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Abstract

Cooperative multi-agent reinforcement learning (MARL) has received increasing
attention in recent years and has found many scientific and engineering applica-
tions. However, a key challenge arising from many cooperative MARL algorithm
designs (e.g., the actor-critic framework) is the policy evaluation problem, which
can only be conducted in a decentralized fashion. In this paper, we focus on
decentralized MARL policy evaluation with nonlinear function approximation,
which is often seen in deep MARL. We first show that the empirical decentral-
ized MARL policy evaluation problem can be reformulated as a decentralized
nonconvex-strongly-concave minimax saddle point problem. We then develop a
decentralized gradient-based descent ascent algorithm called GT-GDA that enjoys
a convergence rate of O(1/T ). To further reduce the sample complexity, we pro-
pose two decentralized stochastic optimization algorithms called GT-SRVR and
GT-SRVRI, which enhance GT-GDA by variance reduction techniques. We show
that all algorithms all enjoy anO(1/T ) convergence rate to a stationary point of the
reformulated minimax problem. Moreover, the fast convergence rates of GT-SRVR
and GT-SRVRI imply O(ε−2) communication complexity and O(m

√
nε−2) sam-

ple complexity, where m is the number of agents and n is the length of trajectories.
To our knowledge, this paper is the first work that achieves O(ε−2) in both sample
and communication complexities in decentralized policy evaluation for cooperative
MARL. Our extensive experiments also corroborate the theoretical results of our
proposed decentralized policy evaluation algorithms.

1 Introduction

In recent years, multi-agent reinforcement learning (MARL) has found important applications in many
scientific and engineering fields, such as robotic network [45, 22, 41], sensor network [6, 40, 43], and
power network [5, 11, 15, 16], just to name a few. In MARL, multiple agents observe the current
joint state over a network, perform their own actions based on the current state, and transition to
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the next joint state. Each agent can only observe its local reward, which is a function of the joint
state and actions. One important paradigm in MARL is the cooperative MARL, where the agents
share a common goal to find an optimal global policy to achieve the maximum global accumulative
reward [63, 62, 13, 37]. As in classical reinforcement learning (RL) problems, a key component in
cooperative MARL algorithms is the policy evaluation (PE) problem, whose goal is to evaluate the
expected long-term accumulative reward for a given global policy. In cooperative MARL, agents
share a common value function based on the joint states. As a result, the parameterization of the value
function is the same across all agents. Examples of cooperative MARL include but are not limited to
traffic light control [56], autonomous driving [21], financial trading [26]), etc. In cooperative MARL,
the PE problem emerges as a key step for the agents to find an optimal global policy in MARL tasks
[3, 23]. For example, in the actor-critic algorithmic framework for MARL, the actors conduct the
policy improvement step, while the critics perform the policy evaluation step and estimates the value
function. The overall actor-critic algorithm tries to find an optimal policy by iterating between the
policy evaluation and improvement steps. Thus, developing efficient policy evaluation algorithms is
critical to the success of RL algorithms based on the actor-critic framework.

However, developing efficient PE algorithms for MARL is highly non-trivial. On one hand, the global
accumulative reward is not directly observable in an MARL system. As a result, the PE problem
of MARL can only be solved in a decentralized fahsion. On the other hand, modern MARL tasks
have been increasingly complex and often not directly computable. As a result, MARL often use
highly nonlinear parametric models (e.g., deep neural network (DNN)) for policy approximation.
In this paper, we focus on PE based on nonlinear function approximations due to the following
reasons: 1) linear approximation schemes are based on their pre-defined basis space, which may
not be able to approximate the non-linear value function with high accuracy; 2) non-linear neural
network approximation can handle the cases where the states space that is mixed with continuous and
(infinite) discrete state values; and 3) nonlinear neural network approximation usually have a better
generalization performance than linear approximation [61], [20], [60]. However, it has been shown
that the convergence performance of RL algorithms with nonlinear function approximations is not
guaranteed [49].

In light of the growing importance of MARL, in this paper, we focus on addressing the above
challenges. The key contributions of this paper are summarized as follows:
• To our knowledge, this work is the first to investigate the decentralized PE (DPE) problem for

MARL with nonlinear function approximations. Via the Fenchel’s duality and local reward
decomposition, we first reformulate the DPE problem of MARL as a decentralized non-convex-
strongly-concave minimax saddle point problem. To solve the minimax problem in a decentralized
fashion, we propose a gradient-tracking-based gradient descent-ascent (GT-GDA) algorithm. We
show that GT-GDA enjoys a convergence rate of O(1/T ), which leads to an O(mnε−2) sample
complexity and an O(ε−2) communication complexity, where m is the number of agents, n is the
data size, and ε is the convergence accuracy.

• To further reduce the sample complexity, we develop two variance-reduced algorithms, namely
gradient-tracking stochastic recursive variance reduction (GT-SRVR) algorithm and its variant
with incremental batch size (GT-SRVRI). We show that both algorithms achieve the same commu-
nication complexity O(ε−2) as GT-GDA, but requiring a lower sample complexity O(m

√
nε−2).

• It is worth noting that, in our theoretical analysis, we relax the commonly-used compactness
conditions of the feasible set with some mild assumptions on objectives. Thus, the solutions found
by our algorithms are exactly the stationary points for the original policy evaluation problem. This
result may be of independent interest for general RL problems.

The rest of the paper is organized as follows. In Section 2, we first provide the preliminaries of the
DPE problem of MARL and discuss related works. In Section 3, we first introduce the GT-GDA
algorithm, and then propose two stochastic variance reduced algorithms, namely GT-SRVR and
GT-SRVRI. We present their theoretical properties in Section 4. Section 5 provides numerical results
to verify our theoretical findings, and Section 6 concludes this paper.

2 Problem formulation and related work

In this section, we first introduce the DPE problem formulation in in Section 2.1. Then in Section 2.2,
we review the recent developments of PE algorithms and compare them with our work. In Sec-
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tion 2.3, we highlight the challenges in designing efficient DPE algorithms with nonlinear function
approximation and the significance of our work.

2.1 Problem formulation of decentralized policy evaluation for MARL

Consider a multi-agent network system G = (N ,L), where N and L denote the sets of agents and
edges, respectively, with |N | = m. In the system, the agents cooperatively perform a learning task.
The agents can communicate with each other through edges in L. An MARL problem is formulated
based on the multi-agent Markov decision process (MDP) framework, which is characterized by a
quintuple (S,A,Pa

ss′ , {Ri(s,a)}mi=1, ζ), where S andA are the state and action spaces, respectively;
s ∈ S and a ∈ A are joint state and action; Pa

ss′ is the transition probability from state s to state s′

after taking action a;Ri(s,a) is the local reward received by agent i after taking action a in state s;
and ζ ∈ (0, 1) is a discount factor. Both the joint state s and action a are available to all agents, while
the local rewardRi is private to agent i. In a multi-agent system, the global reward function is defined
as the average of the local rewards 1

m

∑m
i=1Ri(s,a). Moreover, a joint policy π specifies sequential

decision rules for all agents. Policy π(a|s) is the conditional probability of taking joint action a
given state s. The goal of PE is to estimate the value function of a given policy π, which is defined as
the long-term discounted accumulative reward: Vπ(s0) = E

[
1
m

∑∞
t=0 ζ

t
∑m
i=1Ri(st,at)|s0, π

]
,

where the expectation is taken over all possible state-action trajectories and initial states.

To determine Vπ(·), one of the most effective methods is the temporal-difference (TD) learning algo-
rithm, which focuses on solving the Bellman equation for Vπ(·): V(s)=T πV(s), 1

m

∑m
i=1Rπi (s)+

ζ
∑
s′∈S Pπss′V(s′), where T π denotes the Bellman operator,Rπi (s) = Ea∼π(·|s)R(s,a) andPπss′ =

Ea∼π(·|s)Pass′ However, Pπss′ is unknown in MARL and the size of the state space S could be
infinite. To address this challenge, a widely adopted approach is to approximate Vπ(·) by a
function Vθ(·) parameterized by θ ∈ Rp. According to the formulation in [38, 50, 10, 9, 30],
the Bellman equation can be solved by minimizing the following mean-squared projected bell-
man error (MSPBE): MSPBE(θ) , 1

2

∥∥Es∼dπ
[(
T πVθ(s)− Vθ

)
∇θVθ(s)>

]∥∥2

K−1θ
, where Kθ =

Es∼dπ [∇θVθ(s)∇θVθ(s)>] ∈ Rp×p and dπ is the stationary distribution of the MDP under policy π.
From the Fenchel’s duality ‖x‖2A−1 = maxy∈Rp 2〈x,y〉 − y>Ay, we can reformulate the MSPBE
minimization problem as the following primal-dual minimax problem:

min
θ∈Rp

max
ω∈Rp

L(θ,ω) , E
[
〈δ · ∇θVθ(s),ω〉 − 1

2
ω>[∇θVθ(s)∇θVθ(s)>]ω

]
, (1)

where the expectation is taken over s ∼ dπ(·), a ∼ π(·|s), s′ ∼ Pa
s·, and δ = 1

m

∑m
i=1Ri(s,a) +

ζVθ(s′) − Vθ(s). In practice, we only have access to a finite dataset with n-step trajectories
D =

{
(st,at, {Ri(st,at)}ni=1, st+1)

}n
t=0

. By replacing the unknown expectation with the finite
sample average, we have the following empirical minimax problem:

min
θ∈Rp

max
ω∈Rp

F (θ,ω) =
1

n

n∑
t=1

〈δt · ∇θVθ(st),ω〉 −
1

2
ω>K̂θω, (2)

where δt , 1
m

∑m
i=1Ri(st,at) + ζVθ(st+1) − Vθ(st) and K̂θ , 1

n

∑n
t=1∇θVθ(st)∇θVθ(st)

>.
In this paper, we assume that both Kθ and its empirical estimate K̂θ are positive definite for all
θ. Define J(θ) , F (θ,ω∗) = maxω∈Rp F (θ,ω), where ω∗ = arg maxω∈Rp F (θ,ω). J(θ) can
be viewed as the finite empirical version of MSPBE. Here, we aim to minimize J(θ) by finding a
stationary point of F (θ,ω). Recall that in MARL, the local reward is only observable for each indi-
vidual agent. Thus, it is hard to obtain the global reward 1

m

∑m
i=1Ri(st,at) and δt in a multi-agent

network. To address this challenge, we define δi,t = Ri(st,at) + ζVθ(st+1)− Vθ(st) and decom-
pose the minimax problem in (2) as follows: minθ∈Rp maxω∈Rp F (θ,ω) = 1

m

∑m
i=1 Fi(θ,ω) =

1
mn

∑m
i=1

∑n
t=1 fit(θ,ω), where fit(θ,ω) , 〈δi,t ·∇θVθ(st),ω〉− 1

2ω
>[∇θVθ(st)∇θVθ(st)

>]ω.
We call this step as local reward decomposition. In cooperative MARL, a key challenge is that the
PE problem in (2) has to be solved in a decentralized fashion, which is due to the fact that i) the
locally observed rewards are private and cannot be shared with the other agents/central server; ii) it is
difficult to set up a central sever in many MARL applications while decentralized setting is more
flexible (e.g.,wireless network [59], UAV network [7]); and iii) the central server is vulnerable to
cyber-attacks and would be a significant communication bottleneck [57], [27]. To solve Problem (2)
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in a decentralized fashion, we can rewrite it in the following equivalent form:

min
{θi}mi=1

max
{ωi}mi=1

1

m

m∑
i=1

Fi(θi,ωi) =
1

mn

m∑
i=1

n∑
t=1

fit(θi,ωi),

subject to θi = θj ,ωi = ωj , ∀(i, j) ∈ L, (3)

where θi and ωi are the local copies of the original primal-dual parameters at agent i. In (3), the
equality constraint ensures that the local copies at all nodes are equal to each other, so the formulation
is also referred to as the “consensus form.”

Clearly, Problems (2) and (3) are equivalent. For a fixed θ, each local function Fi(θi, ·) is a strongly
concave function of ω. For a fixed ω, Fi(·,ω) is a non-convex function of θ. Thus, Problem (3) is a
decentralized non-convex-strongly-concave minimax consensus optimization problem. In this paper,
we adopt two complexity metrics that are widely used in the decentralized optimization literature
(e.g., [47]) to measure the efficiency of an algorithm:

Definition 1 (Sample Complexity). The sample complexity is defined as the total number of incre-
mental first-order oracle (IFO) calls required across all nodes until algorithm converges, where one
IFO call evaluates a pair of (fit(θ,ω),∇fit(θ,ω)) at node i.

Definition 2 (Communication Complexity). The communication complexity is defined as the total
rounds of communications required until algorithm converges, where each node can send and receive
a p-dimensional vector with its neighboring nodes in one communication round.

2.2 Related work on policy evaluation

1) The tabular approach: The study of MARL under the MDP formulation traces its roots to the
seminal work by [29]. Motivated by this formalization, several methods have been developed to solve
and analyze MARL problems, including [24, 54, 17, 1], etc. However, most of these early works
approximate the value function in a tabular form, which only works for cases where the state and
action spaces are relatively small. For complex MARL tasks where the state space is large or even
infinite, the tabular approach becomes intractable.

2) Policy evaluation with linear function approximation: To address limitation in tabular ap-
proaches for MARL, the work in [25] proposed to estimate the value function with a linear approx-
imation (i.e., V(s) ≈ φ(s)>θ,θ ∈ Rp, where φ : S → Rp is a feature mapping) and developed a
distributed gradient temporal-difference (DGTD) algorithm. However, this work only considered
asymptotic convergence analysis and required diminishing step-sizes to ensure convergence. In [12],
the authors proposed a distributed homotopy primal-dual algorithm (DHPD) for the PE problem
in MARL. They also cast MSPBE minimization as a stochastic primal-dual optimization problem,
where the objective is convex in primal and strongly-concave in dual. By using an adaptive restarting
scheme, DHPD achieves an O(1/T ) convergence rate in finding stationary points. The work in [13]
developed a distributed consensus-based TD(0) algorithm, which integrates the network consensus
step and local TD(0) updates. They provided a finite-time analysis and showed a convergence rate
of O(1/T ). To further improve convergence, the work in [51] proposed a primal-dual distributed
incremental aggregated gradient (PD-DistIAG) method to integrate gradient-tracking and incremental
aggregated gradient methods to achieve linear convergence. However, a major limitation of the linear
approximation approach is that it is not applicable for nonlinear MARL models (e.g., DNN).

3) Policy evaluation with nonlinear function approximation (single-agent): In the literature, PE
with nonlinear approximation is by far only limited to single-agent RL. For policy evaluation, linear
and nonlinear approximation approaches differ fundamentally in the following aspects. Under linear
approximation for policy evaluation, the problem boils down to finding a solution for a linear equation
system, which is in essence similar to solving a relatively easy strongly-convex optimization problem
[14], [52], [48], [46]. In stark contrast, under non-linear approximation for policy evaluation, the
problem possesses a non-convex-strongly-concave structure, and it is far more challenging to find a
saddle point solution. To our knowledge, the work in [4] was the first to study the PE problem with
nonlinear approximations and developed a nonlinear TD algorithm. However, the proposed algorithms
adopted two-timescale step-sizes2, resulting in a slow convergence performance. Recently, the work

2A primal-dual algorithm is a two-timescale if γt/ηt → 0 or γt/ηt → ∞ as t→ ∞, where γt and ηt denote
the primal and dual step-sizes at time t, respectively.
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Table 1: Comparisons among existing policy evaluation algorithms, where m is the number of agents;
n is the size of dataset; ε2 is the convergence error. Our proposed algorithms are marked in bold.

Algorithm Reference Decentralized Nonlinear Convex Sample Commun.
Multi-Agent Approxi. Sets1 Complex. Complex.

STSG [42] 7 3 3 O(ε−4) -
ASTSG 7 3 3 O(ε−3) -
DHPD [12] 3 7 3 O(mnε−2) O(ε−2)

PD-DistIAG [51] 3 7 7 O(m log ε−2) O(log ε−2)
APP-SAG [44] 3 7 7 O(m log ε−2) O(log ε−2)

DTDT [53] 3 7 7 O(m log ε−2) O(log ε−2)
GT-GDA Theorem 1 3 3 7 O(mnε−2) O(ε−2)
GT-SRVR Theorem 3

3 3 7 O(m
√
nε−2) O(ε−2)GT-SRVRI Theorem 4

1 The feasible parameter spaces are required to be closed convex sets.

in [50] showed that PE with nonlinear approximation in RL is equivalent to a non-convex-strongly-
concave minimax optimization problem. To find a stationary point for such minimax problem, they
proposed a non-convex primal-dual gradient with variance reduced (nPD-VR) algorithm. However,
their algorithm requires an O(1/m) step-size, where m is the size of the dataset. This is problematic
in cases with a large transition dataset. More recently, the authors of [42] proposed two single-time
scale first-order stochastic algorithms for the nonconvex-strongly-concave minimax optimization.
These two algorithms utilized stochastic gradient with momentum and variance-reduced momentum
[8], and achieved O(1/

√
T ) and O(1/T 2/3) convergence rates, respectively. However, diminishing

step-sizes are required in these two algorithms, which do not work well in practice.

4) Relations with decentralized nonconvex-strongly-concave minimax optimization: As men-
tioned earlier, the PE problem of cooperative MARL can be reformulated as a non-convex-strongly-
concave optimization (NCSC) problem (see details in Problem (2). Thus, our work is also closely
related to the area of decentralized NCSC minimax optimization. To efficiently solve the decentral-
ized minimax problem in Problem (2), our proposed algorithms are primal-dual-based algorithms,
where we update the two variables simultaneously rather than alternatively. Thus, our proposed
algorithms are much simpler and significantly different from existing related works that require
to solve maximization subproblem for dual variable in each iteration [36]. Further, we propose a
“hybrid” scheme that non-trivially integrates variance reduction and gradient tracking techniques
for both primal and dual variables. Compared with algorithms in [31],[32], with simple stochastic
gradient updates and variable mixing, our proposed scheme enjoys much improved theoretical and
numerical performances. Also, we note that the theoretical analysis of the more sophisticated hybrid
scheme in the PE problem of cooperative MARL is more involved compared to existing works and
necessitates new proof techniques.

2.3 Significance of our work and challenges of DPE with nonlinear function approximation

To our knowledge, our work is the first to solve the DPE problem with nonlinear function approxi-
mation for MARL. However, such nonlinear approximation imposes several significant challenges
on algorithm development and analysis. As discussed in Section 2.1, we propose to reformulate the
DPE problem as a decentralized nonconvex-strongly-concave minimax optimization problem. In the
literature, although a few works [32, 31, 34] have studied similar decentralized minimax problem,
their variable updates rely on either stochastic or full gradients, which are not sample/communication-
efficient for MARL. To address these limitations, we first propose two decentralized variance-reduced
algorithms for solving the nonconvex-strongly-concave DPE minimax problem, for which establishing
the convergence rates is highly challenging. Second, we adopt the gradient tracking (GT) technique
to reduce network consensus error. Under nonlinear function approximation, our algorithms need to
track the gradients for both primal and dual variables. However, such “double gradient tracking” intro-
duces new constraints on algorithm design. Third, many of the existing nonconvex-strongly-concave
minimax optimization methods (e.g. [42, 50]) require prior knowledge of the compact domain of
model variables, which cannot be assumed in DPE for MARL. Such unboundedness in DPE creates
new challenges and necessitates new proof techniques in our algorithm analysis. To conclude this
section, we summarize all related work in Table 1.

5



Algorithm 1 GT-GDA Algorithm at Agent i.
.

1: Set prime-dual parameter pair (θi,0,ωi,0) = (θ0,ω0).
2: Calculate local gradients as pi,0 =∇θFi(θi,0,ωi,0), and di,0 =∇ωFi(θi,0,ωi,0);
3: for t = 1, · · · , T do
4: Update local parameters (θi,t+1,ωi,t+1) as in (6);
5: Calculate local gradients (vi,t+1,ui,t+1) as in (4);
6: Track global gradients (pi,t+1,di,t+1) as in (5);
7: end for

3 Gradient-tracking gradient descent ascent algorithm.

In this section, we first present a gradient-tracking gradient descent ascent (GT-GDA) method for
solving the DPE problem in (3) for MARL, and then provide the its theoretical results.

1) The Algorithm: For the consensus problem in (3), a popular approach is to let agents aggregate
their neighbor information through a consensus weight matrix M ∈ Rm×m [39, 51]. Let [M]ij
denote the element in the i-th row and the j-th column in M. M satisfies the following properties:
(a) Doubly stochastic:

∑m
i=1[M]ij =

∑m
j=1[M]ij = 1; (b) Symmetric: [M]ij = [M]ji, ∀i, j ∈ N ;

and (c) Network-Defined Sparsity: [M]ij > 0 if (i, j) ∈ L; otherwise [M]ij = 0, ∀i, j ∈ N . The
above properties imply that the eigenvalues of M are real and can be sorted as −1 < λm(M) ≤
· · · ≤ λ2(M) < λ1(M) = 1. We define the second-largest eigenvalue in magnitude of M as
λ , max{|λ2(M)|, |λm(M)|}. Our GT-GDA algorithm for each agent i is illustrated in Algorithm 1.
Specifically, at the t-th iteration, agent i first calculates the local full gradients as follows:

vi,t = ∇θFi(θi,t,ωi,t), ui,t = ∇ωFi(θi,t,ωi,t). (4)

Note that vi,t and ui,t only contain the gradient information of the local objective function Fi(θ,ω).
Thus, merely updating with vi,t and ui,t cannot guarantee the convergence of the global objective
function F (θ,ω). To address this challenge, we introduce two auxiliary variables, pi,t and di,t. The
agent updates the two variables by performing the following local weighted aggregation:

pi,t=
∑
j∈Ni

[M]ijpj,t−1 + vi,t − vi,t−1, di,t=
∑
j∈Ni

[M]ijdj,t−1 + ui,t − ui,t−1, (5)

where Ni , {j ∈ N , : (i, j) ∈ L} denotes the set of agent i’s neighbors. Technically, pi,t
and di,t track the directions of global gradients. With some derivations, it can be shown that∑
i∈N pi,t=

∑
i∈N ∇θFi(θi,t,ωi,t) and

∑
i∈N di,t=

∑
i∈N ∇ωFi(θi,t,ωi,t). Lastly, each agent

updates local parameters following the conventional decentralized gradient descent and ascent steps:

θi,t+1 =
∑
j∈Ni

[M]ijθj,t − γpi,t, ωi,t+1 =
∑
j∈Ni

[M]ijωj,t + ηdi,t, (6)

where the constants γ and η are the step-sizes for individual primal and dual variables, respectively.

2) Theoretical Results of GT-GDA: In this section, we will establish the convergence behaviors of
the proposed GT-GDA algorithm. Toward this end, we first state several assumptions as follows:
Assumption 1. The function F (θ,ω) = 1

m

∑m
i=1 Fi(θ,ω) and J(θ) = maxω∈Rp F (θ,ω) satisfy:

(a) (Boundness from Below): There exists a finite lower bound J∗ = infθ J(θ) > −∞;

(b) (Lipschitz Smoothness): Local objective function Fi(θ, ·) isLF -Lipschitz smooth, i.e., there exists
a positive constant LF such that the gradient ∇Fi(θ,ω) = [∇θFi(θ,ω)>,∇ωFi(θ,ω)>]>

satisfies ‖∇Fi(θ,ω)−∇Fi(θ′,ω′)‖2≤L2
F ‖θ−θ′‖2+L2

F ‖ω−ω′‖2,∀ θ,θ′,ω,ω′ ∈ Rp, i ∈ [m];

(c) (Strong Concavity in Dual): Local objective function Fi(θ, ·) is µ-strongly concave for fixed
θ ∈ Rp, i.e., there exists a positive constant µ such that ‖∇ωFi(θ,ω)−∇ωFi(θ,ω′)‖ ≥
µ‖ω−ω′‖,∀ θ,ω,ω′∈Rp, i∈ [m]

(d) (Bounded Dual Maximizer): For any primal variable θ ∈ Rp, its associated dual maximizer
ω∗(θ) , arg maxω∈Rp F (θ,ω) is bounded, i.e., ‖ω∗(θ)‖<∞;

(e) (Bounded Gradient at Maximum): The partial derivative at maximum point ∇θF (θ,ω∗(θ)) is
bounded, i.e., ‖∇θF (θ,ω∗(θ))‖ <∞, ∀ θ ∈ Rp.
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In these assumptions, (a) and (b) are standard in literature. It can be verified that (c) holds when
K̂θ is positive definite; (d)-(e) guarantee that ∇J(θ) = ∇θF (θ,ω∗(θ)) (see Lemma 10 in the
supplementary material). Note that most of the existing works [28, 42] adopt the compactness
assumption to ensure such gradient equivalence. The compactness assumption restricts the feasible
parameter space as a closed convex set. Although we also make these boundedness assumptions,
the convergence performance of our algorithm is independent of the upper bound of ‖ω∗(θ)‖ and
‖∇θF (θ,ω∗(θ))‖. To quantify the convergence rate, we propose to use the following new metric,
which is the key to the success of establishing all convergence results in this paper:

Mt ,‖∇J(θ̄t)‖2+2‖ω∗t −ω̄t‖2+
1

m

m∑
i=1

(
‖θi,t−θ̄t‖2+‖ωi,t−ω̄t‖2

)
, (7)

where ω∗t denotes ω∗(θ̄t) = arg maxω∈Rp F (θ̄t,ω). The first term in (7) measures the convergence
of primal variable θ: ‖∇J(θ̄t)‖2 = 0 indicates that θ̄t is a first-order stationary point for J(·). The
second term in (7) measures ω̄t’s convergence to the unique maximizer ω∗t for F (θ̄t, ·). The last term
in (7) is the average consensus error of local copies. Thus, as Mt → 0, we have that the algorithm
reaches a consensus first-order stationary point of the original MSPBE problem. In comparison, the
single-agent PE problem [42] does not have the last four consensus error terms over multi-agents,
and so it is dramatically different from our DPE problem. Also, for the linear approximation PE
problem in [51], the first term is replaced with ‖θ̄t − θ∗‖2 as it can be viewed as a strongly convex
optimization, while the other terms are the same. Based on the metric in (7), we have the following:

Theorem 1 (Convergence of GT-GDA). Under Assumption 1, if the step-sizes satisfy that κ , γ/η ≤
µ2/13L2

F and η ≤ min{k1, k2, k3, k4}, then GT-GDA has the following convergence result:

1

T + 1

T∑
t=0

E[Mt]≤
2E[P0−J∗]

min{1, L2
F }(T+1)γ

,

where Pt is a potential function defined as:

Pt,J(θ̄t)+
8γL2

F

µη
‖ω̄t−ω∗t ‖2+

1

m

m∑
i=1

‖θi,t−θ̄t‖2+‖ωi,t−ω̄t‖2+γ‖pi,t−p̄t‖2+η‖di,t−d̄t‖2,

and the constants in the step-size η are as follows:

k1 =
13L2

F

2µ2

(
LF +

L2
F

µ
+ (1− λ)

)
, k2 =

13L2
F

µ2
(
1/2 + 1/(1− λ)2

) , k3 =
(1− λ)

6µ(1 + 1/κ)
,

k4 =
26(1− λ)L2

F

(µ2 + 144L4
F + 4L2

Fµ
2 +

48µ2L2
F (1+1/κ)

1−λ )
.

Remark 1. In Theorem 1, the step-sizes and convergence rate depend on by the network topology.
For a sparse network, λ is close to (but not exactly) one (recall that λ = max{|λ2|, |λm|} < 1).
Therefore, k2 and k4 are close to zero in this case. Also, the ratio of the step-sizes κ , γ/η is
required to be a non-zero constant. Either a too small or a too large value of κ might affect the
primal or dual convergence of the algorithm. This restriction is due to the consensus error in the
decentralized training. In practice, one can first determine κ and then select η and γ.

From Theorem 1, we immediately have the following complexity results for GT-GDA:
Corollary 2. Under the same conditions in Theorem 1, to achieve an ε2-stationary solution, i.e.,

1
T+1

∑T
t=0 E[Mt] ≤ ε2, the total communication rounds are on the order of O(ε−2) and the total

samples evaluated across the network system is on the order of O(mnε−2).

4 Gradient-tracking stochastic variance reduction algorithms

In the GT-GDA algorithm, agents need to evaluate local full gradients in each iteration, which may
result in a high sample complexity when the trajectory length n is large in MARL. This limitation
motivates us to leverage the stochastic recursive variance-reduced approach (e.g., [55]) to achieve
low sample complexity in MARL decentralized policy evaluation.
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Algorithm 2 GT-SRVR/GT-SRVRI Algorithm at Agent i.
. If GT-SRVR: |Ri,t|=n, |Si,t|=q; If GT-SRVRI: |Ri,t|=min{(t/q+1)αq, cεε

−2, n}, |Si,t|=q.
1: Set prime-dual parameter pair (θi,0,ωi,0) = (θ0,ω0).
2: Draw Ri,0 samples without replacement and calculate local stochastic gradient estimators as

pi,0 =vi,0 = 1
|Ri,0|

∑
j∈Ri,0∇θfij(θi,0,ωi,0), and di,0 =ui,0 = 1

|Ri,0|
∑
j∈Ri,0∇ωfij(θi,0,ωi,0);

3: for t = 1, · · · , T do
4: Update local parameters (θi,t+1,ωi,t+1) as in (6);
5: Calculate local gradient estimators (vi,t+1,ui,t+1) as in (8);
6: Track global gradients (pi,t+1,di,t+1) as in (5);
7: end for

1) The Algorithms: We first propose an algorithm called gradient-tracking stochastic recursive
variance reduction (GT-SRVR) algorithm. Different from GT-GDA, in iteration t and at agent i,
GT-SRVR estimates the local gradient with the following estimators:

vi,t =

{
∇θFi(θi,t,ωi,t), if mod(t, q) = 0,

vi,t−1+ 1
|Si,t|

∑
j∈Si,t

(
∇θfij(θi,t,ωi,t)−∇θfij(θi,t−1,ωi,t−1)

)
, otherwise, (8a)

ui,t =

{
∇ωFi(θi,t,ωi,t), if mod(t, q) = 0,

ui,t−1+ 1
|Si,t|

∑
j∈Si,t

(
∇ωfij(θi,t,ωi,t)−∇ωfij(θi,t−1,ωi,t−1)

)
, otherwise, (8b)

where Si,t is a local subsample at the tth iteration for agent i. In (8), the algorithm evaluates full
gradients∇Fi(θi,t,ωi,t) only every q steps. For other iterations with mod(t, q) 6= 0, the algorithm
estimates the local gradients with a mini-batch of gradients 1

|Si,t|
∑
j∈Si,t∇ωfij(θi,t,ωi,t) and a

recursive correction term ui,t−1− 1
|Si,t|

∑
j∈Si,t∇ωfij(θi,t−1,ωi,t−1). It will be shown later that,

thanks to the periodic full gradient (when mod(t, q) = 0) and recursive correction term, GT-SRVR is
able to achieve the same convergence rate and communication complexity as GT-GDA. Moreover,
because of the Si,t subsampling, GT-SRVR has a lower sample complexity than GT-GDA. The full
description of GT-SRVR is shown in Algorithm 2.

Note that in GT-SRVR, full gradients are still required for every q steps, which may still incur a high
computational cost. Also, in the initialization phase (before the main loop), agents need to evaluate
full gradients, which could be time-consuming. To address these limitations, we propose an enhanced
version of GT-SRVR called GT-SRVR with Incremental batch size (GT-SRVRI). Specifically, we
modify the gradient estimators in (8a) and (8b) for the tth iteration with mod(t, q) = 0 as follows :

vi,t =
1

|Ri,t|
∑
j∈Ri,t

∇θfij(θi,t,ωi,t), ui,t =
1

|Ri,t|
∑
j∈Ri,t

∇ωfij(θi,t,ωi,t), (9)

where Ri,t is a subsample set (sampling without replacement), whose size is chosen as |Ri,t| =
min{(t/q + 1)αq, cεε

−2, n}. Here, α > 0 is a constant, ε is a desired convergence error, and cε > 0
is a constant that depends on ε. Our design of |Ri,t| is motivated by the fact that the periodic
full gradient evaluation only plays an important role in the later stage of the convergence process
for achieving high accuracy. Later, we will see that under some mild assumptions and parameter
settings, GT-SRVRI has similar convergence performance as GT-SRVR. The full description of
GT-SRVR/GT-SRVRI is shown in Algorithm 2.
Remark 2. In GT-SRVRI, we increase the batch-size as the number of iterations increases. We note
that the work in [18] also proposed a batch-size adaptation scheme based on the historical gradient
information. Although similar idea can be also adopted in our algorithms, it requires the exact value
of the stochastic gradient variance σ2 for batch-size selection as well as extra memory cost to store
the history-gradient information, which is less practical compared to our approach.

2) Theoretical Results of GT-SRVR/GT-SRVRI: Now, we establish the convergence performance
of GT-SRVR/GT-SRVRI. First, we replace Assumption 1(b) with the following individual Lipschitz
smoothness assumption:
Assumption 2 (Lipschitz smoothness). The function fij(θ, ·) is Lf -Lipschitz smooth, i.e., there exists
a constant Lf > 0, such that the gradient ∇fij(θ,ω)= [∇θfij(θ,ω]>,∇ωfij(θ,ω)>)> satisfies
‖∇fij(θ,ω)−∇fij(θ′,ω′)‖2≤L2

f‖θ−θ′‖2+L2
f‖ω−ω′‖2, ∀ θ,θ′,ω,ω′ ∈ Rp, i ∈ [m], j ∈ [n].
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We note that Assumption 2 is a common assumption for stochastic variance reduced methods
[55, 47, 42]. Further, we make the following assumption only for GT-SRVRI algorithm:
Assumption 3 (Bounded Variance). There exists a constant σ2 > 0, such that E‖∇fij(θ,ω) −
∇Fi(θ,ω)‖2 ≤ σ2, ∀ θ,ω,∈ Rp, i ∈ [m], j ∈ [n].

With the metric in (7), the convergence of GT-SRVR/GT-SRVRI can be characterized as follows:
Theorem 3 (Convergence of GT-SRVR). Under Assumption 1 (a)&(c)-(e) and Assumption 2, if the
step-sizes satisfy κ , γ/η ≤ µ2/13L2

f and η ≤ min{k5, k6, k7, k8}, then we have the following
convergence result for GT-SRVR:

1

T + 1

T∑
t=0

E[Mt]≤
2E[p0−J∗]

min{1, L2
f}(T + 1)γ

,

where pt is the potential function defined as:

pt,J(θ̄t)+
8γL2

f

µη
‖ω̄t−ω∗t ‖2+

1

m

m∑
i=1

(
‖θi,t−θ̄t‖2+‖ωi,t−ω̄t‖2+γ‖pi,t−p̄t‖2+η‖di,t−d̄t‖2

)
,

and the constants in the step-size η are:

C0 =
1

1− λ
(1 +

1

κ
) +

1

2
+

18L2
f

µ2
, k5 =

13L2
f

µ2
(
1/2 + 1/(1− λ)2

) , k6 =
1

8µC0
,

k7 =
26(1− λ)L2

f

(µ2 + 144L4
f + 4L2

fµ
2 + 64C0L2

fµ
2)
, k8 =

13L2
f

2µ2

(
Lf +

L2
f

µ
+ (1− λ)

)
.

Theorem 4 (Convergence of GT-SRVRI). Under Assumption 1 (a)&(c)-(e), Assumption 2, and
the same parameter settings and potential function as stated in Theorem 3, we have the following
convergence result for GT-SRVRI:

1

T+1

T∑
t=0

E[Mt]≤
2E[p0−pT+1]

min{1, L2
f}(T+1)γ

+
1

min{1, L2
f}
×

(12

λ
(1+

1

κ
)+4+

144L2
f

µ2

)(σ2ε2

cε
+
σ2C(n, q, α)

T+1

)
, (10)

where the constant C(n, q, α) is defined as:

C(n, q, α) ,

{
1

1−α (nq )( 1
α−1)− α

1−α , if α>0 and α 6=1

log(nq )+1, if α=1.

Remark 3. In Theorems 3 and 4, it can be seen that the step-sizes and convergence performance
depend on the network topology and the ratio of the step-sizes κ. Additionally, the convergence
performance of GT-SRVRI is affected by the constant C(n, q, α), which depends on the inexact
gradient estimation in tth iteration with mod(t, q) = 0.

Following from Theorems 3 and 4, we immediately have the sample and communication complexity
results for GT-SRVR/GT-SRVRI:
Corollary 5. Under the conditions in Theorems 3 and 4, and with q =

√
n, to achieve an ε2-

stationary solution (i.e., 1
T+1

∑T
t=0 E[Mt] ≤ ε2) with

√
nε2 ≤ 1, we have:

• for GT-SRVR, the total communication rounds are O(ε−2) and the total samples evaluated across
the network are O(m

√
nε−2));

• GT-SRVRI with α ≥ 1, the total communication rounds are bounded by O(log(
√
n)ε−2) and the

total samples evaluated across the network are bounded by O(m log(
√
n)
√
nε−2)).

Remark 4. From Corollary 5, we can see that GT-SRVR has the same communication complexity
as GT-GDA, but the sample complexity is lower than GT-GDA. For GT-SRVRI with α ≥ 1, the
upper bounds of both the complexities have an additional factor log(

√
n) factor compared with GT-

SRVR. Although the theoretical complexity bounds for GT-SRVRI is weaker than GT-SRVR (due to
abandoning full gradients completely), we show through experiments in Section 5 that GT-SRVRI
empirically outperforms than GT-SRVR in practice.
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Figure 1: MARL decentralized policy evaluation performance comparison.

5 Experimental Results

In this section, we demonstrate the performance of our proposed GT-GDA and GT-SRVR/GT-SRVRI
algorithms for cooperative MARL decentralized policy evaluation. We adopt the environment of
Cooperative Navigation task in [33], which consists of m agents inhabiting a two-dimensional world
with continuous space and discrete time. In the system, agents cooperate with each other to reach
their own landmarks. Due to space limitation, the detailed experimental settings and different network
topologies are relegated to the supplementary material.

Since there is no existing work in the literature on solving decentralized policy evaluation with
nonlinear function approximation for MARL, we compare our algorithms with two stochastic
algorithms as simple baselines in our experiments: 1) Decentralized Stochastic Gradient Descent
Ascent (DSGDA) and 2) Gradient-Tracking-Based Stochastic Gradient Descent Ascent (GT-SGDA)
(see the supplementary material for their detailed definitions). We initialize the parameters from the
normal distribution for all the algorithms. The learning rates is fixed as γ = 10−1, η = 10−1.

From Figure 1(a) and 1(b), it can be seen that GT-SRVRI converges much faster than other algorithms
(GT-GDA, GT-SRVR, GT-SGD and DSGD) in terms of the total number of gradient evaluations.
We can also observe that both GT-SRVR and GT-SRVRI have better sample efficiency in attaining
high accuracy (error smaller than 10−9) than the other three algorithms thanks to the variance-
reduced techniques. As is shown in Figure 1(c) and 1(d), GT-SRVR and GT-SRVRI have the same
communication cost as GT-GDA, which is much lower than those of DSGDA and GT-SGDA. Our
experimental results confirm our theoretical analysis that GT-SRVR/GT-SRVRI enjoy low sample
and communication complexities.

6 Conclusion

In this paper, we studied the decentralized MARL policy evaluation problem with nonlinear function
approximation. We first reformulated the problem as a decentralized non-convex-strongly-concave
minimax problem and developed a gradient tracking based algorithm called GT-GDA. We showed
that GT-GDA algorithm has the communication complexity of O(ε−2) and sample complexity
of O(mnε−2). To further reduce the sample complexity while maintaining the communication
complexity, we proposed two stochastic variance-reduced methods called GT-SRVR and GT-SRVRI,
both of which can achieve the same communication complexity as GT-GDA but improve the sample
complexity to O(m

√
nε−2). We have also conducted extensive numerical studies to verify the

performance of our proposed algorithms. We note that our work opens up several interesting direction
for future research. First, It is interesting to adopt communication-efficient mechanisms to further
reduce the communication cost, especially when the parameters are high-dimensional. Second, it is
also interesting to study MARL problems with partially observable information. Lastly, decentralized
MARL policy evaluation with non-linear approximation with Markovian online sampling remains an
important open problem, which is worth further investigation.
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