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Abstract
We study the problem of finding the equilibrium
of a mean field game (MFG) – a policy per-
forming optimally in a Markov decision process
(MDP) determined by the mean field, which is
a distribution over a population of agents and
a function of the policy. Prior solution tech-
niques build upon fixed-point iteration and are
only guaranteed to solve a regularized approx-
imation of the problem, with a regularization
constant large enough to ensure that the equi-
librium is the unique fixed point of a contrac-
tion mapping. This leads to a regularized solu-
tion that can deviate arbitrarily from the original
equilibrium. In this work, for the first time, we
demonstrate how direct gradient-based policy op-
timization instead of fixed-point iteration, may
solve the original, unregularized infinite-horizon
average-reward MFG. In particular, we propose
Accelerated Single-loop Actor Critic Algorithm
for Mean Field Games (ASAC-MFG), which by
its namesake, is completely data-driven, single-
loop, and single-sample-path. We characterize
the finite-time and finite-sample convergence of
the ASAC-MFG algorithm to a mean field equilib-
rium building on a novel multi-time-scale analysis
without regularization. We support the theoretical
results with numerical simulations that illustrate
the superior convergence of the proposed algo-
rithm.

1. Introduction
The mean field game (MFG) framework, introduced in
Huang et al. (2006); Lasry & Lions (2007), provides an
infinite-population approximation to the N -agent Markov
game with a large number of homogeneous agents. It ad-

1JPMorgan AI Research, United States. Correspondence to:
Sihan Zeng <sihan.zeng@jpmchase.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

dresses the increasing difficulty in solving Markov games
as N scales up and finds practical applications in many do-
mains including resource allocation (Li et al., 2020; Mao
et al., 2022), wireless communication (Xu et al., 2018;
Narasimha et al., 2019; Jiang et al., 2019), and the man-
agement of power grids (Alasseur et al., 2020; Zhang et al.,
2021b).

A mean field equilibrium describes the notion of solution
in an MFG, and is a pair of policy and mean field such that
the policy performs optimally in a Markov decision process
(MDP) determined by the mean field and the mean field
is the induced stationary distribution of the states when
every agent in the infinite population adopts the policy.
In the discrete-time setting without explicit knowledge of
the environment dynamics, reinforcement learning (RL)
provides an important tool for finding a mean field equi-
librium using samples of the state transition and reward. A
series of recent works have proposed finite-time convergent
RL solutions to MFGs (Guo et al., 2019; Xie et al., 2021;
Anahtarci et al., 2023; Mao et al., 2022; Zaman et al., 2023;
Yardim et al., 2023), which all make an assumption on the
contraction of a mean field optimality-consistency operator.
The assumption guarantees the uniqueness of the mean field
equilibrium and allows fixed-point-iteration-type algorithms
to converge. However, as pointed out in Yardim et al.
(2024), the assumption only holds if an impractically large
regularization is added. Since the policy at the regularized
equilibrium quickly approaches a uniform distribution as the
regularization weight increases, solving such a regularized
problem is usually uninformative about the original game.

We summarize our main contributions and include a detailed
literature comparison in Table 1.

Main Contributions
• We design a finite-time convergent algorithm ASAC-MFG
that provably finds a mean field equilibrium without regular-
ization or imposing the aforementioned contraction assump-
tion. However, it is shown in Yardim et al. (2024) that find-
ing an equilibrium in a general MFGs (even with Lipschitz
transition kernel and reward function) is a PPAD-complete
problem conjectured to be computationally intractable
(Daskalakis et al., 2009). We identify a subclass of MFGs
satisfying a proposed “herding condition” (Assumption 4)
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with ∆ = 0, where ASAC-MFG converges to the exact mean
field equilibrium. For MFG instances not within this sub-
class, our algorithm converges to a ∆−neighborhood around
the mean field equilibrium. In this sense, this work comple-
ments and expands on the finding of Yardim et al. (2024).

• ASAC-MFG is single-loop, single-sample path policy op-
timization algorithm that finds the equilibrium in the tabular
infinite-horizon average-reward MFG, and has finite-time
complexity. Specifically, for a subclass of MFGs satisfy-
ing the herding condition with ∆ = 0, ASAC-MFG finds a
global mean field equilibrium with a convergence rate of
Õ(k−1/2); for ∆ > 0, it converges to a

√
∆−approximate

MFE with the same rate. To our knowledge, this work
is the first to study a finite-time convergent algorithm for
MFGs without the contraction assumption, and is also
the first to propose a completely sample-based single-loop
single-sample-path algorithm for MFGs. Single-loop single-
sample-path RL algorithms are widely used in practice due
to convenience and simplicity but their theoretical under-
standing is not as complete as their nested-loop counterparts.
Our work fills in this important gap in the context of MFGs.

Figure 1. Possible trajectories of gradient-based versus fixed-point
iteration methods in the landscape of MFG cumulative return with-
out the contraction assumption. Fixed-point iteration may diverge
on the unregularized problem, while gradient-based method con-
verges.

• Our proof is based on a novel multi-time-scale analysis.
We extend the techniques of analyzing two-time-scale actor-
critic algorithms (Wu et al., 2020; Chen & Zhao, 2024) to
the three-time-scale case where the additional time scale
is introduced to carry out the mean field updates. The ad-
ditional time scale may prevent the selection of the most
suitable step sizes and result in convergence rate degrada-
tion if not treated properly1. We overcome the challenge by
incorporating the latest innovation in convergence accelera-
tion through smoothed gradient estimators (Zeng & Doan,
2024). Our multi-time-scale algorithm design methodology
and analysis can be of independent interest and potentially
applicable to other problems where the goal is to solve a

1The restriction in step size selection when moving from a
single time scale to two time scales is discussed in Zeng et al.
(2024).

coupled system of optimization problems.

1.1. Related Work

The classic works on MFGs study the continuous-time set-
ting where the equilibrium point simultaneously satisfies
a Hamilton–Jacobi–Bellman equation on the optimality of
the policy and a Fokker–Planck equation that describes the
dynamics of the mean field and have proposed optimal con-
trol techniques that provably find the solution (Huang et al.,
2006; 2007; Lasry & Lions, 2007). In discrete time, MFGs
can be considered a generalization of MDPs and are widely
solved using RL. Among the latest representative works,
Yang et al. (2018); Carmona et al. (2021) build upon pol-
icy optimization and Anahtarcı et al. (2020); Angiuli et al.
(2022; 2023); Gu et al. (2023); An et al. (2024) consider
valued-based methods. The algorithms proposed in these
works, however, either do not come with convergence anal-
ysis or are only shown to converge asymptotically.

The aim of our paper is to design a finite-time convergent
algorithm for finding the equilibrium of an MFG. Com-
pared to the literature on this subject (Guo et al., 2019; Xie
et al., 2021; Anahtarci et al., 2023; Mao et al., 2022; Zaman
et al., 2023; Yardim et al., 2023), we base our algorithm on
gradient-based policy optimization instead of fixed-point
iteration, which allows us to remove the contraction as-
sumption on a mean field optimality-consistency operator.
Without the assumption, algorithms designed in the existing
works, which leverage fixed-point iteration at the core, lose
convergence/stability guarantees and may in theory exhibit
arbitrary behaviors even when close to an equilibrium, as
illustrated in Figure. 1. In contrast, a gradient-based algo-
rithm can move more stably in the optimization landscape
of the MFG objective due to the Lipschitz continuity.

It is worth pointing out the relevant works (Carmona et al.,
2019; Fu et al., 2020; Zaman et al., 2020; Wang, 2024;
Zaman et al., 2024) on linear-quadrtic MFGs (i.e. the state
and action are continuous, the cost is a quadratic function
of state and action, and the state transition is linear), which
can be regarded as an extension of the single-agent linear-
quadratic regulator. The linear-quadratic structure makes
this class of problems more convenient to study and efficient
to solve.

Finally, we note the separate line of works (Guo et al., 2024;
Mandal et al., 2023) that reformulate the MFG policy op-
timization problem as a constrained program with convex
constraints and a bounded objective. The simple projected
gradient descent algorithm provably solves the constrained
program, leading to a solution of the MFG. However, a
finite-time convergence guarantee is not established, unless
again a sufficiently large regularization is added.

The rest of the paper is organized as follows. Sec.2
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presents the MFG formulation. Sec.3 develops the pro-
posed ASAC-MFG algorithm. In Sec.4 we introduce the
technical assumptions and state our main theoretical results.
Simulation results are presented in Sec.5.

2. Formulation
We study MFGs in the stationary infinite-horizon average-
reward setting, in which we denote the finite state and action
spaces by S and A. From the perspective of a single repre-
sentative agent, the state transition depends not only on its
own action but also on the aggregate behavior of all other
agents. Mathematically, we describe this aggregate behavior
by the mean field µ ∈ ∆S

2, which conceptually measures
the percentage of population in each state. The transition
kernel of an MFG is represented by P : S×A×∆S → ∆S ,
where P(s′ | s, a, µ) describes the probability that the state
of the representative agent transitions from s to s′ when
it takes action a and mean field is µ. The mean field also
affects the reward function r : S ×A×∆S → [0, 1] – the
agent receives reward r(s, a, µ) when it takes action a in
state s under mean field µ. Not directly observing the mean
field, the agent takes actions according to policy π : S → A,
which is represented as ∆S

A ⊂ R|S|×|A|.

Under a given policy π and mean field µ, the states se-
quentially generated form a Markov chain with transition
matrix Pπ, µ ∈ R|S|×|S|, where Pπ, µ

s′,s =
∑

a∈A P(s′ |
s, a, µ)π(a | s). We denote by νπ, µ ∈ ∆S the station-
ary distribution of the Markov chain, which is the right
singular vector of Pπ, µ associated with singular value 1,
i.e. νπ, µ = Pπ, µνπ, µ. When the mean field is µ and the
agent generates actions according to π, the agent can expect
to collect the cumulative reward J(π, µ)

J(π, µ)

≜ lim
K→∞

1

K
Eak∼π(·|sk),sk+1∼P(·|sk,ak,µ)[

∑K−1
k=0 r(sk, ak, µ)]

= Es∼νπ, µ, a∼π(·|s)[r(s, a, µ)]. (1)

As J is independent of the initial state s0, we use the differ-
ential value function V π, µ ∈ R|S| to quantify the relative
value of each initial state

V π, µ(s) ≜ Eak∼π(·|sk),sk+1∼P(·|sk,ak,µ)[∑∞
k=0

(
r(sk, ak, µ)− J(π, µ)

)
| s0 = s

]
.

If the mean field were fixed to a given µ, the goal of the
agent would be to find a policy π that maximizes J(π, µ).
However, when every agent in the infinite population fol-
lows the same policy as the representative agent, the mean
field evolves as a function of π. We use µ⋆ : ∆S

A → ∆S

2We use ∆S and ∆A to denote the probability simplex over
the state and action spaces.

to denote the mapping from a policy to the induced mean
field, which is the stationary distribution of states when the
infinite number of players in the game all adopt policy π.
The following consistency equation needs to be satisfied by
µ⋆(π)

µ⋆(π) = νπ, µ
⋆(π) = (Pπ, µ⋆(π))⊤µ⋆(π). (2)

The goal of the representative agent in an MFG is to find a
policy optimal under the mean field induced by the policy.
Mathematically, the objective is to find a pair of policy
and mean field (π̄, µ̄), known to exist under mild regularity
assumptions (Saldi et al., 2018), as the solution to the system{

J(π̄, µ̄) ≥ J(π, µ̄), ∀π (3)
µ̄ = µ⋆(π̄). (4)

We assume that the induced mean field µ⋆(π) is unique
for any π. Note that this does not imply the mean field
equilibrium (π̄, µ̄) is unique.

Definition 1. The pair of policy and mean field (π, µ) is an
ϵ-mean field equilibrium if

J(π′, µ)− J(π, µ) ≤ ϵ,∀π′, and ∥µ− µ⋆(π)∥ ≤ ϵ. (5)

We usually cannot hope to find the exact equilibrium. Defi-
nition 1 quantifies the distance between an exact equilibrium
and any solution pair (π, µ) that we may find in finite time.
It says that (π, µ) is an approximate mean field equilibrium
if π approximately optimizes the cumulative return in the
MDP determined by µ and µ is close to the mean field in-
duced by policy π. If a given solution (π, µ) satisfies (5)
with ϵ = 0, it is obviously an exact mean field equilibrium
as a solution to (3)-(4).

3. Algorithm
Our algorithm departs from the existing literature in that
we approach MFGs from the perspective of direct policy
optimization rather than fixed-point iteration. As we do not
directly deal with the mean field optimality-consistency
operator, we bypass the need to impose strong and un-
realistic assumptions. It is obvious from (3) that if the
optimal policy under µ̄ were unique and we knew µ̄, we
could easily find π̄ through policy optimization with the
mean field fixed to µ̄. On the other hand, if we knew the
equilibrium policy π̄, we could obtain µ̄ by finding µ⋆(π̄).
However, we do not know either π̄ or µ̄ and that the opti-
mal policy under µ̄ may not be unique. However, inspired
by the discussion above we take the approach of simul-
taneous learning. We maintain a parameter θ ∈ R|S||A|

that encodes the policy πθ via the softmax function i.e.
πθ(a | s) = exp(θ(s, a))/

∑
a′∈A exp(θ(s, a′)), and a

mean field iterate µ̂ to estimate the mean field induced by
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Contraction
Assumption

Single
Sample Path

Single
Loop Convergence Rate

Guo et al. (2019) Required No No Regularization Dependent
Anahtarcı et al. (2020) Required No No -

Xie et al. (2021) Required Yes* Yes* Õ(k−1/5)§, regularized solution
Mao et al. (2022) Required No No Õ(k−1/5)§, regularized solution

Zaman et al. (2023) Required Yes No Õ(k−1/4)§, regularized solution
Yardim et al. (2023) Required No No Õ(k−1/2)§, regularized solution

Our Work (on MFG subclass ∆=0†) No Yes Yes Õ(k−1/4), original solution
Our Work (on other MFG instances †) No Yes Yes Õ(k−1/4),

√
∆-optimal solution

Table 1. Existing algorithms and their assumption, structure, and complexity. * The algorithm in Xie et al. (2021) is single-loop and
single-sample-path under an oracle that returns the stationary distribution of states for any π, µ. Mao et al. (2022) also relies on such an
oracle. Our work, in comparison, is oracle-free. † We introduce ∆ to characterize the difficulty of a MFG in Assumption 4. § If these
works could choose the regularization weight freely (note that they actually cannot since the contraction operator assumption only holds
when the weight is sufficiently large), the algorithms can be used to solve the original unregularized game by making the weight small
enough. The complexities, however, at least double, i.e. become Õ(k−1/10), Õ(k−1/8), Õ(k−1/4) to the original solution.

the current policy. We improve θ and µ̂ with respect to each
other by iteratively taking the steps below

θk+1 = θk + αk∇θJ(πθk , µ̂k), µ̂k+1 = µ⋆(πθk) (6)

where k is the iteration index and αk is a properly selected
step sizes.

By the policy gradient theorem (Sutton et al., 1999), a
closed-form expression for ∇θJ(πθ, µ) is

∇θJ(πθ, µ)=Es∼νπθ,µ,a∼πθ(·|s),s′∼P(·|s,a,µ)

[
(r(s, a, µ)+

V πθ,µ(s′)−V πθ,µ(s))∇θ log πθ(a | s)
]
.

In large and/or unknown environments in the real life,
performing (6) poses computational challenges. The up-
dates require the knowledge of µ⋆(πθk) and value func-
tion V πθk

, µ⋆(πθk
), neither of which can be exactly deter-

mined instantaneously. We propose learning µ⋆(πθk) and
V πθk

, µ⋆(πθk
) simultaneously with the policy update using

the same path of samples. We recognize that

µ⋆(πθk) (7)

= limT→∞
1
T Eat∼πθk

(·|st),st+1∼P(·|st,at,µ⋆(πθk
))[esk ],

where es ∈ R|S| is the indicator vector whose entry s′ is 1
if s′ = s and 0 otherwise. Solving Eq. (7) with multi-time-
scale stochastic approximation, we iteratively perform

µ̂k+1 = µ̂k + ξk(esk − µ̂k) (8)

for some step size ξk ≫ αk. Due to the difference in
time scales (step size), µ̂k becomes an increasingly accurate
estimate of µ⋆(πθk) as the iterations proceed.

It is well-known that V πθk
, µ̂k satisfies the Bellman equation

V πθk
, µ̂k =

∑
a πθk(a | ·)r(·, a, µ̂k) + J(πθk , µ̂k)1|S|

+ (Pπθk
, µ̂k)⊤V πθk

, µ̂k . (9)

Here 1|S| denotes the all-one vector of length |S|. We
introduce an auxiliary variable V̂ to track V πθk

, µ̂k also by
stochastic approximation. The following update solves (9)

V̂k+1(sk) (10)

= V̂k(sk)+βk

(
r(sk, ak, µ̂k)− Ĵk+V̂k(sk+1)−V̂k(sk)

)
,

where the unknown J(πθ, µ
⋆(πθ)) is replaced with an esti-

mate that itself is iteratively refined

Ĵk+1 = Ĵk + βk(r(sk, ak, µ̂k)− Ĵk). (11)

Here we make the step size βk much larger than ξk for
V̂k+1 and Ĵk+1 to chase the targets V πθk

,µ̂k and J(πθk , µ̂k)
which evolve with the step size ξk.

Combining Eqs. (8), (10), and (11) with the θ update in (6)
results in a single-loop single-sample-path algorithm where
in the slowest time scale we ascend the policy parameter θk
along the gradient direction and the fast time scales are used
to compute the quantities necessary for the gradient evalu-
ation. While such an algorithm can be shown to converge
to a mean field equilibrium (under proper assumptions), the
convergence does not occur at the best possible rate due to
the coupling between iterates – θk, µ̂k, V̂k, and Ĵk – directly
affect each other’s update, causing potential noise in any
variable to be immediately propagated to others. Zeng &
Doan (2024) details the degradation in algorithm complex-
ity resulting from such coupling effect when two variables
are simultaneously updated. In this work we need to deal
with three time scales (αk, βk, ξk), which makes coupling
worse. To alleviate the issue, Zeng & Doan (2024) proposes
an improved algorithm that accelerates convergence by in-
troducing a denoising step. We adopt this technique and
extend it to handle the three-time-scale updates. The idea be-
hind the acceleration is simple – we first estimate smoothed
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and denoised versions of the gradients before using them
to update the policy, mean field, and value function iterates.
We present the full details in Algorithm 1, in which the
smoothed gradient estimates are fk, gVk , gJk , and hk updated
recursively according to (15).

In (14), ΠBV
: R|S| → R|S| denotes the projection to the

ℓ2-norm ball with radius BV , and Π[0,1] : R → R is the
projection of a scalar to the range [0, 1]. The projection
operators guarantee the stability of the critic iterates in (14)
and are a frequently used tool in the analysis of actor-critic
algorithms in the literature (Wu et al., 2020; Chen & Zhao,
2024; Panda & Bhatnagar, 2024).

Algorithm 1 Accelerated Single-loop Actor Critic Algo-
rithm for Mean Field Games (ASAC-MFG)

1: Initialize: policy parameter θ0, value function estimate
V̂0, Ĵ0, mean field estimate µ̂0 ∈ ∆S , gradient/operator
estimates f0 = 0 ∈ R|S||A|, gV0 = 0 ∈ R|S|, gJ0 = 0 ∈
R, h0 = 0 ∈ R|S|

2: Sample: initial state s0 ∈ S randomly
3: for iteration k = 0, 1, 2, ... do
4: Take action ak ∼ πθk(· | sk). Observe r(sk, ak, µ̂k)

and sk+1 ∼ P(· | sk, ak, µ̂k)
5: Policy (actor) update:

θk+1 = θk + αkfk. (12)

6: Mean field update:

µ̂k+1 = µ̂k + ξkhk. (13)

7: Value function (critic) update:

V̂k+1 = ΠBV
(V̂k + βkg

V
k ),

Ĵk+1 = Π[0,1](Ĵk + βkg
J
k ).

(14)

8: Gradient/Operator estimate update:

fk+1 = (1− λk)fk + λk

(
r(sk, ak, µ̂k) + V̂k(sk+1)

− V̂k(sk)
)
∇ log πθk(ak | sk)

gVk+1 = (1− λk)g
V
k + λk

(
r(sk, ak, µ̂k)− Ĵk

+ V̂k(sk+1)− V̂k(sk)
)
esk

gJk+1 = (1− λk)g
J
k + λkcJ(r(sk, ak, µ̂k)− Ĵk)

hk+1 = (1− λk)hk + λk(esk − µ̂k)

(15)

9: end for

4. Main Results
This section presents the finite-time convergence of Algo-
rithm 1 to a mean field equilibrium. We start by introducing
the technical assumptions made in this paper, most of which

are standard.

Assumption 1. Given any π, µ, the Markov chain {sk}
generated by Pπ, µ according to sk+1 ∼ Pπ, µ(· | sk) is
irreducible and aperiodic. In addition, there exist C0 ≥ 1
and C1 ∈ (0, 1) such that

sups dTV
(
P(sk = · | s0 = s), νπ, µ(·)

)
≤ C0C

k
1 , ∀k ≥ 0,

(16)
where dTV denotes the total variation (TV) distance3.

Eq. (16) states that the kth sample of the Markov chain
exponentially approaches the stationary distribution as k
goes up. In other words, the Markov chain generated under
Pπ, µ is geometrically ergodic for any π, µ. This assumption
is important and common among the papers that study the
complexity of sample-based single-loop RL algorithms (Zou
et al., 2019; Wu et al., 2020; Zeng et al., 2022; Chen & Zhao,
2024).

Assumption 2. Given two distributions d1, d2 over S , poli-
cies π1, π2, and mean fields µ1, µ2, we draw samples ac-
cording to s ∼ d1, s

′ ∼ Pπ1, µ1(· | s) and ŝ ∼ d2, ŝ
′ ∼

Pπ2, µ2(· | ŝ). We assume that there exists a constant L > 0
such that

dTV (P(s′ = ·),P(ŝ′ = ·)) ≤ dTV (d1, d2) (18)
+ L∥π1 − π2∥+ L∥µ1 − µ2∥,

dTV (ν
π1, µ1 , νπ2, µ2) ≤ L∥π1 − π2∥+ L∥µ1 − µ2∥,

|r(s, a, µ1)− r(s, a, µ2)| ≤ L|µ1 − µ2∥,
∥µ⋆(π1)− µ⋆(π2)∥ ≤ L∥π1 − π2∥.

In addition, there exist a constant BV > 0 such that
∥V π, µ∥ ≤ BV , for all π, µ.

Eq. (18) amounts to a regularity condition on the transi-
tion probability matrix Pπ, µ as a function of π and µ and
can be shown to hold if the transition kernel P(· | ·, ·, µ)
is Lipschitz in µ (using an argument similar to Wu et al.
(2020)[Lemma B.2]). The rest of Assumption 2 imposes the
Lipschitz continuity of the stationary distribution, reward
function, and induced mean field, as well as the boundedness
of the differential value function. Importantly, Assumption 2
guarantees the Lipschitz continuity of the cumulative reward
and differential value function, which we show in Lemma 1.
All conditions in this assumption are common in the litera-
ture of MFGs and RL (Yardim et al., 2023; Anahtarci et al.,
2023; Wu et al., 2020; Zeng et al., 2024).

Assumption 3. There is a constant δ ∈ (0, 1) such that
∥νπ, µ1 − νπ, µ2∥ ≤ δ∥µ1 − µ2∥, ∀π, µ1, µ2.

3Given two probability distributions ϕ1 and ϕ2 over space X ,
their TV distance is defined as

dTV(ϕ1, ϕ2) =
1

2
supψ:X→[−1,1]

∣∣∫ ψdϕ1 −
∫
ψdϕ2

∣∣ . (17)
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Assumption 3 states that for any π the stationary distribution
νπ, µ is a contractive mapping in µ. The assumption allows
us to estimate the induced mean field µ⋆(π) by measuring
the stationary distribution of the Markov chain formed under
the control of π. The validity of this assumption only de-
pends on the transition kernel P . To contrast, the common
assumption in the existing literature on MFGs amounts to
requiring the mapping νπ

⋆(µ),µ to be contractive (Xie et al.,
2021; Zaman et al., 2023; Yardim et al., 2023), where π⋆(µ)
is the (assumed unique) optimal policy under mean field µ,
i.e. π⋆(µ) = argmaxπ J(π, µ). Specifically, they assume
the existence of δ ∈ (0, 1) such that

∥νπ
⋆(µ1),µ1 − νπ

⋆(µ2),µ2∥ ≤ δ∥µ1 − µ2∥. (19)

It is pointed out in Yardim et al. (2024) that (19) is a strong
assumption whose validity depends on both the transition
kernel and reward function, and does not hold in MFGs
unless a large regularization is added. Assumption 3 made
in this paper is much milder.

The approach we take in this paper is to iteratively refine the
policy parameter θ along a direction that may improve the
cumulative reward under the induced mean field µ⋆(πθ). If
we take θ′ = θ+α∇θJ(πθ, µ) |µ=µ⋆(πθ) with a sufficiently
small step size α, we can approximately guarantee

J(πθ′ , µ⋆(πθ)) ≳ J(πθ, µ
⋆(πθ)).

However, the induced mean field shifts from µ⋆(πθ) to
µ⋆(πθ′) as the policy changes. Due to the lack of strong
structure on µ⋆(πθ) besides the Lipschitz condition, pre-
dicting/controlling whether J(πθ′ , µ⋆(πθ′)) improves over
J(πθ, µ

⋆(πθ)) is difficult. In this work, we characterize the
difficulty of an MFG by the mean field shift error ∆ intro-
duced in the following assumption. A problem with a small
or zero ∆ is considered easier to solve. In fact, we later
show in our analysis that the ASAC-MFG algorithm solves
a MFG up to a sub-optimality gap proportional to ∆.

Assumption 4 (Herding Condition). There exists bounded
constants ρ,∆ ≥ 0 such that ∀π, π′

J(π′, µ⋆(π))− J(π′, µ⋆(π′))

≤ ρ
(
J(π, µ⋆(π))− J(π′, µ⋆(π))

)
+∆∥π − π′∥. (20)

Conceptually, the MFGs with a small or zero ∆ are those
in which the reward is higher when the representative agent
“follows the crowd” or displays a “herding” behavior. We
discuss more on the interpretation, implication, and structure
of the condition in Sec.4.2.

We denote by F(θ) the Fisher information matrix at policy
parameter θ

F(θ)

= Es∼µ⋆(πθ),a∼πθ(·|s)[∇θ log πθ(a | s) (∇θ log πθ(a | s))⊤].

Assumption 5. There is a constant σ > 0 such that F(θ)−
σI|S||A|×|S||A| is positive definite ∀θ.

Our final assumption on Fisher non-degenerate policy im-
plies a “gradient domination” condition – for any policy π,
every stationary point of the cumulative reward J(π, µ⋆(π))
is globally optimal. This is again a standard assumption
in the existing literature on policy optimization (Liu et al.,
2020; Fatkhullin et al., 2023; Ganesh et al., 2024).

4.1. Finite-Time Analysis
Each variable in Algorithm 1 has a target to chase. The
target of θk is a policy parameter optimal under its induced
mean field, whereas µ̂k and V̂k, Ĵk aim to converge to the
mean field induced by πθk and the value functions under
πθk , µ̂k. We quantify the gap between these variables and
their targets by the convergence metrics below, and will
shortly show that they all decay at a sublinear rate.

επk≜∥∇θJ(πθk , µ) |µ=µ⋆(πθk
) ∥2, εµk≜∥µ̂k − µ⋆(πθk)∥2,

εVk ≜∥ΠE⊥(V̂k − V πθk
,µ̂k)∥2, εJk≜(Ĵk − J(πθk , µ̂k))

2.

(21)

We would like V̂k to converge to V πθk
,µ̂k which solves the

Bellman equation (9). However, the solution is not unique.
If V ∈ R|S| solves (9), so does V + c1|S| for any scalar
c. We denote by E the subspace spanned by 1|S| in R|S|

and by E⊥ its orthogonal complement, i.e. for any V ∈ E⊥
we have V ⊤1|S| = 0. To make the convergence of the
value function well-defined, we consider εVk in (21) where
ΠE⊥ is the orthogonal projection to E⊥. It is easy to see
ΠE⊥ = I|S|×|S| − 1|S|1

⊤
|S|/|S|.

Theorem 1. Consider the iterates generated by Algorithm 1
with the step sizes satisfying

λk =
λ0√
k + 1

, αk =
α0√
k + 1

,

βk =
β0√
k + 1

, ξk =
ξ0√
k + 1

,

(22)

with constants λ0, α0, β0, ξ0 and a sufficiently large cJ spec-
ified in Appendix B.2. Under Assumptions 1-4, we have for
all k ≥ τk

min
τk≤t<k

E[επt + εµt + εVt + εJt ] ≤ O
(
log3(k + 1)√

k + 1
+∆

)
,

where τk denotes the mixing time, which is a linear function
of log(k + 1) defined in Appendix A.1.

Theorem 1 states that all main variables of Algorithm 1 con-
verge to their learning targets with a rate of Õ(k−1/2) up to
an error linear in ∆, under a single trajectory of Markovian
samples. Since Algorithm 1 draws exactly one sample in
each iteration, this translates to a finite-sample complexity
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of the same order. We defer the detailed proof of the theorem
to Appendix B but point out that the convergence rate is de-
rived through a careful multi-time-scale analysis. The step
sizes have the same dependency on k, but need to observe
α0 ≤ ξ0 ≤ β0 ≤ λ0. Such a requirement makes intuitive
sense: 1) the learning targets of µ̂k, V̂k, Ĵk are depend on θk,
which requires θk to be relatively stable and hence updated
with the smallest step size; 2) similarly, the learning target
of V̂k, Ĵk is a function of µ̂k, so µ̂k has to move slower; 3)
we need the auxiliary variables fk, hk, g

V
k , gJk to be updated

the fastest to track the moving gradients/operators.

Our ultimate goal is to find an ϵ-mean field equilibrium in
the sense of Definition 1. This requires us to connect the
convergence of επk to the optimality gap below

maxπ J(π, µ
⋆(πθk))− J(πθk , µ

⋆(πθk)). (23)

Under Assumption 5 a “gradient domination” condition
holds, which upper bounds (23) by

√
επk . We take advan-

tage of the gradient domination property to establish the
convergence of Algorithm 1 to an approximate mean field
equilibrium, as a corollary of Theorem 1.
Corollary 1. Consider the policy πθk generated by Algo-
rithm 1 under any initialization with the step sizes satisfying
(22). Under Assumptions 1-5, we have for all k ≥ τk

min
τk≤t<k

E
[
max
π

J(π, µ⋆(πθt))− J(πθt , µ
⋆(πθt))

]
≤ Õ((k + 1)−1/4) +O(

√
∆),

min
τk≤t<k

E[∥µ̂k − µ⋆(πθk)∥] ≤ Õ((k + 1)−1/4) +O(
√
∆).

Corollary 1 guarantees that Algorithm 1 finds an (ϵ +
O(

√
∆))-mean field equilibrium in the sense of Definition 1

within at most Õ(ϵ−4) iterations. This is the first result
showing that an algorithm provably (approximately) solves
the MFG without regularization in finite time.

4.2. More On the Herding Condition

It can be shown that due to the Lipschitz continuity of J
and µ⋆, Assumption 4 always holds in the worst case with
ρ = 0 and ∆ = LLV , where L is from Assumption 2
and LV is the Lipschitz constant of V and J introduced
in Lemma 1. However, specific MFG problems may be so
structured that it satisfies (20) with a smaller ∆ (or even
∆ = 0). The algorithm we propose solves MFGs to a
precision proportional to ∆, i.e., we have convergence to
an exact mean field equilibrium for MFGs with ∆ = 0,
and to a neighborhood around an equilibrium when ∆ > 0.
In Example 1 we present a subclass of MFGs satisfying
Assumption 4 but not (19), for which our algorithm finds
an equilibrium but prior algorithms proposed in Xie et al.
(2021); Anahtarci et al. (2023); Mao et al. (2022); Zaman
et al. (2023); Yardim et al. (2023) theoretically fail.

Example 1. Consider MFGs in which the transition proba-
bility kernel independent of the mean field and the reward
function is r(s, a, µ) = µ(s). This subclass of MFGs satis-
fies Assumption 4 with ρ = 1 and ∆ = 0, which we justify
in Appendix F. However, (19) does not have to hold. Take
a simple example with |S| = |A| = 2, where the transition
kernel is such that in either state s ∈ {s1, s2}, the action a1
(resp. a2) leads the next state to s1 (resp. s2) with probabil-
ity p = 3/4. There exist an infinite number of equilibria in
this MFG. They occur at policies π̄1, π̄2

π̄1(a | s) =

{
1, ∀s, if a = a1

0, ∀s, if a = a0

π̄2(a | s) =

{
0, ∀s, if a = a1

1, ∀s, if a = a0

with the induced mean field µ̄1 = [3/4, 1/4]⊤, µ̄2 =
[1/4, 3/4]⊤, and at all policies that induce [1/2, 1/2]⊤ as
the mean field (such as π̄3(a | s) = 1/2 for all s, a). The
contraction assumption (19) does not hold as the equilib-
rium is not unique. The detailed derivation can be found in
Appendix F.

5. Numerical Simulations
We numerically verify the convergence of the proposed algo-
rithm through simulations on small-scale synthetic MFGs.
We consider two environments, first of dimension |S| =
|A| = 10 and second |S| = |A| = 20, both of which have a
randomly generated transition kernel and reward function.4

Due to the unknown equilibria, we measure the convergence
of the policy by ∥∇θJ(πθk , µ̂k)∥ and the convergence of the
mean field by ∥µ̂k−νπk,µ̂k∥ as a proxy for ∥µ̂k−µ⋆(πθk)∥.

We compare ASAC-MFG with the algorithm proposed in Za-
man et al. (2020) as the information oracles are similar and
enables a fair comparison. We consider two variations of
their algorithm: 1) with regularization large enough that the
contraction assumption holds, and 2) with regularization
set to 0 which breaks the assumption. The environments
do not satisfy Assumption 4 with ∆ = 0, so the theoretical
result in Sec.4.1 guarantees the convergence of ASAC-MFG
up to an error proportional to ∆. As shown in Figure 2,
all algorithms have their mean field iterates converge to
the mean field induced by the latest policy iterate, while
the convergence of the policy varies. For the considered
examples, ASAC-MFG and Zaman et al. (2023) with no reg-
ularization exhibit convergence to a global MFE. However,
ASAC-MFG converges at a faster rate, which we believe can
be attributed to the single-loop updates as well as the fact

4More discussion of the experimental setup can be found in
Appendix H. The implementation code is also submitted as a part
of the supplementary material.
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Figure 2. Algorithm Performance in Synthetic Games. Averaged over 100 trials. First columns shows sub-optimality gap of policy under
latest mean field estimate. Second column shows convergence of mean field estimate to mean field induced by latest policy iterate. Large
regularization is required for theoretical analyses by Zaman et al. (2023), which manifests in persistent bias.

that our work still enjoys convergence guarantees on this
problem (though not to the exactly optimal solution) while
Zaman et al. (2023) under no regularization loses any guar-
antee. ASAC-MFG is also superior in that the convergence
path has a much smaller variance. The blue curve in Fig-
ure 2 shows that while Zaman et al. (2023) with sufficiently
large regularization may converge to a solution of the regu-
larized problem, the bias caused by the large regularization
prevents it from finding an equilibrium of the original game.

Disclaimer
This paper was prepared for informational purposes in part
by the Artificial Intelligence Research group of JP Morgan
Chase & Co and its affiliates (“JP Morgan”), and is not a
product of the Research Department of JP Morgan. JP Mor-
gan makes no representation and warranty whatsoever and
disclaims all liability, for the completeness, accuracy or reli-
ability of the information contained herein. This document
is not intended as investment research or investment advice,
or a recommendation, offer or solicitation for the purchase
or sale of any security, financial instrument, financial prod-
uct or service, or to be used in any way for evaluating the
merits of participating in any transaction, and shall not con-
stitute a solicitation under any jurisdiction or to any person,
if such solicitation under such jurisdiction or to such person
would be unlawful.
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Contents

A. Notations and Frequently Used Identities
We first introduce a few more shorthand notations frequently used in the analysis. First, we define

F (θ, V, µ, s, a, s′) ≜ (r(s, a, µ) + V (s′)− V (s))∇θ log πθ(a | s),
GV (V, J, µ, s, a, s′) ≜ (r(s, a, µ)− J + V (s′)− V (s))es,

GJ(J, µ, s, a) ≜ cJ(r(s, a, µ)− J),

G(V, J, µ, s, a, s′) ≜

[
GV (V, J, µ, s, a, s′)

GJ(J, µ, s, a)

]
=

[
(r(s, a, µ)− J + V (s′)− V (s))es

cJ(r(s, a, µ)− J)

]
,

H(µ, s) ≜ es − µ.

(24)

Then, the update of fk, gVk , gJk , and hk in Algorithm 1 can be alternatively expressed as

fk+1 = (1− λk)fk + λkF (θk, V̂k, µ̂k, sk, ak, sk+1),

gVk+1 = (1− λk)g
V
k + λkG

V (V̂k, Ĵk, µ̂k, sk, ak, sk+1),

gJk+1 = (1− λk)g
J
k + λkG

J(Ĵk, µ̂k, sk, ak),

hk+1 = (1− λk)hk + λkH(µ̂k, sk).

Denote gk = [(gVk )⊤, gJk ]
⊤. The update of gk is

gk+1 =

[
gVk+1

gJk+1

]
= (1− λk)gk + λkG(V̂k, Ĵk, µ̂k, sk, ak, sk+1).

We also define

F̄ (θ, V, µ) ≜ Es∼νπθ, µ,a∼πθ(·|s),s′∼P(·|s,a,µ)[F (θ, V, µ, s, a, s′)],

ḠV (θ, V, J, µ) ≜ Es∼νπθ, µ,a∼πθ(·|s),s′∼P(·|s,a,µ)[G
V (V, J, µ, s, a, s′)],

ḠJ(θ, J, µ) ≜ Es∼νπθ, µ,a∼πθ(·|s)[G
J(J, µ, s, a)],

Ḡ(θ, V, J, µ) ≜ Es∼νπθ, µ,a∼πθ(·|s),s′∼P(·|s,a,µ)[G(V, J, µ, s, a, s′)] =

[
ḠV (θ, V, J, µ)

ḠJ(θ, J, µ)

]
,

H̄(θ, µ) ≜ Es∼νπθ, µ [H(µ, s)] = Es∼νπθ, µ [es − µ].

(25)

We measure the convergence of auxiliary variables fk, gVk , gJk , and hk by

∆fk ≜ fk − F̄ (θk, V̂k, µ̂k), ∆gVk ≜ gVk − ḠV (θk, V̂k, Ĵk, µ̂k),

∆gJk ≜ gJk − ḠJ(θk, Ĵk, µ̂k), ∆hk ≜ hk − H̄(θk, µ̂k),

and denote

∆gk =

[
∆gVk
∆gJk

]
= gk − Ḡ(θk, V̂k, Ĵk, µ̂k).

We use ℓ(π) to denote the cumulative reward collected by policy π under the induced mean field µ⋆(π)

ℓ(π) ≜ J(π, µ⋆(π)).

This is well-defined since µ⋆(π) is unique.

We denote by Fk = {s0, a0, s1, a1 · · · , sk, ak} denote the filtration (set of all randomness information) up to iteration k.
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We use the notation Pµ(s
′ | s, a) = P(s′ | s, a, µ). Under Assumptions 1 and 2, it can be shown using an argument similar

to Lemma B.1 of Wu et al. (2020) that there exists a constant LTV depending only on |A|, L, C0, and C1 such that for all
π1, π2, µ1, µ2

dTV (ν
π1, µ1 ⊗ π1 ⊗ Pµ1

, νπ2, µ2 ⊗ π2 ⊗ Pµ2
) ≤ LTV (∥π1 − π2∥+ ∥µ1 − µ2∥). (26)

Without loss of generality, we assume L ≥ 1, a condition that we will sometimes use to simplify and combine terms.

A.1. Mixing Time

An immediate consequence of Assumption 1 is that the Markov chain under any policy and mean field has a geometric
mixing time.
Definition 2. Consider a Markov chain {ŝk} generated according to ŝk ∼ Pπ, µ(· | ŝk−1), for which νπ, µ is the stationary
distribution. For any c > 0, the c-mixing time of the Markov chain is

τπ, µ(c) ≜ min
{
k ∈ N : sups dTV

(
P(ŝk = · | ŝ0 = s), νπ, µ(·)

)
≤ c

}
.

The mixing time measures time for the samples of the Markov chain to approach its stationary distribution in TV distance.
We define τk ≜ supπ, µ τ

π, µ(αk) as the time when the TV distance drops below αk, where αk is a step size for the policy
parameter update in Algorithm 1. Under Assumption 1, it is obvious that there exists a constant C as a function of C0, C1

such that

τk ≤ C log (1/αk) = C log(
(k + 1)1/2

α0
) =

C

2
log(k + 1)− C log(α0).

A.2. Supporting Lemmas

The value function V πθ, µ is Lipschitz in both θ and µ, as shown in the lemma below.
Lemma 1. Under Assumption 2, there exist a bounded constant LV ≥ 1 such that for any policy parameter θ1, θ2 and
mean field µ1, µ2, we have

∥ΠE⊥(V
πθ1

, µ1 − V πθ2
, µ2)∥ ≤ LV (∥θ1 − θ2∥+ ∥µ1 − µ2∥) ,

∥J(πθ1 , µ1)− J(πθ2 , µ2)∥ ≤ LV (∥θ1 − θ2∥+ ∥µ1 − µ2∥) ,
∥∇θJ(πθ1 , µ1)−∇θJ(πθ2 , µ2)∥ ≤ LV (∥θ1 − θ2∥+ ∥µ1 − µ2∥) ,
∥∇µJ(πθ1 , µ1)−∇µJ(πθ2 , µ2)∥ ≤ LV (∥θ1 − θ2∥+ ∥µ1 − µ2∥) .

We establish the boundedness of the operators F , G, and H .
Lemma 2. For any θ ∈ R|S||A|, V ∈ R|S| with norm bounded by BV , J ∈ [0, 1], µ ∈ ∆S , and s, a, s′, we have

∥F (θ, V, µ, s, a, s′)∥ ≤ BF , ∥G(V, J, µ, s, a, s′)∥ ≤ BG, ∥H(µ, s)∥ ≤ BH ,

where BF = BV + 1, BG = 2(BV + cJ + 2), BH = 2.

Since fk, gVk , gJk , and hk are simply convex combination with the operators F , GV , GJ , and H , Lemma 2 implies for all k

∥fk∥ ≤ BF , ∥gVk ∥ ≤ BG, |gJk | ≤ BG, ∥hk∥ ≤ BH .

We also establish the Lipschitz continuity of these operators.
Lemma 3. We have for any θ1, θ2 ∈ R|S||A|, µ1, µ2 ∈ ∆S , V1, V2 ∈ R|S|, and J1, J2 ∈ R

∥F̄ (θ1, V1, µ1)− F̄ (θ2, V2, µ2)∥ ≤ LF

(
∥θ1 − θ2∥+ ∥ΠE⊥(V1 − V2)∥+ ∥µ1 − µ2∥

)
∥Ḡ(θ1, V1, J1, µ1)− Ḡ(θ2, V2, J2, µ2)∥

≤ LG

(
∥θ1 − θ2∥+ ∥ΠE⊥(V1 − V2)∥+ |J1 − J2|+ ∥µ1 − µ2∥

)
,

∥H̄(θ1, µ1)− H̄(θ2, µ2)∥ ≤ LH

(
∥θ1 − θ2∥+ ∥µ1 − µ2∥

)
,

where the constants are LF = 10BV + L+ 2BFLTV + 5, LG = 2BGLTV + (L+ 1)(cJ + 1) + 2, and LH = L+ 1.

12



A Policy Optimization Approach to the Solution of Unregularized Mean Field Games

As a result of Lemma 3, we can establish the following results that bound the energy of the auxiliary variables fk, gk, and
hk.

Lemma 4. We have for any k ≥ 0

∥fk∥ ≤ ∥∆fk∥+ LF

√
εVk + LF (LV + 1)

√
εµk +

√
επk ,

∥gk∥ ≤ ∥∆gk∥+ LG

√
εVk + LG

√
εJk ,

∥hk∥ ≤ ∥∆hk∥+ LH

√
ϵµk .

Also as a consequence of Assumption 1, the following lemma holds which states that the Bellman backup operator of the
value function is almost everywhere contractive (except along the direction of the all-one vector). This lemma is adapted
from Zhang et al. (2021a)[Lemma 2] and Tsitsiklis & Van Roy (1999)[Lemma 7].

Lemma 5. Recall the definition of E⊥ in Sec.4.1. There exists a constant γ ∈ (0, 1) such that for any θ, µ and V ∈ E⊥

V ⊤Es∼νπθ, µ,a∼πθ(·|s),s′∼P(·|s,a,µ)[es(es′ − es)
⊤]V ≤ −γ∥V ∥2.

B. Proof of Main Theorem
B.1. Intermediate Results

The proof of Theorem 1 relies critically on the iteration-wise convergence of policy iterate θk, mean field iterate µ̂k, value
function estimate V̂k, Ĵk, and auxiliary variables fk, hk, and gk, which we bound individually in the propositions below.

B.1.1. CONVERGENCE OF POLICY ITERATE

Proposition 1. Under Assumptions 1-2, we have

ℓ(πθk)− ℓ(πθk+1
) ≤ − (1 + ρ)αk

2
επk + (1 + ρ)αk∥∆fk∥2

+ (1 + ρ)L2
Fαk(ε

V
k + εµk) +

(1 + ρ)LV B
2
Fα

2
k

2
+BFαk∆.

Proposition 2. Under Assumptions 1-2, we have for all k ≥ τk

E[∥∆fk+1∥2]

≤ (1− λk)E[∥∆fk∥2] + (−λk

2
+ λ2

k +
48L2

Fα
2
k

λk
)E[∥∆fk∥2]

+
36L2

Fβ
2
k

λk
E[∥∆gk∥2] +

24L2
FL

2
Hξ2k

λk
E[∥∆hk∥2] +

48L2
Fα

2
k

λk
E[επk ] +

216L4
FL

2
V ξ

2
k

λk
E[εµk ]

+
96L4

FL
2
Gβ

2
k

λk
E[εVk ] +

48L2
FL

2
Gβ

2
k

λk
E[εJk ] + (28L+ 2|A|)LFLTV B

3
FBGB

2
Hτ2kλkλk−τk .

The proofs of Propositions 1 and 2 can be found in Sec.D.1 and D.2.

B.1.2. CONVERGENCE OF MEAN FIELD ESTIMATE

Proposition 3. Under Assumptions 1-3, we have for all k

εµk+1 ≤ (1− (1− δ)ξk
8

)εµk +
8ξk
1− δ

∥∆hk∥2 +
32L2α2

k

(1− δ)ξk

(
∥∆fk∥2 + L2

F ε
V
k + επk

)
+ 9L2B2

FB
2
Hξ2k.

Proposition 4. Under Assumptions 1-2, we have for all k ≥ τk

E[∥∆hk+1∥2]

13
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≤ (1− λk)E[∥∆hk∥2] + (−λk

2
+ λ2

k +
16L2

Hξ2k
λk

)E[∥∆hk∥2] +
32L2

Hα2
k

λk
E[∥∆fk∥2]

+
32L2

HL2
Fα

2
k

λk
E[εVk ] +

144L2
FL

2
V L

4
Hξ2k

λk
E[εµk ] +

32L2
Hα2

k

λk
E[επk ] + 24LBFB

2
Hτ2kλkλk−τk .

The proofs of Propositions 3 and 4 can be found in Sec.D.3 and D.4.

B.1.3. CONVERGENCE OF VALUATION FUNCTION ESTIMATE

Proposition 5. Under Assumptions 1-2,

εVk+1 + εJk+1 ≤ (1− γβk

4
)(εVk + εJk ) +

128L2
V α

2
k

γβk
∥∆fk∥2 +

8βk

γ
∥∆gk∥2 +

64L2
V ξ

2
k

γβk
∥∆hk∥2

+
128L2

V α
2
k

γβk
(L2

F ε
V
k + επk ) +

192L2
V ξ

2
k

γβk
εµk + 28L2

V B
2
FB

2
GB

2
Hβ2

k.

Proposition 6. Under Assumptions 1-2, we have for all k ≥ τk

E[∥∆gk+1∥2] ≤ (1− λk)E[∥∆gk∥2] + (−λk

2
+ λ2

k +
72|S|L2

Gβ
2
k

λk
)E[∥∆gk∥2] +

48L2
Gα

2
k

λk
E[∥∆fk∥2]

+
24L2

Gξ
2
k

λk
E[∥∆hk∥2] +

48L2
Gα

2
k

λk
E[επk ] +

216L2
FL

2
GL

2
HL2

V ξ
2
k

λk
E[εµk ]

+
120|S|L2

FL
4
Gβ

2
k

λk
E[εVk + εJk ] + (30L+ 2|A|)LFLTV BFB

2
GBHτ2kλkλk−τk .

The proofs of Propositions 5 and 6 can be found in Sec.D.5 and D.6.

B.2. Proof of Theorem 1

The exact requirements on λ0, α0, β0, ξ0 include cJ ≥ 1/γ, α0 ≤ ξ0 ≤ β0 ≤ λ0, and

α0 ≤ min

{
1

192(L2
F + L2

G + L2
H + L2

V + L2/(1− δ) + ρ+ 1)
λ0, Cββ0, Cξξ0

}
,

ξ0 ≤ min

{
λ0

64(L2
HL2

F + L2
G + L2

V /γ + 1/(1− δ))
,

(1− δ)γβ0

6912(L4
FL

2
V + L2

FL
2
GL

2
HL2

V + L2
FL

4
HL2

V + L2
V )

}
,

β0 ≤ min

{
λ0

72|S|L2
G + 36L2

F + 8/γ
,

γ

4L2
G

,
1− δ

2L2
H

}
, λ0 ≤ 1

4
,

(27)

where Cξ = min{ (1−δ)
32(1+ρ)L2

F
, 1−δ
4(1+ρ) ,

LH

2LFLV
, 1−δ
16LLFLV

} and

Cβ = min
{γ

4
,

(1 + ρ)γ

512(L2
F + L2

G + L2
H + L2

V + L2/(1− δ)
,√

γ

3456|S|(L4
FL

4
G + L2

FL
2
H + (ρ+ 1)L2

F + L2
V /γ + L2L2

F (1− δ))
,

γ

2(1 + ρ)

}
.

We note that such parameters can always chosen with no conflict in any MFG.

We consider the potential function

Lk = E[∥∆fk∥2 + ∥∆gk∥2 + ∥∆hk∥2 − ℓ(πθk) + εVk + εJk + εµk ].

Collecting the bounds from Propositions 1-6, we have for all k ≥ τk

Lk+1

14
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= E[∥∆fk+1∥2 + ∥∆gk+1∥2 + ∥∆hk+1∥2 − ℓ(πθk+1
) + εVk+1 + εJk+1 + εµk+1]

≤ (1− λk)E[∥∆fk∥2] + (−λk

2
+ λ2

k +
48L2

Fα
2
k

λk
)E[∥∆fk∥2]

+
36L2

Fβ
2
k

λk
E[∥∆gk∥2] +

24L2
FL

2
Hξ2k

λk
E[∥∆hk∥2] +

48L2
Fα

2
k

λk
E[επk ] +

216L4
FL

2
V ξ

2
k

λk
E[εµk ]

+
96L4

FL
2
Gβ

2
k

λk
E[εVk ] +

48L2
FL

2
Gβ

2
k

λk
E[εJk ] + (28L+ 2|A|)LFLTV B

3
FBGB

2
Hτ2kλkλk−τk

+ (1− λk)E[∥∆gk∥2] + (−λk

2
+ λ2

k +
72|S|L2

Gβ
2
k

λk
)E[∥∆gk∥2] +

48L2
Gα

2
k

λk
E[∥∆fk∥2]

+
24L2

Gξ
2
k

λk
E[∥∆hk∥2] +

48L2
Gα

2
k

λk
E[επk ] +

216L2
FL

2
GL

2
HL2

V ξ
2
k

λk
E[εµk ]

+
120|S|L2

FL
4
Gβ

2
k

λk
E[εVk + εJk ] + (30L+ 2|A|)LFLTV BFB

2
GBHτ2kλkλk−τk

+ (1− λk)E[∥∆hk∥2] + (−λk

2
+ λ2

k +
16L2

Hξ2k
λk

)E[∥∆hk∥2] +
32L2

Hα2
k

λk
E[∥∆fk∥2]

+
32L2

HL2
Fα

2
k

λk
E[εVk ]+

144L2
FL

2
V L

4
Hξ2k

λk
E[εµk ]+

32L2
Hα2

k

λk
E[επk ] + 24LBFB

2
Hτ2kλkλk−τk

− E[ℓ(πθk)]−
(1 + ρ)αk

2
E[επk ] + (1 + ρ)αkE[∥∆fk∥2]

+ (1 + ρ)L2
FαkE[εVk + εµk ] +

(1 + ρ)LV B
2
Fα

2
k

2
+BFαk∆

+ (1− γβk

4
)E[εVk + εJk ] +

128L2
V α

2
k

γβk
E[∥∆fk∥2] +

8βk

γ
E[∥∆gk∥2] +

64L2
V ξ

2
k

γβk
E[∥∆hk∥2]

+
128L2

V α
2
k

γβk
(L2

FE[εVk ] + E[επk ]) +
192L2

V ξ
2
k

γβk
E[εµk ] + 28L2

V B
2
FB

2
GB

2
Hβ2

k

+(1− (1−δ)ξk
8

)E[εµk ]+
8ξk
1−δ

E[∥∆hk∥2]+
32L2α2

k

(1−δ)ξk
E[∥∆fk∥2+L2

F ε
V
k +επk ]+9L2B2

FB
2
Hξ2k

≤ (1− λk)E[∥∆fk∥2 + ∥∆gk∥2 + ∥∆hk∥2]− E[ℓ(πθk)]−
(1 + ρ)αk

4
E[επk ]

+ (1− γβk

8
)E[εVk + εJk ] + (1− (1− δ)ξk

16
)E[εµk ] +BFαk∆

+ (28L+ 2|A|)LFLTV B
3
FBGB

2
Hτ2kλkλk−τk + (30L+ 2|A|)LFLTV BFB

2
GBHτ2kλkλk−τk

+ 24LBFB
2
Hτ2kλkλk−τk +

(1 + ρ)LV B
2
Fα

2
k

2
+ 28L2

V B
2
FB

2
GB

2
Hβ2

k + 9L2B2
FB

2
Hξ2k

+ (−λk

2
+ λ2

k +
48L2

Fα
2
k

λk
+

48L2
Gα

2
k

λk
+

32L2
Hα2

k

λk
+ (1 + ρ)αk +

128L2
V α

2
k

γβk
+

32L2α2
k

(1− δ)λk
)︸ ︷︷ ︸

A1

E[∥∆fk∥2]

+ (−λk

2
+ λ2

k +
72|S|L2

Gβ
2
k

λk
+

36L2
Fβ

2
k

λk
+

8βk

γ
)︸ ︷︷ ︸

A2

E[∥∆gk∥2]

+ (−λk

2
+ λ2

k +
16L2

Hξ2k
λk

+
24L2

FL
2
Hξ2k

λk
+

24L2
Gξ

2
k

λk
+

64L2
V ξ

2
k

γλk
+

8ξk
1− δ

)︸ ︷︷ ︸
A3

E[∥∆hk∥2]

+ (− (1 + ρ)αk

4
+

48L2
Fα

2
k

λk
+

48L2
Gα

2
k

λk
+

32L2
Hα2

k

λk
+

128L2
V α

2
k

γβk
+

32L2α2
k

(1− δ)λk
)︸ ︷︷ ︸

A4

E[επk ]
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+ (−γβk

8
+

96L4
FL

2
Gβ

2
k

λk
+

120|S|L2
FL

4
Gβ

2
k

λk
+

32L2
FL

2
Hα2

k

λk
+ (1 + ρ)L2

Fαk +
128L2

V α
2
k

γβk
+

32L2L2
Fα

2
k

(1− δ)λk
)︸ ︷︷ ︸

A5

E[εVk + εJk ]

+ (− (1− δ)ξk
16

+
216L4

FL
2
V ξ

2
k

λk
+

216L2
FL

2
GL

2
HL2

V ξ
2
k

λk
+

144L2
FL

4
HL2

V ξ
2
k

λk
+ (1 + ρ)L2

Fαk +
192L2

V ξ
2
k

γβk
)︸ ︷︷ ︸

A6

E[εµk ].

(28)

We show that the terms A1-A6 are all non-positive under the step size conditions in (27). First, under the step size condition
αk ≤ γ

4βk, λk ≤ 1/4, and αk ≤ (192(L2
F + L2

G + L2
H + L2

V + L2/(1− δ) + ρ+ 1))−1λk

A1 = −λk

2
+ λ2

k +
48L2

Fα
2
k

λk
+

48L2
Gα

2
k

λk
+

32L2
Hα2

k

λk
+ (1 + ρ)αk +

128L2
V α

2
k

γβk
+

32L2α2
k

(1− δ)λk

≤ −λk

4
+

48(L2
F + L2

G + L2
H + L2/(1− δ))α2

k

λk
+ (1 + ρ)αk + 32L2

V αk

≤ −λk

4
+ 48(L2

F + L2
G + L2

H + L2
V + L2/(1− δ) + ρ+ 1)αk

≤ 0. (29)

Next, under the step size condition λk ≤ 1/4 and βk ≤ (72|S|L2
G + 36L2

F + 8/γ)−1λk

A2 = −λk

2
+ λ2

k +
72|S|L2

Gβ
2
k

λk
+

36L2
Fβ

2
k

λk
+

8βk

γ

≤ −λk

4
+ (72|S|L2

G + 36L2
F + 8/γ)βk

≤ 0. (30)

Next, under the step size condition λk ≤ 1/4 and ξk ≤ (64(L2
HL2

F + L2
G + L2

V /γ + 1/(1− δ)))−1λk

A3 = −λk

2
+ λ2

k +
16L2

Hξ2k
λk

+
24L2

FL
2
Hξ2k

λk
+

24L2
Gξ

2
k

λk
+

64L2
V ξ

2
k

γλk
+

8ξk
1− δ

≤ −λk

4
+ 64(L2

HL2
F + L2

G + L2
V /γ + 1/(1− δ))ξk

≤ 0. (31)

Next, we have

A4 = − (1 + ρ)αk

4
+

48L2
Fα

2
k

λk
+

48L2
Gα

2
k

λk
+

32L2
Hα2

k

λk
+

128L2
V α

2
k

γβk
+

32L2α2
k

(1− δ)λk

≤ − (1 + ρ)αk

4
+

128

γ
(L2

F + L2
G + L2

H + L2
V + L2/(1− δ))

α2
k

βk

≤ 0, (32)

under the step size condition

αk ≤ (1 + ρ)γ

512(L2
F + L2

G + L2
H + L2

V + L2/(1− δ)
βk.

Then,

A5 = −γβk

8
+

96L4
FL

2
Gβ

2
k

λk
+

120|S|L2
FL

4
Gβ

2
k

λk
+

32L2
FL

2
Hα2

k

λk

16
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+ (1 + ρ)L2
Fαk +

128L2
V α

2
k

γβk
+

32L2L2
Fα

2
k

(1− δ)λk

≤ −γβk

8
+ 432|S|(L4

FL
4
G + L2

FL
2
H + (ρ+ 1)L2

F + L2
V /γ + L2L2

F (1− δ))
α2
k

βk

≤ 0, (33)

due to the condition

αk ≤
√

γ

3456|S|(L4
FL

4
G + L2

FL
2
H + (ρ+ 1)L2

F + L2
V /γ + L2L2

F (1− δ))
βk.

Finally, as a result of αk ≤ (1−δ)
32(1+ρ)L2

F
ξk and ξk ≤ (1−δ)γ

6912(L4
FL2

V +L2
FL2

GL2
HL2

V +L2
FL4

HL2
V +L2

V )
βk

A6 = − (1− δ)ξk
16

+
216L4

FL
2
V ξ

2
k

λk
+

216L2
FL

2
GL

2
HL2

V ξ
2
k

λk

+
144L2

FL
4
HL2

V ξ
2
k

λk
+ (1 + ρ)L2

Fαk +
192L2

V ξ
2
k

γβk

≤ − (1− δ)ξk
32

+
216

γ
(L4

FL
2
V + L2

FL
2
GL

2
HL2

V + L2
FL

4
HL2

V + L2
V )

ξ2k
βk

≤ 0. (34)

Plugging (29)-(34) into (28), we have for all k ≥ τk

Lk+1

≤ (1− λk)E[∥∆fk∥2 + ∥∆gk∥2 + ∥∆hk∥2]− E[ℓ(πθk)]−
(1 + ρ)αk

4
E[επk ]

+ (1− γβk

8
)E[εVk + εJk ] + (1− (1− δ)ξk

16
)E[εµk ] +BFαk∆

+ (28L+2|A|)LFLTV B
3
FBGB

2
Hτ2kλkλk−τk + (30L+2|A|)LFLTV BFB

2
GBHτ2kλkλk−τk

+ 24LBFB
2
Hτ2kλkλk−τk +

(1 + ρ)LV B
2
Fα

2
k

2
+ 28L2

V B
2
FB

2
GB

2
Hβ2

k + 9L2B2
FB

2
Hξ2k

≤ Lk−min

{
(1+ρ)αk

4
,
γβk

8
,
(1−δ)ξk

16

}
E[επk + εµk + εVk + εJk ] +BFαk∆+O(

log2(k + 1)

k + 1
)

≤ Lk − (1 + ρ)αk

4
E[επk + εµk + εVk + εJk ] +BFαk∆+O(

log2(k + 1)

k + 1
), (35)

where the last inequality follows from the step size condition αk ≤ γ
2(1+ρ)βk and αk ≤ 1−δ

4(1+ρ)ξk.

Re-arranging the terms and summing over iterations, we have

k−1∑
t=τk

αtE[επt + εµt + εVt + εJt ] ≤
4

1 + ρ

k−1∑
t=τk

(Lt − Lt+1) +BF∆

k−1∑
t=τk

αt +

k−1∑
t=τk

O(
log2(t+ 1)

t+ 1
)

≤ 4

1 + ρ
(Lτk + 1) +BF∆

k−1∑
t=τk

αt +O(log3(k + 1)),

where the second inequality follows from −Lk+1 ≤ −ℓ(πθk+1
) ≤ 1 and the well-known relation that

k−1∑
t=τk

1

t+ 1
≤

k−1∑
t=0

1

t+ 1
≤ 2 log(k + 1).
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Due to τk ≤ O(log(k + 1)), it is also a standard result that (for example, see Zeng et al. (2024)[Lemma 3])

k−1∑
t=τk

αt =

k−1∑
t=τk

α0√
t+ 1

= Θ(k + 1).

Dividing both sides of the inequality by
∑k−1

t=τk
αt, we get

min
t<k

E[επt + εµt + εVt + εJt ] ≤
∑k−1

t=τk
αtE[επt + εµt + εVt + εJt ]∑k−1

t=τk
αt

≤ O(
1√
k + 1

)

(
4

1 + ρ
(Lτk + 1) +O(log3(k + 1))

)
+BF∆.

Since the updates of all iterates in Algorithm 1 are bounded, Lτk ≤ O(τk) ≤ O(log(k + 1)). As a result, we eventually
have

min
τk≤t<k

E[επt + εµt + εVt + εJt ] ≤ O
(
log3(k + 1)√

k + 1

)
+O(∆).

C. Proof of Corollaries
C.1. Proof of Corollary 1

As a result of Assumption 5, we have the following gradient domination condition, which is adapted from Lemma 19 of
Ganesh et al. (2024).

Lemma 6. Under Assumption 5, we have the following gradient domination condition for any policy parameter θ and mean
field µ

max
π̄

J(π̄, µ)− J(πθ, µ) ≤
1

σ
∥∇θJ(πθ, µ)∥.

Since επt , ε
µ
t , ε

V
t , ε

J
t are all non-negative, we have

min
τk≤t<k

E
[
∥∇θJ(πθt , µ) |µ=µ⋆(πθt )

∥2
]
≤O

(
log3(k + 1)√

k + 1

)
+O(∆)=Õ

(
log3(k + 1)√

k + 1

)
+O(∆),

min
τk≤t<k

E[∥µ̂k − µ⋆(πθk)∥2] ≤ O
(
log3(k + 1)√

k + 1

)
+O(∆) = Õ

(
log3(k + 1)√

k + 1

)
+O(∆).

Applying Lemma 6 with θ = θt and µ = µ⋆(πθt),

max
π

J(π, µ⋆(πθt))− J(πθ, µ
⋆(πθt)) ≤

1

σ
∥∇θJ(πθt , µ) |µ=µ⋆(πθt )

∥.

By Jensen’s inequality, (
min

τk≤t<k
E
[
max
π

J(π, µ⋆(πθt))− J(πθt , µ
⋆(πθt))

])2

≤ min
τk≤t<k

E
[(

max
π

J(π, µ⋆(πθt))− J(πθt , µ
⋆(πθt))

)2
]

≤ 1

σ2
min

τk≤t<k
E
[
∥∇θJ(πθt , µ) |µ=µ⋆(πθt )

∥2
]

18
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≤ Õ
(

1√
k + 1

)
+O(∆).

Taking square root on both sides of this inequality leads to the claimed result on the convergence of the policy.

Similarly, we have

min
τk≤t<k

E[∥µ̂k − µ⋆(πθk)∥] ≤
√

min
τk≤t<k

E[∥µ̂k − µ⋆(πθk)∥2]

≤

√
Õ
(
log3(k + 1)√

k + 1

)
+O(∆)

≤ Õ
(

1

(k + 1)1/4

)
+O(

√
∆).

D. Proof of Propositions
D.1. Proof of Proposition 1

By the LV -Lipschitz continuity of the function J

J(πθk , µ
⋆(πθk))− J(πθk+1

, µ⋆(πθk))

≤ −⟨∇θJ(πθk , µ) |µ=µ⋆(πθk
), θk+1 − θk⟩+

LV

2
∥θk+1 − θk∥2

= −αk⟨∇θJ(πθk , µ) |µ=µ⋆(πθk
), fk⟩+

LV α
2
k

2
∥fk∥2

=−αk⟨∇θJ(πθk , µ)|µ=µ⋆(πθk
),∆fk⟩−αk⟨∇θJ(πθk , µ)|µ=µ⋆(πθk

),F̄ (θk, V̂k, µ̂k)⟩+
LV α

2
k

2
∥fk∥2

= −αk⟨∇θJ(πθk , µ) |µ=µ⋆(πθk
),∆fk⟩ − αk∥∇θJ(πθk , µ) |µ=µ⋆(πθk

) ∥2

+ αk⟨∇θJ(πθk , µ)|µ=µ⋆(πθk
), F̄ (θk, V

πθk
, µ⋆(πθk

), µ⋆(πθk))−F̄ (θk, V̂k, µ̂k)⟩+
LV α

2
k

2
∥fk∥2

≤ −αk∥∇θJ(πθk , µ) |µ=µ⋆(πθk
) ∥2 − αk⟨∇θJ(πθk , µ) |µ=µ⋆(πθk

),∆fk⟩

+ αk⟨∇θJ(πθk , µ) |µ=µ⋆(πθk
), F̄ (θk, V

πθk
, µ⋆(πθk

), µ⋆(πθk))− F̄ (θk, V̂k, µ̂k)⟩+
LV B

2
Fα

2
k

2
, (36)

where the third equation follows from ∇θJ(πθ, µ) |µ=µ⋆(πθ) = F̄ (θ, V πθ, µ
⋆(πθ), µ⋆(πθ)) for any θ.

To bound the second term on the right hand side of (36), we use the fact that ⟨⃗a, b⃗⟩ ≤ c
2∥a⃗∥

2 + 1
2c ∥⃗b∥

2 for any vectors a⃗, b⃗
and scalar c > 0

−αk⟨∇θJ(πθk , µ) |µ=µ⋆(πθk
),∆fk⟩ ≤

αk

4
∥∇θJ(πθk , µ) |µ=µ⋆(πθk

) ∥2 + αk∥∆fk∥2. (37)

Similarly, for the third term of (36), we have

αk⟨∇θJ(πθk , µ) |µ=µ⋆(πθk
), µ

⋆(πθk))− F̄ (θk, V̂k, µ̂k)⟩

≤ αk

4
∥∇θJ(πθk , µ) |µ=µ⋆(πθk

) ∥2 + αk∥F̄ (θk, V
πθk

, µ⋆(πθk
), µ⋆(πθk))− F̄ (θk, V̂k, µ̂k)∥2

≤ αk

4
∥∇θJ(πθk , µ) |µ=µ⋆(πθk

) ∥2+L2
Fαk∥ΠE⊥(V̂k − V πθk

,µ⋆(πθk
))∥2 + L2

Fαk∥µ̂k − µ⋆(πθk)∥2

=
αk

4
∥∇θJ(πθk , µ) |µ=µ⋆(πθk

) ∥2 + L2
Fαk(ε

V
k + εµk). (38)

Plugging (37)-(38) into (36), we have

J(πθk , µ
⋆(πθk))− J(πθk+1

, µ⋆(πθk))
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≤ −αk∥∇θJ(πθk , µ) |µ=µ⋆(πθk
) ∥2 − αk⟨∇θJ(πθk , µ) |µ=µ⋆(πθk

),∆fk⟩

+ αk⟨∇θJ(πθk , µ) |µ=µ⋆(πθk
), F̄ (θk, V

πθk
, µ⋆(πθk

), µ⋆(πθk))− F̄ (θk, V̂k, µ̂k)⟩+
LV B

2
Fα

2
k

2

≤ −αk∥∇θJ(πθk , µ) |µ=µ⋆(πθk
) ∥2 +

αk

4
∥∇θJ(πθk , µ) |µ=µ⋆(πθk

) ∥2 + αk∥∆fk∥2

+
αk

4
∥∇θJ(πθk , µ) |µ=µ⋆(πθk

) ∥2 + L2
Fαk(ε

V
k + εµk) +

LV B
2
Fα

2
k

2

≤ −αk

2
∥∇θJ(πθk , µ) |µ=µ⋆(πθk

) ∥2 + αk∥∆fk∥2 + L2
Fαk(ε

V
k + εµk) +

LV B
2
Fα

2
k

2
. (39)

By Assumption 4, we have

J(πθk+1
, µ⋆(πθk))− J(πθk+1

, µ⋆(πθk+1
))

≤ ρ
(
J(πθk , µ

⋆(πθk))− J(πθk+1
, µ⋆(πθk))

)
+∆∥θk+1 − θk∥

≤ ρ
(
− αk

2
∥∇θJ(πθk , µ) |µ=µ⋆(πθk

) ∥2+αk∥∆fk∥2+L2
Fαk(ε

V
k +εµk)+

LV B
2
Fα

2
k

2

)
+BFαk∆. (40)

Combining (39) and (40),

J(πθk , µ
⋆(πθk))− J(πθk+1

, µ⋆(πθk+1
))

≤ −αk

2
∥∇θJ(πθk , µ) |µ=µ⋆(πθk

) ∥2 + αk∥∆fk∥2 + L2
Fαk(ε

V
k + εµk) +

LV B
2
Fα

2
k

2

+ ρ
(
− αk

2
∥∇θJ(πθk , µ) |µ=µ⋆(πθk

) ∥2 + αk∥∆fk∥2 + L2
Fαk(ε

V
k + εµk) +

LV B
2
Fα

2
k

2

)
+BFαk∆

≤ − (1 + ρ)αk

2
∥∇θJ(πθk , µ) |µ=µ⋆(πθk

) ∥2 + (1 + ρ)αk∥∆fk∥2 + (1 + ρ)L2
Fαk(ε

V
k + εµk)

+
(1 + ρ)LV B

2
Fα

2
k

2
+ +BFαk∆.

D.2. Proof of Proposition 2

The proof of Proposition 2 relies on the lemma below. We defer the proof of the lemma to Sec.E.7.
Lemma 7. We have for all k ≥ τk

E[⟨∆fk, F (θk, V̂k, µ̂k, sk, ak, sk+1)−F̄ (θk, V̂k, µ̂k)⟩] ≤ (20L+2|A|)LFLTV B
3
FBGB

2
Hτ2kλk−τk .

By the update rule of fk,

∆fk+1 = fk+1 − F̄ (θk+1, V̂k+1, µ̂k+1)

= (1− λk)fk + λkF (θk, V̂k, µ̂k, sk, ak, sk+1)− F̄ (θk+1, V̂k+1, µ̂k+1)

= (1− λk)fk + λkF̄ (θk, V̂k, µ̂k)− F̄ (θk+1, V̂k+1, µ̂k+1)

+ λk

(
F (θk, V̂k, µ̂k, sk, ak, sk+1)− F̄ (θk, V̂k, µ̂k)

)
= (1− λk)∆fk +

(
F̄ (θk, V̂k, µ̂k)− F̄ (θk+1, V̂k+1, µ̂k+1)

)
+ λk

(
F (θk, V̂k, µ̂k, sk, ak, sk+1)− F̄ (θk, V̂k, µ̂k)

)
.

Taking the norm, we have

∥∆fk+1∥2
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= (1− λk)
2∥∆fk∥2 + ∥F̄ (θk, V̂k, µ̂k)− F̄ (θk+1, V̂k+1, µ̂k+1)∥2

+ λ2
k∥F (θk, V̂k, µ̂k, sk, ak, sk+1)− F̄ (θk, V̂k, µ̂k)∥2

+ (1− λk)⟨∆fk, F̄ (θk, V̂k, µ̂k)− F̄ (θk+1, V̂k+1, µ̂k+1)⟩
+ (1− λk)λk⟨∆fk, F (θk, V̂k, µ̂k, sk, ak, sk+1)− F̄ (θk, V̂k, µ̂k)⟩
+ λk⟨F̄ (θk, V̂k, µ̂k)− F̄ (θk+1, V̂k+1, µ̂k+1), F (θk, V̂k, µ̂k, sk, ak, sk+1)− F̄ (θk, V̂k, µ̂k)⟩

≤ (1− λk)
2∥∆fk∥2 + 2∥F̄ (θk, V̂k, µ̂k)− F̄ (θk+1, V̂k+1, µ̂k+1)∥2

+ 2λ2
k∥F (θk, V̂k, µ̂k, sk, ak, sk+1)− F̄ (θk, V̂k, µ̂k)∥2

+
λk

2
∥∆fk∥2 +

2

λk
∥F̄ (θk, V̂k, µ̂k)− F̄ (θk+1, V̂k+1, µ̂k+1)∥2

+ (1− λk)λk⟨∆fk, F (θk, V̂k, µ̂k, sk, ak, sk+1)− F̄ (θk, V̂k, µ̂k)⟩

≤ (1− λk)∥∆fk∥2 + (−λk

2
+ λ2

k)∥∆fk∥2 +
4

λk
∥F̄ (θk, V̂k, µ̂k)− F̄ (θk+1, V̂k+1, µ̂k+1)∥2

+ 8B2
Fλ

2
k + (1− λk)λk⟨∆fk, F (θk, V̂k, µ̂k, sk, ak, sk+1)− F̄ (θk, V̂k, µ̂k)⟩, (41)

where the final inequality follows from the step size condition λk ≤ 1 and the boundedness of operator F which implies

∥F̄ (θk, V̂k, µ̂k)− F̄ (θk+1, V̂k+1, µ̂k+1)∥ ≤ 2BF .

Taking the expectation, we can simplify (41) as

E[∥∆fk+1∥2]

≤ E
[
(1− λk)∥∆fk∥2 + (−λk

2
+ λ2

k)∥∆fk∥2 +
4

λk
∥F̄ (θk, V̂k, µ̂k)− F̄ (θk+1, V̂k+1, µ̂k+1)∥2

+ 8B2
Fλ

2
k + (1− λk)λk⟨∆fk, F (θk, V̂k, µ̂k, sk, ak, sk+1)− F̄ (θk, V̂k, µ̂k)⟩

]
≤ (1− λk)E[∥∆fk∥2] + (−λk

2
+ λ2

k)E[∥∆fk∥2] + 8B2
Fλ

2
k

+
4L2

F

λk
E[
(
∥θk − θk+1∥+ ∥V̂k − V̂k+1∥+ ∥µ̂k − µ̂k+1∥

)2

]

+ (1− λk)λk · (20L+ 2|A|)LFLTV B
3
FBGB

2
Hτ2kλk−τk

≤ (1− λk)E[∥∆fk∥2] + (−λk

2
+ λ2

k)E[∥∆fk∥2] + (28L+2|A|)LFLTV B
3
FBGB

2
Hτ2kλkλk−τk

+
4L2

F

λk
E[(αk∥fk∥+ βk∥gk∥+ ξk∥hk∥)2]

≤ (1− λk)E[∥∆fk∥2] + (−λk

2
+ λ2

k)E[∥∆fk∥2] + (28L+2|A|)LFLTV B
3
FBGB

2
Hτ2kλkλk−τk

+ E
[12L2

Fαk

λk

(
∥∆fk∥+ LF

√
εVk + LF (LV + 1)

√
εµk +

√
επk

)2

+
12L2

Fβk

λk

(
∥∆gk∥+ LG

√
εVk + LG

√
εJk

)2

+
12L2

F ξk
λk

(
LH∥∆hk∥+

√
εµk

)2 ]
, (42)

where the second inequality plugs in the result of Lemma 7 and bounds ∥F̄ (θk, V̂k, µ̂k)− F̄ (θk+1, V̂k+1, µ̂k+1)∥2 using the
Lipschitz condition established in Lemma 3.

The sum of the last three terms can be bounded as

12L2
Fαk

λk

(
∥∆fk∥+ LF

√
εVk + LF (LV + 1)

√
εµk +

√
επk

)2

+
12L2

Fβk

λk

(
∥∆gk∥+ LG

√
εVk + LG

√
εJk

)2

+
12L2

F ξk
λk

(
LH∥∆hk∥+

√
εµk

)2
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≤ 48L2
Fα

2
k

λk
∥∆fk∥2 +

48L4
Fα

2
k

λk
εVk +

192L4
FL

2
V α

2
k

λk
εµk +

48L2
Fα

2
k

λk
επk

+
36L2

Fβ
2
k

λk
∥∆gk∥2 +

48L2
FL

2
Gβ

2
k

λk
εVk +

48L2
FL

2
Gβ

2
k

λk
εJk

+
24L2

FL
2
Hξ2k

λk
∥∆hk∥2 +

24L2
F ξ

2
k

λk
εµk

≤ 48L2
Fα

2
k

λk
∥∆fk∥2 +

36L2
Fβ

2
k

λk
∥∆gk∥2 +

24L2
FL

2
Hξ2k

λk
∥∆hk∥2 +

48L2
Fα

2
k

λk
επk

+
216L4

FL
2
V ξ

2
k

λk
εµk +

96L4
FL

2
Gβ

2
k

λk
εVk +

48L2
FL

2
Gβ

2
k

λk
εJk . (43)

Combining (42) and (43), we get

E[∥∆fk+1∥2]

≤ (1− λk)E[∥∆fk∥2] + (−λk

2
+ λ2

k)E[∥∆fk∥2] + (28L+ 2|A|)LFLTV B
3
FBGB

2
Hτ2kλkλk−τk

+ E
[48L2

Fα
2
k

λk
∥∆fk∥2 +

36L2
Fβ

2
k

λk
∥∆gk∥2 +

24L2
FL

2
Hξ2k

λk
∥∆hk∥2 +

48L2
Fα

2
k

λk
επk

+
216L4

FL
2
V ξ

2
k

λk
εµk +

96L4
FL

2
Gβ

2
k

λk
εVk +

48L2
FL

2
Gβ

2
k

λk
εJk

]
= (1− λk)E[∥∆fk∥2] + (−λk

2
+ λ2

k +
48L2

Fα
2
k

λk
)E[∥∆fk∥2]

+
36L2

Fβ
2
k

λk
E[∥∆gk∥2] +

24L2
FL

2
Hξ2k

λk
E[∥∆hk∥2] +

48L2
Fα

2
k

λk
E[επk ] +

216L4
FL

2
V ξ

2
k

λk
E[εµk ]

+
96L4

FL
2
Gβ

2
k

λk
E[εVk ] +

48L2
FL

2
Gβ

2
k

λk
E[εJk ] + (28L+ 2|A|)LFLTV B

3
FBGB

2
Hτ2kλkλk−τk .

D.3. Proof of Proposition 3

We first introduce the following lemma, which will be used in the proof of Proposition 3. The proof of Lemma 8 is presented
in Sec.E.8.

Lemma 8. Under Assumption 3, we have for any policy parameter θ and mean field µ

⟨µ− µ⋆(πθ), H̄(θ, µ)− H̄(θ, µ⋆(πθ))⟩ ≤ −(1− δ)∥µ− µ⋆(πθ)∥2.

By the definition of εµk ,

εµk+1 = ∥µ̂k+1 − µ⋆(πθk+1
)∥2

= ∥µ̂k + ξkhk − µ⋆(πθk+1
)∥2

= ∥µ̂k − µ⋆(πθk) + ξk∆hk + ξkH̄(θk, µ̂k)−
(
µ⋆(πθk+1

)− µ⋆(πθk)
)
∥2

= ∥µ̂k − µ⋆(πθk) + ξkH̄(θk, µ̂k)∥2 + ξ2k∥∆hk∥2 + ∥µ⋆(πθk+1
)− µ⋆(πθk)∥2

+ 2ξk⟨µ̂k − µ⋆(πθk) + ξkH̄(θk, µ̂k),∆hk⟩
+ 2⟨µ̂k − µ⋆(πθk) + ξkH̄(θk, µ̂k), µ

⋆(πθk+1
)− µ⋆(πθk)⟩

+ 2ξk⟨∆hk, µ
⋆(πθk+1

)− µ⋆(πθk)⟩. (44)

To bound the first term of (44),

∥µ̂k − µ⋆(πθk) + ξkH̄(θk, µ̂k)∥2
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= ∥µ̂k − µ⋆(πθk) + ξk
(
H̄(θk, µ̂k)− H̄(θk, µ

⋆(πθk))
)
∥2

= ∥µ̂k − µ⋆(πθk)∥2 + ξ2k∥H̄(θk, µ̂k)− H̄(θk, µ
⋆(πθk))∥2

+ 2ξk⟨µ̂k − µ⋆(πθk), H̄(θk, µ̂k)− H̄(θk, µ
⋆(πθk))⟩

≤ ∥µ̂k − µ⋆(πθk)∥2 + L2
Hξ2k∥µ̂k − µ⋆(πθk)∥2 − (1− δ)ξk∥µ̂k − µ⋆(πθk)∥2

≤ (1− (1− δ)ξk
2

)εµk , (45)

where the first equation uses H̄(θ, µ⋆(πθ)) = 0 for any θ, the first inequality is a result of Lemma 8 and the Lipschitz
continuity of H̄ , and the second inequality follows from the step size condition ξk ≤ βk ≤ 1−δ

2L2
H

.

We next treat the second and third term of (44) using the fact that ∥hk∥ ≤ BH , ∥H̄(θk, µ̂k)∥ ≤ BH , ∥fk∥ ≤ BF and that
the operator µ⋆ is Lipschitz

ξ2k∥∆hk∥2 + ∥µ⋆(πθk+1
)− µ⋆(πθk)∥2 ≤ 2ξ2k∥hk∥2 + 2ξ2k∥H̄(θk, µ̂k)∥2 + L∥πθk+1

− πθk∥2

≤ 4B2
Hξ2k + L2∥fk∥2

≤ 4B2
Hξ2k + L2B2

Fα
2
k. (46)

The fourth term of (44) can be bounded leveraging the result in (45) as follows

2ξk⟨µ̂k − µ⋆(πθk) + ξkH̄(θk, µ̂k),∆hk⟩

≤ (1− δ)ξk
8

∥µ̂k − µ⋆(πθk) + ξkH̄(θk, µ̂k)∥2 +
8ξk
1− δ

∥∆hk∥2

≤ (1− δ)ξk
8

· (1− (1− δ)ξk
2

)εµk +
8ξk
1− δ

∥∆hk∥2

≤ (1− δ)ξk
8

εµk +
8ξk
1− δ

∥∆hk∥2. (47)

Similarly, for the fifth term of (44), we have

2⟨µ̂k − µ⋆(πθk) + ξkH̄(θk, µ̂k), µ
⋆(πθk+1

)− µ⋆(πθk)⟩

≤ (1− δ)ξk
8

∥µ̂k − µ⋆(πθk) + ξkH̄(θk, µ̂k)∥2 +
8

(1− δ)ξk
∥µ⋆(πθk+1

)− µ⋆(πθk)∥2

≤ (1− δ)ξk
8

εµk +
8L2

(1− δ)ξk
∥πθk+1

− πθk∥2

≤ (1− δ)ξk
8

εµk +
8L2α2

k

(1− δ)ξk
∥fk∥2

≤ (1− δ)ξk
8

εµk +
8L2α2

k

(1− δ)ξk

(
∥∆fk∥+ LF

√
εVk + LF (LV + 1)

√
εµk +

√
επk

)2

≤ (1− δ)ξk
8

εµk +
32L2α2

k

(1− δ)ξk

(
∥∆fk∥2 + L2

F ε
V
k + 4L2

FL
2
V ε

µ
k + επk

)
, (48)

where the fourth inequality follows from Lemma 4.

The final term of (44) can be bounded simply with the Cauchy-Schwarz inequality

2ξk⟨∆hk, µ
⋆(πθk+1

)− µ⋆(πθk)⟩ ≤ 2ξk∥∆hk∥∥µ⋆(πθk+1
)− µ⋆(πθk)∥

≤ 4BHξk · L∥πθk+1
− πθk∥

≤ 4LBFBHαkξk. (49)

Plugging (45)-(49) into (44), we get

εµk+1
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≤ (1− (1− δ)ξk
2

)εµk + 4B2
Hξ2k + L2B2

Fα
2
k +

(1− δ)ξk
8

εµk +
8ξk
1− δ

∥∆hk∥2

+
(1− δ)ξk

8
εµk +

32L2α2
k

(1− δ)ξk

(
∥∆fk∥2 + L2

F ε
V
k + 4L2

FL
2
V ε

µ
k + επk

)
+ 4LBFBHαkξk

≤ (1− (1− δ)ξk
8

)εµk +
8ξk
1− δ

∥∆hk∥2 + 4B2
Hξ2k + L2B2

Fα
2
k+

32L2α2
k

(1− δ)ξk

(
∥∆fk∥2+L2

F ε
V
k +επk

)
+ 4LBFBHαkξk + (− (1− δ)ξk

8
+

128L2L2
FL

2
V α

2
k

(1− δ)ξk
)εµk

≤ (1− (1− δ)ξk
8

)εµk +
8ξk
1− δ

∥∆hk∥2 +
32L2α2

k

(1− δ)ξk

(
∥∆fk∥2 + L2

F ε
V
k + επk

)
+ 9L2B2

FB
2
Hξ2k,

where the last inequality is a result of the step size condition αk ≤ ξk and αk ≤ 1−δ
16LLFLV

ξk.

D.4. Proof of Proposition 4

The proof of Proposition 4 uses an intermediate result established in the lemma below. We defer the proof of the lemma to
Sec.E.9.

Lemma 9. We have for all k ≥ τk

E[⟨∆hk, esk − E
s∼ν

πθk
, µ̂k [es]⟩] ≤ 16LBFB

2
Hτ2kλk−τk .

By the update rule of hk,

∆hk+1 = hk+1 − H̄(θk+1, µ̂k+1)

= (1− λk)hk + λk(esk − µ̂k)− H̄(θk+1, µ̂k+1)

= (1− λk)hk + λkH̄(θk, µ̂k)− H̄(θk+1, µ̂k+1) + λk

(
(esk − µ̂k)− H̄(θk, µ̂k)

)
= (1− λk)∆hk +

(
H̄(θk, µ̂k)− H̄(θk+1, µ̂k+1)

)
+ λk

(
(esk − µ̂k)− H̄(θk, µ̂k)

)
.

This implies

∥∆hk+1∥2

= (1− λk)
2∥∆hk∥2 + ∥H̄(θk, µ̂k)− H̄(θk+1, µ̂k+1)∥2 + λ2

k∥(esk − µ̂k)− H̄(θk, µ̂k)∥2

+ (1− λk)⟨∆hk, H̄(θk, µ̂k)− H̄(θk+1, µ̂k+1)⟩
+ (1− λk)λk⟨∆hk, (esk − µ̂k)− H̄(θk, µ̂k)⟩
+ λk⟨H̄(θk, µ̂k)− H̄(θk+1, µ̂k+1), (esk − µ̂k)− H̄(θk, µ̂k)⟩

≤ (1− λk)
2∥∆hk∥2 + 2∥H̄(θk, µ̂k)− H̄(θk+1, µ̂k+1)∥2 + 2λ2

k∥(esk − µ̂k)− H̄(θk, µ̂k)∥2

+
λk

2
∥∆hk∥2 +

2

λk
∥H̄(θk, µ̂k)− H̄(θk+1, µ̂k+1)∥2

+ (1− λk)λk⟨∆hk, esk − E
s∼ν

πθk
, µ̂k [es]⟩

≤ (1− λk)∥∆hk∥2 + (−λk

2
+ λ2

k)∥∆hk∥2 +
4

λk
∥H̄(θk, µ̂k)− H̄(θk+1, µ̂k+1)∥2

+ (1− λk)λk⟨∆hk, esk − E
s∼ν

πθk
, µ̂k [es]⟩+ 8BHλ2

k,

where the final inequality follows from the step size choice λk ≤ 1. Taking the expectation and applying Lemma 9 and the
Lipschitz continuity of operator H̄ , we further have

E[∥∆hk+1∥2]

≤ (1−λk)E[∥∆hk∥2] + (−λk

2
+λ2

k)E[∥∆hk∥2] +
4

λk
E[(LH∥θk − θk+1∥+ LH∥µ̂k − µ̂k+1∥)2]
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+ (1− λk)λk · 16LBFB
2
Hτ2kλk−τk + 8BHλ2

k

≤ (1− λk)E[∥∆hk∥2] + (−λk

2
+ λ2

k)E[∥∆hk∥2] +
8L2

H

λk
E[α2

k∥fk∥2 + ξ2k∥hk∥2]

+ 16LBFB
2
Hτ2kλkλk−τk + 8BHλ2

k

≤ (1− λk)E[∥∆hk∥2] + (−λk

2
+ λ2

k)E[∥∆hk∥2]

+
8L2

Hα2
k

λk
E[
(
∥∆fk∥+ LF

√
εVk + LF (LV + 1)

√
εµk +

√
επk

)2
]

+
8L2

Hξ2k
λk

E[
(
∥∆hk∥+ LH

√
ϵµk
)2
] + 16LBFB

2
Hτ2kλkλk−τk + 8BHλ2

k

≤ (1− λk)E[∥∆hk∥2] + (−λk

2
+ λ2

k)E[∥∆hk∥2]

+
32L2

Hα2
k

λk
E[∥∆fk∥2 + L2

F ε
V
k + 4L2

FL
2
V ε

µ
k + επk ]

+
16L2

Hξ2k
λk

E[∥∆hk∥2 + L2
Hϵµk ] + 24LBFB

2
Hτ2kλkλk−τk

≤ (1− λk)E[∥∆hk∥2] + (−λk

2
+ λ2

k +
16L2

Hξ2k
λk

)E[∥∆hk∥2] +
32L2

Hα2
k

λk
E[∥∆fk∥2]

+
32L2

HL2
Fα

2
k

λk
E[εVk ] +

144L2
FL

2
V L

4
Hξ2k

λk
E[εµk ] +

32L2
Hα2

k

λk
E[επk ] + 24LBFB

2
Hτ2kλkλk−τk ,

where the third inequality bounds ∥fk∥ and ∥hk∥ with Lemma 4. The step size condition αk ≤ ξk is used a few times to
simplify and combine terms.

D.5. Proof of Proposition 5

We use the following lemma in our analysis. The proof of the lemma is deferred to Sec.E.10.

Lemma 10. Under Assumption 1, it holds for any θ, µ, and V that〈[
ΠE⊥(V −V πθ, µ)

J − J(πθ, µ)

]
,

[
ΠE⊥Ḡ

V (θ, V, J, µ)

ḠJ(θ, J, µ)

]〉
≤−γ

2
(∥ΠE⊥(V −V πθ, µ)∥2+(J−J(πθ, µ))

2),

where γ ∈ (0, 1) is the discount factor in Lemma 5.

By the definition of εVk ,

εVk+1 + εJk+1

=

∥∥∥∥∥
[

ΠE⊥(V̂k+1 − V πθk+1
, µ̂k+1)

Ĵk+1 − J(πθk+1
, µ̂k+1)

]∥∥∥∥∥
2

=

∥∥∥∥∥
[

ΠE⊥(ΠBV
(V̂k + βkg

V
k )− V πθk+1

, µ̂k+1)

Π[0,1](Ĵk + βkg
J
k )− J(πθk+1

, µ̂k+1)

]∥∥∥∥∥
2

≤

∥∥∥∥∥
[

ΠE⊥(V̂k + βkg
V
k − V πθk+1

, µ̂k+1)

Ĵk + βkg
J
k − J(πθk+1

, µ̂k+1)

]∥∥∥∥∥
2

=

∥∥∥∥∥
[

ΠE⊥

(
V̂k − V πθk

, µ̂k + βkḠ
V (θk, V̂k, Ĵk, µ̂k) + βk∆gVk −

(
V πθk+1

, µ̂k+1−V πθk
, µ̂k

))
Ĵk − J(πθk , µ̂k) + βkḠ

J(θk, Ĵk, µ̂k) + βk∆gJk − (J(πθk+1
, µ̂k+1)− J(πθk , µ̂k))

]∥∥∥∥∥
2

≤

∥∥∥∥∥
[

ΠE⊥(V̂k − V πθk
, µ̂k)

Ĵk − J(πθk , µ̂k)

]
+ βk

[
ΠE⊥Ḡ

V (θk, V̂k, Ĵk, µ̂k)

ḠJ(θk, Ĵk, µ̂k)

]∥∥∥∥∥
2

+ β2
k∥∆gk∥2
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+

∥∥∥∥∥
[

ΠE⊥(V
πθk+1

, µ̂k+1 − V πθk
, µ̂k)

J(πθk+1
, µ̂k+1)− J(πθk , µ̂k)

]∥∥∥∥∥
2

+ 2βk

〈[
ΠE⊥(V̂k − V πθk

, µ̂k)

Ĵk − J(πθk , µ̂k)

]
+ βk

[
ΠE⊥Ḡ

V (θk, V̂k, Ĵk, µ̂k)

ḠJ(θk, Ĵk, µ̂k)

]
,

[
ΠE⊥∆gVk
∆gJk

]〉

+ 2

〈[
ΠE⊥(V̂k − V πθk

, µ̂k)

Ĵk − J(πθk , µ̂k)

]
+ βk

[
ΠE⊥Ḡ

V (θk, V̂k, Ĵk, µ̂k)

ḠJ(θk, Ĵk, µ̂k)

]
,

[
ΠE⊥(V

πθk+1
, µ̂k+1 − V πθk

, µ̂k)

J(πθk+1
, µ̂k+1)− J(πθk , µ̂k)

]〉

+ 2βk

〈
∆gk,

[
ΠE⊥(V

πθk+1
, µ̂k+1 − V πθk

, µ̂k)

J(πθk+1
, µ̂k+1)− J(πθk , µ̂k)

]〉
, (50)

where the last inequality follows from the fact that ΠE⊥ has all singular values smaller than or equal to 1.

To bound the first term of (50),∥∥∥∥∥
[

ΠE⊥(V̂k − V πθk
, µ̂k)

Ĵk − J(πθk , µ̂k)

]
+ βk

[
ΠE⊥Ḡ

V (θk, V̂k, Ĵk, µ̂k)

ḠJ(θk, Ĵk, µ̂k)

]∥∥∥∥∥
2

≤ ∥ΠE⊥(V̂k − V πθk
, µ̂k)∥2 + (Ĵk − J(πθk , µ̂k))

2 + β2
k∥ΠE⊥Ḡ

V (θk, V̂k, Ĵk, µ̂k)∥2

+ βk

(
ḠJ(θk, Ĵk, µ̂k)

)2

+ 2βk

〈[
ΠE⊥(V̂k − V πθk

, µ̂k)

Ĵk − J(πθk , µ̂k)

]
,

[
ΠE⊥Ḡ

V (θk, V̂k, Ĵk, µ̂k)

ḠJ(θk, Ĵk, µ̂k)

]〉
≤ ∥ΠE⊥(V̂k − V πθk

, µ̂k)∥2 + (Ĵk − J(πθk , µ̂k))
2 + β2

k∥Ḡ(θk, V̂k, Ĵk, µ̂k)∥2

− γβk∥ΠE⊥(V̂k − V πθk
, µ̂k)∥2 − γβk(Ĵk − J(πθk , µ̂k))

2

= (1− γβk)∥ΠE⊥(V̂k − V πθk
, µ̂k)∥2 + (1− γβk)(Ĵk − J(πθk , µ̂k))

2

+ β2
k∥Ḡ(θk, V̂k, Ĵk, µ̂k)− Ḡ(θk, V

πθk
, µ̂k , J(πθk , µ̂k), µ̂k)∥2

≤ (1− γβk)∥ΠE⊥(V̂k − V πθk
, µ̂k)∥2 + (1− γβk)(Ĵk − J(πθk , µ̂k))

2

+ L2
Gβ

2
k

(
∥ΠE⊥(V̂k − V πθk

, µ̂k)∥+ |Ĵk − J(πθk , µ̂k)|
)2

≤ (1− γβk + 2L2
Gβ

2
k)∥ΠE⊥(V̂k − V πθk

, µ̂k)∥2 + (1− γβk + 2L2
Gβ

2
k)(Ĵk − J(πθk , µ̂k))

2

≤ (1− γβk

2
)(εVk + εJk ), (51)

where the second inequality applies Lemma 10, the first equation uses the Ḡ(θ, V πθ, µ, J(πθ, µ), µ) = 0 for any θ, µ, third
inequality follows from the Lipschitz continuity of operator Ḡ established in Lemma 3, and the final inequality follows from
the step size condition βk ≤ γ

4L2
G

.

To treat the second and third term of (50), we use the boundedness of ∆gk and the Lipschitz continuity conditions from
Lemma 1

β2
k∥∆gk∥2 +

∥∥∥∥∥
[

ΠE⊥(V
πθk+1

, µ̂k+1 − V πθk
, µ̂k)

J(πθk+1
, µ̂k+1)− J(πθk , µ̂k)

]∥∥∥∥∥
2

≤ β2
k∥∆gk∥2 + ∥ΠE⊥(V

πθk+1
, µ̂k+1 − V πθk

, µ̂k)∥2 + (J(πθk+1
, µ̂k+1)− J(πθk , µ̂k))

2

≤ 4B2
Gβ

2
k + (LV ∥θk+1 − θk∥+ LV ∥µ̂k+1 − µ̂k∥)2 + (LV ∥θk+1 − θk∥+ LV ∥µ̂k+1 − µ̂k∥)2

= 4B2
Gβ

2
k + 2L2

V (αk∥fk∥+ ξk∥hk∥)2

= 4B2
Gβ

2
k + 2L2

V ξ
2
k (BF +BH)

2

≤ 4L2
V (B

2
F +B2

G +B2
H)β2

k, (52)

where we combine terms using the step size condition αk ≤ ξk ≤ βk.
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The fourth term of (50) can be bounded leveraging the result in (51) as follows

2βk

〈[
ΠE⊥(V̂k − V πθk

, µ̂k)

Ĵk − J(πθk , µ̂k)

]
+ βk

[
ΠE⊥Ḡ

V (θk, V̂k, Ĵk, µ̂k)

ḠJ(θk, Ĵk, µ̂k)

]
,

[
ΠE⊥∆gVk
∆gJk

]〉

≤ γβk

8

∥∥∥∥∥
[

ΠE⊥(V̂k − V πθk
, µ̂k)

Ĵk − J(πθk , µ̂k)

]
+ βk

[
ΠE⊥Ḡ

V (θk, V̂k, Ĵk, µ̂k)

ḠJ(θk, Ĵk, µ̂k)

]∥∥∥∥∥
2

+
8βk

γ

∥∥∥∥[ ΠE⊥∆gVk
gJk

]∥∥∥∥2
≤ γβk

8
(1− γβk

2
)(εVk + εJk ) +

8βk

γ
∥∆gk∥2

≤ γβk

8
(εVk + εJk ) +

8βk

γ
∥∆gk∥2. (53)

Similarly, for the fifth term of (50), we have

2

〈[
ΠE⊥(V̂k − V πθk

, µ̂k)

Ĵk − J(πθk , µ̂k)

]
+ βk

[
ΠE⊥Ḡ

V (θk, V̂k, Ĵk, µ̂k)

ḠJ(θk, Ĵk, µ̂k)

]
,

[
ΠE⊥(V

πθk+1
, µ̂k+1 − V πθk

, µ̂k)

J(πθk+1
, µ̂k+1)− J(πθk , µ̂k)

]〉

≤ γβk

8

∥∥∥∥∥
[

ΠE⊥(V̂k − V πθk
, µ̂k)

Ĵk − J(πθk , µ̂k)

]
+ βk

[
ΠE⊥Ḡ

V (θk, V̂k, Ĵk, µ̂k)

ḠJ(θk, Ĵk, µ̂k)

]∥∥∥∥∥
2

+
8

γβk

∥∥∥∥∥
[

ΠE⊥(V
πθk+1

, µ̂k+1 − V πθk
, µ̂k)

J(πθk+1
, µ̂k+1)− J(πθk , µ̂k)

]∥∥∥∥∥
2

≤ γβk

8
(εVk + εJk ) +

8

γβk
∥V πθk+1

, µ̂k+1 − V πθk
, µ̂k∥2

+
8

γβk
(J(πθk+1

, µ̂k+1)− J(πθk , µ̂k))
2

≤ γβk

8
(εVk + εJk ) +

16L2
V

γβk

(
∥πθk+1

− πθk∥2 + ∥µ̂k+1 − µ̂k∥2
)

+
16L2

V

γβk

(
∥πθk+1

− πθk∥2 + ∥µ̂k+1 − µ̂k∥2
)

≤ γβk

8
(εVk + εJk ) +

32L2
V

γβk
(α2

k∥fk∥2 + ξ2k∥hk∥2)

≤ γβk

8
(εVk + εJk )

+
32L2

V

γβk

(
4α2

k(∥∆fk∥2 + L2
F ε

V
k + L2

F (LV + 1)2εµk + επk ) + 2ξ2k(∥∆hk∥2 + L2
Hεµk)

)
≤ γβk

8
(εVk + εJk ) +

128L2
V α

2
k

γβk

(
∥∆fk∥2 + L2

F ε
V
k + 4L2

FL
2
V ε

µ
k + επk

)
+

64L2
V ξ

2
k

γβk

(
∥∆hk∥2 + L2

Hεµk
)
, (54)

where the third inequality applies Lemma 1 and the fifth inequality applies Lemma 4.

The final term of (50) can be bounded simply with the Cauchy-Schwarz inequality

2βk

〈
∆gk,

[
ΠE⊥(V

πθk+1
, µ̂k+1 − V πθk

, µ̂k)

J(πθk+1
, µ̂k+1)− J(πθk , µ̂k)

]〉

≤ 2βk ∥∆gk∥

∥∥∥∥∥
[

ΠE⊥(V
πθk+1

, µ̂k+1 − V πθk
, µ̂k)

J(πθk+1
, µ̂k+1)− J(πθk , µ̂k)

]∥∥∥∥∥
≤ 2βk ∥∆gk∥

(
∥ΠE⊥(V

πθk+1
, µ̂k+1 − V πθk

, µ̂k)∥+ |J(πθk+1
, µ̂k+1)− J(πθk , µ̂k)|

)
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≤ 4BGβk ·
(
LV (∥πθk+1

− πθk∥+ ∥µ̂k+1 − µ̂k∥) + LV (∥πθk+1
− πθk∥+ ∥µ̂k+1 − µ̂k∥)

)
≤ 8LV BGβk(BFαk +BHξk)

≤ 16LV BFBGBHβkξk. (55)

Plugging (51)-(55) into (50), we get

εVk+1 + εJk+1

≤ (1− γβk

2
)(εVk + εJk ) + 4L2

V (B
2
F +B2

G +B2
H)β2

k +
γβk

8
(εVk + εJk ) +

8βk

γ
∥∆gk∥2

+
γβk

8
(εVk + εJk ) +

128L2
V α

2
k

γβk

(
∥∆fk∥2 + L2

F ε
V
k + 4L2

FL
2
V ε

µ
k + επk

)
+

64L2
V ξ

2
k

γβk

(
∥∆hk∥2 + L2

Hεµk
)
+ 16LV BFBGBHβkξk

≤ (1− γβk

4
)(εVk + εJk ) +

128L2
V α

2
k

γβk
∥∆fk∥2 +

8βk

γ
∥∆gk∥2 +

64L2
V ξ

2
k

γβk
∥∆hk∥2

+
128L2

V α
2
k

γβk
(L2

F ε
V
k + επk ) +

192L2
V ξ

2
k

γβk
εµk + 28L2

V B
2
FB

2
GB

2
Hβ2

k,

where we use the conditions ξk ≤ βk and αk ≤ LH

2LFLV
ξk in the last inequality to simplify and combine terms.

D.6. Proof of Proposition 6

The proof of Proposition 6 relies on the following lemma, the proof of which is presented in Sec.E.11.

Lemma 11. We have for all k ≥ τk

E[⟨∆gk, G(θk, V̂k, Ĵk, µ̂k, sk, ak, sk+1)− Ḡ(θk, V̂k, Ĵk, µ̂k)⟩]
≤ (22L+ 2|A|)LFLTV BFB

2
GBHτ2kλk−τk .

By the update rule of fk,

∆gk+1 = gk+1 − Ḡ(θk+1, V̂k+1, Ĵk+1, µ̂k+1)

= (1− λk)gk + λkḠ(θk, V̂k, Ĵk, µ̂k, sk, ak, sk+1)− Ḡ(θk+1, V̂k+1, Ĵk+1, µ̂k+1)

= (1− λk)gk + λkḠ(θk, V̂k, Ĵk, µ̂k)− Ḡ(θk+1, V̂k+1, Ĵk+1, µ̂k+1)

+ λk

(
G(θk, V̂k, Ĵk, µ̂k, sk, ak, sk+1)− Ḡ(θk, V̂k, Ĵk, µ̂k)

)
= (1− λk)∆gk +

(
Ḡ(θk, V̂k, Ĵk, µ̂k)− Ḡ(θk+1, V̂k+1, Ĵk+1, µ̂k+1)

)
+ λk

(
G(θk, V̂k, Ĵk, µ̂k, sk, ak, sk+1)− Ḡ(θk, V̂k, Ĵk, µ̂k)

)
.

Taking the norm, we have

∥∆gk+1∥2

= (1− λk)
2∥∆Gk∥2 + ∥Ḡ(θk, V̂k, Ĵk, µ̂k)− Ḡ(θk+1, V̂k+1, Ĵk+1, µ̂k+1)∥2

+ λ2
k∥G(θk, V̂k, Ĵk, µ̂k, sk, ak, sk+1)− Ḡ(θk, V̂k, Ĵk, µ̂k)∥2

+ (1− λk)⟨∆gk, Ḡ(θk, V̂k, Ĵk, µ̂k)− Ḡ(θk+1, V̂k+1, Ĵk+1, µ̂k+1)⟩
+ (1− λk)λk⟨∆gk, G(θk, V̂k, Ĵk, µ̂k, sk, ak, sk+1)− Ḡ(θk, V̂k, Ĵk, µ̂k)⟩
+ λk⟨Ḡ(θk, V̂k, Ĵk, µ̂k)− Ḡ(θk+1, V̂k+1, Ĵk+1, µ̂k+1), G(θk, V̂k, Ĵk, µ̂k, sk, ak, sk+1)− Ḡ(θk, V̂k, Ĵk, µ̂k)⟩
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≤ (1− λk)
2∥∆gk∥2 + 2∥Ḡ(θk, V̂k, Ĵk, µ̂k)− Ḡ(θk+1, V̂k+1, Ĵk+1, µ̂k+1)∥2

+ 2λ2
k∥G(θk, V̂k, Ĵk, µ̂k, sk, ak, sk+1)− Ḡ(θk, V̂k, Ĵk, µ̂k)∥2

+
λk

2
∥∆gk∥2 +

2

λk
∥Ḡ(θk, V̂k, Ĵk, µ̂k)− Ḡ(θk+1, V̂k+1, Ĵk+1, µ̂k+1)∥2

+ (1− λk)λk⟨∆gk, G(θk, V̂k, Ĵk, µ̂k, sk, ak, sk+1)− Ḡ(θk, V̂k, Ĵk, µ̂k)⟩

≤ (1− λk)∥∆gk∥2 + (−λk

2
+ λ2

k)∥∆gk∥2

+
4

λk
∥Ḡ(θk, V̂k, Ĵk, µ̂k)− Ḡ(θk+1, V̂k+1, Ĵk+1, µ̂k+1)∥2

+ 8B2
Gλ

2
k + (1− λk)λk⟨∆gk, G(θk, V̂k, Ĵk, µ̂k, sk, ak, sk+1)− Ḡ(θk, V̂k, Ĵk, µ̂k)⟩, (56)

where the final inequality follows from the step size condition λk ≤ 1 and the boundedness of operator F .

Taking expectation and plugging in the result of Lemma 7, we can simplify (56) as

E[∥∆gk+1∥2]

≤ E
[
(1− λk)∥∆gk∥2 + (−λk

2
+ λ2

k)∥∆gk∥2

+
4

λk
∥Ḡ(θk, V̂k, Ĵk, µ̂k)− Ḡ(θk+1, V̂k+1, Ĵk+1, µ̂k+1)∥2

+ 8B2
Gλ

2
k + (1− λk)λk⟨∆gk, G(θk, V̂k, Ĵk, µ̂k, sk, ak, sk+1)− Ḡ(θk, V̂k, Ĵk, µ̂k)⟩

]
≤ (1− λk)E[∥∆gk∥2] + (−λk

2
+ λ2

k)E[∥∆gk∥2] + 8B2
Gλ

2
k

+
4L2

G

λk
E
[(

∥θk − θk+1∥+ ∥V̂k − V̂k+1∥+ |Ĵk − Ĵk+1|+ ∥µ̂k − µ̂k+1∥
)2

]
+ (1− λk)λk · (22L+ 2|A|)LFLTV BFB

2
GBHτ2kλk−τk

≤ (1− λk)E[∥∆gk∥2] + (−λk

2
+ λ2

k)E[∥∆gk∥2] + (30L+ 2|A|)LFLTV BFB
2
GBHτ2kλkλk−τk

+
4L2

G

λk
E[
(
αk∥fk∥+ βk∥gVk ∥+ βk|gJk |+ ξk∥hk∥

)2
]

≤ (1− λk)E[∥∆gk∥2] + (−λk

2
+ λ2

k)E[∥∆gk∥2] + (30L+ 2|A|)LFLTV BFB
2
GBHτ2kλkλk−τk

+
4L2

G

λk
E[
(
αk∥fk∥+

√
|S|+ 1βk∥gk∥+ ξk∥hk∥

)2

]

≤ (1− λk)E[∥∆gk∥2] + (−λk

2
+ λ2

k)E[∥∆gk∥2] + (30L+ 2|A|)LFLTV BFB
2
GBHτ2kλkλk−τk

+
12L2

Gα
2
k

λk
E[
(
∥∆fk∥+ LF

√
εVk + LF (LV + 1)

√
εµk +

√
επk

)2

]

+
24|S|L2

Gβ
2
k

λk
E[
(
∥∆gk∥+ LG

√
εVk + LG

√
εJk

)2

] +
12L2

Gξ
2
k

λk
E[
(
∥∆hk∥+ LH

√
εµk

)2

], (57)

where the fourth inequality follows from ∥gVk ∥+ |gJk | ≤ ∥gVk ∥1 + |gJk | = ∥gk∥1 ≤
√
|S|+ 1∥gk∥.

We can simplify the sum of the last three terms as follows

12L2
Gα

2
k

λk
E

[(
∥∆fk∥+ LF

√
εVk + LF (LV + 1)

√
εµk +

√
επk

)2
]

+
24|S|L2

Gβ
2
k

λk
E[
(
∥∆gk∥+ LG

√
εVk + LG

√
εJk

)2

] +
12L2

Gξ
2
k

λk
E[
(
∥∆hk∥+ LH

√
εµk

)2

]

≤ 48L2
Gα

2
k

λk
E[∥∆fk∥2 + L2

F ε
V
k + 4L2

FL
2
V ε

µ
k + επk ] +

72|S|L2
Gβ

2
k

λk
E[∥∆gk∥2 + L2

Gε
V
k + L2

Gε
J
k ]
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+
24L2

Gξ
2
k

λk
E[∥∆hk∥2 + L2

Hεµk ]

≤ E
[48L2

Gα
2
k

λk
∥∆fk∥2 +

72|S|L2
Gβ

2
k

λk
∥∆gk∥2 +

24L2
Gξ

2
k

λk
∥∆hk∥2 +

48L2
Gα

2
k

λk
επk

+
216L2

FL
2
GL

2
HL2

V ξ
2
k

λk
εµk +

120|S|L2
FL

4
Gβ

2
k

λk
(εVk + εJk )

]
. (58)

Combining (57) and (58), we have

E[∥∆gk+1∥2]

≤ (1− λk)E[∥∆gk∥2] + (−λk

2
+ λ2

k)E[∥∆gk∥2] + (30L+ 2|A|)LFLTV BFB
2
GBHτ2kλkλk−τk

+
12L2

Gα
2
k

λk

(
∥∆fk∥+ LF

√
εVk + LF (LV + 1)

√
εµk +

√
επk

)2

+
24|S|L2

Gβ
2
k

λk

(
∥∆gk∥+ LG

√
εVk + LG

√
εJk

)2

+
12L2

Gξ
2
k

λk

(
∥∆hk∥+ LH

√
εµk

)2

≤ (1− λk)E[∥∆gk∥2] + (−λk

2
+ λ2

k)E[∥∆gk∥2] + (30L+ 2|A|)LFLTV BFB
2
GBHτ2kλkλk−τk

+
48L2

Gα
2
k

λk
E[∥∆fk∥2] +

72|S|L2
Gβ

2
k

λk
E[∥∆gk∥2] +

24L2
Gξ

2
k

λk
E[∥∆hk∥2] +

48L2
Gα

2
k

λk
E[επk ]

+
216L2

FL
2
GL

2
HL2

V ξ
2
k

λk
E[εµk ] +

120|S|L2
FL

4
Gβ

2
k

λk
E[εVk + εJk ]

≤ (1− λk)E[∥∆gk∥2] + (−λk

2
+ λ2

k +
72|S|L2

Gβ
2
k

λk
)E[∥∆gk∥2] +

48L2
Gα

2
k

λk
E[∥∆fk∥2]

+
24L2

Gξ
2
k

λk
E[∥∆hk∥2] +

48L2
Gα

2
k

λk
E[επk ] +

216L2
FL

2
GL

2
HL2

V ξ
2
k

λk
E[εµk ]

+
120|S|L2

FL
4
Gβ

2
k

λk
E[εVk + εJk ] + (30L+ 2|A|)LFLTV BFB

2
GBHτ2kλkλk−τk .

E. Proof of Lemmas
E.1. Proof of Lemma 1

The Lipschitz continuity conditions of the value function and J function in the policy are proved in Lemma 3 and Lemma
2 of Kumar et al. (2024), respectively. The Lipschitz continuity in the mean field can be proved using the same line of
argument under Assumption 2.

The Lipschitz gradient condition of J in θ is proved in Lemma 4 of Kumar et al. (2024) and can be extended to the gradient
of J in µ by a similar argument.

E.2. Proof of Lemma 2

First, by definition in (24),

∥F (θ, V, µ, s, a, s′)∥ = ∥(r(s, a, µ) + V (s′))∇θ log πθ(a | s)∥
≤ (|r(s, a, µ)|+ |V (s′)|)∥∇θ log πθ(a | s)∥
≤ (1 +BV ) · 1
≤ BV + 1,
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where the second inequality is due to the softmax function being Lipschitz with constant 1.

Similarly, we have

∥GV (V, J, µ, s, a, s′)∥ = ∥(r(s, a, µ)− J + V (s′)− V (s))es∥
≤ (|r(s, a, µ)|+ |J |+ |V (s′)| − |V (s)|)∥es∥
≤ (1 + 1 +BV +BV ) · 1]
≤ 2BV + 2,

and

|GJ(J, µ, s, a)| = |cJ(r(s, a, µ)− J)| ≤ 2cJ ,

which implies

∥G(V, J, µ, s, a, s′)∥ ≤ ∥GV (V, J, µ, s, a, s′)∥+ |GJ(J, µ, s, a)| ≤ 2(BV + cJ + 2).

Finally, we have

∥H(µ, s)∥ = ∥es − µ∥ ≤ ∥es∥+ ∥µ∥ ≤ 2.

E.3. Proof of Lemma 3

By the definition of F̄ (θ, V, µ) in (25),

∥F̄ (θ1, V1, µ1)− F̄ (θ2, V2, µ2)∥
= ∥Es∼ν

πθ1
, µ1 ,a∼πθ1

(·|s),s′∼P(·|s,a,µ1)
[F (θ1, V1, µ1, s, a, s

′)]

− Es∼ν
πθ2

, µ2 ,a∼πθ2
(·|s),s′∼P(·|s,a,µ2)

[F (θ2, V2, µ2, s, a, s
′)]∥

= ∥Es∼ν
πθ1

, µ1 ,a∼πθ1
(·|s),s′∼P(·|s,a,µ1)

[F (θ1,ΠE⊥V1, µ1, s, a, s
′)]

− Es∼ν
πθ2

, µ2 ,a∼πθ2
(·|s),s′∼P(·|s,a,µ2)

[F (θ2,ΠE⊥V2, µ2, s, a, s
′)]∥

= ∥
∑
s,a,s′

(νπθ1
, µ1(s)πθ1(a | s)Pµ1(· | s, a)− νπθ2

, µ2(s)πθ2(a | s)Pµ2(· | s, a))F (θ2,ΠE⊥V2, µ2, s, a, s
′)

+ Es∼ν
πθ1

, µ1 ,a∼πθ1
(·|s),s′∼P(·|s,a,µ1)

[F (θ1,ΠE⊥V1, µ1, s, a, s
′)− F (θ2,ΠE⊥V2, µ2, s, a, s

′)]∥

≤ ∥Es∼ν
πθ1

, µ1 ,a∼πθ1
(·|s),s′∼Pµ1

(·|s,a,µ1)
[F (θ1,ΠE⊥V1, µ1, s, a, s

′)− F (θ2,ΠE⊥V2, µ2, s, a, s
′)]∥

+ 2BF dTV (ν
πθ1

, µ1 ⊗ πθ1 ⊗ Pµ1
, νπθ2

, µ2 ⊗ πθ2 ⊗ Pµ2
), (59)

where the inequality comes from the definition of TV distance in (17) and the second equation is a result of the fact that for
any constant c

Es∼νπθ, µ,a∼πθ(·|s),s′∼P(·|s,a,µ)[F (θ, V + c1|S|, µ, s, a, s
′)]

= Es∼νπθ, µ,a∼πθ(·|s),s′∼P(·|s,a,µ)[(r(s, a, µ) + (V (s′) + c)− (V (s) + c))∇θ log πθ(a | s)]
= Es∼νπθ, µ,a∼πθ(·|s),s′∼P(·|s,a,µ)[(r(s, a, µ) + V (s′)− V (s))∇θ log πθ(a | s)]
= Es∼νπθ, µ,a∼πθ(·|s),s′∼P(·|s,a,µ)[F (θ, V, µ, s, a, s′)].

For any s, a, s′ we have from (24)

∥F (θ1,ΠE⊥V1, µ1, s, a, s
′)− F (θ2,ΠE⊥V2, µ2, s, a, s

′)∥
= ∥(r(s, a, µ1) + ΠE⊥V1(s

′)−ΠE⊥V1(s))∇θ log πθ1(a | s)
− (r(s, a, µ2) + ΠE⊥V2(s

′)−ΠE⊥V2(s))∇θ log πθ2(a | s)∥
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≤ |r(s, a, µ1)− r(s, a, µ2)|∥∇θ log πθ1(a | s)∥
+ |r(s, a, µ2)|∥∇θ log πθ1(a | s)−∇θ log πθ2(a | s)∥
+ |ΠE⊥V1(s

′)−ΠE⊥V1(s)−ΠE⊥V2(s
′) + ΠE⊥V2(s)|∥∇θ log πθ1(a | s)∥

+ |ΠE⊥V2(s
′)−ΠE⊥V2(s)|∥∇θ log πθ1(a | s)−∇θ log πθ2(a | s)∥

≤ |r(s, a, µ1)− r(s, a, µ2)|+ (1 + 2∥V ∥)∥∇θ log πθ1(a | s)−∇θ log πθ2(a | s)∥
≤ L∥µ1 − µ2∥+ ∥∇θ log πθ1(a | s)−∇θ log πθ2(a | s)∥

+ 2∥ΠE⊥V1 −ΠE⊥V2∥+ 2∥ΠE⊥V2∥∥∇θ log πθ1(a | s)−∇θ log πθ2(a | s)∥
≤ 5(2BV + 1)∥θ1 − θ2∥+ L∥µ1 − µ2∥+ 2∥ΠE⊥V1 −ΠE⊥V2∥, (60)

where the second inequality bounds ∥ log πθ1(a | s)∥ by 1 due to the softmax function being Lipschitz with constant 1, the
third inequality follows from Assumption 2, and the final inequality is a result of the fact that the softmax function is smooth
with constant 5 (see Agarwal et al. (2021)[Lemma 52]).

Plugging (60) and the relation in (26) into (59), we have

∥F̄ (θ1, V1, µ1)− F̄ (θ2, V2, µ2)∥
≤ ∥Es∼ν

πθ1
, µ1 ,a∼πθ1

(·|s),s′∼Pµ1 (·|s,a,µ1)
[F (θ1,ΠE⊥V1, µ1, s, a, s

′)− F (θ2,ΠE⊥V2, µ2, s, a, s
′)]∥

+ 2BF dTV (ν
πθ1

, µ1 ⊗ πθ1 ⊗ Pµ1
, νπθ2

, µ2 ⊗ πθ2 ⊗ Pµ2
)

≤ 5(2BV + 1)∥θ1 − θ2∥+ L∥µ1 − µ2∥+ 2∥ΠE⊥V1 −ΠE⊥V2∥
+ 2BFLTV (∥θ1 − θ2∥+ ∥µ1 − µ2∥)

≤ (10BV + L+ 2BFLTV + 5) (∥θ1 − θ2∥+ ∥µ1 − µ2∥+ ∥ΠE⊥V1 −ΠE⊥V2∥) .

Following a line of argument similar to (59),

∥Ḡ(θ1, V1, J1, µ1)− Ḡ(θ2, V2, J2, µ2)∥
≤ ∥Es∼ν

πθ1
, µ1 ,a∼πθ1

(·|s),s′∼Pµ1
(·|s,a,µ1)

[G(ΠE⊥V1, J1, µ1, s, a, s
′)−G(ΠE⊥V2, J2, µ2, s, a, s

′)]∥

+ 2BGdTV (ν
πθ1

, µ1 ⊗ πθ1 ⊗ Pµ1
, νπθ2

, µ2 ⊗ πθ2 ⊗ Pµ2
). (61)

The first term of (61) can be bounded in a manner similar to (60). For any s, a, s′, we have

∥G(ΠE⊥V1, J1, µ1, s, a, s
′)−G(ΠE⊥V2, J2, µ2, s, a, s

′)∥
≤ ∥(r(s, a, µ1)− J1 +ΠE⊥V1(s

′)−ΠE⊥V1(s))es

− (r(s, a, µ2)− J2 +ΠE⊥V2(s
′)−ΠE⊥V2(s))es∥

+ cJ |r(s, a, µ1)− J1 − r(s, a, µ2) + J2|
≤ |r(s, a, µ1)− r(s, a, µ2)|∥es∥+ |J1 − J2|∥es∥+ 2∥ΠE⊥V1 −ΠE⊥V2∥∥es∥

+ cJ |r(s, a, µ1)− r(s, a, µ2)|+ cJ |J1 − J2|
≤ (cJ + 1)|r(s, a, µ1)− r(s, a, µ2)|+ (cJ + 1)|J1 − J2|+ 2∥ΠE⊥V1 −ΠE⊥V2∥
≤ (cJ + 1)L|µ1 − µ2|+ (cJ + 1)|J1 − J2|+ 2∥ΠE⊥V1 −ΠE⊥V2∥. (62)

Plugging (62) into (61), we get

∥Ḡ(θ1, V1, J1, µ1)− Ḡ(θ2, V2, J2, µ2)∥
≤ ∥Es∼ν

πθ1
, µ1 ,a∼πθ1

(·|s),s′∼Pµ1 (·|s,a,µ1)
[G(ΠE⊥V1, J1, µ1, s, a, s

′)−G(ΠE⊥V2, J2, µ2, s, a, s
′)]∥

+ 2BGdTV (ν
πθ1

, µ1 ⊗ πθ1 ⊗ Pµ1
, νπθ2

, µ2 ⊗ πθ2 ⊗ Pµ2
)

≤ (cJ + 1)L|µ1 − µ2|+ (cJ + 1)|J1 − J2|+ 2∥ΠE⊥V1 −ΠE⊥V2∥
+ 2BGLTV (∥θ1 − θ2∥+ ∥µ1 − µ2∥)

≤ LG (∥θ1 − θ2∥+ ∥µ1 − µ2∥+ 2∥ΠE⊥V1 −ΠE⊥V2∥+ |J1 − J2|) ,
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with LG = 2BGLTV + (L+ 1)(cJ + 1) + 2.

Finally, again following steps similar to (59) we can show

∥H̄(θ1, µ1)− H̄(θ2, µ2)∥
≤ ∥Es∼ν

πθ1
, µ1 [H(µ1, s)−H(µ2, s)]∥+ 2BHdTV (ν

πθ1
, µ1 , νπθ2

, µ2). (63)

From the definition of H(µ, s) in (24), we have for any s

∥H(µ1, s)−H(µ2, s)∥ = ∥(es − µ1)− (es − µ2)∥ = ∥µ1 − µ2∥. (64)

By Assumption 2,

dTV (ν
πθ1

, µ1 , νπθ2
, µ2) =

1

2
∥νπθ1

, µ1 − νπθ2
, µ2∥1

≤ L(∥πθ1 − πθ2∥+ ∥µ1 − µ2∥)
≤ L(∥θ1 − θ2∥+ ∥µ1 − µ2∥), (65)

where the final inequality is a result of the 1-Lipschitz continuity of the softmax function.

Plugging (64) and (65) into (63), we have

∥H̄(θ1, µ1)− H̄(θ2, µ2)∥ ≤ ∥Es∼ν
πθ1

, µ1 [H(µ1, s)−H(µ2, s)]∥+ 2BHdTV (ν
πθ1

, µ1 , νπθ2
, µ2)

≤ ∥µ1 − µ2∥+ L(∥θ1 − θ2∥+ ∥µ1 − µ2∥)
≤ (L+ 1)(∥θ1 − θ2∥+ ∥µ1 − µ2∥). (66)

E.4. Proof of Lemma 4

By the definition ∆fk,

∥fk∥
= ∥∆fk + F̄ (θk, V̂k, µ̂k)− F̄ (θk, V

πθk
,µ⋆(πθk

), µ⋆(πθk)) + F̄ (θk, V
πθk

,µ⋆(πθk
), µ⋆(πθk))∥

≤ ∥∆fk∥+ ∥F̄ (θk, V̂k, µ̂k)− F̄ (θk, V
πθk

,µ⋆(πθk
), µ⋆(πθk))∥+ ∥F̄ (θk, V

πθk
,µ⋆(πθk

), µ⋆(πθk))∥
≤ ∥∆fk∥+ LF ∥ΠE⊥(V

πθk
,µ⋆(πθk

) − V̂k)∥+ LF ∥µ̂k − µ⋆(πθk)∥+ ∥∇θJ(πθk , µ) |µ=µ⋆(πθk
) ∥

≤ ∥∆fk∥+ LF ∥ΠE⊥(V
πθk

,µ⋆(πθk
) − V πθk

,µ̂k)∥+ LF ∥ΠE⊥(V
πθk

,µ̂k − V̂k)∥
+ LF ∥µ̂k − µ⋆(πθk)∥+

√
επk

≤ ∥∆fk∥+ LF

√
εVk + LF (LV + 1)

√
εµk +

√
επk ,

where the last inequality follows from the Lipschitz continuity of the value function in the mean field and the fact that linear
projection is non-expansive, and the second inequality follows from the Lipschitz continuity of operator F and the relation

∇θJ(πθk , µ) |µ=µ⋆(πθk
)= F̄ (θk, V

πθk
,µ⋆(πθk

), µ⋆(πθk)).

Similarly, by the definition of ∆gk, we have

∥gk∥ = ∥∆gk + Ḡ(θk, V̂k, Ĵk, µ̂k)− Ḡ(θk, V
πθk

,µ̂k , J(πθk , µ̂k), µ̂k)∥
≤ ∥∆gk∥+ ∥Ḡ(θk, V̂k, Ĵk, µ̂k)− Ḡ(θk, V

πθk
,µ̂k , J(πθk , µ̂k), µ̂k)∥

≤ ∥∆gk∥+ LG∥ΠE⊥(V
πθk

,µ̂k − V̂k)∥+ LG|J(πθk , µ̂k)− Ĵk|

= ∥∆gk∥+ LG

√
εVk + LG

√
εJk ,
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where the first equation follows from the fact that G(θk, V
πθk

,µ̂k , J(πθk , µ̂k), µ̂k) = 0.

Finally, by the definition of ∆hk, we have

∥hk∥ = ∥∆hk + H̄(θk, µ̂k)∥
= ∥∆hk + H̄(θk, µ̂k)− H̄(θk, µ

⋆(πθk))∥
≤ ∥∆hk∥+ ∥H̄(θk, µ̂k)− H̄(θk, µ

⋆(πθk))∥
≤ ∥∆hk∥+ LH∥µ̂k − µ⋆(πθk)∥

= ∥∆hk∥+ LH

√
ϵµk ,

where the second equation follows from the fact that H(θk, µ
⋆(πθk)) = 0.

E.5. Proof of Lemma 5

See Zhang et al. (2021a)[Lemma 2] or Tsitsiklis & Van Roy (1999)[Lemma 7].

E.6. Proof of Lemma 6

Adapted from Lemma 19 of Ganesh et al. (2024).

E.7. Proof of Lemma 7

The proof of this lemma proceeds in a manner similar to that of Lemma 9. We note that the samples generated in the
algorithm follow the time-varying Markov chain

sk−τk

θk−τk−→ ak−τk

µ̂k−τk−→ sk−τk+1

θk−τk+1−→ ak−τk+1

µ̂k−τk+1−→ · · · sk−1
θk−1−→ ak−1

µ̂k−1−→ sk. (67)

We construct an auxiliary Markov chain generated under a constant control

sk−τk

θk−τk−→ ak−τk

µ̂k−τk−→ s̃k−τk+1

θk−τk−→ ãk−τk+1

µ̂k−τk−→ · · · s̃k−1

θk−τk−→ ãk−1

µ̂k−τk−→ s̃k (68)

Let µ̃ denote the stationary distribution of state, action, and next state under (68). We denote pk(s, a, s
′) = P(sk = s, ak =

a, sk+1 = s′) and p̃k(s, a, s
′) = P(s̃k = s, ãk = a, s̃k+1 = s′) and define

T1 ≜ E[⟨∆fk −∆fk−τk , F (θk, V̂k, µ̂k, sk, ak, sk+1)− F̄ (θk, V̂k, µ̂k)⟩],
T2 ≜ E[⟨∆fk−τk , F (θk, V̂k, µ̂k, sk, ak, sk+1)− F (θk, V̂k, µ̂k, s̃k, ãk, s̃k+1)⟩],
T3 ≜ E[⟨∆fk−τk , F (θk, V̂k, µ̂k, s̃k, ãk, s̃k+1)− E(s,a,s′)∼µ̃[F (θk, V̂k, µ̂k, s, a, s

′)]⟩]
T4 ≜ E[⟨∆fk−τk ,E(s,a,s′)∼µ̃[F (θk, V̂k, µ̂k, s, a, s

′)]− F̄ (θk, V̂k, µ̂k)⟩].

It is obvious to see

E[⟨∆fk, F (θk, V̂k, µ̂k, sk, ak, sk+1)− F̄ (θk, V̂k, µ̂k)⟩] = T1 + T2 + T3 + T4. (69)

We bound the terms individually. First, we treat T1

T1 = E[⟨∆fk −∆fk−τk , F (θk, V̂k, µ̂k, sk, ak, sk+1)− F̄ (θk, V̂k, µ̂k)⟩]
≤ E[∥fk − fk−τk∥∥F (θk, V̂k, µ̂k, sk, ak, sk+1)− F̄ (θk, V̂k, µ̂k)∥]

+ E
[
∥F̄ (θk, V̂k, µ̂k)− F̄ (θk−τk , V̂k−τk , µ̂k−τk)∥

· ∥F (θk, V̂k, µ̂k, sk, ak, sk+1)− F̄ (θk, V̂k, µ̂k)∥
]
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≤ 2BF

τk−1∑
t=0

E[∥fk−t − fk−t−1∥]

+ 2LFBF

τk−1∑
t=0

E[∥θk−t − θk−t−1∥+ ∥V̂k−t − V̂k−t−1∥+ ∥µ̂k−t − µ̂k−t−1∥]

≤ 4B2
F τkλk−τk + 2LFBF τk(BFαk−τk +BGβk−τk +BHξk−τk)

≤ 10LFB
2
FBGBHτkλk−τk ,

where the second inequality bounds ∥F (θk, V̂k, µ̂k, sk, ak, sk+1) − F̄ (θk, V̂k, µ̂k)∥ by 2BF and ∥F̄ (θk, V̂k, µ̂k) −
F̄ (θk−τk , V̂k−τk , µ̂k−τk)∥ using the Lipschitz continuity established in Lemma 3. The last inequality follows from the
step size relation αk ≤ ξk ≤ βk ≤ λk for all k. The third inequality follows from the fact that ∥fk+1 − fk∥ =
λk∥fk − F (θk, V̂k, µ̂k, sk, ak, sk+1)∥ ≤ 2BFλk for all k and that the per-iteration drift of θk, V̂k, and µ̂k can be similarly
bounded

∥θk+1 − θk∥ ≤ BFαk, ∥V̂k+1 − V̂k∥ ≤ BGβk, ∥µ̂k+1 − µ̂k∥ ≤ BHξk.

We next bound T2

T2 = E[⟨∆fk−τk , F (θk, V̂k, µ̂k, sk, ak, sk+1)− F (θk, V̂k, µ̂k, s̃k, ãk, s̃k+1)⟩]
≤ 2BFEFk−τk

[E[∥F (θk, V̂k, µ̂k, sk, ak, sk+1)− F (θk, V̂k, µ̂k, s̃k, ãk, s̃k+1)∥ | Fk−τk ]]

≤ 2BFE[
∫
S

∫
A

∫
S
F (θk, V̂k, µ̂k, s, a, s

′) (pk(s, a, s
′)− p̃k(s, a, s

′)) ds da ds′]

≤ 2B2
FE[dTV (pk, p̃k)].

where the last inequality follows from the definition of TV distance in (17).

Applying Lemma B.2 from Wu et al. (2020), we then have

T2 ≤ 2B2
FE[dTV (pk, p̃k)]

≤ 2B2
FE[dTV (P(sk = ·),P(s̃k = ·)) + |A|

2
∥θk−1 − θk−τk∥]

≤ 2B2
FE

[
dTV (P(sk−1 = ·),P(s̃k−1 = ·)) + L∥θk−1 − θk−τk∥+ L∥µ̂k−1 − µ̂k−τk∥

+
|A|
2

∥θk−1 − θk−τk∥
]

≤ |A|B2
FE[∥θk−1 − θk−τk∥] + 2LB2

F

k−1∑
t=k−τk

E[∥θt − θk−τk∥+ ∥µ̂t − µ̂k−τk∥]

≤ (2L+ |A|)B2
F τ

2
k (BFαk−τk +BHξk−τk)

≤ (4L+ 2|A|)B3
FBHτ2kλk−τk ,

where the third inequality is a result of (18), and the fourth inequality recursively applies the inequality above it.

The term T3 is proportional to the distance between the distribution of the auxiliary Markov chain (68) at time k and its
stationary distribution. To bound T3,

T3 = E[⟨∆fk−τk , F (θk, V̂k, µ̂k, s̃k, ãk, s̃k+1)− E(s,a,s′)∼µ̃[F (θk, V̂k, µ̂k, s, a, s
′)]⟩]

≤ 2BFEFk−τk
[E[∥F (θk, V̂k, µ̂k, s̃k, ãk, s̃k+1)− E(s,a,s′)∼µ̃[F (θk, V̂k, µ̂k, s, a, s

′)]∥ | Fk−τk ]]

≤ 2BFE[
∫
S

∫
A

∫
S
F (θk, V̂k, µ̂k, s, a, s

′) (p̃k(s)− µ̃(s)) ds da ds′]

≤ 2B2
FE[dTV (p̃k, µ̃)]

≤ 2B2
Fαk,
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where the final inequality follows from the definition of the mixing time τk as the number of iterations for the TV distance
between p̃k and µ̃ to drop below αk.

Finally, we bound the term T4

T4 = E[⟨∆fk−τk ,E(s,a,s′)∼µ̃[F (θk, V̂k, µ̂k, s, a, s
′)]− F̄ (θk, V̂k, µ̂k)⟩]

≤ 2BFE[∥E(s,a,s′)∼µ̃[F (θk, V̂k, µ̂k, s, a, s
′)]− F̄ (θk, V̂k, µ̂k)∥]

≤ 2B2
FE[dTV (µ̃, ν

πθk
, µ̂k ⊗ πθk ⊗ Pµ̂k

)]

≤ 2LTV B
2
FE[∥πθk − πθk−τk

∥+ ∥µ̂k − µ̂k−τk∥]
≤ 2LTV B

2
F τk(BFαk−τk +BHξk−τk)

≤ 4LTV B
3
FBHξk−τk ,

where the third inequality applies the result in (26).

Collecting the bounds on T1-T4 and plugging them into (69), we get

E[⟨∆fk, F (θk, V̂k, µ̂k, sk, ak, sk+1)− F̄ (θk, V̂k, µ̂k)⟩]
= T1 + T2 + T3 + T4

≤ 10LFB
2
FBGBHτkλk−τk + (4L+ 2|A|)B3

FBHτ2kλk−τk + 2B2
Fαk + 4LTV B

3
FBHξk−τk

≤ (20L+ 2|A|)LFLTV B
3
FBGB

2
Hτ2kλk−τk .

E.8. Proof of Lemma 8

By the definition of H̄ , we have for any µ ∈ ∆S

⟨µ− µ⋆(πθ), H̄(θ, µ)− H̄(θ, µ⋆(πθ))⟩
= ⟨µ− µ⋆(πθ), µ

⋆(πθ)− µ⟩+ ⟨µ− µ⋆(πθ), ν
πθ, µ − νπθ, µ

⋆(πθ)⟩
≤ −∥µ− µ⋆(πθ)∥2 + ∥µ− µ⋆(πθ)∥∥νπθ, µ − νπθ, µ

⋆(πθ)∥
≤ −(1− δ)∥µ− µ⋆(πθ)∥2,

where the second inequality follows from Assumption 3.

E.9. Proof of Lemma 9

The cause of the gap between E[esk ] and E
s∼ν

πθk
, µ̂k [es] is a time-varying Markovian noise. To elaborate, we first show

how the sample sk is generated below

sk−τk

θk−τk
, µ̂k−τk−→ sk−τk+1

θk−τk+1, µ̂k−τk+1−→ · · · sk−1
θk−1, µ̂k−1−→ sk. (70)

This Markov chain is “time-varying” as its stationary distribution changes over iterations as the control changes. We
introduce an auxiliary Markov chain, which is “time-invariant” in the sense that it is generated under a constant control,
starting from state sk−τk .

sk−τk

θk−τk
, µ̂k−τk−→ s̃k−τk+1

θk−τk
, µ̂k−τk−→ · · · s̃k−1

θk−τk
, µ̂k−τk−→ s̃k. (71)

Defining

T1 ≜ E[⟨∆hk −∆hk−τk , esk − E
s∼ν

πθk
, µ̂k [es]⟩]

T2 ≜ E[⟨∆hk−τk , esk − es̃k⟩]
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T3 ≜ E[⟨∆hk−τk , es̃k − E
s∼ν

πθk−τk
, µ̂k−τk

[es]⟩]

T4 ≜ E[⟨∆hk−τk ,Es∼ν
πθk−τk

, µ̂k−τk
[es]− E

s∼ν
πθk

, µ̂k [es]⟩],

we see that

E[⟨∆hk, esk − E
s∼ν

πθk
, µ̂k [es]⟩] = T1 + T2 + T3 + T4. (72)

We bound the terms individually. First, we treat T1

T1 = E[⟨hk − hk−τk + H̄(θk−τk , µ̂k−τk)− H̄(θk, µ̂k), esk − E
s∼ν

πθk
, µ̂k [es]⟩]

≤ E[∥hk − hk−τk∥∥esk − E
s∼ν

πθk
, µ̂k [es]∥]

+ E[∥H̄(θk, µ̂k)− H̄(θk−τk , µ̂k−τk)∥∥esk − E
s∼ν

πθk
, µ̂k [es]∥]

≤ 2

τk−1∑
t=0

E[∥hk−t − hk−t−1∥] + 2LH

τk−1∑
t=0

E[∥θk−t − θk−t−1∥+ ∥µ̂k−t − µ̂k−t−1∥]

≤ 4BHτkλk−τk + 2BF τkαk−τk + 2BHτkξk−τk

≤ 8BFBHτkλk−τk ,

where the last inequality follows from the step size relation αk ≤ ξk ≤ λk for all k, and the third inequality follows from
the fact that ∥hk+1 − hk∥ ≤ λk∥hk + µ̂k − esk∥ ≤ 2BHλk for all k and that the per-iteration drift of θk and µ̂k can be
similarly bounded

∥θk+1 − θk∥ ≤ BFαk, ∥µ̂k+1 − µ̂k∥ ≤ BHξk.

We next bound T2. We denote pk(s) = P(sk = s) and p̃k(s) = P(s̃k = s).

T2 = EFk−τk
[E[⟨hk−τk − H̄(θk−τk , µ̂k−τk), esk − es̃k⟩ | Fk−τk ]]

≤ 2BHEFk−τk
[E[∥esk − es̃k∥ | Fk−τk ]]

≤ 2BHE[
∫
S
es (pk(s)− p̃k(s)) ds]

≤ 2BHE[dTV (pk, p̃k)]

≤ 2BHE[dTV (pk−1, p̃k−1) + L∥θk−1 − θk−τk∥+ L∥µ̂k−1 − µ̂k−τk∥]

≤ 2LBH

k−1∑
t=k−τk

E[∥θt − θk−τk∥+ ∥µ̂t − µ̂k−τk∥]

≤ 2LBHτ2k (BFαk−τk +BHξk−τk)

≤ 4LBFB
2
Hτ2kλk−τk ,

where the third inequality follows from the definition of TV distance in (17), and the fourth and fifth inequalities are a result
of (18).

The term T3 is proportional to the distance between the distribution of the auxiliary Markov chain (71) at time k and
its stationary distribution. Let µ̃ denote the stationary distribution of (71). We can bound this term as follows under
Assumption 1

T3 = E[⟨∆hk−τk , es̃k − E
s∼ν

πθk−τk
, µ̂k−τk

[es]⟩]

≤ 2BHEFk−τk
[E[∥es̃k − E

s∼ν
πθk−τk

, µ̂k−τk
[es]∥ | Fk−τk ]]

≤ 2BHE[
∫
S
es (p̃k(s)− µ̃(s)) ds]

≤ 2BHE[dTV (p̃k, µ̃)]
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≤ 2BHαk,

where the final inequality follows from the definition of the mixing time τk as the number of iterations for the TV distance
between p̃k and µ̃ to drop below αk.

The term T4 can be treated by the Lipschitz continuity of ν

T4 = E[⟨∆hk−τk ,Es∼ν
πθk−τk

, µ̂k−τk
[es]− E

s∼ν
πθk

, µ̂k [es]⟩]

≤ 2BHE[∥νπθk−τk
, µ̂k−τk − νπθk

, µ̂k∥]
≤ 2BHLE[∥πθk − πθk−τk

∥] + 2BHδE[∥µ̂k−τk − µ̂k∥]

≤ 2BHL

k∑
t=k−τk

E[∥αtft∥] + 2BHL

k∑
t=k−τk

E[∥ξtht∥]

≤ 2BHLτk (BFαk−τk +BHξk−τk)

≤ 2LBFB
2
Hξk−τk

where the last inequality follows from the step size condition αk ≤ ξk for all k.

Collecting the bounds on T1-T4 and plugging them into (72), we get

E[⟨∆hk, esk − E
s∼ν

πθk
, µ̂k [es]⟩]

= T1 + T2 + T3 + T4

≤ 8BFBHτkλk−τk + 4LBFB
2
Hτ2kλk−τk + 2BHαk + 2LBFB

2
Hξk−τk

≤ 16LBFB
2
Hτ2kλk−τk .

E.10. Proof of Lemma 10

By the definition of operators GV and GJ in (24), for any V ∈ R|S| and J ∈ R〈[
ΠE⊥(V − V πθ, µ)

J − J(πθ, µ)

]
,

[
ΠE⊥Ḡ

V (θ, V, J, µ)

ḠJ(θ, J, µ)

]〉
≤ ⟨ΠE⊥(V − V πθ, µ),ΠE⊥Es∼νπθ, µ,a∼πθ(·|s),s′∼P(·|s,a,µ)[r(s, a, µ)− J + es(es′ − es)

⊤V ]⟩
+ cJ⟨J − J(πθ, µ),Es∼νπθ, µ,a∼πθ(·|s)[r(s, a, µ)− J ]⟩

= ⟨ΠE⊥(V − V πθ, µ),ΠE⊥Es∼νπθ, µ,a∼πθ(·|s),s′∼P(·|s,a,µ)
[(
r(s, a, µ)− J(πθ, µ) + (es′ − es)

⊤ΠE⊥V
)
es
]
⟩

+ ⟨ΠE⊥(V − V πθ, µ),ΠE⊥Es∼νπθ, µ [(J(πθ, µ)− J)es]⟩
+ cJ⟨J − J(πθ, µ),Es∼νπθ, µ,a∼πθ(·|s)[r(s, a, µ)− J ]⟩

= ⟨ΠE⊥(V − V πθ, µ),ΠE⊥Es∼νπθ, µ,a∼πθ(·|s),s′∼P(·|s,a,µ)
[
es(es′ − es)

⊤]ΠE⊥ (V − V πθ, µ)⟩
+ ⟨ΠE⊥(V − V πθ, µ),Es∼νπθ, µ [(J(πθ, µ)− J)es]⟩ − cJ(J − J(πθ, µ))

2

≤ (ΠE⊥(V − V πθ, µ))
⊤
ΠE⊥Es∼νπθ, µ,a∼πθ(·|s),s′∼P(·|s,a,µ)

[
es(es′ − es)

⊤]ΠE⊥ (V − V πθ, µ)

+
γ

2
∥ΠE⊥(V − V πθ, µ)∥2 + 1

2γ
∥Es∼νπθ, µ [(J(πθ, µ)− J)es]∥2 − cJ(J − J(πθ, µ))

2

= (ΠE⊥(V − V πθ, µ))
⊤ Es∼νπθ, µ,a∼πθ(·|s),s′∼P(·|s,a,µ)

[
es(es′ − es)

⊤]ΠE⊥ (V − V πθ, µ)

+
γ

2
∥ΠE⊥(V − V πθ, µ)∥2 + 1

2γ
∥Es∼νπθ, µ [(J(πθ, µ)− J)es]∥2 − cJ(J − J(πθ, µ))

2

≤ −γ

2
∥ΠE⊥(V − V πθ, µ)∥2 − 1

2γ
(J − J(πθ, µ))

2,

where the second inequality follows from the fact that ⟨⃗a, b⃗⟩ ≤ c
2∥a⃗∥

2 + 1
2c ∥⃗b∥

2 for any vectors a⃗, b⃗ and scalar c > 0, the
third inequality applies Lemma 5 and the condition cJ ≥ 1/γ, the third equation uses the property of the projection matrix
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Π2
E⊥

= ΠE⊥ = Π⊤
E⊥

, and the second equation is a result of the equation below

Es∼νπθ, µ,a∼πθ(·|s),s′∼P(·|s,a,µ)
[(
r(s, a, µ)− J(πθ, µ) + (es′ − es)

⊤ΠE⊥V
πθ, µ

)
es
]
= 0.

Since γ ∈ (0, 1), we have 1
2γ ≥ γ

2 . This leads to the claimed result.

E.11. Proof of Lemma 11

The proof of this lemma proceeds in a manner similar to that of Lemma 7. We note that the samples generated in the
algorithm follow the time-varying Markov chain

sk−τk

θk−τk−→ ak−τk

µ̂k−τk−→ sk−τk+1

θk−τk+1−→ ak−τk+1

µ̂k−τk+1−→ · · · sk−1
θk−1−→ ak−1

µ̂k−1−→ sk. (73)

We construct an auxiliary Markov chain generated under a constant control

sk−τk

θk−τk−→ ak−τk

µ̂k−τk−→ s̃k−τk+1

θk−τk−→ ãk−τk+1

µ̂k−τk−→ · · · s̃k−1

θk−τk−→ ãk−1

µ̂k−τk−→ s̃k (74)

Let µ̃ denote the stationary distribution of state, action, and next state under (74). We denote pk(s, a, s
′) = P(sk = s, ak =

a, sk+1 = s′) and p̃k(s, a, s
′) = P(s̃k = s, ãk = a, s̃k+1 = s′) and define

T1 ≜ E[⟨∆gk −∆gk−τk , G(θk, V̂k, Ĵk, µ̂k, sk, ak, sk+1)− Ḡ(θk, V̂k, Ĵk, µ̂k)⟩],
T2 ≜ E[⟨∆gk−τk , G(θk, V̂k, Ĵk, µ̂k, sk, ak, sk+1)−G(θk, V̂k, Ĵk, µ̂k, s̃k, ãk, s̃k+1)⟩],
T3 ≜ E[⟨∆gk−τk , G(θk, V̂k, Ĵk, µ̂k, s̃k, ãk, s̃k+1)− E(s,a,s′)∼µ̃[G(θk, V̂k, Ĵk, µ̂k, s, a, s

′)]⟩]
T4 ≜ E[⟨∆gk−τk ,E(s,a,s′)∼µ̃[G(θk, V̂k, Ĵk, µ̂k, s, a, s

′)]− Ḡ(θk, V̂k, Ĵk, µ̂k)⟩].

It is obvious to see

E[⟨∆gk, G(θk, V̂k, Ĵk, µ̂k, sk, ak, sk+1)− Ḡ(θk, V̂k, Ĵk, µ̂k)⟩⟩] = T1 + T2 + T3 + T4. (75)

We bound the terms individually. First, we treat T1

T1 = E[⟨∆gk −∆gk−τk , G(θk, V̂k, Ĵk, µ̂k, sk, ak, sk+1)− Ḡ(θk, V̂k, Ĵk, µ̂k)⟩]
≤ E[∥gk − gk−τk∥∥G(θk, V̂k, Ĵk, µ̂k, sk, ak, sk+1)− Ḡ(θk, V̂k, Ĵk, µ̂k)∥]

+ E
[
∥Ḡ(θk, V̂k, Ĵk, µ̂k)− Ḡ(θk−τk , V̂k−τk , Ĵk−τk , µ̂k−τk)∥

· ∥G(θk, V̂k, Ĵk, µ̂k, sk, ak, sk+1)− Ḡ(θk, V̂k, Ĵk, µ̂k)∥
]

≤ 2BG

τk−1∑
t=0

∥gk−t − gk−t−1∥

+ 2LGBG

τk−1∑
t=0

(
∥θk−t − θk−t−1∥+ ∥V̂k−t − V̂k−t−1∥+ |Ĵk−t − Ĵk−t−1|+ ∥µ̂k−t − µ̂k−t−1∥

)
≤ 4B2

Gτkλk−τk + 2LGBGτk(BFαk−τk +BGβk−τk +BGβk−τk +BHξk−τk)

≤ 12LGBFB
2
GBHτkλk−τk ,

where the second inequality bounds ∥G(θk, V̂k, Ĵk, µ̂k, sk, ak, sk+1)−Ḡ(θk, V̂k, Ĵk, µ̂k)∥ by 2BG and ∥Ḡ(θk, V̂k, Ĵk, µ̂k)−
Ḡ(θk−τk , V̂k−τk , Ĵk−τk , µ̂k−τk)∥ using the Lipschitz continuity established in Lemma 3. The last inequality follows from
the step size relation αk ≤ ξk ≤ βk ≤ λk for all k. The third inequality follows from the fact that ∥gk+1 − gk∥ =
λk∥gk −G(θk, V̂k, µ̂k, sk, ak, sk+1)∥ ≤ 2BGλk for all k and that the per-iteration drift of θk, V̂k, and µ̂k can be similarly
bounded due to Lemma 2

∥θk+1 − θk∥ ≤ BFαk, ∥V̂k+1 − V̂k∥ ≤ BGβk, |Ĵk+1 − Ĵk| ≤ BGβk, ∥µ̂k+1 − µ̂k∥ ≤ BHξk.
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We next bound T2

T2 = E[⟨∆gk−τk , G(θk, V̂k, Ĵk, µ̂k, sk, ak, sk+1)−G(θk, V̂k, Ĵk, µ̂k, s̃k, ãk, s̃k+1)⟩]
≤ 2BGEFk−τk

[E[∥G(θk, V̂k, Ĵk, µ̂k, sk, ak, sk+1)−G(θk, V̂k, Ĵk, µ̂k, s̃k, ãk, s̃k+1)∥ | Fk−τk ]]

≤ 2BGE[
∫
S

∫
A

∫
S
G(θk, V̂k, Ĵk, µ̂k, s, a, s

′) (pk(s, a, s
′)− p̃k(s, a, s

′)) ds da ds′]

≤ 2B2
GE[dTV (pk, p̃k)].

where the last inequality follows from the definition of TV distance in (17).

Applying Lemma B.2 from Wu et al. (2020), we then have

T2

≤ 2B2
GE[dTV (pk, p̃k)]

≤ 2B2
GE[dTV (P(sk = ·),P(s̃k = ·)) + |A|

2
∥θk−1 − θk−τk∥]

≤ 2B2
GE[dTV (P(sk−1 = ·),P(s̃k−1 = ·)) + L∥θk−1 − θk−τk∥+ L∥µ̂k−1 − µ̂k−τk∥+

|A|
2

∥θk−1 − θk−τk∥]

≤ |A|B2
GE[∥θk−1 − θk−τk∥] + 2LB2

G

k−1∑
t=k−τk

E[∥θt − θk−τk∥+ ∥µ̂t − µ̂k−τk∥]

≤ (2L+ |A|)B2
Gτ

2
k (BFαk−τk +BHξk−τk)

≤ (4L+ 2|A|)BFB
2
GBHτ2kλk−τk ,

where the third inequality is a result of Assumption 2, and the fourth inequality recursively applies the inequality above it.

The term T3 is proportional to the distance between the distribution of the auxiliary Markov chain (74) at time k and its
stationary distribution. To bound T3,

T3 = E[⟨∆gk−τk , G(θk, V̂k, Ĵk, µ̂k, s̃k, ãk, s̃k+1)− E(s,a,s′)∼µ̃[G(θk, V̂k, Ĵk, µ̂k, s, a, s
′)]⟩]

≤ 2BGEFk−τk
[E[∥G(θk, V̂k, Ĵk, µ̂k, s̃k, ãk, s̃k+1)− E(s,a,s′)∼µ̃[G(θk, V̂k, Ĵk, µ̂k, s, a, s

′)]∥ | Fk−τk ]]

≤ 2BGE[
∫
S

∫
A

∫
S
G(θk, V̂k, Ĵk, µ̂k, s, a, s

′) (p̃k(s)− µ̃(s)) ds da ds′]

≤ 2B2
GE[dTV (p̃k, µ̃)]

≤ 2B2
Gαk,

where the final inequality follows from the definition of the mixing time τk as the number of iterations for the TV distance
between p̃k and µ̃ to drop below αk.

Finally, we bound the term T4

T4 = E[⟨∆gk−τk ,E(s,a,s′)∼µ̃[G(θk, V̂k, Ĵk, µ̂k, s, a, s
′)]− Ḡ(θk, V̂k, Ĵk, µ̂k)⟩]

≤ 2BGE[∥E(s,a,s′)∼µ̃[G(θk, V̂k, Ĵk, µ̂k, s, a, s
′)]− Ḡ(θk, V̂k, Ĵk, µ̂k)∥]

≤ 2B2
GE[dTV (µ̃, ν

πθk
, µ̂k ⊗ πθk ⊗ Pµ̂k

)]

≤ 2LTV B
2
G

(
∥πθk − πθk−τk

∥+ ∥µ̂k − µ̂k−τk∥
)

≤ 2LTV B
2
Gτk(BFαk−τk +BHξk−τk)

≤ 4LTV BFB
2
GBHξk−τk ,

where the third inequality applies the result in (26).

Collecting the bounds on T1-T4 and plugging them into (75), we get

E[⟨∆gk, G(θk, V̂k, µ̂k, sk, ak, sk+1)− Ḡ(θk, V̂k, µ̂k)⟩]
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= T1 + T2 + T3 + T4

≤ 12LFBFB
2
GBHτkλk−τk + (4L+ 2|A|)BFB

2
GBHτ2kλk−τk+2B2

Gαk+4LTV BFB
2
GBHξk−τk

≤ (22L+ 2|A|)LFLTV BFB
2
GBHτ2kλk−τk .

F. Details for Example 1
We first prove that the mentioned class of MFGs satisfies Assumption 4 with ρ = 1 and ∆ = 0. Specifically, we need to
show

J(π′, µ⋆(π))− J(π′, µ⋆(π′)) ≤ J(π, µ⋆(π))− J(π′, µ⋆(π)). (76)

As the transition kernel does not depend on µ here, we use νπ to denote the stationary distribution of states under policy π.
Note in this case that µ⋆(π) = νπ .

We first compute J(π′, µ⋆(π))

J(π′, µ⋆(π)) = ⟨νπ
′
, r(·, νπ)⟩ =

∑
s∈{s1,s2}

νπ
′
(s)νπ(s). (77)

Similarly, we have

J(π, µ⋆(π)) =
∑

s∈{s1,s2}

(
νπ(s)

)2

, J(π′, µ⋆(π′)) =
∑

s∈{s1,s2}

(νπ
′
(s)

)2

As a result,

J(π′, µ⋆(π)− J(π′, µ⋆(π′)) =
∑

s∈{s1,s2}

νπ
′
(s)

(
νπ(s)− νπ

′
(s)

)
,

J(π, µ⋆(π)− J(π′, µ⋆(π)) =
∑

s∈{s1,s2}

νπ(s)
(
νπ(s)− νπ

′
(s)

)
.

This obvious leads to (76) as(
J(π, µ⋆(π)− J(π′, µ⋆(π))

)
−
(
J(π′, µ⋆(π)− J(π′, µ⋆(π′))

)
=

∑
s∈{s1,s2}

(
νπ(s)− νπ

′
(s)

)2

≥ 0.

Next, we provide the detailed derivation on the equilibrium of the MFG in the special case |S| = |A| = 2 under the
transition kernel such that in either state s ∈ {s1, s2}, the action a1 (resp. a2) leads the next state to s1 (resp. s2) with
probability p = 3/4. A visualization of the transition kernel can be found in Figure. 3.

Under any policy π, the transition matrix is

Pπ =

[
pπ(a1 | s1) + (1− p)π(a2 | s1) pπ(a1 | s2) + (1− p)π(a2 | s2)
(1− p)π(a1 | s1) + pπ(a2 | s1) (1− p)π(a1 | s2) + pπ(a2 | s2)

]
,

under which the stationary distribution (induced mean field) is

νπ ∝
[
π(a2 | s2) + p− 2pπ(a2 | s2)
π(a1 | s1) + p− 2pπ(a1 | s1)

, 1

]⊤
.

In the case p = 3/4 we have

µ⋆(π) = νπ =
1

1 + 3/4−π(a2|s2)/2
3/4−π(a1|s1)/2

[
3/4− π(a2 | s2)/2
3/4− π(a1 | s1)/2

, 1

]⊤
.

The fact that π̄1, π̄2, and any policy inducing [1/2, 1/2]⊤ as the mean field can be easily verified at this point.
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Figure 3. Example Mean Field Game Transition

G. Average-Reward MDP – Detailed Formulation and Algorithm
Consider a standard average-reward MDP characterized by state space S , action space A, transition kernel P : S×A → ∆S ,
and reward function r : S ×A → [0, 1]. The cumulative reward collected by a policy π : S → ∆A is denoted by JMDP(π)

JMDP(π) ≜ Eak∼π(·|sk),sk+1∼P(·|sk,ak)[
∑∞

k=0 r(sk, ak) | s0 = s]. (78)

The policy optimization objective under softmax parameterization is

max
θ

JMDP(πθ). (79)

The differential value function under policy πθ is

V πθ

MDP(s) = Eak∼πθ(·|sk),sk+1∼P(·|sk,ak)

[ ∞∑
k=0

(
r(sk, ak)− JMDP(π)

)
| s0 = s

]
.

We use Pπ and νπ to denote the transition probability matrix and the stationary distribution of states under the control of π.
The policy gradient is

∇θJMDP(πθ) = Es∼νπθ ,a∼πθ(·|s),s′∼P(·|s,a,µ)

[
(r(s, a) + V πθ

MDP(s
′)− V πθ

MDP(s))∇θ log πθ(a | s)
]
, (80)

and V π
MDP satisfies the Bellman equation

V πθ

MDP =
∑
a

πθ(a | ·)r(·, a) + JMDP(πθ)1|S| + (Pπθ )⊤V πθ

MDP. (81)

The algorithm for optimizing JMDP in an average-reward MDP, simplified from Algorithm 1, is presented in Algorithm 2.
We have three main iterates in the algorithm, namely, policy parameter θk and value function estimates V̂k and V̂k which are
used to track V

πθk

MDP and JMDP(πθk). The policy parameter is updated along the direction of an approximated policy gradient,
while the value functions are updated to solve (81) and (79) using stochastic approximation.

H. Simulation Details
We choose the reward function to be

r(s, a, µ) = µ(s) + ωr(s, a) ∗ 0.1, ∀s, a,

where ωr(s, a) ∈ R is sampled from the standard normal distribution.

The transition kernel P is also randomly generated such that for all s, a

P(· | s, a, µ) ∝ ωP (s, a) + µ,
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Algorithm 2 Online Actor Critic Algorithm for Average-Reward MDP

1: Initialize: policy parameter θ0 ∈ R|S|×|A|, value function estimate V̂0 ∈ R|S|, Ĵ0 ∈ R, gradient/operator estimates
f0 = 0 ∈ R|S||A|, gV0 = 0 ∈ R|S|, gJ0 = 0 ∈ R

2: Sample: initial state s0 ∈ S randomly
3: for iteration k = 0, 1, 2, ... do
4: Take action ak ∼ πθk(· | sk). Observe reward r(sk, ak) and next state sk+1 ∼ P(· | sk, ak)
5: Policy (actor) update:

θk+1 = θk + αkfk.

6: Value function (critic) update:

V̂k+1 = ΠBV
(V̂k + βkg

V
k ), Ĵk+1 = Π[0,1](Ĵk + βkg

J
k ).

7: Gradient/Operator estimate update:

fk+1 = (1− λk)fk + λk(r(sk, ak) + V̂k(sk+1))∇ log πθk(ak | sk),
gVk+1 = (1− λk)g

V
k + λk(r(sk, ak)− Ĵk + V̂k(sk+1)− V̂k(sk))esk

gJk+1 = (1− λk)g
J
k + λkcJ(r(sk, ak)− Ĵk).

8: end for

where ωP (s, a) ∈ R|S| is drawn element-wise i.i.d. from the standard uniform distribution.

For the proposed algorithm algorithm, we select the initial step size parameters to be α0 = 10, β0 = 0.1, ξ0 = 0.02, and
λ0 = 1. The step size parameters for the algorithm in Zaman et al. (2023) are taken from the paper in the Numerical Results
section. We tried to adjust the parameters of their algorithm in an attempt to see whether we can get it to converge faster,
and found out that the parameters prescribed in the paper are good enough and hard to improve at least locally.
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