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ABSTRACT

With the insight of variance-bias decomposition, we design a new hybrid bagging-boosting algorithm
named SBPMT for classification problems. For the boosting part of SBPMT, we propose a new tree
model called Probit Model Tree (PMT) as base classifiers in AdaBoost procedure. For the bagging
part, instead of subsampling from the dataset at each step of boosting, we perform boosted PMTs
on each subagged dataset and combine them into a powerful "committee", which can be viewed an
incomplete U-statistic. Our theoretical analysis shows that (1) SBPMT is consistent under certain
assumptions, (2) Increase the subagging times can reduce the generalization error of SBPMT to
some extent and (3) Large number of ProbitBoost iterations in PMT can benefit the performance
of SBPMT with fewer steps in the AdaBoost part. Those three properties are verified by a famous
simulation designed by Mease and Wyner| [2008]]. The last two points also provide a useful guidance
in model tuning. A comparison of performance with other state-of-the-art classification methods
illustrates that the proposed SBPMT algorithm has competitive prediction power in general and
performs significantly better in some cases.

Keywords Subagging - ProbitBoost - Weak consistency - Incomplete U-statistic - Generalization error bound

1 Introduction

Bagging has been a critical ensemble learning model for data classification or regression in past few decades. As an
ensambling method, bootstrap bagging (Breiman|[2004]) ensembles the results of base tree learners so that the variance
of the model is decreased without increasing the bias. As a variant of bagging, Random Forests (RFs) further utilize
a random subset of features at each possible split when constructing a single tree learner. |Ho| [[1995]] analyzed how
bagging and random subset of features can contribute to the accuracy gain under different conditions by decorrelating
bootstrapped trees. Breiman|[2004]] suggested that bagging unstable (i.e high variance) classifiers usually generates a
better result.

Instead of creating a strong learner by combining weak learners fitted simultaneously, we can actually merge weak
classifiers into a strong classifier by sequentially revising them and adding them up with optimal weights, which gives
rise to the idea of boosting. [Freund and Schapire| [[1997] developed AdaBoost.M1 algorithm which outputs a weighted
sum of a sequence of weak learners. The weights are tweaked in favor of those instances misclassified by previous
learners. Nowadays, we have many other popular ensemble methods based on the idea of gradient boosting, which
generalizes the boosting in functional spaces. For example, Chen and Guestrin| [2016]] followed the idea of gradient
boosting and employed a different design of functional optimization and weak classifier learning algorithm. As a result,
they proposed one of the most successful ensemble learning algorithms called XGBoost.

Empirically, if we iterate the boosting for a large number of steps, the training error of boosted classifier will be close
to zero, which implies that boosting can somehow reduce the bias of original model. On the other hand, bagging can
alleviate overfitting by averaging the outputs of base classifiers to reduce the variance of ensemble model. Observing
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the variance-bias decomposition in Lo loss function, it’s natural to combine bagging and boosting together to achieve
smaller prediction error.

Breiman| [2001]] proposed a hybrid bagging-boosting procedure for least-squared regression of additive expansion.
Friedman| [2002] incorporated randomness in gradient boosting where a subsample of training set is drawn without
replacement at each iteration of gradient boosting. Mishina et al.| [2014]] introduced a boosting algorithm into Random
Forest learning method to achieve high accuracy with the smaller size of forest. (Ghosal and Hooker|[2021]] proposed
One-Step Boosted Forest for regression problem. They also gave a variance estimate of Boosted Forest which makes
the statistical inference of ensemble model possible.

However, for "boosting-type" method, we typically need hundreds of iteration times to turn a weak learner into a
stronger one. Similarly, for "bagging-type", such as Random Forests, hundreds or thousands of weak learners are
required to achieve a decent prediction accuracy. It’s hard for practitioners to follow the performance of each weak
learner when they analyze the model and try to interpret the results. [Mishina et al.| [2014] illustrated that combining
boosting and random forest is helpful in reducing the number of base learners required for boosted random forest.
Following these clues, we introduce a model based bagging-boosting procedure whose simple but efficient structure
could achieve high prediction accuracy with small number of base learners.

As to the interpretability of the classifier, if the base structure of a classifier is decision tree, which is commonly used
in many ensemble methods, employing generalized linear models (GLM) at terminal nodes could be a good choice
because of its flexibility. The fitting process of a GLM is to maximize its corresponding sample log-likelihood function
by an iteratively re-weighted least-squares(IRWLS) approach:

B = g L 771y (B®) ey

where 3(“t1) is updated vector of parameters at step ¢, 7 ~(8®)) is the observed information matrix and u(5®) is
the score function. However, if we fit a GLM by all features at each terminal node of tree, it’s highly likely that the
information matrix will have ill-posed condition as the number of observations at a terminal node is typically small.
As a result, matrix inversion during fitting procedure is unavailable. To avoid those drawbacks, we can assume an
additive form of GLMs. [Friedman et al.| [2000al] proposed LogitBoost algorithm by employing the additive model into
logistic regression problem. If the weighted least square regression is taken as the weak learner, LogitBoost will add
one feature at a time in boosting iteration, which avoids matrix inversion. Logitboost also keeps the interpretability
since it models the half log-odds by a linear combination of selected features. |[Landwehr et al.|[2005] first combined
LogitBoost and decision tree together and designed a tree model called Logistic Tree Model(LMT). Similarly, Zheng
and Liu/ [2012] proposed ProbitBoost which fits the GLM with Probit link. In practice, GLM with probit link and
logistic link have similar performance under most contexts. While in the theoretical point of view, Zheng and Liu
[2012] pointed out that the re-weighting function of LogitBoost will give a wrongly classified example a small weight
making it difficult to correct the error in the later iterations. In ProbitBoost, the re-weighting step will assign larger
weight for mis-classified examples, which implies ProbitBoost has better self-correction ability. In addition, |Friedman
et al.| [2000al] required cross-validation to determine optimal LogitBoost iteration steps at each inner and terminal
node when constructing a LMT. Due to the nature of cross-validation, we will sacrifice part of training data in order to
determine a hyperparameter. When data size is relatively small, the benefit of cross-validation may be overturned by the
loss of effective data. Based on those observations, we’d like to introduce our novel base tree learner named Probit
Model Tree(PMT) which combines ProbitBoost and decision tree together. By employing PMT as base learner in our
bagging-boosting structure, we can further show that there is no need to control the iteration times in ProbitBoost part.
That implies hyperparameter tuning can be more straightforward and efficient since cross-validation will be avoided in
fitting process of our proposed model.

The remaining sections of this paper are organized as following schema. In section 2, we introduce some related works
for some hybrid bagging-boosting methods. In section 3, we illustrate the idea of Probit model tree(PMT). After that
our new bagging-boosting method named SBPMT will be proposed in section 4, along with some theoretical analysis
in section 5. We also compare the performance of SBPMT in real datasets in section 6. An experiment with simulation
data will be demonstrated as well. Section 7 discusses few characteristics of SBPMT and proposes future directions.
The R (E])des for the implementation of SBPMT, selected real datasets experiments and the simulation are available on
Github.

2 Related works for bagging-boosting methods

Many popular boosting algorithms such as Stochastic Gradient Boosting (Friedman| [2002]]), CatBoost (Ostroumova
et al.| [2017]]), LightGBM (Ke et al.|[2017]) and XGBoost (Chen and Guestrin|[2016]) can actually incorporate bagging
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during the iteration in their implementation. That is, drawing a subsample of training set based on the weights calculated
at each iteration of boosting to reduce the computation cost and avoid noise in data. In that way, the bagging procedure
is dependent upon boosting procedure and performed sequentially. As a result, not whole training set will be utilized
during the iteration. It can be dangerous to ignore or pay less attention to part of the training data when we have
relatively small size of dataset. And in practice, dosing randomness at each step of boosting forces practitioner to set
large number of iteration times to make sure the generated classifier is stable and strong enough. As a result, the final
model involves extremely large number of weak learners and the model interpretation becomes nearly impossible.

Mishina et al.|[2014] proposed Boosted Random Forest which introduces boosting into random forest. More specifically,
they sequentially added a decision tree in the forest by AdaBoost. As a result, less number of trees are required to
maintain discrimination performance. They constructed a decision tree by random sampling of features and splitting
value to achieve the high generality of the boosted random forest. But the price paid is the loss of interpretation. It
becomes even harder to measure the variance importance due to these two layers of randomness.

Recently, |(Ghosal and Hooker] [2021]] proposed One-Step Boosted Forest for regression problem. They also gave a
variance estimate of Boosted Forest which makes the statistical inference of ensemble models possible. Their empirical
results imply that taking independent subsamples to construct ensemble model will generate better prediction than
repeating the same subsamples. Although their work is mainly about regression problem, that observation motivates us
to build a classifier by taking different possible subsamples, which is exactly what subagging means.

3 Probit Model Tree

In this section, we will give a brief introduction of the idea of ProbitBoost (Zheng and Liu/ [2012]) which is the core
part of our algorithm. Next, the whole procedure of PMT algorithm will be presented, which combines the ordinary
classification decision tree with ProbitBoost model at each node of a decision tree.

3.1 ProbitBoost for Binary class

Suppose we have a training set with n observations {(x;,Y;);=1,...,} Where each item is associated with class
Y; € {—1,1}. x; is the feature vector of i-th observation and we assume that each observation has dimension p.

In ordinary probit regression model (binary classification problem), we model the posterior class probability P(Y =
1|X = x;) of i-th observation by linking additive linear combination of features with the normal cdf (cumulative
distribution function) as follows:

p
PY =1X =2;) = ®(>_Bjzi;) =®(B"x;), j=1,..p 2)
j=1

where p is the dimension of feature space , ®(-) is the cdf of normal distribution and x;; represents the j-th feature of
i-th observation. The main assumption is the linear form of features at the right hand side of (Z). More generally, we
can take any functional forms of the input feature space to capture complicated patterns in a given dataset.

As a result, the generalized additive form can be written as

M
Fu(x) =Y fm(x) 3)
m=1

for each m, f,,,(x) is a R? — R function and the capital M is the total number components of the general additive
model, which makes it possible to view the boosting procedure as a forward stagewise fitting algorithm of additive
models. In many contexts, functions f,,(x) are taken to be some simple basis functions (mostly linear) so that the
fitting process is tractable and easy to interpret.

We now propose population probit risk function as following:
P(f(x)) = —Ellog(®(Y f(x)))]
and the empirical version is:

> imy log(®(Yif (x3))

n

Pn(f(x)) = -

, where Y; takes the value in {—1,1}.

Like other risk functions such as exponential risk and Logit risk, Probit risk function is convex and second-order
differentiable.
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Following the structure of ProbitBoost proposed by |Zheng and Liu| [2012]], we give a brief derivation of ProbitBoost
algorithm under Newton-Raphson framework and Probit risk function. Reader can find similar details in their work.

Suppose we are minimizing the populational probit risk function P(f(x)) = —FE[log(®(Y f(x)))], then the fitting
process proceeds by the Newton-Raphson iterative equation as follows:

f(m+1) (X) _ f(m) (X) _ H—l(f(m) (X))D(f(m)(x)) “)

where f(™) (x) is the fitted function at m-th step. This setting coincides with the idea of forward stagewise additive
model which makes the implementation of algorithm convenient. Denote D(), H() be the first and second order
derivative of expected log-likelihood function , respectively.

Under appropriate conditions, we can find out the gradient (first order derivative) of P(f(x)) w.r.t f(x)) is:

2] 301

Similarly, the Hessian( second order derivative) of P(f(x)) is calculated as

b1s) - 5[ 205D

22(Y f)
where Gy (f) = Y fO[Y f] — ¢(Y f).
Then the Newton-Rahpson iteration process can be written as

FOED ) = £ ) — H( () D ()

x} — B[Sl ©)

o | Y 6(f™)
=10~ B (‘E[<I><Yfm> XD )
Yoy fm)

— X
Gy (fm) }
where Eyy (-|x) is the notation for weighted conditional expectation defined in |Friedman et al.|[2000b], which means
Elw(x, y)g(x, y)|x]
Elw(x, y)[x]
where g(x,y) is an appropriate function with finite weighted conditional expectation as defined in (8). In the last

equation of (7)), the weight is i (f). We can show that h(f) is positive all the time so it makes sense to use h(f) as the
weight function.

Eyl9(x,y)|x] = with w(x,y) >0 VaVy. 8)

The the sample version of ProbitBoost is illustrated in Algorithm T|below:

Algorithm 1: ProbitBoost (Binary classification)

Initialization: Total iteration number M training data {(x;, Y;),i =1,...,n};Y; € {-1,1};
Start with weights w; = 1/n,i = 1,2, ...,n, f°(x) = 0 and class probability p(x;) =
form=1,2,..., M do

(a) Compute the working response z = (21, ..., 2, ) as

Yi®(f™ (i)

T Gy ()

1,
1.
27

fori=1,2,...,n;
(b) Compute the weights w as

v = OU™ @) Gy, (f" (x4))
7' [yt (xi)]

fort=1,2,...,n;
(c) Fit the current working response z by a weak learner g™ (x) with weights w;, i = 1,2, ...,n.;
(d) Update f™(x) = ™~ }(x) + g™ (x)

end
Result: Output the classifier sign[f™ (x)]

In next section we will give a specific example of weak learner g™ (x).
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3.2 Weighted least square regressor as weak learner

In step (c) of Algorithm|l} we need to find a optimal weak learner so that the probit risk function decreases the most.
This idea is a kind of coordinate descent method in optimization. Weighted least square regression or weighted decision
tree are two main options for the weak learner. |Dettling and Biithlmann| [2003]] applied regression stump in boosting.
Similarly, Zheng and Liu| [2012] used regression stump in their ProbitBoost model and found that regression stump
performs better in many cancer and gene expression classification datasets. However, in tabular datasets we found that
regression stump has its own pitfalls in tree models. The criterion of choosing best feature also deserves discussing.
Schmid et al.|[2013] selected the attribute by the largest increment of sample log-likelihood function.

Of course the weak learner can be non-linear. For instance, we can select feature by kernel regression. However, one
main drawback of using non-linear weak learner as weak learner is, we may lose the interpretability of the boosted
classifier by introducing complicated structure. Meanwhile, especially for kernel regression, the relationship between
transform map and kernel is not bijective. Despite the flexibility of choosing a particular kernel, it’s hard to find the true
transform map which makes interpretation more difficult.

We decide to apply weighted least square (WLS) regression as weak learner in our ProbitBoost setting which makes
interpretation possible and the time efficiency is guaranteed by the formula of simple WLS without involving matrix
inversion. Note that the final fitted function f*(x) will have the form of linear combination of features. We now
summarize details in step(c) at m-th iteration:

¢ ¢(1) Perform weighted least square regression for each feature with weights w; to obtain:
(G, iyj) = argminZwi(zi —azx;; —b)? forje{l,..p}

* ¢(2) Obtain the index s(m) of optimal weak learner (optimal direction/feature) which has the smallest weighted

square error:
n

s(m) = argmin Zwl(zZ —ajxj; —bj)?
Je{1,...p} ;1

* ¢(3) Set (%) = da(m)X + ba(m)

m—1 m—1 m—1 m—1 m—1
SOOI T (S (Y ) and % = (1, x).

where vector w = 2= Y mTa(y fre ) 1e(Y )

Eventually, the fitted additive probit regression function after M iterations can now be represented as f™(x) =
xT(M ;) = %73 where f; € RPt! and ;1 = bs(i)» Bi,s(iy+1 = s(iy, Bi,; = 0 for j # 1,5(i) + 1.

3.3 Growing the probit model tree

For simplicity and efficiency, we follow the spirit of CART algorithm to build a decision tree first and and fit a probit
model with ProbitBoost algorithm described in section 3.1 at each terminal node for a tree. We don’t take specific
regularizations to control the complexity of models as in section 5 we will see there is actually no need to control the
iteration times for ProbitBoost. More specifically, regardless of time costing, large number of iterations for ProbitBoost
not only benefits the empirical probit risk but also the prediction accuracy. The stopping rules includes min_leaf_size,
max_depth and max_iterations of ProbitBoost. In reality, user can set those parameters by themselves based on the
specific condition of experiments.

3.4 The model

As specified in section 3.1-3.3, a probit model tree consists of two parts. The global structure is a decision tree with
CART type. And the local structure, which means a model at each terminal node of such a s tree, is a probit regression
model fitted by ProbitBoost.

Suppose {Ss }aca is a set of partitions determined by the CART decision tree structure, where A is the total number of
partitions. Each partition S, has an associated additive ProbitBoost model G, generated by Algorithm 1. Then the
whole probit model tree is represented by

G(x) =Y _ sign[Ga(x)] - I(x € Sa) )

ac€A
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where I(x € S,) = 1if x € S, and 0 otherwise, x is a data point.

As we take the weighted least square regressor as the weak learner, we can further expand each G, (x) as following:

Ga(x) =xTp°
where 3¢ is the vector of coefficients fitted in accordance with the procedure described in section 3.2.
Now the most detailed form of a probit model tree is written as

G(x) =Y sign[x"p*] - I(x € S,)

acA

= szgn[z x" " I(x € S,)]

a€A

(10)

The second equality holds because of the fact that partitions {.S,, },c 4 are disjoint with each other.

Algorithm 2] summarizes the whole procedure for fitting a PMT.

Algorithm 2: Probit Model Trees (PMT)

Initialization: Number of ProbitBoost iteration B ; Depth of PMT [; training data Dx = {(x;,Y;),i = 1,...,n}
withx; € RPand Y; € {-1,1}.
(a) Fit a CART tree T' with maximal depth [ and obtain the corresponding partition {.S; }oca
(b) for a € Ado
Perform ProbTitBoost with iteration number B for data points lying in the partition S, and obtain the classifier
Gu(x) =x" %

end
Result: Output the final classifier G(x) = sign[Y_ ., x* 8% - I(x € S,)]

4 Subagging Boosted Probit Model Trees (SBPMT)

Having introducing the idea of Probit Model Tree, in this section, we will give a new hybrid bagging-boosting algorithm
based on PMTs. We consider the binary case first. As mentioned before, intuitively, bagging-boosting algorithm
could improve the mean squared error simultaneously in two directions. Instead of trading off variance and bias by
regularization, bagging-boosting type algorithm could reduce both of them at the same time. For classification problems,
such observation encourages us to implement bagging-boosting type classifiers to reduce the misclassification error.

We first give a brief introduction of subagging. As a variant of the bagging procedure, subagging, which is first proposed
by Biichlmann and Yu|[2002], is a sobriquet for "subsample aggregating" where the bootstrap resampling is replaced
with subsampling. A learner or predictor F, ,,(x) with subsampling size m is aggregated as follows:

1
Fpm(x) = ™ S ha(Liyy e Liy ) (%) (11)
m) (iy,....im)El
where [ is the set of all m-tuples whose elements in {1,2,...,n} are all distinct and h,,,(L;,, ..., L;, ) is a predictor
based on a subsampling with indices (i1, ..., i,,). But in practice, it’s time consuming to evaluate all (:1) subagged

predictors. One way to avoid heavy computation burden is to approximate (11) by random sampling . That is, we
randomly sample without replacement from original dataset for M times and averaging over the predictors based on
random samplings. The subagged predictor becomes:

1M 1 M
Fom (%) = 7 Z hin(Liy s s Li, ) (%) = 47 Z hin(Lp,;) (%) (12)

where (L;, , ..., L;,,) = Lp,. We will take this type of subagging in our algorithm. Note that D = (D1, ...,Dp) €
{D c [n] : |D| = m}M is a sequence of M subsets of {1,2, ...,n} with cardinality m and this sequence D is called
the design [Kong and Zheng| [2021]. It’s easy to see F}, ,, a(x) is an incomplete U-statistic with order m for most
learning algorithms. For simplicity, we take subsampling size m = |an| with 0 < « < 1. The main idea of SBPMT
is to perform AdaBoost at each subagged sampling. PMTs will be used as base learner in Adaboost. Note that the
individual weights generated in AdaBoost are employed in both CART algorithm and ProbitBoost for fitting a PMT.
Figure|l|illustrates the working flow of SBPMT.
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Figure 1: Working flow of the SBPMT algorithm

Algorithm [3|summarizes the details of the SBPMT algorithm. At step (b) we relabel the indices of subsampled dataset
from 1 to |an ]| for the sake of simplicity.

Algorithm 3: Subagging Boosted Probit Model Trees (SBPMT)
Initialization: Number of subagging M ; Number of AdaBoost iteration 7" ;Number of ProbitBoost iteration B
;subagging ratio «; Depth of PMT [; training data Dx = {(x;,Y;),i =1,...,n};Y; € {-1,1};
fork=1,2,...., M do
(a) Randomly sample from the original training data D x without replacement. The size m of random sampled
dataset D% is set to | an|. Initialize weights w1 (i) = 1/m,i =1,2,...,m
(b)) On Dk, fort =1,2,...,T do
(b1) Fit a PMT classifier G;(x) to the subagged dataset D using weights w; (7).
(b2) Compute oy = 2In1=<"t where erry = Y1 wy(i)] (Y # Gy(x;))

EeTTe
. ap I(Y; #Ge (%) . . .
(bs) Update weights: w41 () = we (i)™ Z "™ where Z; is a normalization factor so that Wit (4)

becomes a distribution, ¢ = 1, 2, ..., m.
end
(c)Output fz, |an|r(X) = sign[thzl a;G¢(x)], where f7, |an) 7 be fitted the AdaBoosted PMT with T
iterations fitted by k randome sampled dataset D5

end
Result: Output the final classifier F'(x) = sign[4; 224:1 I 2, an),7(X)]

4.1 Multi-class version

SBPMT can be generalized to multi-class problems by using multi-class versions of AdaBoost and Probit Model Tree.
Zheng and Liu|[2012]] proposed Multi-class gradient ProbitBoost by maximizing the multiclass log-likelihood function
for probit regression. They also sketched one-versus-all approach to fit a multi-class ProbitBoost classifier. The idea
is to reduce a multi-class problem into J binary classification problems where J is the number of classes. Due to
the simplicity of one-versus-all strategy, we will fit a PMT by one-versus-all strategy instead of fitting multi-class
ProbitBoost at each terminal node of a CART tree.

Having a multi-class version of PMT, we incorporate it in a multi-class version AdaBoost named SAMME which is
proposed by [Hastie et al.|[2009]. SAMME extends the AdaBoost to the multi-class case without reducing it to multiple
binary problems. It is equivalent to forward stagewise additive modeling with a multi-class exponential loss function.
We choose this multi-class version of AdaBoost because of its clean implementation. In practice, people can try many
other variants of multi-class AdaBoost.
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We now sketch the multi-class version of SBPMT as following:

Algorithm 4: Multi-class SBPMT

Initialization: Number of ProbitBoost iteration B ; Depth of PMT [; training data Dx = {(x;,Y;),i = 1,...,n}
withx; €e RPandY; € {1,2,...,J}; Define y;; = I(Y; = J) fori =1,2,...,nand j = 1,2, ..., J.
fork=1,2,...,M do
(a) Randomly sample from the original training data Dx without replacement. The size m of random sampled
dataset D% is set to |an . Initialize weights w1 (i) = 1/m,i = 1,2, ..., m.
b)On D% fort =1,2,...,T do
(by) Fit a multi-class PMT classifier Gy (x) by Algorithm 2using weights wy (7).
(bo) Compute oy = SIni="t 4 log(J — 1) where erry = > wi (1)1 (Y; # Gi(x;))

erry
ap I(Y;#Gy(x;

wy (i)-e

(bs)Update weights: w1 (i) = : where Z; is a normalization factor so that w;1(7)

Zy
becomes a distribution, ¢ = 1,2, ..., m
end
(YOutput 7, janyr(x) = argmax 3, ad(Gi(x) = ).
jef1,2,...,J}
end
Result: Output the final classifier F'(x) = argmax (22/1:1 I(fz,.|an),7(x) = J))
je{1,2,...,.J}

S Theoretical analysis of SBPMT

In this section, we will show the Bayesian (weak) consistency w.r.t SBPMT under some reasonable assumptions. A
simple but useful fact that the consistency of individual classifier is preserved by majority voting, which is applied in
the ensembling step of SBPMT, has been shown in|Gao et al.| [2022] and |Scornet et al.| [2015]]. For completeness of our
work, we gave a more elementary proof. After that, we proved the consistency of AdaBoosted PMT using the results
from Bartlett and Traskin! [2007]].

In order to achieve decent performance of SBPMT in real datasets, we derived an upper bound for the generalization
error of SBPMT in section 5.3, which illustrates the impact of each hyperparameter on the generalization error of
SBPMT.

5.1 Setup and notation

Again, for simplicity, we consider a binary classification problem. Let X be the feature(measurable) space and
Y = {—1, 1} be the set of labels. Suppose we observe a training data S,, = {(X;,Y;)}?_; of i.i.d observations from an
unknown distribution 7. We now construct a classifier g,, : X — ) based on this training set. Then the probability of
error of g, is given by

Ln = L(gn) = P(gn(X) # Y|Sn)
which is also called empirical risk.

In theory |Devroye et al.|[[1996], the expected risk of a given classifier g : X — ) is defined as

L(g) = E[I(9(X) #Y)]
The optimal expected risk (or Bayes risk) L* is the infimum over all possible classifiers g:
L* = inf L(g) = Elmin(n(X),1 = (X))}
where 7)(+) is a conditional probability n(z) = P(Y = 1|X = z).
It’s well known that the infimum above can be achieved by the Bayes classifier g*(z) = g(2n(z) — 1):

() = 1, x>0
IE=121, <0
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Note that g* relies on the distribution P of (X, Y") and expectation is taken over that unknown distribution P. When
the sample size increases, we can have a sequence of classifiers {g,,,n > 1}, which is denoted as a rule. Intuitively, we
want a classifier have small empirical risk and be close to the Bayes risk if we have enough data. Statistically speaking,
arule is consistent under a certain distribution P if:

lim B[L(g.)] = L'

n—oo

Remark. Since L,, is a random variable which is bounded, convergence of the expected value is equivalent to the
convergence in probability, which means that

lim P(|L(gn) — L*| >€) =0

n—oo

foralle > 0.

For the subagging classifier which takes a majority vote over classifiers built upon M random subsamples with
subsampling ratio o, we can define fjr, 7(x) as following:

1’ 7 AE i an >0
frvan,r(x) = M 2171 f2;,lan)7(X) 13)
—1, otherwise

where (71, ..., Zps) are i.i.d random variables (let Z be their common distribution) representing the randomization
introduced by subsampling. In our case, f7, |an) 7 i the AdaBoosted PMT with T iterations, which is constructed by
i-th subagged sample.

Next, we follow the settings in [Bartlett and Traskin| [2007].

Denote H = {h|h : X — Y = {—1,1}} as the hypothesis space and dy¢c(H) as VC (Vapnik-Chervonenkis)
dimension.

The convex hull of H scaled by A > 0 is
Fy = {f‘f: D Xihi,n € NU{0} A > 0,) N =\ b E’H}
i=1 i=1

Define

Rn(f):f%Ze*Yif(Xi) and R(f) = Ble Y],
i=1

Then the Adaboost procedure can be summarized as follows.
* 1. Set fo = 0, the number of iterations t and weights w1 (i) = 1/n,i = 1,2,...,n.
e 2. For k =0, ..., t, the updating equation is
Jr+1 = fx + ahy

where fj, satisfies R, (fx) inf RR"( fr—1 + ah). More specifically,
,a €

" heH

2(a). Fit a classifier to the training data with weights w; to obtain optimal base learner hy
2(b). Compute ey, = 325, wi, ()1 (yi # fio(w:)-

2(c). Compute step size aj, = 3ln (1_E"> .

€k

)-ek 1WA fi (24

2(d). Update weights: w41 (i) = wi (1) 7
becomes a distribution.

) . L. .
where Zj, is a normalization factor so that wy1(7)

e 3. Return g o f; as a final classifier.

Remark. Note that step 2 is very general in theory. In practice, people typically choose decision tree as the base
learner. In our case, we use PMT as the base learner.
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In the end, we give a definition of Gateaux derivative of functions between Banach spaces A and B. Let U C A be
open, and F' : U — B. The Gateaux differential F’(f; h) of F' at f € U in the direction h € A is defined as:

OF(f+M0)|  _ L F(f+ M)~ F(J)

/(f. —
F(f5n) = oA A\ A0 A

The second derivative F”(f; h) is defined similarly. For example, let f,x be vectors in an inner product space V.
Denote F(f) = T f, then
T A Th _ T
F(fih) = lim LTS,
A—0 A

5.2 Consistency of SBPMT

We first give a lemma showing the connection of consistency of individual classifier and the voting classifier. Similar
results have been proved in|Scornet et al.|[2015]],|Gao et al.|[2022].

Lemma 1. Suppose the number of subbagged classifiers is M and the sequence of each of them is consistent for
the same distribution P, i.e {fz, |an| r(X) 52, is consistent for each i € {1,2,...,m}, then the voting classifier
a7 (x) defined in (13)) is also consistent.

If the iteration times in Adaboost depends on sample size, Bartlett and Traskin| [2007] have shown that Adaboost is
consistent if it is stopped at certain step. We restate their result in Theorem [I}

Theorem 1 (Bartlett and Traskin| [2007])). Assume dvy ¢ (H) is finite and L* > 0,

lim inf =R"

A—o0 fFEFAR(S)
, where H is the base classifier space, R* = inf R(f) over all measureable functions, t,, — oo, and t, = O(n") for
v < 1. Then AdaBoost stopped at step t,, returns a sequence of classifiers almost surely satisfying L(g(f:,)) — L*.

If we can show that the hypothsis space H in SBPMT has finite VC-dimension, consistency of SBPMT follows directly
from Lemma|I]and Theorem|I]as long as we stopped adaboost procedure at the step required by Bartlett and Traskin
[2007]]. This gives rise to one of our main theorems:

Theorem 2 (Consistency of SBPMT). Let H be the hypothesis space consists of Probit Model Trees, then dy ¢ (H) < 0o
and E[L(g(fvn,))] — L*, where M is the number of subagging classifiers, n is the sample size, T,, = O(n") for
v < 1, i.e the final classifier returned by SBPMT is consistent.

Proof. Note that H in SBPMT consists of PMTs which are decision tress composed with Probit boosting functions, by
intuition, the VC-dimension should be finite as well.

Denote the hypothesis space 7{; be the set consists of decision trees (with partition structure). And let 2 consist of
classifiers in the form of linear indicator functions generated from ProbitBoost procedure in Algorithm [I] with weighted
least square regressors being weak learners. More specifically, Ho = {f|f(x) = sign(Tx +1b),3 € RP,b € R}
when the dimension of input data is p. Then it’s easy to check that

dvc(Hz) =p+1<o0

Note that H in SBPMT consists of PMTs. We have

dyc(H) < dye(Hi1UHsz) <dvc(Hi) +dyve(Hz) +1

Leboeuf et al.|[2020] has shown that the VC-dimension of a binary tree structure is of order O(Nlog(N1)) where N is
the number of internal nodes and [ is the number of real-valued features. Once we fix the depth of decision trees d,
dyc(H1) will be finite. The consistency of SBPMT follows from Theorem O

5.3 Generalization error bound

Derived from Lemma [I]and Theorem [T} Theorem [2]implies that the consistency of SBPMT mainly results from the
consistency of AdaBoost, which is true only when we connects stopping rule with sample size in a certain way. However,

10
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the proof ignores the effect of subagging which can be more useful in real cases. In this section, we will give an explicit
expression of the finite sample upper bound of generalization error of SBPMT which demonstrates the effect of each
hyperparameter in SBPMT hence guides us how to improve the performance of SBPMT in practice. We will set the
boosting iteration be independent of the sample size since the requirement for consistency proved in Theorem [2]is not
realistic in most real cases

Theorem 3. Suppose the number of subagged classifiers is M and M > Inn , then over the random sampling in
subagging step, with (> 0) and probability at least 1 — § we have the following upper bound of generalization error
of voting classifier fyr n T defined in equation '

_(IM21-M/2 9 2
( i + psub) ) (14)

P rn1(X Y) <
P9 r(X)) # )<exp(z@ﬁ,a%+Q%5/2+(J®+4Q%/3)(W+1—2psub)

where:
Psub = PP(fZi,m,T(X) Y S O)al - 1; 2, >M
m=|an|,0<a<1
ot =VarE(fz, mr (X1, ..., Xm)|X1))

\/T + (1 + 4\/m> \/E (15)

Q3=f+<1+4\/m)\/”;7

V2m+3
e n(3/9)

The subscript P means that random samples in a given dataset are all generated from the unknown distribution P.

Qa

3

Qc

Remark.

1. Note that the RHS of the inequality above is a monotonic increasing function w.r.t the value of psyp. This
enables us to replace ps,p by some upper bounds so that we can make the inequality for the generalization
error upper bound more flexible.

2. We have two layers of randomness in SBPMT. The outer layer is the random sampling from from the unknown
distribution P. The inner randomness, which is measured by the positive number 6, comes from the subagging
step.

Theorem [3] tells us that the number of subaggingg times plays a role in controlling the generalization error bound
of SBPMT. When we increase M, the RHS of the inequality above will decrease accordingly. However, quantities
Q4,Qp and Q¢ won’t vanish even when M — oo, which implies that the large number of M doesn’t necessarily give
a better performance of the ensemble classifier. Such observation motivates us to improve time efficiency in practice by
not setting M too large. The requirement that subagging numbers should be larger than In2n is not too strict in practice.
Suppose we have 20000 observations, Theorem suggests that we need to set M be larger than In?(20000) ~ 98.08.

On the other hand, the RHS of inequality (T4) is a decreasing function w.r.t py,;. That means, hyperparameters
benefiting the performance of boosted classifiers also improve the generalization error bound. Based on this property,
we recall two useful theorems in the margin theory of AdaBoost.

Theorem 4 (Schapire and Freund| [2012]). Suppose we run AdaBoost for T rounds on n random samples, using base
classifiers from a hypothesis space H with finite VC-dimension d. Assume n > max{d, T}, then the boosted classifier
F satisfies

32[T(In(en/T)) + d(In(em/d)) + In(8/0)]

Pp(YF(X) <0) < Ps(YF(X) <0)+ \/

, with probability at least 1 — 0 (over the choice of random sample from distribution P). Ps(Y F(X) < 0) is the
empirical error rate of boosted classifier F.

Remark. [f we replace F in the LHS of the inequality with a subagging classifier, Pp(Y F(X) < 0) can be written as
Psub-

11
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Theorem 5 (Schapire et al.|[1998]]). Given a training set S, suppose AdaBoost generates classifiers with weighted
training errors €1, ..., e and final weighted classifier is f. Then for any 0, we have

T
Ps(Yf(X) <) <2" [ Ve ?(1 —ep)'
t=1

Now let § = 0, we have

T
Ps(Yf(X)<0)<2" [[Va(l-2)

Let e, = 1/2 — 4, we can further obtain the following inequality (Schapire and Freund|[2012]):

T T
Ps(Yf(X)SO)SH\/14VES6xp<22%2) (16)
t t=1

if0<y <$fort=1,2,T.

Inequality (T6) shows that the training error of AdaBoost decreases exponentially fast. However, the second term in the
RHS of the inequality in Theorem [4] might increase as well when 7" becomes large. This observation implies that there
might be an optimal iteration time T for AdaBoost which gives the smallest generalization error upper bound.

On the other hand, when T gets even larger, the upper bound in Theorem [ becomes useless. [Schapire et al.| [I998] gave
an example showing that the boosting can have even smaller testing error when the training error becomes zero already.
Although they also proposed the margin theory to qualitatively explain the shape of the observed learning curves and
Gao and Zhou| [2013]] proved a sharper upper bound of generalization error of AdaBoost based on margin theory, it’s
still unclear how these results provide practical guidance in controlling the prediction error.

Fortunately, we are able to give a specific upper bound like Theorem ] by properties of ProbitBoost, which is useful
in controlling the generalization error by not setting 7" too large. Lemma 2] and Lemma [3| are the two most critical
properties of ProbitBoost we will use.

Lemma 2. Let Q(x) = —log(®(x)) where x is any real number and ® is the cumulative probability function for
standard normal distribution. Then Q" (x) > 0 and Q"' (x) < 0.

Lemma 3. Ler P, be the empirical probit risk function defined in section 3.1. A sequence of functions {f'};> is
generated by ProbitBoost described in section 3.1-3.2, i.e f*1 = f' + g where g' is the base learner fitted at t-th
iteration of ProbitBoost. Then for a given dataset and each t > 0,

Pulf') = Pa(F) > 24l1g'13

. In particular, P,(f') | infy P,(f*) ast — oo, i, 16|13 < oo, and lim;—, ||g|]2 = 0, where ||gt||]2 =
iy gt (wi)?/nand v = inf{P)/(f), f € H} ( which is positive for a given data set)

In Lemma 3] we assume that each observation is equally weighted when we calculate empirical probit risk function. As
we can see in the proof of Lemma 3] the non-increasing property of empirical probit risk function in ProbitBoost is still
true for arbitrary weighted distribution of sample points due to the definition of Gateaux derivative. This observation is
critical in seeing the importance of Theorem|[6] We now give Corollary 1 without proof to emphasize this point:

Corollary 1. The non-increasing property still holds when we apply the ProbitBoost to minimize the weighted probit
risk function P, v, where w is the weight vector assigned to sample points.

Lemma [3]implies that increasing the number of iterations in ProbitBoost will always reduce the value of empirical
probit risk function. Note that for Vz € R:
Q(z)

In2
It follows that large number of iterations in ProbitBoost at each terminal node of PMT will generate a smaller upper
bound of weighted training error. As a result, we can iterate Adaboost procedure in SBPMT for a few times to achieve
good performance with the price of relatively large number of iterations in ProbitBoost. As we pointed out in section
3.2, generating a simple linear combination of features makes a ProbitBoost classifier maintain the interpretability even
after a long time iteration. Thus the final model won’t be too complicated. Theorem [6]then gives the upper bound of
generalization error of AdaBoost when PMTs are base learners:

I(z<0) < (17)

12
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Theorem 6. Suppose we run AdaBoost for T rounds on n random samples, using base classifiers from a hypothesis
space consisting of PMTs. Let eI’ (B) be the weighted probit risk of a PMT at t-th iteration of AdaBoost. Integer
number B represents the ProbitBoost iteration times at each terminal node of a PMT. Let d be the upper bound of
VC-dimension of the hypothesis space consisting of PMTs. Assume n > maxz{d,T},0 < ef'(B)/In(2) < %, then the
boosted classifier F' satisfies

T
Pp(YF(X)<0) < exp< 9 2%2(30 n \/32[T(ln(6n/T)) +d(In(en/d)) + In(8/9)] (18)

n
t=1

, with probability at least 1 — 0 (over the choice of random sample from distribution P). ~(B) is defined to be:

_1_&l(B)
"B =5 )

According to Corollary 1} for fixed T, if we fit weighted probit risk function at each partitioned space, £.(B) will
decrease as we increase the ProbitBoost iteration time B, which in fact lowers down the value of exp(—2 Zthl v2(B))
as long as we set B large enough. That means the assumption of e’ (B) in Theorem@makes sense in practice.

The main message conveyed by Theorem [6]is that employing PMTs as base learner in AdaBoost can not only lead
to a smaller prediction error without setting running time 7" of AdaBoost large but also make the second term in the
upper bound meaningful when T is small. The cost is we need to set large number of ProbitBoost iterations at
each terminal node of trees to achieve smaller (weighted) training error for each partition. Combining these facts with
Theorem 3] we anticipate that SBPMT with less AdaBoost iterations steps and subagging times could have even better
performance than ensemble methods using ordinary (CART) trees (no model included) as base learner. In section 6, the
performance of SBPMT will be compared with other popular ensemble learning algorithms.

6 Experiments

6.1 Simulation

To verify the conjecture in section 5, we created an artificial dataset which is in the spirit to the work of Mease and
'Wyner| [2008]. More specifically, we will generate data point from the following model:

E
P(Y =1|x) =q+ (1 - 2q)1(zx(e> > E/2>

where x° is the e-th dimension of an observation x. The response Y € {—1, 1} and random sample X will be i.i.d and
uniformly distributed on the d-dimension unit cube [0, 1]¢. According to Mease and Wyner [2008], ¢ is the Bayes error
and E < d is the effective dimension. For time efficiency, we only set d = 10 and effective dimension £ = 5. There
are 2000 training cases and 10000 test observations. Each subplot in Figure [2|illustrates test error rate for SBPMT, as a
function of a single hyperparameter. The benchmark setting for SBPMT is M =5,B =5,T =5 and a = 0.7. And
each CART tree has depth d = 3 with min_leaf_size 20. To obtain, for example the test error as a function of subagging
times, we set M = 1,2, ..., 100 while other parameters remain the same with benchmark setting. Similar strategy was
applied to the other three hyperparameters we are interested.

As we can see in Figure 2, as subagging times increase the test error rate will in general decreases. When the subagging
time is large, the improvement of test prediction is negligible which obeys the anticipation from inequality (T4). On the
other hand, when boosting iterations for AdaBoost part proceed, the error rate decreases as well. Similar observation
can be made for boosting iterations for ProbitBoost part. Nevertheless, it can be seen in subplots that test error w.r.t
ProbitBoost iterations decreases more steadily which implies a smaller variance while it shows a relatively large
volatility in AdaBoost iterations. Such difference can be inferred from fact that the empirical probit risk function is
tigher than exponential risk w.r.t the indicator function, which favors the non-increasing property in Lemma[3] What’s
more, test error function of ProbitBoost iterations has the lowest long run test error. This is a clue showing that
ProbitBoost can dominate the effect from subagging and AdaBoost. In other words, local structure can indeed capture
data patterns which may be ignored by global structure of the ensemble method. It’s hard to see any pattern for test
error and subagging ratio. This observation can also expected from the generalization error bound in Theorem [3]as
« appears in not only three quantities @) 4, @ p and Q¢ but also pg,p Which is far more complicated. The only thing
we can clearly see is, when we set a = 1, i.e the full dataset is utilized, we will end with relatively high test error as
SBPMT will reduce to a single boosted classifier which might learn noise from the whole dataset.
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Figure 2: Test errors for SBPMT. (a) Test error rate as a function of Subbagging Times, (b) Test error rate as a function
of AdaBoost iterations, (c) Test error rate as a function of ProbitBoost iterations, (d) Test error rate as a function of
Subagging ratio.

6.2 Performance with real datasets

We used 22 benchmark datasets from the UCI repository (Kelly et al.) to evaluate the performance of SBPMT and
compare against with other state-of-the-art boosting learning algorithms. The details of those dataset are included in
Table[T] For simplicity, we didn’t use datasets with missing values but there are many methods to deal with this issue in
practice. The size of datasets ranges from one hundred to twenty thousand observations. They contain varying number
of numerical attributes and categorical attributes. We also deal with some multi-class problems.

Ten fold stratified cross-valiation was performed for each dataset and algorithm. For each algorithm, they shared the
same training and testing splitting. Mean classification accuracy and standard deviation are reported in Table m All
algorithms are implemented by corresponding R packages

In practice, people can apply cross-validations to determine the best value of hyperparameters. In theory, for instance,
theorem |3| suggests that the subagging number M be larger than [n?(n). Lemma and Theorem |S|encourage small
number iterations in AdaBoost but large number of iterations in ProbitBoost when using PMTs as base learners. For
simplicity and time efficiency, we used same hyperparametes in SBPMT for all datasets. More specifically, number
of subagging M = 21, number of AdaBoost iteration 7" = 5, number of ProbitBoost iteration B = 100, subagging
ratio o = 0.7, depth of CART tree [ = 6 and min_leaf_size is 20. We set relatively small subagging times in order
to speed up the training part. It turns out that small value of M is enough for SBPMT achieving decent accuracy in
many real cases. If time efficiency is not a priority, we recommend that the value of M should satisfy the theoretical
inequality in Theorem[3] Otherwise, a small value of M is enough. The number of AdaBoost iteration and the number
of ProbitBoost iteration are set in accordance with analysis in section 5 and simulation results.

’The default subsampling ratio in GradientBoost and XGBoost is set to be 0.7 for the sake of comparison

3We employed "rpart" package for RandomForest;R package "adabag" and "RWeka* are used for AdaBoost; "xgboost" is
used for XGBoost algorithm; "gbm" is used for GradientBoost. R markdown files for experiments and figures can be found in
https://github.com/BBojack/SBPMT
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Table 1: Real datasets used for the experiments,sorted by size

Dataset Instances ~ Numerical attributes ~ Categorical attributes ~ Classes
Iris 150 4 0 3
Glass 214 9 0 6
Ionosphere 351 33 0 2
Diabetes 520 0 17 2
Breast-Cancer 569 30 0 2
Balance-scale 625 4 0 3
Australian 690 6 8 2
Pima-indians 768 8 0 2
Vehicle 846 18 0 4
Raisin 900 7 0 2
Tic-tac-toe 958 0 9 2
German 1000 6 14 2
Biodegradation 1051 38 3 2
BHP 1075 20 1 4
Diabetic 1151 16 3 2
Banknote 1372 4 0 2
Contraceptive 1473 2 7 3
Obesity 2111 3 13 7
Segments 2310 19 0 7
‘Waveform+noise 5000 40 0 3
Pendigits 10000 16 0 10
Letter 20000 16 0 26

From Table 2] we see that SBPMT reaches almost the same mean classification accuracy as XGBoost(with 100 iterations)
and many other popular ensemble algorithms. It outperforms all selected algorithms on 11 datasets which consist of
small, medium and large-sized datasets. That implies SBPMT is competitive with any size of datasets. Compared with
Random Forest which typically needs 500 subtrees, SBPMT in our experiments only uses 21 subagged samples. More
over, the AdaBoost iteration times in SBPMT is only 5 which is much smaller than that of normal AdaBoost using
hundreds of CART trees as base learners. Based on these points, SBPMT makes the final model potentially easier for
practitioner to understand without digging into too many subtrees. The linear form of PMT at terminal nodes of trees
enables people to interpret the effect of features at each partitioned space.

In Figure 3] we first sorted the datasets by their size. and plotted the accuracy of SBPMT, RF and XGboost(100). When
the size of a dataset is small of medium, we observe that SBPMT outperforms RF and XGboost(100). When we have
large number of observations, these three algorithm have similar performance. This phenomenon provides an evidence
that SBPMT is generally good and might be especially powerful in smaller datasets.

In Figure ] we sorted the datasets by the ratio of the number of numerical attributes and the total number of attributese.
If some datasets have a same ratio, they were sorted by the size. Accuracies of SBPMT, RF and XGboost(100) were
given in y-axis. We observe that when features in a dataset are all numerical, SBPMT is likely to outperform than other
methods. One possible explanation is, we fit a linear model by ProbitBoost at each terminal node of a CART tree, which
would favor numerical attributes. Despite of the complexity of real world datasets, our results provide an empirical clue
that SBPMT may perform better in datasets with more numerical attributes.
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Figure 3: Accuracy of SBPMT,RF and XGboost(100).
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Figure 4: Accuracy of SBPMT,RF and XGboost(100) w.r.t the ratio of the number of numerical attributes and the total
number of attributes. Datasets are sorted by size in ascending order if they have a same ratio.
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Table 2: Mean classification accuracy and standard deviation for SBPMT vs.RandomForest,GradientBoost(100)
AdaBoost.M1(100),XGBoost(10),XGBoost(100)

Dataset SBPMT RandomForest ~ GradientBoost(100) AdaBoost.M1(100) XGBoost(10)  XGBoost(100)
Iris 96.00 £ 5.62  94.67+£ 5.26 94.671+6.13 94.00+ 7.34 9533 £549 95334549
Glass 75.67 £8.97  77.09+ 9.57 75.27£9.55 73.26+9.60 75.62 £8.78  77.53 +£9.35
ITonosphere 92.87 £2.75  93.68+ 3.84 92.00 £+ 3.77 93.68+ 3.39 92.86 £2.79  92.85 £2.10
Diabetes 95.96 £ 142  97.69+ 1.52 91.35+3.04 97.5£2.04 9538+ 226 9538 +£2.26
Breast-Cancer ~ 97.03 +2.45  96.34 £ 4.27 95.82 £4.62 96.16 £ 3.62 93.890 £5.72  95.64 4+ 4.96
Balance-scale 95.19 £2.62 83.53 +4.08 90.88 £1.52 85.46+ 3.86 86.56+2.73  87.84 £3.22
Australian 86.39 £ 197 8741+ 3.69 86.25+ 3.11 85.264 4.90 85.53+3.81  86.97 £3.03
Pima-indians 7773 £ 624  76.57+ 6.12 75.78 £+ 5.30 73.31+ 6.03 7526 £7.07  75.65 +£6.76
Vehicle 8297 £4.92 7530+ 3.95 72.81 £3.43 78.49 £ 3.43 76.35 £ 436  78.25 + 3.90
Raisin 86.44 £3.70 86.44 + 4.02 86.56 £3.65 86.89 £ 4.68 84.67+ 6.01  84.33 £4.04
Tic-tac-toe 9791 £1.56  99.16 + 1.08 74.23 £3.76 99.58 £+ 0.73 98.22 £1.72 9833 +£1.50
German 74.80 £3.39  76.20+ 3.74 7520 £ 2.78 74.6013.17 7430 £3.34 757 £2.41
Biodegradation ~ 87.594 1.92  87.20 4 2.47 84.16 £3.73 86.54 £1.64 86.16 £2.67 86.63 £ 1.84
BHP 100 £ 0 1004 0.00 86.90+3.79 100+0.00 98.97 £+ 1.36 100 £0.00
Diabetic 74.02 £4.96  67.95+ 5.68 65.86 £ 4.56 67.95+ 4.12 68.98 £4.89  67.86 +£5.33
Banknote 99.78 £ 0.35  99.34+ 0.94 96.72 £2.02 99.64 £ 0.52 98.61 = 1.44 98.69 £ 1.32
Contraceptive 5593 £ 442 5416+ 3.33 55.46+2.56 55.73+3.33 5444 £334  52.00 +£3.93
Obesity 9739 £1.10  95.03+ 1.12 82.19+2.18 97.44 £ 1.03 95.08+£ 1.45  97.49 +£0.92
Segments 9831 £ 1.18  97.79+ 1.84 94.761+2.04 98.53+1.24 9771 £1.61 98.48 +1.25
Waveform+noise  86.16 + 1.39  85.364+ 2.08 84.78+1.93 84.56+2.02 84.26+ 1.74 8538 £1.93
Pendigits 99.38 £0.24 99.21+0.25 90.63+1.17 98.57+0.25 98.20 £0.49  99.18 +£0.33
Letter 95.50 £0.31  96.85+ 0.24 73.171+0.64 96.12+0.36 90.14 £0.90  96.60 +0.27

*The best performing values are highlighted in bold

7 Discussion

For now, we have shown the consistency of SBPMT when the iteration number in AdaBoost part is a function of sample
size. Nevertheless, this condition is not realistic in many cases. For large sample size, it’s time consuming to run too
many rounds of AdaBoost. It’s possible to think about a more general condition for the consistency of SBPMT. That
might be one of future directions. At the same time, we provides a useful upper bound of the generalization error of
SBPMT by using a latest exponential inequality of incomplete U-statistics (Maurer] [2022]). Inequality in Theorem
[3]explains how subagging helps to improve the performance of ensemble methods. Non-increasing property of the
empirical probit risk function under ProbitBoost suggests us use large number of boosting iteration for ProbitBoost in
PMT. Combining this result with properties of AdaBoost, we only need to use a relative small number of AdaBoost
iterations in practice to achieve a good performance of SBPMT. In section 6 we compared the performance of SBPMT
with real datasets. The results demonstrate that SBPMT is competitive with many popular ensemble learning algorithms,
especially for datasets with small and medium sample size. For datasets whose features are all numerical, there is
evidence that SBPMT outperforms other methods. That would be an interesting direction for furture research.

Because of the flexity of bagging-boosting type algorithm, we can propose many other variants of SBPMT. In this paper,
we construct a PMT based CART structure which is simple but sufficient. In literature, there are other methods to build
a decision tree. For example, it’s not necessary to split a feature space by axis-parallel method. The other way is oblique
splitting, which means we cut the feature space by the linear combination of features.In the groundwork of Classification
And Regression Trees(CART) (Breiman et al.[[[1984]]), Breiman has already pointed out the idea of splitting the dataset
by the combination of variables. However, the implementation of the algorithm in finding the optimal hyperplane in
feature space has been the real issue for many years especially for cases involved large dataset. For high-dimensional
case, Breiman et al.|[1984] provided a heuristic algorithm CART-LC to find the relatively good hyperplane. In brief, his
method weeds out the unnecessary variable by a backward deletion process. The least important variable is the one
whose deletion gives the minimal decrease in impurity.

Since the traditional search of optimal hyperplane is likely to stuck in local optimal points , many stochastic optimization
goes to the stage. [Heath| [1993]] introduced Simulated Annealing Decision Tree (SADT) which uses randomization
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to avoid getting trapped in local optimal value of change of impurity function. The drawback is, the algorithm may
evaluate tens of candidates in order to find the global solution. The use of statistic models hasalso been explored. [Truong
[2009] used logistic regression to build oblique trees. [Lopez-Chau et al.|[2013]] induced oblique trees by Fisher’s linear
discriminant method. |Wickramarachchi et al.|[2015] applied a geometric method in linear algebra called Householder
transformation in finding optimal oblique splitting.

Recently, many other strategies have been taken to find optimal oblique splitting. For example, Bertsimas and Dunn
[2017] formulated an integer programming method to optimize decision trees with fixed depth. [Blanquero et al.| [2020]]
proposed a continuous optimization approach to build sparse optimal oblique trees. How to employ oblique decision
trees with our proposed subagging-boosting type algorithm is another potential direction of future research.
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Appendix A. Lemma [T] proof

Proof. Note that
L(fmm) = 1= ERX)I(fm(X) = 1) + (1 = n(X))I(fm(X) = =1)] (19)

L(g) =1 - En(X)I(9(X) = 1) + (1 = n(X))I(9(X) = —1)] (20)

where I(+) is the indicator function.

Let equation (I9) minus equation (20), and we obtain

E[L(fmn)l = L(g%) = L(fmn) = L" = E {(277()() — DI (fm(X) = —1) = I(¢"(X) = —1))}

= Exy)~p [Ez [

20(X) 1| (17,00 2470 | .

— Bicyyr [(1 (@) I(n(x) < 1/2) P2 (fonn(a) = 1)

@n(2) — DI0) > 12 Pz (fran(z) = 1>}

WLOG, we can assume 7(z) > % for p-almost all = where p is the probability measure w.r.t distribution P. Now
equation becomes

E[L(fm,n)] - L(g*) = E(X,Y)NP |:(277(X) - 1)PZ(fm,n(X) = _1):| (22)
Similarly, we have
BIL(fs. 2] ~ Lg") = Eceyor |20(X) = DP2(fs, 200 = -1) 3)

By assumption, EL(fs, z,) — L(g*). Thus we must have Pz(fs, 7 (X) = —1) — 0.
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1

For given x s.t n(z) > 35, we have

Palfn) = =1 = P2 3107526 = 1) 2 7
=1
m 24
< N By I(fs,.2.(X) = —1)] &4

= 2P2(fsmzi(X) = —1) —0

It follows that EL( f,, ) — L(g*) as well, i.e the voting classifier is consistent.

Appendix B. Lemma 2] proof

Proof. To show Q" (z) > 0, we need to perform some calculations directly. Note that

¢(@)[x®(x) + ¢(x)]
D2 (x)

Q" (x) = (25)

where ¢(z) is the normal density function.
Recall the fact that 2®(x) + ¢(z) > maxz(0, z) (a simple calculus exercise). It follows that Q" (x) > 0.

On the other hand, we have:

¢(x) [~ (20 (x) + 26(2))(x®() + ¢(2)) + *()]

Q///(x) _ 5 (m)

(26)

It suffices to show —(z®(z) + 2¢(z))(z®(z) + ¢(x)) + ®*(x) < 0,Vx € R.
Now denote —(z®(x) + 2¢(x))(2®(z) + ¢(z)) + ®2(x) as M (z). When x > 0, we have

M'(z) = —2*p(2)®(x) — 2002 (z) — x¢*(x) — ¢(x)P(z) <O whenz >0 (27)
But M(0) = —2+ 1 = -2 < 0, we conclude that M (z) < 0 when z > 0.

When z is positive, we will resort to few useful tail inequalities of normal distribution functions. By [Sampford [[1953]]
and |Szarek and Werner| [[1999]], we have

4¢()
V8 + 22+ 3z’

When z < 0, we can replace x in (24) by —z, which gives us:

1-®(z) < forz >0 (28)

4¢(x)

Plr) < ———
(=) V8 + 122 —3x

(29)

Next, (29) also implies

and
20(2) + 20(2) > ¢(x) (\/8+74;3x " 2) o (W)
It follows that
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1)

(V8 + 22 — 3x)2
— 2 2(z? +8 —2%) — 16
=~ )< (m—x)Q

>0, forz <0

Thus Q"' (x) < 0,Vx € R.

Appendix C. Lemma [3 proof

Proof. By Taylor expansion of P, (f?) in direction of g?, we have

Po(f') = Pu(f' +9") = Po(f +9")s9 )‘*‘QPT;/(ftH,g) (where f"*! = f' + a;g', o € (0,1))
=P, (f""Y - P (ff+4g") g P”(f )-(¢9")® (where "-" represents inner product)
P = (Pa ) = RS+ P ) o4 PG 01

Perform Taylor expansion of P, (F; + f;) one more time, and we obtain

1 R
Pr(f'+9') = Po(f) + PI(IY) g+ S PP - (9) (where /151 = f' + aqg’. o) € (0,1))
By Lemma 2] we have

Py (f) < PL(f) + P(f") - g

Under the notations of WLS in section 3.2, we can derive the following equation by the property of WLS:

D wills)T(wy,i + bs) (2 — Gsy@si = bsry) =0
which is equivalent to the following useful identity
—Pp(f*)-¢" = P(f) - (¢")?
It follows that

P > Par) — (PG - (6 + () -4 )+ Lprity - (g

(
(

1
Po(f) + 5llg"l1”

Pty = (P @24 P -0t ) + gl

All other conclusions can be derived from inequality (33).
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Appendix D. Theorem [3| proof

Proof. Note that

_ p( Aj T > [M1> (34)

- (Zﬁlf(ﬁ- . E3 1;1>

M M

where T; = I(fz, |an)+(X) Y <0), K; = 2T; — 1 fori = 1,2, ..., M. Note that T; are dependent with each other by

M ;. . . . .
the natural of subagging. And it’s easy to see that # is actually an incomplete U-statistic whose range is {—1, 1}.

In addition, P(fz, |an),+(X) - Y < 0) are the same for all i = 1,2, ..., m because that the original n observations
are i.i.d by assumption. Thus we can set P(fz, |an]+(X) Y < 0) = pgup fori = 1,2,..., M. It follows that

M K; .
0 = E[==1—] = E[K;] = 2psus — 1 and (17) can be further written as

M M M
Zi:l K (71 2

P(g(fM,n,t(X)) # Y) = P( M - (2psub - 1) > M - (2psub - 1)) (35)

Because of the dependency among K;, many bounding inequalities such as Hoeffding inquality can’t be applied directly.
Eventhough |Pelekis and Ramon|[2017] and Impagliazzo and Kabanets [2010] provided a Hoeffding’ inequality for the
sum of dependent random variables, the conditions required by their results are hard to check in our case. Fortunately,
Maurer| [2022] gave a useful concentration bound for the incomplete U-statistic with finite sample size. Before we use
that, we borrow few notations and conventions in Maurer’s work.

Let K : XY™ — R be a measurable, symmetric,bounded kernel where the integer m is called degree of kernel K.
0 = 0(p) = E[K(Xy,...,Xpn)] from a sample X = (X3,..., X,,) ~ pu”, where n is the number of independent
observations. D = (Dy,...,Dyr) € {D C [n] : |D| = m}M is a sequence of M subsets of {1,2,....,n} with
cardinality m and this sequence D is called the design (Kong and Zheng| [2021]]). Then the incomplete U-statistic is
defined as

where K (XPi) = K(X;,,..., X; ).

Under subagging, sequence D = (Dy, ..., D) is actually sampled with replacement from the uniform distribution on
{D C [n] : |D| =m} and number M is the subagging times or the number of subaged classifier we use.

Given a design D = (D1, ..., Dyr) € {D C [n] : |D| = m}M and k,1 € {1,2,...,n}, k # [, we define

Ri(D)={i: ke D;}|, Rw=|{i:k,1eD;} whereiec{l,2, .. m}
_ N\~ RiD) —~ R},(D)

k=1 k#l
C(D) = max %

One the other hand, for a bounded kernel K : XY™ — [—1,1] and X, ..., X,,,, X{, X} i.i.d with domain X, we define

21



arXiv Template A PREPRINT

B(K) = E[(V)%I’X{V)%Z’XéK(Xl, , ...7Xm)2)]

V(K) = xEX:ruypy'eXE [(Vy{y,vﬁz’XéK(m, s xm)Qﬂ 37)

o) = (VAR + VATE))

We will omit the dependency of design D and kernel K when there is no ambiguity.

Then we are ready to give the concentration bound w.r.t incomplete U -statistics.

Bernstein-type inequality for incomplete U-statistics (Maurer| [2022]). For fixed kernel K with values in [—1, 1],
design D andt > 0,

—¢2
P(UD(X) —0> t) = exp(mfff + BB/2+ (VBy + 40/3)t) %)

Notice that in our case, we have Up(X) = - Zf\il K(XP) = & Zle K;,0 = 2ps,, — 1. We can assume
Dsup < % which means we require that the error probability of subbagged classifier is not higher than % In generally
this assumption makes sense since each of them are Adaboosted classifier which should have better performance.

Given fixed subbagged samplings (or desgin) D, we now have

_ (M/Q]_M/Q 1—-2 2
( M + psub) ) (39)

P nt(X)) #Y|D) < :
(9(farnt(X)) # Y] )<exp(2Aa%+Bﬁ/2+(m+4C/3)(W+1—2psub)

If the design becomes random, i.e D = (D1, ..., D)) is sampled with replacement from the uniform distribution of
{D C [n] : |D| = m} and is independent of original dataset X, then quantities in (36) are all random variables.

Denote the events 4, Ep, F¢ as following:

Ea={De (Dl =m) s VD) > Vs 4\/m(3/6>\/ﬁ}
{D e{DC[n]:|D|=m}™:/B(D) > m; +(1+ 4\/ln(3/5)\/mﬁ} (40)

Ec = {D e{DcCn]:|D|=m}M:C(D) > % + \/%)’zn(s/a)}

Ep

According to Lemma 4.5 and Lemma 4.9 in (Maurer|[2022]), for 6 > 0 and v M > in(n), we have

P(EA) < 3, P(F) <

wl >
Wl >

, and P(E¢) <

It follows that with probability (where randomness comes from the subagging process) at least 1 — § we have:

_ (M/2'|7M/2 1—-2 2
( M + psub) ) 41)

P nr(X)) #Y) < '
P9l farn (X)) # )<e””(ng‘gg+Q%@/2+<@+4Q%/3><W+12psub>

O
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Appendix E. Theorem [6| proof

Proof. The proof simply combines Lemma 3] Theorem 4] Theorem [5|and the fact that hypothesis space consisting of
PMTSs has finite VC-dimension. According to Theorem 4] it suffices to show

PV F(X) £0) < eap( —2 ) 27())

Suppose the given training set is {(x;, ;)" } and the fitted classifier after T' rounds of AdaBoost is

T
= Z a fr(x)
t=1
Suppose f; is a PMT fitted at ¢-th step of AdaBoost, we can rewrite f; as defined in section 3.5:
=) sign[GLP(xi)] - I(xi € SE))
a€A?t

where {S%1},c ¢ is a set of partitioned feature space determined by the CART decision tree structure at ¢-th step of
AdaBoost and A? is the corresponding index set of partitioned space. G*Z is an fitted ProbitBoost model associated
with the partition S! where B represents the iteration times of ProbitBoost .

With the definition of weighted training error €;, we can derive the following inequality:

g = Zwt(i)l{ft(xi) # i}

=1

= Zwt ) {y: - Y sign[GLP (xi)] - 1{x; € S} < 0}
acAt

= Z Zwt(i)l{xi € SII{y:GLP (x;) < 0} (42)

acAt i=1

n _ (¥,B (.

< 30 D wiliyf e sty TG 00)

acAt i=1

_ Z Z _ln yzG (Xz)) def Ef(B>

by Borer In2 n(2)

P
By assumption, we have Ezfng)) < % fort =1,2,...,T. By Theorem it follows that

T L |[eP(B) et (B)
Ps(YF(X) <0) < 27“Hm = ZT}]I In(2) (1  In(2) )
T
~ITV1 a6ty +
T
< e —2 Y 6EE)?)

t=1

-
where v/ (B) = 1 — Efng))- O

References

David Mease and Abraham Wyner. Evidence contrary to the statistical view of boosting. J. Mach. Learn. Res., 9:
131-156, jun 2008. ISSN 1532-4435.

23



arXiv Template A PREPRINT

L. Breiman. Bagging predictors. Machine Learning, 24:123—-140, 2004.

Tin Kam Ho. Random decision forests. In Proceedings of 3rd International Conference on Document Analysis and
Recognition, volume 1, pages 278-282 vol.1, 1995. doi:10.1109/ICDAR.1995.598994.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an appli-
cation to boosting. Journal of Computer and System Sciences, 55(1):119-139, 1997. ISSN 0022-0000.
doi:https://doi.org/10.1006/jcss. 1997.1504. URL https://www.sciencedirect.com/science/article/pii/
S002200009791504X.

Tiangi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’16, page 785-794, New York, NY,
USA, 2016. Association for Computing Machinery. ISBN 9781450342322. doi310.1145/2939672.2939785. URL
https://doi.org/10.1145/2939672.2939785.

Leo Breiman. Using iterated bagging to debias regressions. Machine Learning, 45:261-277, 12 2001.
doii10.1023/A:1017934522171.

Jerome H. Friedman. Stochastic gradient boosting. Comput. Stat. Data Anal., 38(4):367-378, feb 2002. ISSN 0167-9473.
doi:10.1016/S0167-9473(01)00065-2, URL https://doi.org/10.1016/S0167-9473(01)00065-2.

Yohei Mishina, Masamitsu Tsuchiya, and Hironobu Fujiyoshi. Boosted random forest. In 2014 International Conference
on Computer Vision Theory and Applications (VISAPP), volume 2, pages 594598, 2014.

Indrayudh Ghosal and Giles Hooker.  Boosting random forests to reduce bias; one-step boosted forest
and its variance estimate. Journal of Computational and Graphical Statistics, 30(2):493-502, 2021.
doi:10.1080/10618600.2020.1820345. URL https://doi.org/10.1080/10618600.2020.1820345.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression: a statistical view of boost-
ing (With discussion and a rejoinder by the authors). The Annals of Statistics, 28(2):337 — 407, 2000a.
doij10.1214/a0s/1016218223, URL https://doi.org/10.1214/a0s/1016218223|

Niels Landwehr, Mark Hall, and Eibe Frank. Logistic model trees. Machine Learning, 59(1):161-205, 2005. ISSN
1573-0565. doii10.1007/s10994-005-0466-3. URL https://doi.org/10.1007/s10994-005-0466-3.

Songfeng Zheng and Weixiang Liu. Functional gradient ascent for probit regression. Pattern Recognition, 45
(12):4428-4437, 2012. ISSN 0031-3203. doi:https://doi.org/10.1016/j.patcog.2012.06.006. URL https://www!
sciencedirect.com/science/article/pii/S0031320312002762.

Liudmila Ostroumova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey Gulin. Catboost:
unbiased boosting with categorical features. In Neural Information Processing Systems, 2017.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. Lightgbm:
A highly efficient gradient boosting decision tree. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
6449f44a102£de848669bdd9eb6b76fa-Paper . pdf.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression: a statistical view of boost-
ing (With discussion and a rejoinder by the authors). The Annals of Statistics, 28(2):337 — 407, 2000b.
doi:10.1214/a0s/1016218223, URL https://doi.org/10.1214/a0s/1016218223.

Marcel Dettling and Peter Bithlmann. Boosting for tumor classification with gene expression data. Bioinformatics
(Oxford, England), 19:1061-9, 07 2003. doi;10.1093/bioinformatics/btf§67.

Matthias Schmid, Florian Wickler, Kelly O. Maloney, Richard Mitchell, Nora Fenske, and Andreas Mayr. Boosted
beta regression. PLOS ONE, 8(4):1-15, 04 2013. doi:10.1371/journal.pone.0061623. URL https://doi.org/10,
1371/journal.pone.0061623|

Peter Biichlmann and Bin Yu. Analyzing bagging. The Annals of Statistics, 30(4):927-961, 2002. ISSN 00905364.
URL http://www. jstor.org/stable/15568692,

Xiangshun Kong and Wei Zheng. Design based incomplete u-statistics. Statistica Sinica, 31(3):pp. 1593-1618, 2021.
ISSN 10170405, 19968507. URL https://www.jstor.org/stable/27034832,

Trevor J. Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. Multi-class adaboost. Statistics and Its Interface, 2:349-360,
2009.

Wei Gao, Fan Xu, and Zhi-Hua Zhou. Towards convergence rate analysis of random forests for classification.
Artificial Intelligence, 313:103788, 2022. ISSN 0004-3702. doi:https://doi.org/10.1016/j.artint.2022.103788. URL
https://www.sciencedirect.com/science/article/pii/S000437022200128X.

24


https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/https://doi.org/10.1006/jcss.1997.1504
https://www.sciencedirect.com/science/article/pii/S002200009791504X
https://www.sciencedirect.com/science/article/pii/S002200009791504X
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1023/A:1017934522171
https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.1080/10618600.2020.1820345
https://doi.org/10.1080/10618600.2020.1820345
https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1007/s10994-005-0466-3
https://doi.org/10.1007/s10994-005-0466-3
https://doi.org/https://doi.org/10.1016/j.patcog.2012.06.006
https://www.sciencedirect.com/science/article/pii/S0031320312002762
https://www.sciencedirect.com/science/article/pii/S0031320312002762
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1093/bioinformatics/btf867
https://doi.org/10.1371/journal.pone.0061623
https://doi.org/10.1371/journal.pone.0061623
https://doi.org/10.1371/journal.pone.0061623
http://www.jstor.org/stable/1558692
https://www.jstor.org/stable/27034832
https://doi.org/https://doi.org/10.1016/j.artint.2022.103788
https://www.sciencedirect.com/science/article/pii/S000437022200128X

arXiv Template A PREPRINT

Erwan Scornet, Gérard Biau, and Jean-Philippe Vert. Consistency of random forests. The Annals of Statistics, 43(4):
1716 — 1741, 2015. doi:10.1214/15-A0S 1321, URL https://doi.org/10.1214/15-A0S1321.

Peter L. Bartlett and Mikhail Traskin. Adaboost is consistent. Journal of Machine Learning Research, 8(78):2347-2368,
2007. URL http://jmlr.org/papers/v8/bartlett07b.htmll

Luc Devroye, Laszlé Gyorfi, and Gabor Lugosi. A probabilistic theory of pattern recognition. In Stochastic Modelling
and Applied Probability, 1996.

Jean-Samuel Leboeuf, Frédéric LeBlanc, and Mario Marchand. Decision trees as partitioning machines to
characterize their generalization properties. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 18135-18145. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
d2a10b0bd670e442bld3caa3fbf9e695-Paper . pdf.

Robert E. Schapire and Yoav Freund. Boosting: Foundations and Algorithms. The MIT Press, 05 2012. ISBN
9780262301183. doij10.7551/mitpress/8291.001.0001, URL https://doi.org/10.7551/mitpress/8291.001!
0001l

Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the margin: A new explanation for
the effectiveness of voting methods. The Annals of Statistics, 26(5):1651-1686, 1998. ISSN 00905364. URL
http://www.jstor.org/stable/120016,

Wei Gao and Zhi-Hua Zhou. On the doubt about margin explanation of boosting. Artificial Intelligence, 203:1-18,
2013. ISSN 0004-3702. doi:https://doi.org/10.1016/j.artint.2013.07.002. URL https://www.sciencedirect!
com/science/article/pii/S0004370213000684.

Markelle Kelly, Rachel Longjohn, and Kolby Nottingham. The uci machine learning repository. https://archive,
ics.uci.edu.

Andreas Maurer. Exponential finite sample bounds for incomplete u-statistics. arXiv preprint arXiv:2207.03136, 2022.
L. Breiman, Jerome H. Friedman, Richard A. Olshen, and C. J. Stone. Classification and regression trees. 1984.

David George Heath. A Geometric Framework for Machine Learning. PhD thesis, Johns Hopkins University, USA,
1993. UMI Order No. GAX93-13375.

Alfred Kar Yin Truong. Fast growing and interpretable oblique trees via logistic regression models. 2009.

Asdribal Loépez-Chau, Jair Cervantes, Lourdes Lopez-Garcia, and Farid Garcia Lamont. Fisher’s
decision tree. Expert Systems with Applications, 40(16):6283-6291, 2013. ISSN 0957-4174.
doi:https://doi.org/10.1016/j.eswa.2013.05.044. URL https://www.sciencedirect.com/science/article/
pii/S0957417413003424.

Darshana Chitraka Wickramarachchi, Blair Lennon Robertson, Marco Reale, Christopher John Price, and J. Brown. Hh-
cart: An oblique decision tree. Comput. Stat. Data Anal., 96:12-23, 2015. URL https://api.semanticscholar)
org/CorpusID: 16947789,

Dimitris Bertsimas and Jack Dunn. Optimal classification trees. Machine Learning, 106(7):1039-1082, 2017. ISSN
1573-0565. doij10.1007/s10994-017-5633-9. URL https://doi.org/10.1007/s10994-017-5633-9,

Rafael Blanquero, Emilio Carrizosa, Cristina Molero-Rio, and Dolores Romero Morales. Sparsity in optimal ran-
domized classification trees. European Journal of Operational Research, 284(1):255-272, 2020. ISSN 0377-2217.
doi:https://doi.org/10.1016/j.ejor.2019.12.002. URL https://www.sciencedirect.com/science/article/
pii/S0377221719309865,

M. R. Sampford. Some Inequalities on Mill’s Ratio and Related Functions. The Annals of Mathematical Statistics, 24
(1):130 — 132, 1953. doii10.1214/a0ms/1177729093. URL https://doi.org/10.1214/aoms/1177729093.

Stanislaw J. Szarek and Elisabeth Werner. A nonsymmetric correlation inequality for gaussian measure. Journal of
Multivariate Analysis, 68(2):193-211, 1999. ISSN 0047-259X. doi:https://doi.org/10.1006/jmva.1998.1784. URL
https://www.sciencedirect.com/science/article/pii/S0047259X98917845.

Christos Pelekis and Jan Ramon. Hoeffding’s inequality for sums of dependent random variables. Mediterranean
Journal of Mathematics, 14(6):243, 2017. ISSN 1660-5454. doii10.1007/s00009-017-1043-2 URL https:
//doi.org/10.1007/s00009-017-1043-2,

Russell Impagliazzo and Valentine Kabanets. Constructive proofs of concentration bounds. In Maria Serna, Ronen
Shaltiel, Klaus Jansen, and José Rolim, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 617-631, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-642-
15369-3.

25


https://doi.org/10.1214/15-AOS1321
https://doi.org/10.1214/15-AOS1321
http://jmlr.org/papers/v8/bartlett07b.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/d2a10b0bd670e442b1d3caa3fbf9e695-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d2a10b0bd670e442b1d3caa3fbf9e695-Paper.pdf
https://doi.org/10.7551/mitpress/8291.001.0001
https://doi.org/10.7551/mitpress/8291.001.0001
https://doi.org/10.7551/mitpress/8291.001.0001
http://www.jstor.org/stable/120016
https://doi.org/https://doi.org/10.1016/j.artint.2013.07.002
https://www.sciencedirect.com/science/article/pii/S0004370213000684
https://www.sciencedirect.com/science/article/pii/S0004370213000684
https://archive.ics.uci.edu
https://archive.ics.uci.edu
https://doi.org/https://doi.org/10.1016/j.eswa.2013.05.044
https://www.sciencedirect.com/science/article/pii/S0957417413003424
https://www.sciencedirect.com/science/article/pii/S0957417413003424
https://api.semanticscholar.org/CorpusID:16947789
https://api.semanticscholar.org/CorpusID:16947789
https://doi.org/10.1007/s10994-017-5633-9
https://doi.org/10.1007/s10994-017-5633-9
https://doi.org/https://doi.org/10.1016/j.ejor.2019.12.002
https://www.sciencedirect.com/science/article/pii/S0377221719309865
https://www.sciencedirect.com/science/article/pii/S0377221719309865
https://doi.org/10.1214/aoms/1177729093
https://doi.org/10.1214/aoms/1177729093
https://doi.org/https://doi.org/10.1006/jmva.1998.1784
https://www.sciencedirect.com/science/article/pii/S0047259X98917845
https://doi.org/10.1007/s00009-017-1043-2
https://doi.org/10.1007/s00009-017-1043-2
https://doi.org/10.1007/s00009-017-1043-2

	Introduction
	Related works for bagging-boosting methods
	Probit Model Tree
	ProbitBoost for Binary class
	Weighted least square regressor as weak learner
	Growing the probit model tree
	The model

	Subagging Boosted Probit Model Trees (SBPMT)
	Multi-class version

	Theoretical analysis of SBPMT
	Setup and notation
	Consistency of SBPMT
	Generalization error bound

	Experiments
	Simulation
	Performance with real datasets

	Discussion

