Finding Reaction Mechanism Pathways with Deep Reinforcement Learning and Heuristic Search
A chemical reaction, as the overall transformation of reactant molecules into product molecules, can be
broken down into smaller reaction steps called elementary steps. An elementary step reaction involves only a
single transition state, such as making bonds, breaking bonds, or donating electrons, that transforms the
chemical reactants into chemical products. While Artificial Intelligence (Al) has been used to predict the
outcomes of chemical reactions, most of these reaction predictors are designed to predict the major outcome
of overall transformations, skipping the chemical reactions at a mechanistic level, making it difficult to
identify intermediates and byproducts of the reaction. Information on the reaction mechanisms allows
practitioners to identify intermediate molecules, predict the results of similar reactions under various
conditions, and validate the feasibility of that reaction. Existing models for elementary steps, like OrbChain
[1], can predict reaction mechanisms using a beam search algorithm, an incomplete search algorithm that does
not explicitly consider path cost. To address this, we learn a heuristic function and perform a heuristic search
that is complete and explicitly takes path cost into account.

Approach, Results, and Future Work: We pose finding a sequence of reaction mechanisms as a pathfinding
problem, using the United States Patent and Trademark Office (USPTO) [2] dataset for training. We create an
offline dataset of precomputed start

states(reactants), goal states(products), and

. Step/s Solver Path Cost | % Solved | Nodes Secs Nodes/Sec
expanded start states. It takes 4-5 days with 48 DeepCubeA (rxnfp) | 0.00 100.00% | 3.09E+2 | 407 | 7603
. Stepseo | DeepCubeA (ecfp) | 0.00 100.00% | 3.005+2 | 3.87 | 7997
CPUs to generate 2 million datasets. We use PS=0 Oniform Cost Search | 0.00 100.00% | 3.00E+2 | 4.61 67.13
) o ] Tanimoto Similarity | 0.00 100.00% | 3.09E+2 [ 371 | 8342
DeepCubeA [3], with Hindsight Experience DeepCubeA (rxafp) | 1.00 100.00% | 6.82E+2 | 10.07 | 67.81
.. . _+1 | DeepCubeA (ecfp) 1.00 100.00% | 7.49E+2 [ 9.70 7726
Replay [4] to learn a heuristic function that Steps=1 | Uniform Cost Search | 1.00 100.00% | 4.26E+4 | 553.33 | 7695
I d 1 (e A* Tanimoto Similarity | 1.00 100.00% | 3.136+4 | 42920 | 72.97
generalizes over start and goal states to guide A DecpCubeA (rxnfp) | 193 100.00% | L.14E+3 | 1681 | 6805
. . _, [DeepCubeA (ecfp) | 2.07 100.00% | 1.636+4 | 267.16 | 60.87
search to predict the sequence of mechanistic Steps=2 | niform Cost Search | 1.67 20.00% | 1.32E+5 | 1497.77 | 87.96
reactions of an overall chemical transformation Tenimoto Similarity | 175 2087% | L10B+3 | 122910 | .13
> DeepCubeA (rxnfp) | 2.79 9333% | 9.29E+3 | 127.00 | 73.18
. . [DeepCubeA (ecfp) | 2.77 86.67% | 4.14E+4 [ 578.88 | 71.54
from reactants to products. DeepCubeA is Steps=3 [ o PbeReTD) |2 1 > L
trained to solve puzzles for predefined goals. To Tanimoto Similarity | - 000% |- - -
] ; SR ) DeepCubeA (rxnfp) | 3.60 100.00% | 2.63E+4 | 350.06 | 7533
handle this, we build on hindsight experience Steps=4 | DeepCubeA (ecfp) | 3.33 60.00% | 6.36E+4 | 82164 | 77.36
Uniform Cost Search | 3.00 6.67% 1.43E+5 | 1962.28 | 73.01
replay to traln a heurlstic functlon that Tanimoto Similarity | 3.00 6.67% 24TE+4 | 272.15 90.64
. . DeepCubeA (txnfp) | 3.92 86.67% | 637E+4 | 74431 | 85.60
generalizes over any start and goal pair. We then Steps=s | DecpCubeA (ecfp) | 340 335% | BA0EH | 96849 | 8669
use the learned heuristic function with the A* Tanimoto Soifrlﬂlaez; : 000% |- : -
. DeepCubeA (rxnfp) | 3.55 T333% | 4.706+4 | 67827 | 69.29
search algorithm to find paths from start states to Stenep | DeepCubeA (ecp) | 3.20 3333% | 6.14E+4 | 933.86 | 65.73
. PS=0" Uniform Cost Search | - 0.00% - - B
goal states. We generate a test dataset with Tanimoto Similarity | - 000% |- - -

start/goal pairs to test our trained heuristic by

taking 0-6 random steps from a given start state. We also test with Tanimoto similarity [5] to guide search.
DeepCubeA outperforms uniform cost search and the Tanimoto similarity. We also explore learnable
representations with rxnfp [6] instead of static representations ECFPS [7], and observe that DeepCubeA
heuristic with learnable representation outperforms static representations like ECFPS. The USPTO dataset has
only one product called a major product, which does not contain byproducts of chemical reactions. The
product can contain a set of goal states instead of a single goal. Future work includes training a heuristic
function that generalizes over states and a set of goal states.
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