
TF-GNN: Graph Neural Networks in TensorFlow
Oleksandr Ferludin

⋆¶
, Arno Eigenwillig

⋆¶
, Martin Blais

⋆†
, Dustin Zelle

⋆†
, Jan Pfeifer

⋆¶
,

Alvaro Sanchez-Gonzalez
⋆‡
, Wai Lok Sibon Li

⋆‡
, Sami Abu-El-Haija

†
, Peter Battaglia

‡
,

Neslihan Bulut
†
, Jonathan Halcrow

†
, Filipe Miguel Gonçalves de Almeida

†
, Pedro Gonnet

†
,

Liangze Jiang
◇
, Parth Kothari

¶
, Silvio Lattanzi

†
, André Linhares

†
, Brandon Mayer

†
,

Vahab Mirrokni
†
, John Palowitch

†
, Mihir Paradkar

¶
, Jennifer She

‡
, Anton Tsitsulin

†
, Kevin Villela

‡
,

Lisa Wang
‡
, David Wong

‡
, Bryan Perozzi

⋆†

tensorflow-gnn@googlegroups.com

¶
: Google Core ML,

†
: Google Research,

‡
: DeepMind,

◇
: EPFL (work done at Google Research)

⋆
: TF-GNN Top contributors

ABSTRACT
TensorFlow-GNN (TF-GNN) is a scalable library for Graph Neural

Networks in TensorFlow. It is designed from the bottom up to

support the kinds of rich heterogeneous graph data that occurs in

today’s information ecosystems. In addition to enabling machine

learning researchers and advanced developers, TF-GNN offers low-

code solutions to empower the broader developer community in

graph learning. Many production models at Google use TF-GNN

and it has been recently released as an open source project. In

this paper we describe the TF-GNN data model, its Keras message

passing API, and relevant capabilities such as graph sampling and

distributed training.

1 INTRODUCTION
Machine Learning (ML) techniques have applications across do-

mains as varied as medicine, social networks, biochemistry, ro-

botics, and more. The success of many ML models is driven by

their ability to incorporate different modalities of data (e.g. vision,

text, sound, timeseries and geometric), each with its own unique

structural (ir)regularities. Traditionally, software frameworks for

machine learning (e.g. TensorFlow [1], PyTorch [32]) have focused

on modeling one modality at a time, such as vision [25, 26] or

natural language [10, 30, 36]. However, the development of graph

representation learning [9, 18] and subsequent industry interest

[2, 3, 6, 16, 21, 29, 31, 33, 40, 43] has motivated the need for better

software frameworks for learning with graph-structured data.

In this paper we introduce TF-GNN
1
, a Python framework that

extends TensorFlow [1] with Graph Neural Networks (GNNs) [9,

18]: models that leverage graph-structured data. TF-GNN is moti-

vated and informed by years of applying graph representation learn-

ing to practical problems at Google. In particular, TF-GNN focuses

on the representation of heterogeneous graph data and supports

the explicit modeling of an arbitrary number of relationship (edge)

types between an arbitrary number of entity (node) types. These

relationships can be used in combination with other TensorFlow

components, e.g., a TF-GNN model might connect representations

from a language model to those of a vision model and fine-tune

these features for a node classification task. Many teams at Google

run TF-GNN models in production. We believe this to be a direct

consequence of TF-GNN’s multi-layered API which is designed for

1

https://github.com/tensorflow/gnn

TF-GNN API

Level 4: Minimal Code
Experience

Orchestrator

Level 3: Modeling API

Keras API

Level 2: Data Exchange

TF2 Data Exchange Ops

Level 1: Data

Graph Schema, GraphTensor

Figure 1: TF-GNN’s layered API decomposes the tools needed
to create graph models into four distinct components of in-
creasing abstraction.

accessibility to developers (regardless of their prior experience with

machine learning).

Other software frameworks for learning from graph data have

been proposed, most notably PyTorch Geometric (PyG) [12] and

Deep Graph Library (DGL) [39]. We differ from DGL and PyG in

three main ways. First, TF-GNN has been designed bottom-up for

modeling heterogeneous graphs. Second, TF-GNN offers different

levels of abstraction for increased modeling flexibility. Proficient

users can leverage raw TensorFlow operations for message passing,

limited only by their imagination. Intermediate users use the Keras

modeling API and pre-built convolution layers, while beginner

users can use the Orchestrator to quickly experiment with GNNs.

Finally, TF-GNN is programmed on top of TensorFlow. As such, its

goal is to support the many production-ready capabilities present

in the TensorFlow ecosystem.

Interestingly, these differences can provide advantages for sev-

eral use cases. For instance, (i) while it is possible for PyG to model

heterogeneous graph data, its syntax advocates partitioning a het-

erogeneous graph into a set of homogeneous graphs. This makes it

(programmatically) challenging to create a graph layer that pools

from multiple node features at once, or even create new node or

ar
X

iv
:2

20
7.

03
52

2v
2

 [
cs

.L
G

]
 2

3
Ju

l 2
02

3

https://github.com/tensorflow/gnn

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ferludin, Eigenwillig, Blais, Zelle, Pfeifer, Sanchez-Gonzalez, et al.

feature types on the fly (i.e., through the network computation).

However, TF-GNN’s flexibility allows for aggregating from different

node or edge types at once. Furthermore, (ii) TF-GNN offers edge-
centric, node-centric, and graph-centric building blocks for GNNs.

Existing frameworks (e.g., PyG) are node-centric, making imple-

menting somemodelsmore tedious. On the other hand, edge-centric

models, such as Graph Transformers [41] can be natively expressed

in TF-GNN. Finally, (iii) TF-GNN’s TensorFlow implementation

inherits the benefits of the TensorFlow ecosystem, including access

to model architectures for popular modalities (such as vision, text,

and speech), and the ability to execute GNN models, for training

and inference, on extremely fast hardware devices [20].

Summary of contributions. We present TF-GNN, an open-

source Python library to create graph neural network models that

can leverage heterogeneous relational data. TF-GNN enables train-

ing and inference of Graph Neural Networks (GNNs) on arbitrary

graph-structured data. TF-GNN’s four API levels allow developers

of all skill levels access to powerful GNN models. Many TF-GNN

models run in production at Google. Finally, as a native citizen

of the TensorFlow ecosystem, TF-GNN shares its benefits, includ-

ing pretrained models for various various modalities (e.g., a NLP

model) and support for fast mathematical hardware such as Tensor

Processing Units (TPUs).

2 OVERALL DESIGN
TF-GNN offers a layered API to build Graph Neural Networks that

lets users trade off flexibility for abstraction. From least to most

abstract, the layers (shown in Fig. 1) are:

● API Level 1: The Data Level (§3) takes care of representing
heterogeneous graphs and loading them into TensorFlow, in-

cluding technicalities like batching and padding.

● API Level 2: The Data Exchange Level (§4.1) provides oper-
ations for sending information across the graph between its

nodes, edges and the graph context.
● API Level 3: TheModel Level (§4.2) facilitates writing trainable
transformations of the data exchanged across the graph in order

to update the state of nodes, edges and/or context.

● API Level 4: TheMinimal-Code Experience Level (§8.4) provides
the Orchestrator, a toolkit for the easy composition of data input,

feature processing, graph objectives, training, and validation.

This layered design is one reason for TF-GNN’s successful adop-

tion for graph models at Google. Users can start at a high level and

only later go in deeper to tweak parts of the model. Some users may

choose to only use the data level and its associated tooling (like the

graph sampler, §6.1.1) and use their own modeling framework. The

following sections describe the API levels in greater detail. Finally,

we discuss other parts of the library designed for use in production

models (§6).

3 TF-GNN HETEROGENEOUS DATA MODEL
(API LEVEL 1)

To train a model on heterogeneous graph data, users first need to

specify its node types, edge types and their respective features. This

is donewith the GraphSchema (§3.1). Based on that, the GraphTensor
class (§3.2) can represent any graphs from the dataset.

3.1 Graph Schema
A GraphSchema object defines:

(1) One or more named node sets and their respective features.

(2) Zero or more named edge sets and their respective features.

Each edge set has a specified source node set and a specified

target node set. All edges in the set connect these node sets.

(3) Context features, which pertain to the entire input graph.
2

As the name suggests, GraphSchema contains only an abstract

definition of how entities are related (similar to an entity relation-

ship diagram [27]) and has no actual data points. By definition,

the node sets are disjoint, so they can serve as node types; same

for edges. For each feature, the graph schema defines its name,

its datatype (int, float, or string) and its shape, as in TensorFlow

[1]. That means the graph as a whole is heterogeneous, but within

each node or edge set, the features are uniformly typed and shaped.

Each feature can have a different shape, so the features of a node

set might comprise a scalar (say, a categorical feature), a variable-

length sequence (e.g., tokenized text), a fixed-length vector (such

as a precomputed embedding), a rank-3 tensor with an RGB image,

and so on.

An example schema for a prototypical recommendation systems

problem is shown in Figure 2a. It defines a heterogeneous graph

structure with the following structure:

● Two node sets: “items” and “users”. Item nodes have two fea-

tures for their “category” (an integer scalar, corresponding to

enumeration), and their “price” (a floating-point vector to hold

item advertised prices). User nodes have three features, repre-
senting their “name” (string), “age” (int), and “country” (int).
● Two distinct sets of edges: “purchased” and “is-friend”. Pur-
chased edges connect users to items they have purchased, while

is-friend edges connect users together.

● One context feature “scores”, which applies to the graph as a

whole.

3.2 GraphTensor
Figure 2b shows a graph that conforms to the example schema from

above: Each circle corresponds to a node (colored by its node set),

and the two types of lines correspond to the two different edge sets.

Each node contains the features specified for its node set.

Figure 3 shows our approach to representing one such a graph

in TensorFlow. We use zero-based indexing for the nodes in each

node set and the edges in each edge set. Then any one feature on

a node set or edge set can be represented by a tensor of shape

(︀𝑛, 𝑓1, . . . , 𝑓𝑘⌋︀, where (︀𝑓1, . . . , 𝑓𝑘⌋︀, 𝑘 ≥ 0, is the feature shape from

the GraphSchema. Moreover, for an edge set, the indices of source

and target nodes are stored as two integer tensors of shape (︀𝑛⌋︀

whose values are node indices in the node set specified by the

graph schema.

The GraphTensor class expands on this approach to represent

graphs as tensors through all stages of a TensorFlow program that

builds a GNN model. Roughly, the stages are

(1) Reading, shuffling, batching and parsing GraphTensor values

from tf.Example records on disk; possibly distributing them

between replicas for data-parallel training.

2

Section 3.2 will refine the notion of context for graphs merged from a batch of inputs.

TF-GNN: Graph Neural Networks in TensorFlow Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

name

age User purchased

Item

pricecountry

Node sets

Edge sets

Features

Legend

is-friend

category

scores

Global

(a) A graph schema.

food

[$22.34, $23.42, $12.99]

0

show ticket

[$27.99, $34.50]

1

shoes

[$89.99]

2

book

[$24.99, $45.00]

3

flight

[$350.00]

4

groceries

[$45.13, $79.80, $12.35]

5

Jeorg,

32, "uk"

1

Shawn,

24, "usa"

0

Yumiko,

27, "japan"

2

Sophie, 38,

"france"

3

items

userspurchased

is-friend

scores

[0.45, 0.98, 0.10, 0.25]

(b) A heterogeneous graph conforming to the schema.

Figure 2: The recommending system example in the text uses the GraphSchema visualized in part (a). Part (b) shows a possible
graph with the node sets, connecting edge sets, and features prescribed by the schema.

22.34, 23.42, 12.99

89.99

Food&Bevarage
Entertainment
Fashion
…
…
…

…
…
…

27.99, 34.50
Shawn

Yumiko
Jeorg

Sophie

24

27
32

38

usa

japan
uk

france

Node Sets Edge Sets

items
prices category

users
name age country

is-friend
Adj

2 0

purchased
Adj

1 1

time

2 0
3 0
4 2
5 0

1 0 0 1

Context

scores

n ite
m

s

n
users

n
purchased

0.45, 0.98, ..

5 3

3 0

Figure 3: A GraphTensor to store the graph from Fig. 2b comprises tensors for all the features and for the adjacency data of each
edge. (The size tensors are not shown here.) A Python expression for this GraphTensor object is shown in the Appendix.

(2) Transforming one or more input features per node or edge into

a fixed-size representation for deep learning.

(3) Running a graph neural network for several rounds to update

the hidden states of nodes (and possibly edges) from neighbor-

ing parts of the graph, followed by reading out the relevant

hidden states and computing the model’s output.

GraphTensor supports batching natively, and is indeed a tensor

of graphs with a shape (︀𝑔1, . . . , 𝑔𝑟 ⌋︀. A scalar GraphTensor has shape

(︀ ⌋︀ and holds a single graph, while a GraphTensor of shape (︀𝑔1⌋︀

holds a vector of 𝑔1 graphs, as usual for training with minibatches.

Ranks 𝑟 > 1 are rarely needed.

Each node set and edge set holds a dictionary of named features.

Each feature is a tensor of shape (︀𝑔1, . . . , 𝑔𝑟 , 𝑛, 𝑓1, . . . , 𝑓𝑘⌋︀. GraphTen-

sor allows that a feature dimension 𝑓𝑖 may vary between the items

of one node/edge set, or that the number 𝑛 of items varies between

the multiple graphs in a GraphTensor. In both cases, the solution is

to store the feature as a tf.RaggedTensor, not a tf.Tensor. Under
the hood, this stores an explicit partitioning for each non-uniform,

or “ragged”, dimension. The shape reports its size as None.
To support feature processing, TF-GNN lets you create a new

GraphTensor from an old one by replacing some or all of the fea-

tures while keeping track of the implied schema change.

Finally, in service of training models, GraphTensor provides a

method to merge a batch of inputs to a scalar GraphTensor. For each

node/edge set, this method concatenates its elements across the

batch of inputs and adjusts the node indices stored on edges corre-

spondingly. The result is a GraphTensor of shape (︀ ⌋︀ with a flat in-

dex space 0, 1, . . . , 𝑛
total
−1 for each node/edge set, across the bound-

aries of batched examples. Features get the shape (︀𝑛
total

, 𝑓1, . . . , 𝑓𝑘⌋︀.

Conveniently, such features can be represented as a tf.Tensor

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ferludin, Eigenwillig, Blais, Zelle, Pfeifer, Sanchez-Gonzalez, et al.

if all feature dimensions are fixed, even if a node/edge set’s size

𝑛
total

is not constant between batches. If necessary, it can be made

constant as well by adding a suitably sized padding graph to each

batch of input graphs and assigning it weight 0 for training the

GNN. Standard GNN operations on nodes and edges respect the

boundaries between the merged input graphs, because there are no

edges connecting them. To achieve the same for context features,

GraphTensor supports the notion of components in a graph, and

stores context features indexed by component. When a batch of

graphs is merged, each input graph becomes one component of the

result.

4 MODELINGWITH TF-GNN
The core of TF-GNN is specifying how a computation utilizes graph

structured data. In this section we detail the low level (TensorFlow)

and high level (Keras) APIs used to construct GNNs.

4.1 Data Exchange Ops (API Level 2)
TF-GNN sends data across the graph as follows. Broadcasting from

a node set to an edge set returns for each edge the value from the

specified endpoint (say, its source node). Pooling from an edge set

to a node set returns for each node the specified aggregation (sum,

mean, max, etc.) of the value on edges that have the node as the

specified endpoint (say, their target node.) The tensors involved

are shaped like features of the respective node/edge set in the

GraphTensor and can, but need not, be stored in it. Similarly, graph

context values can be broadcast to or pooled from the nodes or

edges of each graph component in a particular a node set or edge

set.

Unlike multiplication with an adjacency matrix, this approach

provides a natural place to insert per-edge computations with one or

more values, such as computing attention weights [7, 37], integrat-

ing edge features into messages between nodes [13], or maintaining

hidden states on edges [5].

4.2 Model Building API (API Level 3)
At API Level 3, TF-GNN follows standard TensorFlow practice

and adopts Keras to express trainable transformations and their

composition into models. API Levels 1 and 2 can serve other ways of

modeling just as well. The shape (︀𝑛, . . .⌋︀ of feature tensors allows to

reuse standard neural network layers for item-wise transformations

of node/edge sets, with set size 𝑛 in place of a batch size.

A typical GNN model (cf. §3.2) consists of (i) feature transfor-

mations, (ii) a base GNN, and (iii) the final readout and prediction.

TF-GNN lets you express this as a sequence of Keras layers that

each take a GraphTensor input and return a GraphTensor output

with transformed features – or a Tensor for reading out the final

prediction.

4.2.1 Feature transformation layers. The feature transformations

treat each node/edge set in isolation. Depending on the available

features, they can range from simple numeric transformations to

running an entire deep learning model to compute an embedding

of, say, image or text data. TF-GNN lets you plug in other Tensor-

Flow models and fine-tune them jointly while training the GNN on

top. In the end, the representations of multiple input features are

combined to form one initial "hidden_state" feature. TF-GNN’s

MapFeatures layer makes it easy to build Keras sub-models for each

node/edge set that map a features dict to a transformed features

dict, and eventually the hidden state.

4.2.2 Graph Neural Network layers. The base GNN model is ex-

pressed as a sequence of graph update layers, each of which accepts

a GraphTensor with "hidden_state" features and returns a new

GraphTensor with these features updated. Each layer object has its

own trainable weights; weight sharing can be achieved by using

the same layer object repeatedly.

Users can define their own graph update layers, or reuse those

from the growing collection of models bundled with the TF-GNN

library (e.g., see the case study in Section 8). A user-defined graph

update can, if needed, contain free-form code with an arbitrary com-

position of trainable transformations and broadcast/pool operations

across all parts of the graph.

More commonly, graph updates are constructed from pieces

operating on individual node sets or edge sets. TF-GNN provides a

generic GraphUpdate class for that purpose, based on the following

breakdown of updating a heterogeneous graph.

Consider any node 𝑣 in some node set𝑉 of a heterogeneous graph.

Starting from the initial hidden state h(0)𝑣 , successive GraphUpdates
compute the hidden state of 𝑣 as

h(𝑖+1)𝑣 = NextNodeState
(𝑖+1)
𝑉

(h(𝑖)𝑣 ,m(𝑖+1)
𝐸1,𝑣

, . . . ,m(𝑖+1)
𝐸𝑘 ,𝑣

) (1)

using the pooled messagesm(𝑖+1)
𝐸 𝑗 ,𝑣

received by node 𝑣 in round 𝑖 + 1

along all edge sets 𝐸1, . . . , 𝐸𝑘 incident to node set 𝑉 . Notice that

their number 𝑘 is a constant from the graph schema for all 𝑣 ∈ 𝑉 .

Let 𝒩𝐸 𝑗
(𝑣) = {𝑢 ⋃︀ (𝑢, 𝑣) ∈ 𝐸 𝑗} denote the neighbors of 𝑣 along

one edge set 𝐸 𝑗 , and notice that the size of𝒩𝐸 𝑗
(𝑣) may vary with

𝑣 ∈ 𝑉 . GraphUpdate supports two ways of computing m𝐸 𝑗
: in one

step directly from the neighbor nodes as

m(𝑖+1)
𝐸 𝑗 ,𝑣

= Conv
(𝑖+1)
𝐸 𝑗

(h(𝑖)𝑣 , {h(𝑖)𝑢 ⋃︀ 𝑢 ∈ 𝒩𝐸 𝑗
(𝑣)}), (2)

or in two steps, materializing a per-edge message in the GraphTen-

sor as

m(𝑖+1)
𝐸 𝑗 ,(𝑢,𝑣)

= NextEdgeState
(𝑖+1)
𝐸 𝑗

(h(𝑖)𝑢 ,h(𝑖)𝑣 ,m(𝑖)
𝐸 𝑗 ,(𝑢,𝑣)

),

m(𝑖+1)
𝐸 𝑗 ,𝑣

= EdgePool
(𝑖+1)
𝐸 𝑗

(h(𝑖)𝑣 , {m(𝑖+1)
𝐸 𝑗 ,(𝑢,𝑣)

⋃︀ 𝑢 ∈ 𝒩𝐸 𝑗
(𝑣)}).

(3)

The two-step approach of Eq. (3) supports recurrence in m𝐸 𝑗 ,(𝑢,𝑣),
effectively turning it into a hidden state for edges. With that, and

a context (or “global”) state not shown here, this approach covers

Graph Networks [5] and generalizes them to heterogeneous graphs.

Without recurrence in m𝐸 𝑗 ,(𝑢,𝑣) (but possibly a constant edge

feature in its place), this approach also covers Message Passing

Neural Networks [13], generalized to heterogeneous graphs. The

Conv abstraction from Eq. (2) is useful to express any of a number

of successful GNN architectures in a single Python class and to

transfer them directly to heterogeneous graphs with an arbitrary

schema. Section 4.3 and the Appendix review some concrete cases,

including Graph Convolutional Networks [24], which popularized

the term graph convolution that we adopt here.

TF-GNN: Graph Neural Networks in TensorFlow Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

4.3 Implementing Popular Architectures
Graph Convolutional Networks [24]: GCNs for symmetric ho-

mogeneous graphs rely on adding loops (𝑣, 𝑣) to the single edge

set 𝐸 to feed h(𝑖)𝑣 into the computation of h(𝑖+1)𝑣 along with the

neighbor nodes. TF-GNN implements them by specializing Eq. (1)

and (2) to

(𝑖+1)
𝑣 =

(𝑖+1)
𝑣 = 𝜎(∑

𝑢∈𝒩(𝑣)∪{𝑣}

1

⌋︂
𝑑𝑢𝑑𝑣

W(𝑖+1)h(𝑖)𝑢), (4)

where 𝑑𝑢 is the in-degree of node 𝑢 including loops and 𝜎 is an

activation function, such as ReLU. Observe how Conv from Eq. (2)

is the graph convolution, and NextNodeState trivially passes

through its result.

The relational extension, R-GCN, [34] considers heterogeneous
graphs and uses

h(𝑖+1)𝑣 = 𝜎(
𝑘

∑
𝑗=1

m(𝑖+1)
𝐸 𝑗 ,𝑣

+W(𝑖+1)
𝑉

h(𝑖)𝑣), (5)

m(𝑖+1)
𝐸 𝑗 ,𝑣

=
1

⋃︀𝒩𝐸 𝑗
(𝑣)⋃︀

∑
𝑢∈𝒩𝐸𝑗

(𝑣)
W(𝑖+1)

𝐸 𝑗
h(𝑖)𝑢

with separate weights for each edge set and node set. This translates

immediately to Conv and NextNodeState maps.

GraphSAGE [17] considers homogeneous sampled subgraphs

and proposes several aggregator architectures, which translate di-

rectly to choices for Conv in Eq. (2). Its NextNodeState function

turns out to be the special case 𝑘 = 1 of Eq. (5) for R-GCN. In the

GraphUpdate framework, GraphSAGE generalizes naturally to the

heterogeneous case by running its Convs on multiple edge sets

and combining them as in Eq. (5) for 𝑘 > 1.

GAT [37] extends GCN by replacing the weighted sum in Eq. (4)

by a concatenation of multiple weighted sums (attention heads),

each with its own data-dependent weighting (formulas omitted

for brevity). A Conv operation can naturally express GAT and

other attention mechanisms on edges, including GATv2 [7] and

Transformer-style dot-product attention [7, 11, 23, 36].

The GraphUpdate framework allows to generalize GAT/GATv2

directly to the heterogeneous case, with no extra coding, analogous

to the generalization from GCN to R-GCN. Attention is distributed

separately between the edges of each edge set; learning the relative

importance of different edge sets (relation types) is left to their

separate weight matricesW(𝑖+1)
𝐸 𝑗

in Eq. (5).

TF-GNN provides a base class for implementing Conv operations

that allows a unified implementation of attention (i) from a node

onto its neighbors, possibly combining the neighbor node state

with a feature from the connecting edge; (ii) from a node onto its

incoming edges; (iii) from the graph context onto all nodes; (iv) from

the graph context onto all edges. Cases (ii–iv) provide attention for

all aggregation steps of Graph Networks [5]. Appendix A.4 shows

the unified implementation of GATv2 attention for all four cases.

5 ORCHESTRATION (API LEVEL 4)
At the highest level, TF-GNN provides the Orchestrator: a quick

start toolkit with solutions for common graph learning tasks. It

includes common graph learning objectives, distributed training

Graph
Sampler

graph

features

Graph Tensor Graph Parser Model

Graph Schema

Figure 4: Diagram of massive-graph sampling and training
pipeline with TF-GNN.

capabilities, accelerator support and the handling of many Tensor-

Flow idiosyncrasies. The Orchestrator collects the tools necessary

for (i) elevating the novice to a TF-GNN power user and (ii) in-

creasing the scope of the graph learning expert’s innovation. The

toolkit supports graph learning research by offering both a standard

framework for the reproduction of results and a shared catalog of

SotA and convenience graph learning techniques and objectives.

Specifically, the Orchestrator performs the:

(1) Reading input data to extract input graph(s) as GraphTensor in-
stances X and corresponding label(s) Y,

(2) Processing features for a specific dataset X→ X′,
(3) Adapting a model to the graph learning objective M→M′,
(4) Training the adapted model M′∶X′ → H to minimize the loss

between H and Y,
(5) Exporting the model (M′) for inference or deployment.

The Orchestrator provides abstractions for the composition of

these five steps.

● Data source (Python class DatasetProvider): An arbitrary source
(on disk or in memory) that produces GraphTensor and a corre-

sponding schema.

● Feature processing (GraphTensorProcessorFn): Feature ma-

nipulations for a GraphTensor–typically associated with a spe-

cific dataset.

● Task (Python class Task): Defines the graph learning objective on

top of the base GNN model (e.g., node classification, or regression,

or a self-supervised task like DeepGraphInfomax [38]) and its

ancillary pieces like source data transformations.

● Model: An arbitrary model that operates on GraphTensor. The
model is adapted to a graph learning objective by the above Task.
● Training Hyperparameters: Including the choice of optimiza-

tion algorithm (e.g., Adam [4]), learning rate, as well as model

hyperparameters (e.g., number of layers and their widths). Inte-

grated with an automated hyperparameter tuning service [14, 35].

6 SAMPLING AND SCALING
At Google, we need to build neural network models for graphs of

incredible size (trillions of edges). Heterogeneous graphs of this

scale that have rich node and edge features cannot fit in the memory

of single machines. TF-GNN offers a variety of approaches for

transforming graph data. In our experience, the right approach

typically depends on the graph’s size. Here we discuss some details

regarding processing datasets.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ferludin, Eigenwillig, Blais, Zelle, Pfeifer, Sanchez-Gonzalez, et al.

Algorithm 1 Distributed Sampling

Require: 𝑆∅: the initial set of nodes to sample

𝐸: the edge sets to sample from

𝑝: a sampling plan.

Ensure: 𝒢, a set of Graph Tensors

frontier0 = Sample(𝑆∅, 𝐸𝑝0)
for 𝑖 = 1; 𝑖 ≤ 𝑝 .steps do
frontier𝑖 = Sample(frontier, 𝐸𝑝𝑖)

end for
edge_groups = frontier.GroupBy(frontier.sample_id)

edge_groups = DeduplicateNodes(edge_groups)

edges_with_features = lookup_features(edge_groups)

𝒢 = create_graph_tensors(edges_with_features)

6.1 Sampling
On massive, well-connected graphs, even deep GNNs rarely ag-

gregate features from distant nodes. As a result, when making a

prediction on a root node (or a root activation node for edge/neigh-

borhood prediction), it is frequently equivalent for the GNN to

operate on a sufficiently-wide subgraph around the root [17]. For

example, training and inference with a 2-layer GCN [24] only re-

quires the 2-hop subgraph around the root.

TF-GNN formalizes this idea of rooted subgraph sampling with

a sampling plan. The sampling plan describes the set of paths to

sample from a graph schema in order to created rooted subgraphs.

The key concepts of a sampling plan are: (1) the seeds – the nodes

to start the expansion from, (2) the edge sets to expand out through,

and (3) the kind of sampling to use in the expansion. This is dis-

cussed in detail during our case study in Section 8.

6.1.1 Large Scale: Distributed Sampling. One practical setting is the
case of training GNNs on large scale data (e.g. graphs with billions of
nodes). To train GNNs on massive graphs, we first run a distributed

subgraph sampling operation which queries each root node for

a subgraph, and writes each subgraph to disk as an individual

GraphTensor.

The distributed sampling algorithm is presented in Algorithm 1.

At a high level, it operates by repeatedly applying a distributed

Sample function to grow the effective frontier of all node’s samples

at once. Each invocation of this function joins together a set of nodes

to sample, and an edge set to sample over. After performing repeated

sampling operations, the samples are joined by their sample id

to form connected subgraphs. These subgraphs are then joined

with the appropriate node features and converted to GraphTensors.

Figure 4 shows an illustration of how sampling fits into the training

pipeline.

The set of sampled GraphTensors is typically stored on dis-

tributed cloud storage. For the purpose of easing downstream pro-

cessing, the GraphTensors are randomly grouped into file shards,

which are then used as input for model training or inference.

6.1.2 Medium Scale: In-memory Sampling. Not all datasets are

large enough to require distributed computation. In the case of

smaller datasets (perhaps those with less than 100 million nodes),

the input graphs are small enough to fit into memory on one ma-

chine. However it can still be beneficial to perform sampling, in

order to speed up training. In this case all graph nodes, edges, and

features, are loaded for processing at once, and an in-memory sam-

pling operation follows the sampling plan to generate GraphTensors

on-the-fly. Here, one can express the objective function on the en-

tire graph, e.g., as a node classification cross-entropy loss on all

labeled nodes instead of piece-wise on rooted subgraphs. TF-GNN

offers separate functionality and tutorials for these settings.

We note that unlike with distributed sampling, samples gen-

erated by the in-memory procedure are typically not persisted,

and instead are used on-demand during the training or inference

process.

6.1.3 Small Scale: No sampling. There are also many applications

of TF-GNN where the graph(s) under consideration are quite small,

and so each graph can just be completely contained inside a single

GraphTensor. This setting is similar to the standard in-memory

application of GNNs, and therefore we don’t devote much space to

it here.

6.2 Training
After creating GraphTensors, the next step is deciding how to train

the model. TF-GNN’s orchestration layer aims to make GNN train-

ing no different than normal model training. Specifically, it allows

developers to provide a TensorFlow tf.distribute.Strategy3

which allows both distributed training and accelerator (GPU, TPU)

use.

6.2.1 Distributed Input Processing. TF-GNN’s orchestration layer

also integrates with TensorFlow’s tf.data service
4
, which allows

utilizing a separate distributed compute cluster just for creating

input for training, and performing CPU-based preprocessing. This

can greatly accelerate TF-GNN model training by reducing I/O

bottlenecks.

6.2.2 Model Serialization. After the training process is complete, a

standard TensorFlow SavedModel5 is created for the trained model.

6.3 Inference
Once we have a trained model, there are a variety of different

options for performing inference. In the simplest case, we can do

offline inference with batch processing using the SavedModel and

a set of serialized GraphTensors (perhaps made through the same

sampling process). More complex productionization settings can

host the SavedModel on an inference service using TensorFlow

Serving
6
, or convert it to TFLite for inference on a mobile or edge

device.
7
In this case, the GraphTensors used for input will have to

be generated by the calling application (perhaps via the in-memory

sampler).

3

https://www.tensorflow.org/guide/distributed_training

4

https://www.tensorflow.org/api_docs/python/tf/data/experimental/service

5

https://www.tensorflow.org/api_docs/python/tf/saved_model

6

https://www.tensorflow.org/tfx/tutorials/serving/rest_simple

7

https://www.tensorflow.org/lite

https://www.tensorflow.org/guide/distributed_training
https://www.tensorflow.org/api_docs/python/tf/data/experimental/service
https://www.tensorflow.org/api_docs/python/tf/saved_model
https://www.tensorflow.org/tfx/tutorials/serving/rest_simple
https://www.tensorflow.org/lite

TF-GNN: Graph Neural Networks in TensorFlow Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

7 RELATEDWORK
Here we provide an overview of related work, which we separate

into two broad categories: single-machine and distributed software

frameworks. While it is more common for single-machine frame-

works to be on the limits of research and innovation, industrial

applications require distributed support and pose challenges rarely

addressed by pure research applications.

Single-machine libraries. PyG (PyTorch-Geometric) [12] is a de-

facto standard framework for GNNs in the PyTorch ecosystem. PyG

provides automatic batching support, GPU acceleration, and an

interface to common graph learning datasets. Its performance is

further enhanced by a set of optimized sparse GPU kernels tailored

towards graph learning workloads. Spektral [15] is a prominent

TensorFlow framework that follows Kerasmodel building principles.

It offers a similar experience to PyG in the TensorFlow ecosystem

but without any batching support.

TF-GNN differs from these in many ways. For example, Spektral

computes edge-centric functions (such as GAT) on minibatches by

converting sparse adjacency matrices to dense ones. In general,

these frameworks are not designed to scale to large graphs, but

allow for easy experimentation by researchers on small graphs.

On the other hand, TF-GNN’s primary purpose is to scale to large

graphs.

Distributed libraries. DeepGraph Library (DGL) [39] allows switch-
ing the backend platform between PyTorch, TensorFlow, andApache

MXnetwithminimal codemodifications. TheDistDGL extension [42]

enables efficient multi-machine training with DGL. Training is sup-

posed to be done on a fleet of CPU-heavy instances connected in

a cluster with a wide communication channel. DistDGL is mainly

focused on reducing communication between the workers, each

of which is performing sampling and training simultaneously. It

partitions the input graph with METIS [22] and uses each partition

as an example. Unlike DistDGL, TF-GNN’s distributed training is

more general. TF-GNN does not assume that the the data contains

clusters, or that the graph structure fit into memory for partitioning

via METIS.

Graph-Learn (formerly AliGraph) [44] is an open-source indus-

trial graph learning framework built on top of TensorFlow. It is

designed to natively handle large heterogeneous graphs, and it

employs several techniques to facilitate large-scale training. Their

distribution strategy relies on distributing the graph among worker

machines, with a requirement that all worker machines must be

alive at the same time: their training would stop if any worker ma-

chine fails. This differs from the distribution strategy of TF-GNN.

In particular, TF-GNN samples a large graph into subgraphs using

a resilient distributed system [8]. Similarly, TF-GNN can be used

with the asynchronous distributed model training in TensorFlow,

which is robust to machine failures.

Paddle Graph Learning (PGL) [28] is probably the most similar to

TF-GNN. It is founded upon message passing over heterogeneous

graphs. There are two notable differences between PGL and TF-

GNN. First, PGL is more restrictive: each node must have a single

feature (it is non-trivial to combine visual feature and textual fea-

ture, per node, per se) and dictates that all nodes must have the

same feature dimensions. In contrast, TF-GNN support multiple fea-

tures per node type (including ragged feature dimensions) and two

node types can hold different features. Second, PGL uses Paddle as

the computation backend whereas TF-GNN uses TensorFlow. From

a practical sense, it is easier to find state-of-the-art (SotA) network

architectures and pre-trained models in TensorFlow, which would

make it easier to combine per-modality SotA models within a GNN.

8 EXAMPLE USE CASE: OGBN-MAG
Now we turn our attention to an end-to-end example illustrating

how the components of TF-GNN interoperate within a ‘real world’

setting. As most applications of TF-GNN are proprietary, in this

section we consider how a hypothetical developer at Google would

use TF-GNN to solve a node classification problem using an open

source dataset instead (OGBN-MAG). While the application here

is admittedly contrived, the process is very illustrative of how TF-

GNN is used internally.

8.1 Problem Identification
Our Googler begins their TF-GNN journey by identifying a prod-

uct need. After consultation with their manager, team, and project

stakeholders they determine that they desire to perform a node clas-

sification prediction for academic papers to determine the venue

(journal or conference) in which each of the papers has been pub-

lished. Having identified the machine learning task at hand, they

collect labels for the training dataset and split it into three segments

based on the time the papers were written ("train" (year<=2017),

"validation" (year==2018), and "test"(year==2019)).

The next step in their TF-GNN journey is deciding on the appro-

priate graph structure to use for this classification problem. For this

step, our Googler talks to data owners and determines what kinds

of entities and relations are available for use. They refine this down

to four kinds of nodes (papers, authors, institutions, and fields of

study) and five kinds of edges to include in their model.
8
To close

out this step, they encode these relationships in a Graph Schema

(shown in Figure 5. The full protocol buffer definition of the schema

is available in the Appendix A7.1.

This graph schema provides rich neighborhoods to author and

paper, the two most numerous kinds of nodes, from which repre-

sentations can be computed. Institutions and fields of study on the

other hand have an unique ‘id’ feature that gets embedded and

forms their node representation. This will allow the GNN model

to train embedding tables for their representations over time, in-

stead of computing a representation for them on the fly from their

neighbors.

8.2 Input Generation
Next our Googler creates a sampling specification to encode how

they would like to convert the graph for their model.

Since this is a node classification problem for papers, the user

chooses to extract subgraphs, each subgraph centered around a

paper node. For each seed paper node, the user wishes to sample

other papers the seed paper cites, authors of cited papers, their

8

We note that there are not too many node features included in this model, but want

to make clear that in most real world settings there are an abundance of node (or edge)

features possible.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ferludin, Eigenwillig, Blais, Zelle, Pfeifer, Sanchez-Gonzalez, et al.

feat

year

author

cites

field_of_study

labels

Node sets

Edge sets

Features

Legend

affiliated_with institution

paper

has_topic

writes

written

id

id

Figure 5: A Graph Schema chosen for papers classification
on OGBN-MAG. It contains 4 node types and 5 edge types.

Each paper node is a seed for graph sampling.
seed_paper = SamplingSpecBuilder(schema ,

RANDOM_UNIFORM).seed(
'paper ')

From each seed paper , sample cited papers.
cited_papers = seed_paper.sample (32, 'cites ')
From each paper (seed/cited), sample up to 8 authors.
authors = cited_papers.join([seed_paper]).sample(8,

'written ')
From these authors , sample up to 16 extra papers

written by each.
author_papers = authors.sample (16, 'writes ')
From these authors , sample their affiliations.
_ = authors.sample (16, 'affiliated_with ')
From each paper (seed/cited/written), sample topics.
_ = author_papers.join([seed_paper ,

cited_papers]).sample (16,
'has_topic ')

Create the SamplingSpec protocol buffer.
sampling_spec = seed_paper.build()

Figure 6: Sampling Specification for OGBN-MAG

affiliations, and other papers written by them. For all sampled

papers (seed, cited, authored), user wants to also sample some fields

of study. This sampling logic can be concisely written using TF-

GNN’s SamplingSpecBuilder – see Algorithm 6. The output of this

sampling specification is encoded in a protocol buffer (Appendix

A.7.2).

From the SamplingSpec that gets generated by Algorithm 6, our

Googler user can choose which sampling pipeline to utilize for

training a GNN. In this case, let us suspend disbelief momentarily

and say the user decides that their graph data is too large for a

single machine – as this is commonly the case for real datasets at

Google. Therefore, they run the distributed sampler (described in

Section 6) and generate a set of samples from the nodes in their

graph.

8.3 Modeling
The next step in our Googler’s journey is perhaps the most excit-

ing part – the modeling phase! Here, the user must choose graph

convolutions to transform data over their sampled input graphs.

After making some assumptions about the kind of information

transfer necessary for the problem (and perhaps after performing a

consultation with the TF-GNN team), our user decides that a simple

message passing neural network (MPNN) [13] is a promising first

approach to their problem.

For exposition, let us start by writing an MPNN from scratch, be-

fore we look at the ready-to-use model pieces shippedwith TF-GNN.

The two key pieces are (i) a Conv layer, to define how messages

are computed on one edge set and aggregated at its receiver nodes,

and (ii) a NextState layer, to define how node states are updated

based on the aggregated messages from the various incoming edge

sets. Figure 7 shows the code to define a message passing neural

network, with some boilerplate omitted. As you can see, there are

4 rounds of message passing, each implemented by a GraphUpdate

layer that breaks it down into convolutions on the various edge

sets and node state updates for those node sets that are not backed

by embedding tables. This compact yet explicit representation of

all trainable model pieces allows our user a great deal of control,

separately for each edge set and node set.

The likely next step for our user is to add dropout, weight regu-

larization and layer normalization to the MPNN shown above. This

is straightforward to add to the Keras classes shown above, albeit

verbose. This is where TF-GNN’s bundled model collection comes

in handy: The code in Figure 7 can be replaced by the much shorter

Figure 8.

Beyond VanillaMPNN, TF-GNN offers models such as Graph-

SAGE, GATv2 and (Transformer-style) MultiHeadAttention. These

can be used wholesale, analogous to VanillaMPNN above, or mixed

and matched per edge set / node set by combining them in one

GraphUpdate.

After finishing a modeling implementation (either by writing

one, or using a prebuilt one), our Googler is ready to set it up for

training.

8.4 Orchestration
In order to add a loss to the model and set up training, our Googler

then turns to writing a small configuration using TF-GNN’s orches-

tration layer. This involves loading the data, choosing a Task for the

model (RootNodeMulticlassClassification), and running the Keras

trainer. Appendix A.6.4 shows a minimal but working TensorFlow

training script that plugs the aforementioned code pieces into the

runner.run() entry point.

Not shown here is the Runner’s support for validation, check-

pointing, padding inputs to fixed sizes (as required for Cloud TPUs),

customizable export to a SavedModel for inference, model attribu-

tion utilities, unsupervised graph objectives and more. Please refer

to the more comprehensive for detailed information.

8.5 Model Tuning
Finally, our Googler is ready to tune hyper-parameters to find the

best model for their task. TF-GNN’s support for Vizier [14, 35]

hyper-parameter optimization allows them to explore different

parameters including model parameters such as the dimensionality

of the messages used and regularization parameters like dropout.

The Googler then conducts an extensive vizier study (here 100

trials where each trial is run for 20 epochs) with the objective is to

maximize the accuracy on OGBN-MAG’s validation set. Full details

of the hyper-parameter search settings, along with the results, are

TF-GNN: Graph Neural Networks in TensorFlow Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

class MyConv(tf.keras.layers.Layer):
""" Sends messages on an edge set and pools them for each

receiver node."""
def __init__(self , units , ** kwargs):

super().__init__ (** kwargs)
self._message_fn = tf.keras.layers.Dense(units ,

activation="relu")

def call(self , graph , *, edge_set_name):
NOTE: The receiver is the source node from which the

edge was sampled.
receiver_states = tfgnn.broadcast_node_to_edges(

graph , edge_set_name , tfgnn.SOURCE ,
feature_name=tfgnn.HIDDEN_STATE)

sender_states = tfgnn.broadcast_node_to_edges(
graph , edge_set_name , tfgnn.TARGET ,
feature_name=tfgnn.HIDDEN_STATE)

message_inputs = tf.concat ([sender_states ,
receiver_states], axis=-1)

messages = self._message_fn(message_inputs)
pooled_messages = tfgnn.pool_edges_to_node(

graph , edge_set_name , tfgnn.SOURCE , "sum",
feature_value=messages)

return pooled_messages

class MyNextNodeState(tf.keras.layers.Layer):
""" Computes next node state from pooled messages and

previous node state."""
def __init__(self , units , ** kwargs):

super().__init__ (** kwargs)
self._update_fn = tf.keras.layers.Dense(units , "relu")

def call(self , inputs):
prev_node_state , edge_set_inputs , context_input =

inputs
assert not context_input , "Unused␣in␣this␣example."
combined_inputs = tf.concat ([

prev_node_state
] + [

pooled_messages
for edge_set_name , pooled_messages in

edge_set_inputs.items()
], axis=-1)
next_node_state = self._update_fn(combined_inputs)
return next_node_state

def model_fn(graph_tensor_spec):
""" Creates the GNN model from an input spec."""
hidden_state_dim = 128
message_dim = 128
input_graph_tensor = tf.keras.layers.Input(type_spec=

graph_tensor_spec)
graph_tensor = tfgnn.keras.layers.MapFeatures(

node_sets_fn=set_initial_node_states)(
input_graph_tensor)

for _ in range (4):
graph_tensor = tfgnn.keras.layers.GraphUpdate(

node_sets ={
"paper": tfgnn.keras.layers.NodeSetUpdate(

{"cites": MyConv(message_dim),
"written": MyConv(message_dim),
"has_topic": MyConv(message_dim)},

MyNextNodeState(hidden_state_dim)),
"author": tfgnn.keras.layers.NodeSetUpdate(

{"writes": MyConv(message_dim),
"affiliated_with": MyConv(message_dim)},

MyNextNodeState(hidden_state_dim)),
})(graph_tensor)

return tf.keras.Model(input_graph_tensor , graph_tensor)

Figure 7: MPNN implementation via GraphUpdate

from tensorflow_gnn.models import vanilla_mpnn

def model_fn(graph_tensor_spec):
... # As above.

for _ in range (4):
graph_tensor = vanilla_mpnn.VanillaMPNNGraphUpdate(

units =..., message_dim =..., receiver_tag=tfgnn.
SOURCE ,

l2_regularization =..., dropout_rate =...,
use_layer_normalization=True ,

)(graph_tensor)
return tf.keras.Model(input_graph_tensor , graph_tensor)

Figure 8: MPNN reuse from model library

params validation test

HGT (leaderboard) 26.8M 0.5124 0.4982

± 0.0046 ± 0.0013

MPNN (tf-gnn) 5.89M 0.5149 0.5027
± 0.0019 ± 0.0022

Table 1: The ‘simple’ model found here through hyper-
parameter optimization outperforms a much higher capacity
model from the OGB leaderboards.

found in Appendix A.6.3. Happily, they find a well-performing

model with performance characteristics that meet their product

requirements.

Table 1 shows how the the results from the Googler’s Vizier study

compare to a model with much more capacity (the Heterogeneous

Graph Transformer [19]) from the OGBN-MAG Leaderboard. Inter-

estingly, we see that a simple model (with no customization) and

some hyper-parameter optimization can out compete a much more

complicated model utilizing transformer-style attention. The TF-

GNN platform aims to minimize the hurdles to placing these (and

much more complicated) graph models into production settings.

9 CONCLUSIONS
In this work we have presented TF-GNN, our open source frame-

work used for Graph Neural Networks at Google. TF-GNN is a soft-

ware framework which reduces the technical burden for GNN pro-

ductization and facilitates experimentation with GNNs. TF-GNN’s

expressive modeling capability allows complex relationships be-

tween nodes, edges, and graph-level elements in a model. This

enables the straightforward implementation of intricate models.

TF-GNN offers four levels of increasingly abstract APIs, serving a

range of use-cases from beginners with a graph problem but little

ML experience to ML researchers who desire complete control of

their graph learning system. Many models at Google already use TF-

GNN, and we believe that this project will accelerate the industrial

adaptation of these promising models at more organizations.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.

2016. TensorFlow: A System for Large-Scale Machine Learning. In 12th USENIX
symposium on operating systems design and implementation (OSDI 16). 265–283.

[2] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina

Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. 2019. Mixhop:

Higher-order graph convolutional architectures via sparsified neighborhood

mixing. In international conference on machine learning. PMLR, 21–29.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ferludin, Eigenwillig, Blais, Zelle, Pfeifer, Sanchez-Gonzalez, et al.

[3] Rami Al-Rfou, Bryan Perozzi, and Dustin Zelle. 2019. Ddgk: Learning graph

representations for deep divergence graph kernels. In The World Wide Web
Conference. 37–48.

[4] Jimmy Ba and Diederik Kingma. 2015. Adam: A Method for Stochastic Optimiza-

tion. In International Conference on Learning Representations.
[5] Peter Battaglia, Jessica Blake Chandler Hamrick, Victor Bapst, Alvaro Sanchez,

Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam

Santoro, Ryan Faulkner, Caglar Gulcehre, Francis Song, Andy Ballard, Justin

Gilmer, George E. Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash, Victo-

ria Jayne Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli,

Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. 2018. Relational

inductive biases, deep learning, and graph networks. arXiv/1806.01261 (2018).
[6] Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin

Blais, Benedek Rózemberczki, Michal Lukasik, and Stephan Günnemann. 2020.

Scaling graph neural networks with approximate pagerank. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 2464–2473.

[7] Shaked Brody, Uri Alon, and Eran Yahav. 2022. How Attentive are Graph Atten-

tion Networks?. In International Conference on Learning Representations.
[8] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R

Henry, Robert Bradshaw, and Nathan Weizenbaum. 2010. FlumeJava: easy, effi-

cient data-parallel pipelines. ACM Sigplan Notices 45, 6 (2010), 363–375.
[9] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Re, and Kevin Mur-

phy. 2022. Machine Learning on Graphs: A Model and Comprehensive Taxonomy.

Journal of Machine Learning Research 23, 89 (2022), 1–64.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In

Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics. Association for Computational Linguistics, 4171–

4186.

[11] Vijay Prakash Dwivedi and Xavier Bresson. 2020. A Generalization of Trans-

former Networks to Graphs. arXiv preprint arXiv:2012.09699 (2020).
[12] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with

PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

[13] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.

Dahl. 2017. Neural Message Passing for Quantum Chemistry. In International
Conference on Machine Learning.

[14] Daniel Golovin, Benjamin Solnik, SubhodeepMoitra, Greg Kochanski, John Karro,

and David Sculley. 2017. Google Vizier: A service for black-box optimization.

In Proceedings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining. 1487–1495.

[15] Daniele Grattarola and Cesare Alippi. 2021. Graph neural networks in tensorflow

and keras with spektral (application notes). IEEE Computational Intelligence
Magazine 16, 1 (2021), 99–106.

[16] Jonathan Halcrow, Alexandru Mosoi, Sam Ruth, and Bryan Perozzi. 2020. Grale:

Designing Networks for Graph Learning. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (Virtual Event,

CA, USA) (KDD ’20). Association for Computing Machinery, New York, NY, USA,

2523–2532. https://doi.org/10.1145/3394486.3403302

[17] W. Hamilton, R. Ying, and J. Leskovec. 2017. Inductive Representation Learning

on Large Graphs. In Advances in Neural Information Processing Systems.
[18] William L. Hamilton. 2020. Graph Representation Learning. Morgan & Claypool

Publishers.

[19] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous

Graph Transformer. InWWW ’20: The Web Conference 2020, Taipei, Taiwan, April
20-24, 2020. ACM / IW3C2, 2704–2710. https://doi.org/10.1145/3366423.3380027

[20] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. 2017.

In-datacenter performance analysis of a tensor processing unit. In Proceedings of
the 44th annual international symposium on computer architecture.

[21] Amol Kapoor, Xue Ben, Luyang Liu, Bryan Perozzi, Matt Barnes, Martin Blais, and

Shawn O’Banion. 2020. Examining covid-19 forecasting using spatio-temporal

graph neural networks. arXiv preprint arXiv:2007.03113 (2020).
[22] George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme

for partitioning irregular graphs. SIAM Journal on scientific Computing 20, 1

(1998), 359–392.

[23] Dongkwan Kim and Alice Oh. 2022. How to Find Your Friendly Neighborhood:

Graph Attention Design with Self-Supervision. arXiv preprint arXiv:2204.04879
(2022).

[24] Thomas Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph

Convolutional Networks. In International Conference on Learning Representations.
[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classi-

fication with Deep Convolutional Neural Networks. In Proc. of the Advances in
Neural Information Processing Systems (NIPS).

[26] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. 1998. Gradient-

based learning applied to document recognition. Proc. of the IEEE 86, 11 (1998),

2278–2324.

[27] Qing Li and Yu-Liu Chen. 2009. Entity-relationship diagram. In Modeling and
Analysis of Enterprise and Information Systems. Springer, 125–139.

[28] Yanjun Ma, Dianhai Yu, Tian Wu, and Haifeng Wang. 2019. PaddlePaddle: An

open-source deep learning platform from industrial practice. Frontiers of Data
and Computing 1, 1 (2019), 105–115.

[29] Elan Sopher Markowitz, Keshav Balasubramanian, Mehrnoosh Mirtaheri, Sami

Abu-El-Haija, Bryan Perozzi, Greg Ver Steeg, and Aram Galstyan. 2021. Graph

Traversal with Tensor Functionals: A Meta-Algorithm for Scalable Learning. In

International Conference on Learning Representations. https://openreview.net/

forum?id=6DOZ8XNNfGN

[30] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed representations of words and phrases and their compositionality. In

Advances in Neural Information Processing Systems.
[31] John Palowitch, Anton Tsitsulin, BrandonMayer, and Bryan Perozzi. 2022. Graph-

World: Fake Graphs Bring Real Insights for GNNs. arXiv preprint arXiv:2203.00112
(2022).

[32] Adam Paszke, Sam Gross, Francisco Massa, and Others. 2019. PyTorch: An

Imperative Style, High-Performance Deep Learning Library. InAdvances in Neural
Information Processing Systems.

[33] Benedek Rozemberczki, Peter Englert, Amol Kapoor, Martin Blais, and Bryan

Perozzi. 2021. Pathfinder discovery networks for neural message passing. In

Proceedings of the Web Conference 2021. 2547–2558.
[34] Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan

Titov, and Max Welling. 2018. Modeling Relational Data with Graph Convolu-

tional Networks. In Proc. ESWC (LNCS, Vol. 10843), Aldo Gangemi et al. (Eds.).

Springer, 593–607.

[35] Xingyou Song, Sagi Perel, Chansoo Lee, Greg Kochanski, and Daniel Golovin.

2022. Open Source Vizier: Distributed Infrastructure and API for Reliable and

Flexible Blackbox Optimization. In Proc. AutoML 2022 (PMLR, Vol. 188), Isabelle
Guyon et al. (Eds.).

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All

you Need. In Advances in Neural Information Processing Systems.
[37] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In International Con-
ference on Learning Representations.

[38] Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio,

and R Devon Hjelm. 2019. Deep Graph Infomax. In International Conference on
Learning Representations.

[39] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,

Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang

Li, and Zheng Zhang. 2019. Deep Graph Library: A Graph-Centric, Highly-

Performant Package for Graph Neural Networks. arXiv preprint arXiv:1909.01315
(2019).

[40] Minji Yoon, John Palowitch, Dustin Zelle, Ziniu Hu, Russ Salakhutdinov, and

Bryan Perozzi. 2022. Zero-shot Transfer Learning within a Heterogeneous Graph

via Knowledge Transfer Networks. In Advances in Neural Information Processing
Systems, Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho

(Eds.).

[41] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim.

2019. Graph Transformer Networks. In Advances in Neural Information Processing
Systems.

[42] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan

Gan, Zheng Zhang, and George Karypis. 2020. DistDGL: distributed graph neural

network training for billion-scale graphs. In 2020 IEEE/ACM 10th Workshop on
Irregular Applications: Architectures and Algorithms (IA3). IEEE, 36–44.

[43] Qi Zhu, Natalia Ponomareva, Jiawei Han, and Bryan Perozzi. 2021. Shift-Robust

GNNs: Overcoming the Limitations of Localized Graph Training data. In Ad-
vances in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer,

Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34. Curran As-

sociates, Inc., 27965–27977. https://proceedings.neurips.cc/paper/2021/file/

eb55e369affa90f77dd7dc9e2cd33b16-Paper.pdf

[44] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li, and

Jingren Zhou. 2019. AliGraph: a comprehensive graph neural network platform.

Proceedings of the VLDB Endowment 12, 12 (2019), 2094–2105.

https://doi.org/10.1145/3394486.3403302
https://doi.org/10.1145/3366423.3380027
https://openreview.net/forum?id=6DOZ8XNNfGN
https://openreview.net/forum?id=6DOZ8XNNfGN
https://proceedings.neurips.cc/paper/2021/file/eb55e369affa90f77dd7dc9e2cd33b16-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/eb55e369affa90f77dd7dc9e2cd33b16-Paper.pdf

TF-GNN: Graph Neural Networks in TensorFlow Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

A APPENDIX
A.1 Graph Tensor Example
Consider again the example schema and graph provided in Figures 2 and 3. This example graph would be represented with the following

tensors:

● Node feature tensors:

– “items” category, string vector tensor: ["food", "show ticket", "shoes", "book", "flight", "groceries"], with shape [6
]

– “item” price, float tensor: [[22.34, 23.42, 12.99], [27.99, 34.50], [89.99], [24.99, 45.00], [350.00], [45.13,
79.80, 12.35]], with shape [6, None]; an instance of tf.RaggedTensor

– “users” name, string vector tensor: ["Shawn", "Jeorg", "Yumiko", "Sophie"], with shape [4]
– “users” age, int vector tensor: [24, 32, 27, 38], with shape [4] .
– “users” country: int vector tensor: [3, 2, 1, 0], with shape [4] , assuming that the country vocabulary enumeration is dict(
france=0, japan=1, uk=2, usa=3).

● Edge feature tensors:

– “purchased” with

∗ source indices, int vector tensor: [0, 1, 2, 3, 4, 5, 5].
∗ target indices, int vector tensor: [1, 1, 0, 0, 2, 3, 0], both with shape [7] .

– “is-friend” with

∗ source indices, int vector tensor: [1, 2, 3].
∗ target indices, int vector tensor: [0, 0, 0], both with shape [3] .

● Graph-level feature tensors:

– “scores”, float matrix tensor: [[0.45, 0.98, 0.10, 0.25]] with shape [1, 4] .

Note how the edges connectivity is encoded as source and target indices in the arrays of node features. The indices are indicating, for

each edge, which position in the node feature array they are referring to. For example, the fifth values of the ‘purchased/#source‘ and

‘purchased/#target‘ is ‘[4, 2]‘, which link together nodes ‘"flight"‘ and ‘"Yumiko"‘.

A.1.1 GraphTensor Features & Shapes. Shapes of feature tensors, stored in GraphTensor, are crucial for building models in TF-GNN. Each

tensor has a particular shape constraint based on its containing node set, edge set, or context dictionary. The shapes are as follows:

● Node features. All the features associated with a node set share the initial dimension, which is the total number of nodes in the

node set. In the example above, features for node “items” have 6 nodes, and so all their tensor shapes are of the form [6, ...]. In
general, node features will have the [num_nodes, feature...] shape. For example, a simple 64-dimensional embedding of each

node results in shape [6, 64] , while a 224x224 image with 3 color channels stored at each node could result in [6, 224, 224, 3].
● Edge features and indices. Similarly, all the features associated with an edge set shares the leading dimension, which is the total

number of edges in the edge set. This includes the edge indices (rendered above as special features source and target). In the

example, features for edges “purchased”, both of these have shape [7] . If edges have information encoded as features, e.g., an
embedding of shape [32] , then the edge feature tensor would be of shape [7, 32] . In general, edge features will have shape

[num_edges, feature...].
● Context features. Context features apply to one component of the graph. An input graph parsed with a GraphSchema has a single

component, so its context features have shapes [1, ...]. After batching inputs and merging batches of inputs into components of a

single graph (see §3.2), there are multiple components, and their number appears as the outermost dimension in the shape of context

features.

A.2 Graph Tensor API
A.2.1 GraphTensor Interface. The GraphTensor objects you obtain from the parser are lightweight containers for all the dense and ragged

features that are part of an example graph, as well as the adjacency information. These can contain a single example graph or a batch of

multiple graphs. You can access the tensors with an interface similar to that of Python dicts. For example, to access the age feature in the

example, you would do this:

graph.node_sets["users"]["age"]

<tf.Tensor: shape=(4,), dtype=int32 , numpy=array([24, 32, 27, 38], dtype=int32)>

Edge indices are accessed with their "adjacency" property:

graph.edge_sets["purchased"].adjacency.source

<tf.Tensor: shape=(7,), dtype=int32 , numpy=array([0, 1, 2, 3, 4, 5, 5], dtype=int32)>

And similarly for context features:

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ferludin, Eigenwillig, Blais, Zelle, Pfeifer, Sanchez-Gonzalez, et al.

graph.context["scores"]

<tf.Tensor: shape=(1, 4), dtype=float32 , numpy=array([[0.45, 0.98, 0.1 , 0.25]], dtype=float32)>

A.2.2 Creating GraphTensors. Instances of GraphTensor can also be created as constants or from existing tensors. This is useful for writing

unit tests and working in a Colab. To create a GraphTensor, you have to provide the various pieces and features forming the GraphTensor.
This is best described by an example:

graph = tfgnn.GraphTensor.from_pieces(
context=tfgnn.Context.from_fields(

features={
"scores": [[0.45, 0.98, 0.10, 0.25]],

}),
node_sets={

"items": tfgnn.NodeSet.from_fields(
sizes=[6],
features={

"category": ["food", "show ticket", "shoes",
"book", "flight", "groceries"],

"price": tf.ragged.constant([[22.34, 23.42, 12.99],
[27.99, 34.50],
[89.99],
[24.99, 45.00],
[350.00],
[45.13, 79.80, 12.35]]),

}),
"users": tfgnn.NodeSet.from_fields(

sizes=[4],
features={

"name": ["Shawn", "Jeorg", "Yumiko", "Sophie"],
"age": [24, 32, 27, 38],
"country": ["usa", "uk", "japan", "france"],

}),
},
edge_sets={

"purchased": tfgnn.EdgeSet.from_fields(
sizes=[7],
features={},
adjacency=tfgnn.Adjacency.from_indices(

source=("items", [0, 1, 2, 3, 4, 5, 5]),
target=("users", [1, 1, 0, 0, 2, 3, 0]),

)),
"is-friend": tfgnn.EdgeSet.from_fields(

sizes=[3],
features={},
adjacency=tfgnn.Adjacency.from_indices(

source=("users", [1, 2, 3]),
target=("users", [0, 0, 0]),

)),
})

The data types for tfgnn.Context, tfgnn.NodeSet, tfgnn.EdgeSet, and tfgnn.Adjacency are exposed to the API for this construction
to be possible. The classes verify that the ranks and shapes of the tensors are matching each other as constrained by the graph structure (i.e.,

in the same set they share a common prefix dimensions).

A.2.3 Reading GraphTensors. Graphs can be written to disk by encoding them into streams of tf.train.Example protos.
Graphs can be read into a TensorFlow program by decoding these Example protos to GraphTensor objects. To configure the parsing

routine, the GraphSchema message is read and converted to a GraphTensorSpec object which describes the layout of the graph tensor in the

TensorFlow runtime: the list of its various node sets, edge sets, and all the features associated with them and the context features. This data

structure is analogous to the tf.TensorSpec object of TensorFlow. A GraphTensorSpec object is attached to all instances of GraphTensor
and flows along with it. To read a stream of graph tensors, first create a spec, like this:

import tensorflow_gnn as tfgnn

graph_schema = tfgnn.read_schema(schema_path)
graph_spec = tfgnn.create_graph_spec_from_schema_pb(graph_schema)

You can then use the library’s own parser to decode the tf.train.Example features into GraphTensor objects:

data_paths = tf.data.Dataset.list_files (...)
ds = tf.data.TFRecordDataset(data_paths)
ds = ds.batch(batch_size)
parser_fn = functools.partial(tfgnn.parse_example , graph_spec)

TF-GNN: Graph Neural Networks in TensorFlow Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

ds = ds.map(parser_fn)

The dataset ds yields a stream of instances of GraphTensor. The parsing function ingests a batch of serialized graphs (a rank-1 tensor of

strings).

Similarly to tf.io.parse_single_example, there is also a function tfgnn.parse_single_example to parse an unbatched stream of

encoded tf.train.Example strings with GraphTensor instance in them, and you can also run batch on top of that (i.e., you can batch

GraphTensor instances):

data_paths = tf.data.Dataset.list_files (...)
ds = tf.data.TFRecordDataset(data_paths)
parser_fn = functools.partial(tfgnn.parse_single_example , graph_spec)
ds = ds.map(parser_fn)
ds = ds.batch(batch_size)

Typically this step is followed by a feature engineering step that normalizes, embeds and concatenates the various features into a single

embedding for each set, and then batches multiple subgraphs into modified batched GraphTensor instances.
The containers can then be used to pick out various tensors and build a model, or simply to inspect their contents:

for graph in ds.take(10):
tensor = graph.node_sets["item"]["category"]
print(tensor)

You will go through important details of batching and flattening to a single graph below.

A.3 Broadcast and pool operations
Consider how the message passing API could help us to find the total user spending on purchased items. As a preparation step, let’s calculate

for each "item" the latest price value and materialize the result to the graph tensor.

item_features = graph.node_sets["items"].get_features_dict ()
item_features["latest_price"] = item_features["price"][:, :1].values
graph = graph.replace_features(node_sets={"items": item_features})
print(graph.node_sets["items"])

User spending can now be calculated by first computing purchase prices by broadcasting item latest prices to the "purchase" edges. The

total user spendings are computed by sum-pooling purchase prices to their users.

purchase_prices = tfgnn.broadcast_node_to_edges(
graph , "purchased", tfgnn.SOURCE , feature_name="latest_price")

total_user_spendings = tfgnn.pool_edges_to_node(
graph ,
"purchased",
tfgnn.TARGET ,
reduce_type="sum",
feature_value=purchase_prices)

print(total_user_spendings)

Note that API allows to reference feature values either by their name and by their values. For latter it is not required that feature exists in

the graph tensor as soon as its shape is correct.

Message passing is also supported between the graph context and any node set or edge set. As an example, let’s compare individual user

spendings to the maximum amount spent by any users. The code below first max-pool all individual user spendings and then broadcast them

back to "users" to compute fractions.

max_amount_spend = tfgnn.pool_nodes_to_context(
graph , "users", feature_value=total_user_spendings ,
reduce_type="max")

max_amount_spend = tfgnn.broadcast_context_to_nodes(
graph , "users", feature_value=max_amount_spend)

print(total_user_spendings / max_amount_spend)

A.4 Implementing GATv2
The following code snippet shows the essence of how GATv2 [7] has been implemented in TF-GNN. It performs attention from many senders

to one receiver.

In the simplest case, the convolution is applied to an edge set whose target nodes are the receivers, and each receiver attends to the

adjacent source nodes. However, TF-GNN lets you configure this is many ways: (1) The roles of source and target nodes can be swapped by

setting the receiver_tag; for example, consider how an edge set of hyperlinks between HTML docs can reasonably used in either direction.

(2) The sender value can be supplied by the neighbor node, the connecting edge, or both; this is controlled by the sender_*_feature args, at
least one of which must not be None. (3) Attention can also happen with receiver_tag=tfgnn.CONTEXT and either all nodes or all edges in

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ferludin, Eigenwillig, Blais, Zelle, Pfeifer, Sanchez-Gonzalez, et al.

the respective graph component as senders. This comes in handy for attention in the context update of a Graph Network [5] or for readout

of a graph-level feature by smart pooling of node or edge states.

All those case distinctions are handled by the superclass, which passes the suitable broadcast and pool ops as arguments into the actual

GATv2Conv.convolve() method.

class GATv2Conv(tfgnn.keras.layers.AnyToAnyConvolutionBase):

def __init__(self , *,
num_heads , per_head_channels ,
receiver_tag=None , # SOURCE , TARGET or CONTEXT.
receiver_feature=tfgnn.HIDDEN_STATE , # Required.
sender_node_feature=tfgnn.HIDDEN_STATE , # Set None to disable.
sender_edge_feature=None , # Set tfgnn.HIDDEN_STATE to enable.
attention_activation="leaky_relu", activation="relu",
edge_dropout=0., ** kwargs):

Save initializer args.
super ().__init__(

receiver_tag=receiver_tag , receiver_feature=receiver_feature ,
sender_node_feature=sender_node_feature ,
sender_edge_feature=sender_edge_feature ,
extra_receiver_ops={"softmax": tfgnn.softmax}, ** kwargs)

self._num_heads = num_heads
self._per_head_channels = per_head_channels
self._edge_dropout_layer = tf.keras.layers.Dropout(edge_dropout)
self._attention_activation = tf.keras.activations.get(attention_activation)
self._activation = tf.keras.activations.get(activation)
Create the transformations for the query input in all heads.
self._w_query = tf.keras.layers.Dense(per_head_channels * num_heads)
Create the transformations for value input from sender nodes and edges.
self._w_sender_node = self._w_sender_edge = None
if self.takes_sender_node_input:

self._w_sender_node = tf.keras.layers.Dense(per_head_channels * num_heads)
if self.takes_sender_edge_input:

self._w_sender_edge = tf.keras.layers.Dense(
per_head_channels * num_heads ,
use_bias=self._w_sender_node is None) # Avoid two biases.

Create the transformation to attention scores.
self._attention_logits_fn = tf.keras.layers.experimental.EinsumDense(

"...ik,ki ->...i", output_shape=(num_heads ,))

def convolve(self , *,
sender_node_input , sender_edge_input , receiver_input ,
broadcast_from_sender_node , broadcast_from_receiver ,
pool_to_receiver , extra_receiver_ops , training):

Form the attention query for each head.
query = broadcast_from_receiver(self._split_heads(self._w_query(

receiver_input)))
Form the attention value for each head.
value_terms = []
if sender_node_input is not None:

value_terms.append(broadcast_from_sender_node(
self._split_heads(self._w_sender_node(sender_node_input))))

if sender_edge_input is not None:
value_terms.append(

self._split_heads(self._w_sender_edge(sender_edge_input)))
value = tf.add_n(value_terms)
Compute the attention coefficients.
attention_features = self._attention_activation(query + value)
logits = tf.expand_dims(self._attention_logits_fn(attention_features), -1)
attention_coefficients = extra_receiver_ops["softmax"](logits)
attention_coefficients = self._edge_dropout_layer(attention_coefficients)
Apply the attention coefficients to the transformed query.
messages = value * attention_coefficients
pooled_messages = pool_to_receiver(messages , reduce_type="sum")
Apply the nonlinearity.
return self._activation(self._merge_heads(pooled_messages))

The following helpers map forth and back between tensors with ...
- a separate heads dimension: shape [..., num_heads , channels_per_head],
- all heads concatenated: shape [..., num_heads * channels_per_head].
def _split_heads(self , tensor):

extra_dims = tensor.shape[1:-1] # Possibly empty.
new_shape = (-1, *extra_dims , self._num_heads , self._per_head_channels)
return tf.reshape(tensor , new_shape)

def _merge_heads(self , tensor):
extra_dims = tensor.shape[1 : -2] # Possibly empty.
merged_dims = tensor.shape[-2:]
new_shape = (-1, *extra_dims , merged_dims.num_elements ())
return tf.reshape(tensor , new_shape)

A.5 Orchestration
The following code snippet demonstrates a typical use of the Orchestrator. Quick start users need specify only:

TF-GNN: Graph Neural Networks in TensorFlow Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

(1) Training—and optional validation—dataset(s),

(2) Optional feature processing callbacks,

(3) A base Graph Neural Network. (A tf.keras.Model that both accepts and returns a GraphTensor),
(4) A runner.Task.

The snippet assumes a toy GraphSchema. The provided training—and optional validation—dataset(s) must contain either (i) serialized

tf.train.Example protocol buffers to be parse by this schema or (ii) GraphTensor objects compatible with this schema. (As checked by

tfgnn.check_compatible_with_schema_pb.) The toy GraphSchema:

context {
features {

key: "ni"
value: {

dtype: DT_INT64
shape { dim { size: 1 } }

}
}

}
node_sets {

key: "coconut"
value {
}

}
node_sets {

key: "grail"
value {

features {
key: "holiness"
value {

dtype: DT_INT64
shape { dim { size: 1 } }

}
}

}
}
node_sets {

key: "swallow"
value {

features {
key: "speed"
value {

dtype: DT_FLOAT
shape { dim { size: 1 } }

}
}

}
}
edge_sets {

...
}
edge_sets {

...
}
edge_sets {

...
}
edge_sets {

...
}

And orchestration:
import tensorflow as tf
import tensorflow_gnn as tfgnn

from tensorflow_gnn import runner

gtschema = tfgnn.read_schema(".../ schema.pbtxt")
gtspec = tfgnn.create_graph_spec_from_schema_pb(gtschema)

train_ds_provider = runner.TFRecordDatasetProvider(".../ train*")

Extract labels from the graph context , importantly: this lambda
matches the `runner.GraphTensorProcessorFn ` protocol.
def extract_label_fn(gt):

return gt, gt.context["ni"]

Process node features , importantly: this callback is executed as
a part of a `tf.data.Dataset `. (Execution takes place on CPU and
not any accelerator .)
def node_sets_processor_fn(node_set , *, node_set_name):

if node_set_name == "coconut":
return {"empty": tfgnn.keras.layers.MakeEmptyFeature(node_set)}

if node_set_name == "grail":
return {"holiness": tf.keras.layers.Hashing(153)(node_set["holiness"])}

if node_set_name == "swallow":

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ferludin, Eigenwillig, Blais, Zelle, Pfeifer, Sanchez-Gonzalez, et al.

return {"speed": tf.math.log1p(node_set["speed"])}

Set initial node states , importantly: this callback is executed
as a part of modeling. (Learnable weights are included in back
propagation .)
def initial_node_states_fn(node_set , *, node_set_name)

if node_set_name == "coconut":
return node_set["empty"]

if node_set_name == "grail":
return tf.keras.layers.Embedding(153 , 16)(node_set["holiness"])

if node_set_name == "swallow":
return tf.keras.layers.Dense(16)(node_set["speed"])

def model_fn(gtspec):
simple_gnn is a function: Callable [[tfgnn.GraphTensorSpec], tf.keras.Model]. Where
the returned model both takes and returns a scalar `GraphTensor `
for its inputs and outputs.
return tf.keras.Sequential([

tfgnn.keras.layers.MapFeatures(node_sets_fn=initial_node_states_fn),
simple_gnn(gtspec),

])

Binary classification by the root node.
task = runner.RootNodeBinaryClassification(node_set_name="grail")

trainer = runner.KerasTrainer(
strategy=tf.distribute.TPUStrategy (),
model_dir=".../ monty/",
len(train_ds_provider.get_dataset (...)) == 8191 and global_batch_size == 128.
steps_per_epoch=8191 // 128 ,
restore_best_weights=False)

runner.run(
train_ds_provider=train_ds_provider ,
train_padding=runner.FitOrSkipPadding(gtspec , train_ds_provider),
model_fn=model_fn ,
optimizer_fn=tf.keras.optimizers.Adam ,
epochs=4,
trainer=trainer ,
task=task ,
gtspec=gtspec ,
global_batch_size=128 ,
feature_processors=[

extract_label_fn , # Extract any labels first.
tfgnn.keras.layers.MapFeatures(node_sets_fn=node_sets_processor_fn),

])

A.6 Case Study: OGBN-MAG
Full definitions for files used in the case study on OGBN-MAGG

9
(Section 8) are provided here for completeness.

A.6.1 Graph Schema. This is the protocol buffer definition of the Graph Schema used for OGBN-MAG from Figure 5.

node_sets {
key: "author"
value {

features {
key: "#id"
value {

dtype: DT_STRING
}

}
metadata {

filename: "nodes -author.tfrecords@15"
cardinality: 1134649

}
}

}
node_sets {

key: "field_of_study"
value {

features {
key: "#id"
value {

dtype: DT_STRING
}

}
metadata {

filename: "nodes -field_of_study.tfrecords@2"
cardinality: 59965

}
}

}
node_sets {

9

https://ogb.stanford.edu/docs/nodeprop/#ogbn-mag

https://ogb.stanford.edu/docs/nodeprop/#ogbn-mag

TF-GNN: Graph Neural Networks in TensorFlow Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

key: "institution"
value {

features {
key: "#id"
value {

dtype: DT_STRING
}

}
metadata {

filename: "nodes -institution.tfrecords"
cardinality: 8740

}
}

}
node_sets {

key: "paper"
value {

features {
key: "#id"
value {

dtype: DT_STRING
}

}
features {

key: "feat"
value {

dtype: DT_FLOAT
shape {

dim {
size: 128

}
}

}
}
features {

key: "labels"
value {

dtype: DT_INT64
shape {

dim {
size: 1

}
}

}
}
features {

key: "year"
value {

dtype: DT_INT64
shape {

dim {
size: 1

}
}

}
}
metadata {

filename: "nodes -paper.tfrecords@397"
cardinality: 736389

}
}

}
edge_sets {

key: "affiliated_with"
value {

source: "author"
target: "institution"
metadata {

filename: "edges -affiliated_with.tfrecords@30"
cardinality: 1043998

}
}

}
edge_sets {

key: "cites"
value {

source: "paper"
target: "paper"
metadata {

filename: "edges -cites.tfrecords@120"
cardinality: 5416271

}
}

}
edge_sets {

key: "has_topic"
value {

source: "paper"
target: "field_of_study"

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ferludin, Eigenwillig, Blais, Zelle, Pfeifer, Sanchez-Gonzalez, et al.

metadata {
filename: "edges -has_topic.tfrecords@226"
cardinality: 7505078

}
}

}
edge_sets {

key: "writes"
value {

source: "author"
target: "paper"
metadata {

filename: "edges -writes.tfrecords@172"
cardinality: 7145660

}
}

}

A.6.2 Generated Sample Spec. This is the protocol buffer generated for input to a sampling pipeline from the code snippet in Figure 6.

seed_op {
op_name: "SEED ->paper"
node_set_name: "paper"

}
sampling_ops {

op_name: "paper ->paper"
input_op_names: "SEED ->paper"
edge_set_name: "cites"
sample_size: 32
strategy: RANDOM_UNIFORM

}
sampling_ops {

op_name: "(paper ->paper|SEED ->paper)->author"
input_op_names: "paper ->paper"
input_op_names: "SEED ->paper"
edge_set_name: "written"
sample_size: 8
strategy: RANDOM_UNIFORM

}
sampling_ops {

op_name: "author ->institution"
input_op_names: "(paper ->paper|SEED ->paper)->author"
edge_set_name: "affiliated_with"
sample_size: 16
strategy: RANDOM_UNIFORM

}
sampling_ops {

op_name: "author ->paper"
input_op_names: "(paper ->paper|SEED ->paper)->author"
edge_set_name: "writes"
sample_size: 16
strategy: RANDOM_UNIFORM

}
sampling_ops {

op_name: "(author ->paper|SEED ->paper|paper ->paper)->field_of_study"
input_op_names: "author ->paper"
input_op_names: "SEED ->paper"
input_op_names: "paper ->paper"
edge_set_name: "has_topic"
sample_size: 16
strategy: RANDOM_UNIFORM

}

A.6.3 Hyper-parameter optimization. In their Vizier study, our Googler sets up the following hyperparameter search problem:

(1) ‘message_dim‘: the dimension of hidden states for each node. Discrete Search space: ‘[32, 64, 128, 256, 512]‘

(2) ‘reduce_type‘: the strategy to pool the messages from edges to receiver nodes. Categorical Search space: ‘[“sum”, “mean”],

(3) ‘l2_regularization‘: the coefficient of l2 regularization for weights and biases. Continuous (Log) Search Space: ‘[1e-6, 1e-4].

(4) ‘dropout‘: the dropout probability. Discrete Search space: ‘[0.1, 0.2, 0.3]‘

(5) ‘use_layer_normalization‘: Flag to determine whether to utilize layer normalization when updating the node states. Boolean Search

space: ‘[True, False]‘

They use the Adam optimizer with a cosine decay learning rate schedule.

Results.The top-3 performingmodels on the validation set had ‘message_dim= 256‘, ‘reduce_type = “sum”‘, ‘dropout = 0.2‘, ‘use_layer_normalization

= True‘ while the ‘l2_regularization‘ varied in the range [1e-6, 4e-6].

A.6.4 A minimal usage of the TF-GNN Orchestration Layer. This illustrates how to train the model defined in Section 7 using the Orchestrator.

from tensorflow_gnn import runner

train_ds_provider = runner.TFRecordDatasetProvider("/home /...")
feature_processors = [extract_labels , feature_mapping] # See appendix.

TF-GNN: Graph Neural Networks in TensorFlow Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

task = runner.RootNodeMulticlassClassification(
node_set_name="paper", num_classes=349)

trainer = runner.KerasTrainer(
strategy=tf.distribute.MirroredStrategy (), model_dir="/tmp/my_model",
steps_per_epoch=num_training_examples // global_batch_size ,
restore_best_weights=False)

optimizer_fn = functools.partial(
tf.keras.optimizers.Adam ,
learning_rate=tf.keras.optimizers.schedules.CosineDecay (...))

runner.run(
train_ds_provider=train_ds_provider ,
gtspec=tfgnn.create_graph_spec_from_schema_pb(graph_schema),
feature_processors=feature_processors ,
task=task , model_fn=model_fn , # Model as defined above.
trainer=trainer , optimizer_fn=optimizer_fn ,
epochs=20, global_batch_size=global_batch_size)

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

	Abstract
	1 Introduction
	2 Overall design
	3 TF-GNN Heterogeneous Data Model (API Level 1)
	3.1 Graph Schema
	3.2 GraphTensor

	4 Modeling with TF-GNN
	4.1 Data Exchange Ops (API Level 2)
	4.2 Model Building API (API Level 3)
	4.3 Implementing Popular Architectures

	5 Orchestration (API Level 4)
	6 Sampling and Scaling
	6.1 Sampling
	6.2 Training
	6.3 Inference

	7 Related Work
	8 Example Use Case: OGBN-MAG
	8.1 Problem Identification
	8.2 Input Generation
	8.3 Modeling
	8.4 Orchestration
	8.5 Model Tuning

	9 Conclusions
	References
	A Appendix
	A.1 Graph Tensor Example
	A.2 Graph Tensor API
	A.3 Broadcast and pool operations
	A.4 Implementing GATv2
	A.5 Orchestration
	A.6 Case Study: OGBN-MAG

