1H (61, 1) — H(O2, o) || < Eyopmor i [H (1, 8) — H(pa, 8)]|| + 2B dpy (V70 1, p7e2 2)
< |l — p2ll + L([|61 — b2 + |1 — p2])

< (L+1)([[01 — 2] + [[11 — p2l])- (66)
O
E.4. Proof of Lemma 4
By the definition A fy,
[

= 1A+ (O, Vi i) = F(Ou, V7ot C90) () 4 F (0, V704" 00) (g, )|
DSl 1B (O, Vi i) = F (B, V70”900 (g, )+ [[F (B, V700900, (o, ) |
< IASl+ Ll (V7o ) = G|+ Ll = (o, )| + V0T oy 12) L) |
S AS] + Lp|Te, (V7o (70 — VTt 4 L[, (VToie — V)|

+ Ll — p* (mo, )| + v/e%
< ||Afrll + Lry/ef + Lp(Ly + 1)\/¥+ NG

where the last inequality follows from the Lipschitz continuity of the value function in the mean field and the fact that linear
projection is non-expansive, and the second inequality follows from the Lipschitz continuity of operator F' and the relation

VQJ(Tng ’ /’6) |M:M* (7o, )~ F(eka V7% w7 (o, )’ :u’*(ﬂ-ek ))
Similarly, by the definition of Agy, we have

gkl = | Agr + GOk, Vi, Ji, fir) — GOk, V™or e J(mg, . iin), itn) |
< | Agll + |G Ok, Vie, Tk, fur) — GOk, VORI (g, , k), i) |
< | Agkll + La|Te, (V™or ™ — Vi) || + Lal J (o, , i) — Ji|

= |Agkll + Lar/eY + Lay/ €l
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where the first equation follows from the fact that G(6y,, V™ 2 J (g, , fiz), fir.) = O.

Finally, by the definition of Ahy, we have

Akl = | Ahg + H (O, fur.) |
= || Ahg + H (6, fir.) — H (O, 1" (70,)) |
< || ARy || + [|H (O, fir.) — H(Ok, p* (7a,))
< [|Ahgll + Lu |l i — p* (7o) ||

= ||Ahk||+ Ly

where the second equation follows from the fact that H (0, u* (g, )) = 0.

E.5. Proof of Lemma 5
See Zhang et al. (2021a)[Lemma 2] or Tsitsiklis & Van Roy (1999)[Lemma 7].

E.6. Proof of Lemma 6
Adapted from Lemma 19 of Ganesh et al. (2024).

E.7. Proof of Lemma 7

The proof of this lemma proceeds in a manner similar to that of Lemma 9. We note that the samples generated in the
algorithm follow the time-varying Markov chain

O _ T k*"'k O — T+l Pre—r), Ok—1 fr—1
Shery —F Qher, —F Shermptl  —F Qh—pefl —>  Sk_1 — Qp—1 — Sk. 67)

We construct an auxiliary Markov chain generated under a constant control

Ok —ry, k—7) ~ Ok—r) ~ 17— Ok—r) 63
Skf-rk—>ak‘rk—>3k-rk+1—>akzrk+1—> 3k1_>ak1_>5k: (63)

Let fz denote the stationary distribution of state, action, and next state under (68). We denote pi(s,a,s’) = P(sx = s,ax =
a,sp+1 = §') and pi(s,a, ") = P(S, = s,ar = a, 5,41 = s') and define

éIEKAfk—Afk ror F O, Ve, fies i iy S641) — F(Ox, Vi, fur)]

(A frers F(On, Vi, fu, S1es @iy $k41) — F (O, Vi, i, S, @, S151))]

(A fr—rys F(Ok, Viey fths 3k Ty Sh1) — E(s,a,s/)Nﬁ[F(ek,Vmﬂk,S,a,S/)M
(A fo—rs (s a5 mi [ F Oy Vi, ik, 8,0, 8)] — F(Ox, Vi, jie))]-

It is obvious to see

E[<Afk7F<9k7 Vk}7laka8kaak78k+1) - F(ekavkaﬂk:)” = Tl +T2 + T3 + T4- (69)

We bound the terms individually. First, we treat T}

= E[{Afr — Afrerps F(Ok, Viey fik, Sk, @k $511) — F Ok, Vi, fur,))]
<E[fk — From | I1F Ok, Vie, fire, Sty aney sk41) — F (O, Vi, i) ]
+ E[I1F O, Voo k) = P07y Vi )|

NE Ok, Vie, fures Sk aks skr1) — F (6, Vk,ﬂk)ﬂ
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T —1
<2Bp Z E[|l fr—t = fr—t—1ll]
t=0
Tk—l
+2LpBr Y E[0k—s — Ok—ell + Vit = Viceoa |l + llin—r — ftr—e1ll]
t=0

< AB}TkMg—r, + 2LpBp7(Brog—r, + BaBr—r, + Bréi—r,)

< 10LpBEBaBuTiA—r,
where the second inequality bounds | F (O, Vie, fusss Sk @iy Skr) — F (O, Vie, i) || by 2Bp and ||F (0, Vi, fix) —
F(0x—ry, Viery» fo—r,, )|| using the Lipschitz continuity established in Lemma 3. The last inequality follows from the

step size relation ay < & < B < Ay for all k. The third inequality follows from the fact that || fx+1 — fxl| =
Mellfe — F(Ok, Vi, ik, Sk, ak, Spa1)|| < 2Bp A for all k and that the per-iteration drift of 6y, Vi, and fij, can be similarly

bounded
10x+1 = Okll < Brak, [[Visr = Vall < BaBr,  llinsr — ful| < Brré.
We next bound 75

- EKAfk—‘rka(ekvVk7ﬂk78k7ak7sk+l) - F(9k7‘7k7ﬂk7gk7ak7§k+l)>]
< 2BpRr,_, [E|F(0k, Vi, fik Skr Qs 8k41) — F Ok, Vies fi, Sk G Sk4)l| | Fioor, ]

< 2B, / / / F (O, Vi i, 5,0, 8) (5, @, 8') — Bis, a, ') ds da ds’]
SJAJS
< 2BZE[drv (pr, Dr)]-

where the last inequality follows from the definition of TV distance in (17).

Applying Lemma B.2 from Wu et al. (2020), we then have
Ty < 2BEE[drv (pr, P
~ A
< 2B3Eldry (B(sk = ), P = ) + 201 — O]

< 2BEE |dpy (P(sk—1 = -),P(Sk-1 = ')) + L||Ok—1 = Op—r, || + Ll fik—1 — fi—r, ||

A
101 = O,
k—1
< VAIBEE[0—1 = Oxr, ] +2LB% Y E[10: — Oyl + e = fix—r |
t=k—T1p

< (2L + |A|)B} 72 (Bra—r, + Buéi-r,)
< (4L + 2| A|) BE BT Ak —ry.»

where the third inequality is a result of (18), and the fourth inequality recursively applies the inequality above it.

The term T3 is proportional to the distance between the distribution of the auxiliary Markov chain (68) at time & and its
stationary distribution. To bound 73,

= EKAfk—‘rka (ekv Vkaﬂk7§k35k7§k+l) - ]E(s a s’)~~[F(0k; Vk,ﬂk’a S, a, SI)D}

< 2BrpEgF, ., [E[|F 01y Vie, fires S, s Sk41) — Es a5~z [F Oks Vies fitks 8@, 8)]||| | Fromry ]
< QBFIE// / Ok, Vi, fir, 5,0, 8") (Dr(s) — fi(s)) ds da ds']

< 2BLE[drv Pk, B)]

S 2B%—v0¢k,
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where the final inequality follows from the definition of the mixing time 71 as the number of iterations for the TV distance
between py, and g to drop below .

Finally, we bound the term 7T

Ty = E[(A frrios B(s 0,5~ F (Oks Viey iy 5,0, 8")] = F (O, Vi, )]
< 2BFE[||E s 0,5)~alF Ok, Vi, it 8,0, 8')] = F (O, Vi, fur) ]
< 2BREldry (11, v M @ m, @ Py, )]
< 2Ly BEE||mo, — o, | + it — -, ]
< 2L7y Bimk(Brog_r, + Buéy_r,)
< ALpy By By,
where the third inequality applies the result in (26).
Collecting the bounds on 77-7 and plugging them into (69), we get
E[(Afi F(Ok, Vi, fi, Sk 0k, Sk41) — F (O, Vi, fin))]
=Ti+Ta+T3+1,
< 10LpB%BeBrTi e, + (AL + 2| A|) B BymiNe_r, + 2B%ay + 4L7y B Buéy o,
< (20L + 2|A|) Ly L7y B Bo B3 \e—+, -

O
E.8. Proof of Lemma 8
By the definition of [, we have for any ;1 € Ag
(1w —p*(mg), H(O, 1) — H(O, 1" (m)))
= (1 — " (o), 1" (o) — 1) + (p — p* (mg), ™0 1 — 7o 17 (70}
<~ = ¥ (o) |* + i — p* (o) [ — wmor ()|
< —(1=8)|lu— p* (o),
where the second inequality follows from Assumption 3.
O

E.9. Proof of Lemma 9

The cause of the gap between Ele;, | and E__ o, ik [es] is a time-varying Markovian noise. To elaborate, we first show
how the sample sy, is generated below

Ok s ik, Ok — 7 +15 Bk—rp+1 Ok—1, Ak—1
Sk—ry " Skl — e 8g—1  —> Sk (70)

This Markov chain is “time-varying” as its stationary distribution changes over iterations as the control changes. We
introduce an auxiliary Markov chain, which is “time-invariant” in the sense that it is generated under a constant control,
starting from state s;_,,.

Orp—rp fllo—7y ~ Ok—rp s Bl—ry, - Ok—rps Blo—r)
Sk—1, — " Skomt1 — 81 e (71)

Defining

T £ E[<Ahk - Ahk’—ﬂcvesk - Esmfuﬂek’ﬂk [63]>]
Ty 2 E[(Ahjy_ry, €5, — €3,)]
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T3 é E[<Ahk‘—7'k b egk - ]E ngk*ﬂc ) p‘k—Tk [6‘}]>]

S~

Ty £ E[<Ahk77—’“’]ES~yW9k—fk [ [es] - ESNV“%’% [es]>]a
we see that

E[(Ahg, €5, —E__ vo i les])] =T1 +To + T3+ T (72)

We bound the terms individually. First, we treat T
Ty = E[(hi — hi—ry + H(Ok 7y fik—r,,) = H(Oks fir), €5, — B o, i [€5])]
< E[f|fr — ha—r, [lll€s), — Eswuﬂak=ﬁk les] ]
+ E[[[H Ok, fix) — H(Ok—rys fri—r)lles, —E__ o, [€5]]l]

Tr—1 T —1
<2 Elllhk—t — hi—e-al]+2La Y BlI0k—s — Ok—rall + k-t — fix—t—1]]
t=0 t=0

<A4ByTRAk—r, + 2Brmi0g—7, + 2BaTiéi—r,
< SBFBHTk)\k—Tk7

where the last inequality follows from the step size relation oy, < & < Ay for all &, and the third inequality follows from
the fact that ||hg41 — hill < Akllhi + i — es, || < 2By A for all k and that the per-iteration drift of 6, and jix, can be
similarly bounded

0k+1 — Okl < Brow, |fiks1 — finll < Buék.

We next bound T5. We denote p(s) = P(sx = s) and pi(s) = P(5, = s).

1= E]:kffk [E[<hk—m - H(ak—Tk’lak—Tk)7 Csy, — egk> | ]:k—Tk]]
< 2BHEfk—Tk [E[Hesk - eg}c” ‘ ]:k*Tk]]

< 2BE]| /S ea (Pk(5) — Br(s)) ds]

< 2ByE[drv (pr, pr)]

< 2BuE[dry (pr—1,Pk-1) + Ll|Ok—1 — Ok 7, | + Ll fik—1 — fi—7, ][]
k—1
<2LBu Y B[ — Ok || + llse — fi—r, ]

t=k—T1g
< 2LByt(Brok—r, + Bui—r,)
<ALBpBH{TENe—m, s
where the third inequality follows from the definition of TV distance in (17), and the fourth and fifth inequalities are a result
of (18).

The term T3 is proportional to the distance between the distribution of the auxiliary Markov chain (71) at time k£ and
its stationary distribution. Let i denote the stationary distribution of (71). We can bound this term as follows under
Assumption 1

Ty = E[(Ah rres, — B oy ins, [ea])]

<2BuEr, , [Elles, ~E__ o, oa [l | Fior]

< 2ByE| /S es (Br(s) — fi(s)) ds]

< 2ByE[drv (Dk, 11)]
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< 2Bpay,

where the final inequality follows from the definition of the mixing time 7 as the number of iterations for the TV distance
between py, and f to drop below ay.

The term T} can be treated by the Lipschitz continuity of v
T, = E[<Ahk77—k,Es~Vﬂ6kfﬂ'k”lk_rk [65} - ]ESNV""kaﬂI« [es]>]

< 2BE[[[p" e M — e

< QBHLE[HW@k = o, Il + QBH&E[H/%—W = ful]

<2BgyL Z Elllafell] + 2B L Z E[[|&¢hel]]

t=k—T1k t=k—T1k
< 2By Lt (Brog—r, + Bu&k—r,)
< 2LBpBjéh—r,
where the last inequality follows from the step size condition o < & for all .
Collecting the bounds on 73-T, and plugging them into (72), we get
E[{(Ahg, es, — E__ e, ok [es])]
=T +T+T3+Ty
< 8BrBuTiMi_r, +ALBp By ey, + 2By, + 2LBp B,
< 16LBpB%mi\e_7,-

E.10. Proof of Lemma 10
By the definition of operators G and G in (24), for any V € RISl and J € R
HSL(Vi Vﬂ'e’l»b) H&CJV(O,V, J,‘LL)
J - ‘](7797:“) GJ(Q,J, :u’)

< <H51_ (V - VTFGA,,U/)7 HEJ_ESNVWG’“,aN‘ﬂ'e('ls),S/NP("S,CL,M) [T(57 a, :u) -J+ 68(68/ - eS)TVD
+ CJ<J - J(T‘-Qa M)7ES~V"9’”,a~ﬂ'g(~|s) [7“(8, a, /J/) — J]>
= (e, (V = V™) Mg, Egvpro r ammy(ls),s/nP(lssas) [(1(5: a0 10) = T (o, 1) + (e — €5) 'Tle, V) es])
+ Mg, (V=VTe") Tlg, Egopmo.n[(J (7o, ) — J)es])
+ CJ<J - J(ﬂ'g, :U’)v ]Eswu”f?’“,awwe(<|s)[7n(s7 a, ,U,) - J]>
= <H5L (V - Vﬂe’“)?HSLE3~V"9~“,a~7re('|5)7s’~7’('\5,a,u) [65(68’ - es)T] e, (V- Vﬂe7u)>
+ (g, (V = VT r), Bopmon[(J (o, 1) — J)es]) — cs(J = J (79, 1))?
< (1_-[‘5‘L (V — VTFS,M))T HELESNVW9’“,a~ﬂ9(-‘s)7s’~'P(-‘s7a7ﬂ) [es(es, _ eS)T] HEL (V _ Vﬂe,u)
y . 1
+ 5 e, (V =V “ 1)+ %||Es~u“9’“[(z](7f97u) — Dl = es(J = I (mg, p))?
= (HEL (V - Vﬂg,#))—r ESNV‘"G’“7(1’\/71'9("8),8/"\473("S,CL,M) [es(es’ - eS)T] HSL (V - V7r9,,u)
gl - 1
+ 5l (V =V “ R+ %||ESNW,H[(J(W9,M) — Dell” = es(J = I (mg, p))?

Y 2 1 2
< _ Y Tes b (T
< —5lHe, (V= V™) 27(J J (7o, )%,

where the second inequality follows from the fact that (@, b) < @l + = ||b]|2 for any vectors @, b and scalar ¢ > 0, the
third inequality applies Lemma 5 and the condition ¢; > 1/+, the third equation uses the property of the projection matrix
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H%L =1Ilg, = H; , and the second equation is a result of the equation below
B0t armo(-|s)s'~P(fsae) [(1(5, 05 1) = T (g, 1) + (esr — €5) TTe, V) €] = 0.

Since v € (0,1), we have - > . This leads to the claimed result.

E.11. Proof of Lemma 11

The proof of this lemma proceeds in a manner similar to that of Lemma 7. We note that the samples generated in the
algorithm follow the time-varying Markov chain

Ok—rp, fie—ry, Ok—7p+1 fik—7p 41 01 fir—1
Shery —F Qher, —F Shermptl  —F Qh—gefl —r  Sp_1 — Qp—1 — Sk. (73)
We construct an auxiliary Markov chain generated under a constant control
Or—rp, Op—r) ~ Ok—rp ~ —r o~
Shere Wy o Bl S Tpmrt By @ G (74)

Let fx denote the stationary distribution of state, action, and next state under (74). We denote pi(s,a,s’) = P(sx = s,ax =
a,sp+1 = §') and 'ﬁk(s, a,s’) =P(sk = s,ar = a,5,+1 = s') and define

Ty £ E[(Agk — Ag—ry, GO, Vi, Jis ik 51y ey s641) — G0k, Viey Jie, fir))],

Ty 2 E[(Agh—r,. GOk, Vies Jros fes Sky @y Sk41) — GOk Vie, T, fk, Sy Gk, S141))]

T3 2 E[(AGh—r GOk, Vies Tros fe Sk, @ Sk41) — Esa,6)~it (G Ok, Vi, Tk, fis 5, @, 8)])]
Ty 2 E{AGe—ry+ E(s.a,51~i G O, Viey T, fik 8,0, 8)] — GOk, Viey iy fine))]-

It is obvious to see

E[(Agk, GOk, Viey Ty fthes Sky @ty Sk1) — GOk, Viey Tk, i) = Ty + T + Ty + T (75)

We bound the terms individually. First, we treat T}

Ty = E[(Agk — Agk—r, GOk, Vie, ks fiks Sk» ks Sk41) — G(Oks Viey Jio, i)
< E[llgk — gh—ri |G Ors Ve, iy fiks 5, e, $511) — G(Oks Vie, i fie) ]
+ E|:||G(9k; Viey Jis fike) — GOk—rys Vieer s Jorp s ey )|

NGOk, Vi, i, ik, sy s, Sig1) — GO, Vk7jk7ﬂk)||}
kal
< 2Bg¢ Z lgk—t — ge—t—1]
=0
Tr—1
+2L6Ba Y (10k-1 = Oroall + WVime = Vioma |+ Wie = Fomimal + ikt = o1
=0
< 4BETkMi—r, + 2L Beti(Brog—r, + BaBr—r, + BaBi-r, + Buli-r,)

< 12LeBrBEBuTAe—ry s

where the second inequality bounds || G'(6, Vies Jies fukes Sk Qs Ska1)— G0, Vies Jis fu)|| by 2B and ||G (0, Vi, T, fie) —
G(Ok—r,, Vi - T s Bk—r, ) || using the Lipschitz continuity established in Lemma 3. The last inequality follows from
the step size relation ay, < & < S < A for all k. The third inequality follows from the fact that ||gx+1 — gkl =
Aellgr — GOy, Vi, fi fiks Sky Qky Sp1) || < 2B A for all k and that the per-iteration drift of 6y, Vi, and /i [ix. can be similarly
bounded due to Lemma 2

10k+1 — Okll < Bra, |Visr — Vill < BaBrs i1 — Jil < BB, llfies1 — finll < Buée.
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We next bound 7%

T2 - EKAgkf‘rkaG(Hka V]ﬁ jk?aﬂka Sk, Ak, Sk+1) - G(eka Vk:a jkaﬂk7§k7aka§k+l)>]
<2BaEr, . [E[|G(Ok, Vi Ji, fth, sk any sk41) = GOk, Vies T ks Sk s 51 || | Fir, ]

< ZBc;IE[/S /A /s GOk, Vie, T, ik, 8,0, 8") (pr(s, @, 8") — Pr(s,a, 8")) ds da ds']
< 2BZE[drv (pk, Pr)]-
where the last inequality follows from the definition of TV distance in (17).
Applying Lemma B.2 from Wu et al. (2020), we then have
T
< 2BZE[drv (pk, i)
< 2B2E{dry (B(se = ), P = ) + 201 s r |

szBéE[dMP(sH:.>,P<§k71=->>+Lnek R S T Y A N P

k—1
< |AIBZE[6k—1 = O—r, ] +2LB% > Ell0; = Or || + I 2e = fti—ry ]

t=k—T11
< (2L + |A|)BéTI§(BFO‘k—Tk + BH&C—T/@)
< (AL +2|A|)Bp BE BHTi Ao—ry.
where the third inequality is a result of Assumption 2, and the fourth inequality recursively applies the inequality above it.

The term T3 is proportional to the distance between the distribution of the auxiliary Markov chain (74) at time k and its
stationary distribution. To bound T3,

T3 = EKAgk—TwG(aka Vka jka ﬂk’§k7ak’§k+l) - IE:(s a s/)Nﬁ[G(9k7 Vka jkaﬂka $,a, 3/)]>]
< 2-BGIE./":;C Th ||G gk; Vk»JkaﬂkaSkaaka SkJrl) E(s a, s/)NH[G(ekv Vkv jkvﬂkvsvavsl)]” | ‘Fk*‘ﬂc]]

< QBgE// /G Ok, Vie, iy i, 5, a, 8") (Dr(s) — Ji(s)) ds da ds']
< 2BZE[drv (Pk, 1))
< 23%0{]@7

where the final inequality follows from the definition of the mixing time 7 as the number of iterations for the TV distance
between py, and g to drop below .

Finally, we bound the term T}
Ty = EKAgk—'rk ) E(s,a,s/)wﬁ[G(eka Vka jkv ﬂkv $,a, 5/)] - G’(ekv Vkv jk7 ﬂk»]
< QBGE[”E(S,(L,S/)NH[G(ekv Vka jkv lakv S, a, 3/)] - G(9k7 Vkv jkv ﬂk) ”]
< 2BéE[dTV(ﬁ7 ZEBL ® mp,, @ Pﬂk)]
< 2Ly B (|Imo, = mo,_, ||+ litx = fie—r, )
< 2Lyy Bgm(Brag—r, + Bui—r,)
<4LryBrBEBu—r,,
where the third inequality applies the result in (26).

Collecting the bounds on 7% -T4 and plugging them into (75), we get
E[<Agk¢7 G<9k7 th laka Sk, Ak, Sk+1) - G(ekn Vk, /lk:)>]
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=T+ T+ T+ Ty
<12LpBpB%Bymilg_r, + (AL + 2| A|)Bp BA Byt Ay v, +2B%ayp+4Lpy Bp BABréy -,
< (22L +2|A|)Lp Ly Bp BA Bt i+, .-

F. Details for Example 1

We first prove that the mentioned class of MFGs satisfies Assumption 4 with p = 1 and A = 0. Specifically, we need to
show

(1 (7)) = T (it (1)) < T (1 () = T (', (). (76)
As the transition kernel does not depend on u here, we use ™ to denote the stationary distribution of states under policy 7.
Note in this case that p*(7) = v™.

We first compute J (7', u* (7))

I (@) = " () = Y VT (s (). (77
s€{s1,s2}
Similarly, we have
Jew@= Y (6) I )= Y 07 6)
s€{s1,82} s€{s1,82}

As a result,

s€{s1,82}
J(m, it (m) = J(n', pw* () = Z v (s) (V’T(s) - V’Tl(s)).
s€{s1,s82}
This obvious leads to (76) as

() = I ) = () = It @)) = Y () -7 9) 20

se{s1,52}

Next, we provide the detailed derivation on the equilibrium of the MFG in the special case |S| = |A| = 2 under the
transition kernel such that in either state s € {s, s2}, the action a; (resp. as) leads the next state to s; (resp. s3) with
probability p = 3/4. A visualization of the transition kernel can be found in Figure. 3.

Under any policy 7, the transition matrix is

)

pr_ { pr(ay | s1) + (1 —p)m(az [ s1) pr(ar | s2)+ (1 —p)m(ag | s2)
(1 —p)m(ar | s1) +prlaz | s1) (1 —p)m(ar | s2) + pr(az | s2)

under which the stationary distribution (induced mean field) is

. [w(ag | 52) +p — 2pm(az | 5) 1]T
m(ar | s1) +p—2pm(ar | s1)" ]

In the case p = 3/4 we have

. 1 {3/4—w<a2 | 52)/2 1}?

pr(m) =v" = STl 2 ’
3/4—m(az]s2)/2 | 3/4 — 5
L+ Sz 13/4 —m(ar [ s1)/

The fact that 71, 72, and any policy inducing [1/2,1/2] " as the mean field can be easily verified at this point.
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P(S;18y,a;)=p

l ' P(S2182,a2)=p
c- Sz '
P(51|51’a2)=1_pt '

P(S11S83a,)=1-p

Figure 3. Example Mean Field Game Transition

G. Average-Reward MDP - Detailed Formulation and Algorithm

Consider a standard average-reward MDP characterized by state space S, action space A, transition kernel P : S x A — Ag,
and reward function r : § x A — [0, 1]. The cumulative reward collected by a policy 7 : S — A 4 is denoted by Jypp(7)

IMDP(T) £ By (cfsi)sm 1P Clsan) [Doneo T (8% ak) | So = s]. (78)

The policy optimization objective under softmax parameterization is

max Jvpp (70). (79)
The differential value function under policy 7y is
oo
Vabp(8) = By (clsi) s~ PClsnoan) [Z r(sk, ar) — Jvpe(m)) | so = S]
k=0

We use P™ and v™ to denote the transition probability matrix and the stationary distribution of states under the control of 7.
The policy gradient is

Vo Jupp(Te) = Eswimo anmo(1s),5/~P (150,00 [(7"(8, a) + Vipe(s") = Viibe(5)) Ve log ma (a | 8)} : (80)
and Vyjpp satisfies the Bellman equation

Vabe = > mo(a | )r(- a) + Juop(mo) 15| + (P™) T Vighp. (81)

The algorithm for optimizing Jupp in an average-reward MDP, simplified from Algorithm 1, is presented in Algorithm 2.
We have three main iterates in the algorithm, namely, policy parameter 8, and value function estimates V} and V. which are
used to track VM and Jypp (7, ). The policy parameter is updated along the direction of an approximated policy gradient,
while the value functlons are updated to solve (81) and (79) using stochastic approximation.
H. Simulation Details
We choose the reward function to be

r(s,a,pu) = pu(s) +wr(s,a) x0.1, Vs, a,
where w, (s, a) € R is sampled from the standard normal distribution.
The transition kernel P is also randomly generated such that for all s, a

P( | s,a,p) x wp(s,a) + u,
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Algorithm 2 Online Actor Critic Algorithm for Average-Reward MDP

1: Initialize: policy parameter 6, € RIS/l value function estimate Vo € RIS N Jo € R, gradient/operator estimates
fo=0cRISIM gV —0cRIS g/ =0 R

2: Sample: initial state sg € S randomly

3: for iteration £ = 0,1, 2, ... do

4:  Take action ay, ~ g, (- | s;). Observe reward (s, ay) and next state sy 1 ~ P(- | sg, ax)

5. Policy (actor) update:

Or+1 = O + ag fr.
6:  Value function (critic) update:
Vi =Tlg, (Vi + Brgy ), Jirr = Moy (Jk + Brgl).
7:  Gradient/Operator estimate update:
Frer = (L= Xe) fie + M (r(sk, ar) + Vi(sk41))V log o, (ar | i),

g = (L= Xe)gl + Xe(r(se, ar) — Jx + Vi(sir1) — Vi(sk))es,
g = (1= M)gil + e (r(se, ar) — Ji).

8: end for

where wp(s,a) € RISl is drawn element-wise i.i.d. from the standard uniform distribution.

For the proposed algorithm algorithm, we select the initial step size parameters to be cg = 10, 8y = 0.1, §; = 0.02, and
Ao = 1. The step size parameters for the algorithm in Zaman et al. (2023) are taken from the paper in the Numerical Results
section. We tried to adjust the parameters of their algorithm in an attempt to see whether we can get it to converge faster,
and found out that the parameters prescribed in the paper are good enough and hard to improve at least locally.
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