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Abstract: In this paper, we elaborate on the notion of Zhang equivalency (ZE) and subsequently explore the
scenarios of equations and inequations within the context of the unequal-parameter-value (UPV) situation. Utilizing
the framework of ZE, we conduct a thorough examination of the equations and inequations pertaining to once,
twice, thrice, and n-times. Futhermore, we arrive at the general integral-related ZE formulas.
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1 Introduction

Equivalence and its specific forms of equivalence serve
as effective and robust tools in addressing a multitude of
issues across various disciplines, including mathematics,
physics, and engineering (encompassing computation).
Broadly, equivalence refers to the process of transform-
ing a given problem into an equivalent one that is ei-
ther easier to solve or more readily understood. Zhang
equivalency has introduced integral forms, equations,
and inequations under conditions of equivalent param-
eters, which were discussed in [1]-[6]. Building on this
groundwork, we intend to provide a supplement by gen-
eralizing these concepts to scenarios under unequal pa-
rameter conditions.

In this paper, the mainly contributions of this paper
are listed as follows.

1) Introduction of standard ZE equations and inequa-
tions of equal-parameter-value (EPV).

2) Derivation of standard ZE equations and inequa-
tions of unequal-parameter-value (UPV).

3) Derivation of once-integral ZE equations and in-
equations of UPV.

4) Derivation of twice-integral ZE equations and in-
equations of UPV.

5) Derivation of thrice-integral ZE equations and in-
equations of UPV.

6) Derivation of n-times-integral ZE equations and in-
equations of UPV.

2 Standard ZE Equations and Inequations of
Equal-Parameter-Value (EPV) Situation

In this section, the standard ZE equations and the
standard ZE inequations of EPV situation are dis-
cussed, which are proposed in [2] and [5].

2.1 Standard ZE Equations of EPV Situation

In the following section, we specially discuss the for-
mulas for the 0-order, 1-order, 2-order, 3-order, and n-
order, which are proposed in [2] and [5].

1) Order-0 ZE General Formula of EPV Situation:

Based on ZE, we propose an error function denoted
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by e(t) = a(t) — d(t), which is defined as the differ-
ence between the desired value a(t) and the actual
value d(t). It can be inferred that the equation
e(t) = 0 holds true, as t — oo.

e(t) =0. (1)

Order-1 ZE General Formula of EPV Situation:

é(t) + Xe(t) =0, (2)
at) —d(t) + Mz(t) — za(t)) = 0. (3)
In the present context, let é(¢) denote the first-
order reciprocal d(e(t))/dt, and let A > 0. Based
on ZE, it can be demonstrated that the (1), (2),
and (3) are equivalent.
Order-2 ZE General Formula of EPV Situation:

E(t) + 2Xé(t) + MNe(t) = 0. (4)

According to ZE, since (1) is equivalent to (2), we
define €;(t) = é(t) + Ae(t) and then substitute it
into é1(t) + Ae1(t) = 0. After some straightforward
simplification, we arrive at (4).

Order-3 ZE General Formula of EPV Situation:

€ (1) +3NE(t) +30%e(t) + Ne(t) =0.  (5)
Let ex(t) = €(t) + 2Xé(t) + A%e(t) and then sub-
stitute it into és(t) + Aea(t) = 0. We obtain the
formula through straightforward simplification as
t — oo and A > 0.
Order-n ZE General Formula of EPV Situation:

<7g> M) + (’f) eV + ..+ (Z) ¥
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(Z) A"e(t) = 0.

We proceed by employing the method of mathe-
matical induction. Suppose that the formula for
the (n — 1)th order is expressed as €,_1(t). More-
over, it has been established that the formula is



congruent with (1) as ¢ — oo and A > 0. Subse-
quently, by incorporating this into (2) and perform-
ing a series of straightforward algebraic reductions,
we are able to arrive at (6). Besides, when Ay > 0,
A2 >0, ..., >0 and t — oo, the derived equa-
tions are equivalent.

e(t) =

é(t) + Ae( ) =
E(t) + 2Xé(t) + )\2 (t) =
e t)+3)\e( +3A\2¢é(t

( ) )

et (’f) et 1>(
we(n D+ ("

() A"e(t) = 0.

2.2 Standard ZE Inequations of EPV Situation

In the following section, we specially examine the for-
mulas for the 0-order, 1-order, 2-order, 3-order, and n-
order.

1) Order-0 ZE General Formula of EPV Situation:
Based on ZE, the derivation of the subsequent for-
mula is straightforward as t — oc.

0
+ )\3e(t) =0,
)+

DA () +

(o
g

e(t) <0. (7)
2) Order-1 ZE General Formula of EPV Situation:

é(t) + Ne(t) <0, (8)
a(t) —d(t) + Ma(t) — d(t)) < 0. (9)

According to ZE, we arrive at (8) and (9).
3) Order-2 ZE General Formula of EPV Situation:

E(t) + 20é(t) + MNe(t) < 0. (10)

As indicated by ZE, (7) and (8) are considered
equivalent as ¢ — oo and A < 0. Proceeding with
the definition of €;(t) = é(t) + Ae(t), we substitute
this expression into é1(t) + Aeg(t) < 0. Through
simplification, we subsequently arrive at (10).

4) Order-3 ZE General Formula of EPV Situation:

€ (1) + 3NE(t) + 3N%e(t) + NPe(t) < 0. (11)

Based on ZE, it is evident that (7) and (10) are
equivalent as t — oo and A > 0. In light of this, we
define ey (t) = é(t) + 2Xé(t) + A%e(t) and proceed to
incorporate this substitution into éa(t)+Aea(t) < 0.
Following a process of simplification, we arrive at

(11).
5) Order-n ZE General Formula of EPV Situation:
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The proof procedure is largely analogous to (6). By
employing mathematical induction, we proceed on
the assumption that the formula of the (n — 1)th
order is valid. We then define

h1 = <?’L 8 1) e(nfl) (t)+ <Tl I 1> )\e(n72) (t)+

—1
S+ (n ) )Ake("—l"“)(t) +.. 4
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and incorporate this into (8). Through this substi-
tution, we are able to obtain (12). When A; > 0,

Ao >0, ..., > 0 and t — o0, the derived in-
equations are equivalent.
e(t) <
é(t) + )\e( ) <
é(t) 4+ 2Xé(t )+X2 (t) <0,
et) + 3)\6( )+ 3X%€é(t) + Me(t) <0,
(p)e ( JAe D) + ..+
(Z))\ke(" )+ .o+ ()N De)+
()Ame(t) < 0

3 Standard ZE Equations and Inequations of
Unequal-Parameter-Value (UPV) Situation

In this section, we proceed to discuss the standard ZE
equations and inequations in unequal-parameter-value.
3.1 Standard ZE Equations of UPV Situation

In this section, we specially discuss the equations for
the 0-order, 1-order, 2-order, 3-order, and n-order.

1) Order-0 ZE General Formula of UPV Situation:
In analogy to the previously established Oth-order
formula, the following relationship is maintained as

t — oo.
e(t) = 0. (13)

2) Order-1 ZE General Formula of UPV Situation:
The order-1 ZE general formula of equation with
t — oo and A1 > 0 is presented as

é(t) + Are(t) = 0, (14)

a(t) —d(t) + M (a(t) —d(t)) =0.  (15)
3) Order-2 ZE General Formula of UPV Situation:

Similarly, we define €;(t) as é(t) + Are(t). By in-
corporating into (14), we can derive the following
equation.

él(t> + )\261 (t) =0.

Following simplification, we could arrive at (16).
4) Order-3 ZE General Formula of UPV Situation:

e(t) + ()\1 + Ao + )\3)5(15) + ()\1)\2+

17
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Similarly, we can also set es(t) as é(t) + (A1 +
A2)é(t)+A1 A2e(t) and then substitute it into é3(t)+
Ases(t) = 0. After simplification, it is not difficult
to derive (17).

5) Order-n ZE General Formula of UPV Situation:

n—1
e (t)+ ) et (Z Z Z M.
=1 j=12z=5+1 w=n—1i
../\w) + 1. Aqe(t) = 0.
(18)
Assuming formula is true for 1 to n. Then we de-
fine (18) as €,(t) . Through the process of simpli-

fication, we obtain the subsequent mathematical
expression:

e(n+1)(t)+n§:e(i+1)(t)(§: En: zn: A,
i=1

j=1z=j5+1 w=n—1

, Aw> + A1 AP () + Anga (e(")(t)—I—

Through a straightforward simplification process,
we arrive at the following formula.

n+1 n+l n+1

) Z“ (ZZ~~ RS

j=1z=j+1 w=n+l—i
..)\w> + A1 Angie(t) = 0.

Therefore, we conclude that the formula for the
(n 4+ 1) th order is valid. When \; > 0, Ay > 0,

A > 0 and t — oo, the derived equations are
equivalent.

e(t) =
é(t) + ( ) =0,
é(t) + (A1 + A2)é(t) + A hze(t) =0,
(1) + (M1 + A2+ A3)é(t) + (Aot
Mz + AaX3)é(t) + A dadse(t) =0,

e™ (¢ (t)+ Znﬂ e (t)(ZL Z::j+1 e
o i N )\)+)\1...)\ne(t):().
3.2 Standard ZE Inequations of UPV Situation

In this sector, we specially examine the formulas for
the 0-order, 1-order, 2-order, 3-order, and n-order about
inequations.

1) Order-0 ZE General Formula of UPV Situation:
e(t) <0. (20)

Based on ZE, the given formula is applicable as
t>0.

2) Order-1 ZE General Formula of UPV Situation:
According to ZE, we have the following formulas:

é(t) + Are(t) <0, (21)

a(t) —d(t) + Ai(a(t) —d(t)) <0.  (22)
3) Order-2 ZE General Formula of UPV Situation:

B(t) + (M + A)e(t) + Mse(t) <0, (23)

Similarly, we set €1(t) equal to é(t) + Aie(t) and
incorporate this into é;(t) + A1e1(t) < 0. Through
the process of simplification, we obtain (23).

4) 3-order ZE General Formula of UPV Situation:

E(t) + (M4 A2+ Ag)é(t) + (A) (24)

1 A2+
AMAg + A2Az)é(t) + A AaAze(t) <O0.

By the same rationale, we set e3(t) to é(t) + (A1 +
A2)é(t) + A Aqge(t) and substitute this into éx(t) +
Age2(t) < 0, which allows us to obtain (26).

5) Order-n ZE General Formula of UPV Situation:

(1) +Ze<> (ZZ 3 A

Jj=1z=j5+1 w=n—1u
..Aw> + A1 Ane(t) 0.
(25)

We define (25) as €,,(t). Then we utilize mathemat-
ical induction to establish the following inequation.

En(t) + Ans1en(t) <0.

(26)

Through a straightforward simplification, we arrive
at the following formula.

n+1l n+1 n+1

e(”“)(t)Jan:e(i)(t)(Z S Y

j=1z=j+1 w=n-+1—1

..)\w> T A1 Apgie(t) 0.



Therefore, we can conclude that the formula for
the n + 1 order is valid. When Ay > 0, Ay > 0,

., An > 0 and t — oo, the derived inequations
are equivalent.

e(t)

é(t) + (t) <0,

é(t) + (Al + Aa)eé(t) + M Aze(t) <0,
€(t) + (A1 + A2+ A3)é(t) + (A Ao+
A1 A3 + A2 Az)e(t) + A A Aze(t) <0,

e(n)( )+ Zn% @ ( )(Z?:1 Z::j-i-l
i A ) AL Age(t) 0.
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4 Once-Integral ZE Equations of UPV Situation

In this sector,once-integral ZE equations of UPV sit-
uation are discussed. Besides, we specially examine the
formulas for the -1-order, 0-order, 1-order, 2-order, and
n-order.

1)

Order-(-1) Once-Intergel General Formula: By
virtue of ZE, the function e(t) can be defined with
fo T)dr. Be51des the formula also can be definde

with fo —d(7)d7. The subsequent mathemat-
ical expression is obtained, when t — oc.

/t e(r)dr = 0. (27)
0

Order-0 Once-Integral General Formula:
t
e(t) + M\ / e(t)dr = 0. (28)
0

By defining €; () in é1(t)+A1€e1(t) =0 as fg e(r)dr
we arrive at (28) as A1 > 0, Ay > 0,A\3 > 0 and
t — oo.

Order-1 Once-Integral General Formula:

é(t) + (M + A2)e(t) + Mg /t e(t)dr =0. (29)

In the case of the order-1 formulation, we consider
fo ea(T)dT = e(t) + A1 fo dT and subsequently

incorporate fo €2(7)dr into ez (t) + Ao fo ea(T)dT =
0, when Ay > 0, Ay > 0 and t — oo. Then we
arrive at (29).

Order-2 Once-Intergel General Formula:

e(t) + ()\1 + Ao + Ag)é(t) + (/\1/\2 + A3 + /\2)\3)

€(t) + )\1)\2/\3 /t G(T)d’r =0.
° (30)

We propose setting fo es(7)dT to be equal to

e(t) + (A1 + Aa)e(t) + Ao fo 7)dr, and this ex-
pression is then substituted into formula es(t) +
A3 fo €3(7)d7 = 0. Then we arrive at (30).

5) Order-n Once-Integral General Formula:

e(")(t)—i-i_il(/ote )(Til ni

j=1z2=j+1
n+1 t
> A ..)\w> + A1 ..)\nH/ e(r)dr = 0.
w=n+1—1 0

(31)

We adopt the technique of mathematical induction.
We start by assuming the correctness of the for-
mula for the (n — 1)th order. We subsequently set

fo €, (7)dT to be equal to

(n=1) (4 +Z(/ dr>(i)<i zn:

j=1z=j+1
n t
Z )\j/\z...)\w> + A A | e(n)dr
w=n—1t 0

and integrate this assignment into e,(t) +
Ani1 f(f €n(7)dT = 0, which leads to the derivation
of the formula for the n order.

When A\; > 0, Ao > 0, '~~)\n+1 > 0 and t — oo,
the derived equations are equivalent.

fot e(r)dr =0,

t)+)\1fge(7 dr =0,
e(t) + (A1 + Ag)el(t )+/\1)\2f0 T)dr =0,
E(t) + (M + A2+ Az)é(t ) (MA2 + A A3+
)\2)\3) (t) + A1 A3 fO 7)dr =0,

( +Zz 1 fo 7)dr) ”(Z"H anjl-i-l
ZTZH iAA A )+A1 i1 Jo e(r)dr

5 Once-Integral ZE Inequations of UPV Situation

In this sector,once-integral ZE inequations of UPV
situation are discussed. Besides, we specially examine
the formulas for the order(-1),order-0, order-1, order-2,
and order-n.

1) Order-(-1) Once-Integral General Formula:
In the context of ¢ > 0, we define e(t) in e(t) < 0

as fg e(r)dr t
/0 e(r)dr <0. (32)

2) Order-0 Once-Integral General Formula:
t
e(t) + M\ / e(r)dr < 0. (33)
0
By defining €1 (¢) in é1(t)+A1€e1(t) <0 as f(f e(r)dr

we arrive at (33).
3) Order-1 Once-Integral General Formula:

E() + Ot + Aa)e(t) + Ao /t e(r)dr <0. (34)
0
We consider fot ea(r)dr = e(t) + A\ fot e(r)dr

and subsequently incorporate it into es(t) +
/\2f062 )d7 <0, as t — oo and Ay > 0.



1)

Order-2 Once-Integral General Formula:

e(t) + ()\1 + Ao + )\3)é(t) + (/\1)\2 + A A3 + )\2)\3)

e(t) + A1 Aads /t e(T)dr <0.
BENED

The derivation process is in line with the methodol-
ogy employed in the preceding derivations.It can be
established that when Ay > 0, Ao > 0, A3 > 0 and
t — oo, there exists an equivalence among (32),
(33), (34), and (35).

Order-n Once-Integral General Formula:

w03 (ffeon) (8 5 -

Jj=1z=j+1
n+1 t
Z M ..)\w) + A1 ..Am/ e(r)dr <0.
w=n+1—1 0
(36)

We adopt the technique of mathematical induction.
We start by assuming the correctness of the for-
mula for the (n — 1)th order. We subsequently set
fot €n—1(7) to be equal to

i+ (ffenan) (33

and integrate this assignment into €,_1(¢) +
Ana1 fot €n—1(7)dT < 0, which leads to the deriva-
tion of the formula for the nth order.

When A1 > 0, Ao > 0, e )\n+1 > 0andt — o0,
the derived inequations are euqivalent.

fo T)dr <0,

“r A1 fO dT <0,
e() ()\1+)\2) ()-‘r)q/\zfo dT<O
é(t) + (M + A2+ Ag)é () (Ade + A As+
Ao Az)e(t) + A AaAs fo 7)dr <0,
0 T
sz+n+1 iNAz A )+)\1 An+1 fo T)dr
<0.

6 Twice-Integral ZE Equations of UPV Situation

In this section, we discuss twice-integral ZE equations
of UPV. We also derive and analyze the formulas per-
taining to twice-integral of various orders, specifically
-2, -1, 0, and n.

1)

Order-(-2) Twice-Integral General Formula:

t T1
/ dry / e(ro)dmo = 0.
0 0

In the context of ¢ > 0, we define €(t) in €o(t) =0
as fot d7'1 fOTl 6(7’0)(17’0.

(37)

2)

Order-(-1) Twice-Integral General Formula:

t t T
/ e(m)dm + /\1/ dﬁ/ e(ro)dro = 0. (38)
0 0 0

By deﬁning e1(t) in é(t) + Me(t) = 0 as
fo dr [ e(r0)dro, we arrive at (38).

Order-0 Twice-Integral General Formula:

By deﬁning Ez(t) in é(t ) + A2ea(t) 0 as

fo T1)dm+ A fo dry ;" e(r0)d7o, we arrive at the
following expression when A; > 0, Ay > 0 and
t — oo

e(t) + ()\1 =+ /\2)/(; e(ﬁ)d(ﬁ) + A2

t T1
/ dTl/ e(TQ)dTO =0.
0 0

Order-1 Twice-Integral General Formula:

By defining e3(¢) in é3(t) + )\363( ) =0 as e(t) +
()\1+)\2) fot 6(7’1 T1 +)\ )\2 fO d’Tl fO T() dT(),We
arrive at the following formula when A\; > 0, Ay >
0, A3 > 0 and t — oo:

e(t) + (A1 + A2 + Az)e(t) + (A1 A2 + AAz + A2A3)

t t T1
/ €(T1)d71 + )\1)\2/\3/ dry / 6(7‘0)(17'0 =0.
0 0 0

(39)

(40)
Order-n Twice-Integral General Formula:
n+1 t ) ()n+2 n+2
WX (fan [ etmiin) Y 3
i=1 70 0 =1 z=j+1
n+2
)P YP VD WD ¥ PRI S
w=n+2—1
t T
(/ dTl/ e(To)dTo) = 0.
0 0
(41)

We also use mathematical induction to prove the
assertion. We suppose that the formula is valid
for the (n — 1)th order. By incorporating this into
formula é(t) + Ane(t) = 0, we can obtain (41) as a
consequence.

When A1 >0, A2 >0, ..., A\pio > 0and t —» oo,
the derived equations are equivalent.

f dry fo
fO T1 dT1+A1fO dTlfO dTo—O

e(t) + (A1+A2 fo (n)+
)\)\Qfodﬁfo 7'0 dTo—O

é(t) + (A1 + A2 + As)e ()

()\1)\2 + A3 + )\2)\3 fO 7'1 dT1—|-

)\1)\2)\3 fO dTl fO To dTo = 0

e n+1 fo dr f e(7o) dTO)(') ZT.H'Q

j=1
ZZ+]2+1 Zw n+2— 1)‘ iAr A AL Ao
fo dm fo (10)d7o) = 0.

7'0 dTO —O




7 Twice-Integral ZE Inequations of UPV Situation

In this section, we discuss twice-integral ZE inequa-
tions of UPV. We also derive and analyze the formulas
pertaining to twice-integral of various orders, specifi-
cally -2, -1, 0, and n.

1)

Order-(-2) Twice-Integral General Formula:

t T1
/ dTl/ G(TQ)dTO < 0.
0 0

According to ZE, when the condition of ¢t — oo,
(44) is valid.

Order-(-1) Twice-Integral General Formula:

By deﬁning e1(t) in () + Me(t) < 0 as
f dry fo (10)dT0, we arrive at the following ex-
pression as A\; > 0 and ¢t — oo and:

t t 1
/ 6(7’1)(317'1 + )\1/ dT1 / G(TQ)dTQ S 0. (43)
0 0 0

Order-0 Twice-Integral General Formula:

By defining ez(t) in éz(t) + A2ex(t)leq0  as
fo m)dm + A\ fo dry fo (10)dT9, we arrive at
the following expression as A1 > 0, Ay > 0 and
t — oo

(42)

e(t) + (A1 + A2) /t e(T1)d(T1) + A A2

t T1
/ dTl/ e(mp)dry < 0.
0 0

Order-1 Twice-Integral General Formula:

By defining e3(t) in é3(t) + )\363( ) <0 as e(t) +
()\14‘/\2) fot 6(7’1) 7'1 +>\1/\2 fO dT1 f() 7'() dTQ,We
arrive at the following expression as A\; > 0 Ay >
0, A3 >0and t — o0 :

(44)

e(t) + (A1 + A2+ Az)e(t) +

t t T
/ 6(7’1)dT1 + )\1)\2)\3/ dTl / 6<T0)dT0 S 0.
0 0 0

(AMA2 + A A3+ Ao)s)

(45)
Order-n Twice-Integral General Formula:
n+1 n+2 n+2
n) +Z / d7'1/ TO dTQ Z Z
j=1z2=35+1
n+2
D D VD S W SR C R
w=n-+2—1
t T1
(/ dTl/ 6(7‘0)(17'0) S 0.
0 0
(46)

We suppose that the formula is valid for the n—1th
order. By incorporating this into formula é,1ot) +
Ant2€n+2(t) <0, we can obtain (46).

When A1 >0, A2 >0, ..., Ayp2 > 0 and t — oo,
the derived inequations are equivalent.

f dTlfo TQ dT0<0

fo m)dm + N\ fo dry f 70)d1o < 0,
e(t) + (/\1 + A2) fo Tl)+

A2 fO dr fO TO dTO <0,

é(t) + (M + A2+ Az)e ()

()\ )\2 +)\1>\3+)\2>\3 fO Tl d7'1+

A )\2)\3 fO dT1 fO 7'0 dTo < O

( )+Z?:+11 fO dTlf 7'0 d'ro ()Zn+2
+2

ZZ+32+1 ZZ mto—i AjAz A+ AL
fO dry fO To dTO < 0.

)\n+2

8 Thrice-Integral ZE Equations of UPV Situation

In this section, we discuss thrice-integral ZE equa-
tions of UPV. We also derive and analyze the formulas
pertaining to thrice-integral of various orders, specifi-
cally -3, -2, -1, and n.

1)

Order-(-3) Thrice-Integral General Formula:

t T2 T
/ dTQ/ dTl/ e(7o9)dm = 0.
0 0 0

In the context of ¢t > 0, we define €y(t) in €y(t) =0

as fgd’l’zf dTl fO T() dT()

Order-(-2) Thrice-Integral General Formula:
By defining e(t) in é1(t) + \e(t) =

f dry fo dmy fo (10)dT0, we arrive at the follow-
ing expression as A\; > 0 and ¢ — oo:

t T2 t T2
/ dTg/ €(T1)d7'1 +/\1/ dTg/ dmy
0 0 0 0 (48)

/ e(ro)dmy = 0.
0

(47)

0 as

Order-(-1) Thrice-Integral General Formula:
By deﬁning e(t) in ég() + Xea(t) = 0 as
f dT2 fO ’7'1 d’Tl + )\1 fO dTQ fO dTl fO ’7'0 d’To,

we arrive at the following formula as A; > 0,
A2 >0 and t — oo:

/Ot e(r2)dm2 + (A1 + A2) /Ot dry /072 e(m)d(r)+

t T2 T1
/\1)\2/ dTQ/ dTl/ 6(7’0)d7’0 =0.
0 0 0 (

19)

Order-0 Thrice-Integral General Formula:
According to the previous method, we arrive at the
following expression as A1 > 0, Ay > 0, A3 > 0
and ¢t — oo:

t
e(t) + (/\1 + Ao + )\3) / B(Tg)d’f'l + ()\1/\2+
0

t T
A3 + )\2)\3)/ dTg/ 6(7'1)d7’1 + A1 A2 A3 (50)
0 0

t T2 T1
/ dTg/ dT1/ e(ro)dry = 0.
0 0 0



5) Order-n Thrice-Integral General Formula:

n+2

(4)
+Z / dTQ/ dTl/ 7'0 dTo

n+3 n+3 n+3

DD T YD ¥ VD WD SRR S

j=1z=j+1 w=n+3—1

t T2 T1
(/ dTQ/ dﬁ/ e(To)dTo) =0.
0 0 0

(51)

We also use mathematical induction to prove the
assertion. We suppose that the formula is valid
for the (n — 1)th order. By incorporating this into
formula é,45(t) + Ant3€nt3(t) = 0, we can obtain
(41) as a consequence.

Additionally, when Ay > 0, A2 >0, ..., \py3 >0
and t — oo , the derived equations are equivalent.

fO dTQ fO dT1 fO 7'0 dTO = 0

f dT2 fO ’7'1 d’7'1+
Al fO dTQf dT1 fO T() dTO —0

fO To)d7o + (A1 + A2) fO dry fO T1)d(m1)+
/\1)\2 fO dTg fO dT1 fO To dT() —0

() (>\1+>\2+)\3 fO T2 dT1+()\ Ao+
)\1)\3 +>\2)\3 fO dTQf 7'1 dTl +)\ )\2)\3

f dT2 fO dTl fO TO dTO = 0

e (t) + an fo dTgf dry f e(7o)dro)®
Zn+32 L Zw s 1)\ Az At
Al .. n+3 fO dTQf dry fO 7-0 dTO) = 0.

9 Thrice-Integral ZE Inequations of UPV Situa-
tion

In this section, we discuss thrice-integral ZE inequa-
tions of UPV. We also derive and analyze the formulas
pertaining to thrice-integral of various orders, specifi-
cally -3, -2, -1, and n.

1) Order-(-3) Thrice-Integral ZE General Formula:

t T2 T
/ dTg/ dTl/ e(7o)dr < 0. (52)
0 0 0

In the context of ¢ > 0, we define €y () in €y(t) <0
as fg dry f dmy fo (70)dTo.

2) Order-(-2) Thrice-Integral General Formula:
By defining e(t) in é(t) + Me(t) < 0 as
f dry fo dr fo (10)dT0, we arrive at the follow-
ing expression as A\; > 0 and ¢ — co:

t T2 t T2
/ dTg/ 6(7’1)(17’1 +/\1/ dTQ/ dry
0 0 0 0 (53)

T1
/ e(7o)dr < 0.
0

3) Order-(-1) Thrice-Integral General Formula:
By defining e(t) in éx(t) + laea(t) < 0 as
fot dry [% e(r1)dm + M\ fot dry [,2 dry [y e(7o)dmo,

we arrive at the following formula as A1 > 0,
A2 > 0 and t — oo:

/Ot e(r2)dms + (A1 + Ao) /Ot dry /O e(r)d(ry)+

t T2 T1
)\1)\2/ dTQ/ dTl/ 6(’7’0)(31’7’0 S 0
0 0 0

(54)

Order-0 Thrice-Integral General Formula:
According to the previous method, we arrive at the
following expression as A1 > 0, Ao > 0, A3 > 0
and t — oo:

¢
e(t) + (A1 4+ A2 + A3) / e(r2)dr + (A1 Ao+
0

t T2
)\1)\3 =+ )\2)\3)/ dTQ/ 6(’7’1)d7’1 + )\1)\2>\3 (55)
0 0

t T2 T
/ dTg/ dT1/ e(7o)dm < 0.
0 0 0

Order-n Thrice-Integral General Formula:

n+2

(2)
e(” +Z / dTQ/ dTl/ TO d’]’o

n+3 n+3 n+3

Z Z Z Mz Aw A Ay

j=1z=5+1 w=n+3—1i

t T2 T1
(/ dTQ/ dTl/ 6(7’0)d7’0> S 0.
0 0 0

(56)

We also use mathematical induction to prove the
assertion. We suppose that the formula is valid
for the (n — 1)th order. By incorporating this into
formula €,13(t) + Apt+3€n+3(t) = 0, we can obtain
(41) as a consequence.

Additionally, when A\; > 0, Ao >0, ..., \yy3 >0
and t — oo , the derived equations are equivalent.

fthgf dry fo (10)dmo <0,

fO drs fO 7'1 dT1—|—
)\1 fO dTgf dT1 fO dTo < 0

fO T2 dT2+(>\1 +>\2 f dTQ foz )d(’]’l)+
A )\2 fO dTQ fO d’l'l fO 7'0 dTo < 0

( ) ()\1+)\2+>\3 fO To dT1+()\1)\2+
)\1)\3 + A2)3) fO dTQ fO (11)dm + A1 23
f dTQf dry fO 7‘() dT() <0,

(3) - z”” (Jo dr f dry [ e(70)dmo)®
ZnJr Z _]+1 Zw n+3— z)\ >\ )\W+
)\1 n+3 fO dTgf dT1 fO TQ dTQ) < 0.

10 m—Times—Integral 7ZE Equations of UPV Situ-

ation

In this section, we discuss m-times-integral ZE equa-

tions of UPV. We also derive and analyze the formulas
pertaining to m-integral of various orders, specifically
—m, —(m —1), —(m —2), —(m — 3), 0 and n.



1) Order-(—m) m-Integral General Formula:

t T(m—1) T1
/ dT(m_l) / dT(m_Q) ... / e(ro)dro = 0.
0 0 0

(57)
In the context of ¢t > 0, we define €y (t ) ine(t)=0

as fo A7m_1) Jo " dTm_g) - [y e(T0)dTo.
2) Order-(1 — m) m-Integral General Formula:

¢ T(m—2) T1
/ dT(m—Q) / dT(m_g) e / e(To)dTO + )\1
0 0 o
t T(m—1) T1
/ dT(mfl) / dT(m,Q) .. / e(ro)dro = 0.
0 0 0

(58)

By defining €(t) in é(t) + )\161() =

fot A7mo1y o " A2y - [y e(T0)dTo, we ar-
rive at (58) when A; > 0 and t — occ.

3) Order-(2 — m) m-Times-Integral General Formula:
According to the previous method, we arrive at the
following formula when Ay > 0, Ay > 0 and t —

(o o
t T(m—3) T1

/ d7(—3) / AT(m—ay - - / e(ro)dro+

0 0 0

t T(m—2)
()\1 + )\2) / dT(m_g) / dT(m_g) ce

0 0
T1 t T(m—1)
/ e(To)d(To) + )\1)\2/ dT(m,l) / dT(m,Q)
0 0 0

. .‘/T1 6(T())d7'0 =0.
0
(59)

0 as

4) Order-(3 —m) m-Times-Integral General Formula:
According to the previous method, we arrive at the
following formula when Ay > 0, Ay > 0, A3 > 0
and t — oo:

t T(m—4) T1
/ dT(m,4)/ AT(m—5) - / e(ro)dro+
0 0 0
t T(mfg)
()\1 + )\2 + )\3) / dT(m_g) / dT(m_4) ‘e
0 0
T1 t
/ 6(7‘0)(?17’0 + ()\1)\2 + M3 + )\2/\3)/ dT(m,Q)
0 0

T(m—2) T1
/ dT(m,g) - / e(To)dT() + A 23
0 0

t T(m—1) T1
/ dT(m—1) / dT(m—2) .. / e(ro)dro = 0.
0 0 0

(60)

5) Order-0 m-Times-Integral General Formula:

According to the previous method, we can obtain
(61).
6) Order-n m-Times-Integral General Formula:
n+m—1

T(m—1)
(n) =+ Z (/ dT(m—l)/ dT(m,—Q)

1 (1 n+m n+m n+m
../0 6(T0)dTo> Z Z . Z

j=1 z=35+1 w=n+m—i

t
JAz - Aw AL A2 A ) / d7(m—1)
0

T(m—1) T1
/ AT(m—2) - - / e(ro9)dro = 0.
0 0
(62)

According to the previous method, we can obtain
(62).

Additionally, whenA; > 0, Ao >0, ..., Appyn >0
and t — oo , the derived equations are equivalent.

f(;5 dr, (m—1) fOT(mil) dT (m—2)--- fOTl € 7'0 dTo = O,

fo A7 —2) foT(m 2 dr(-3) - fo (r0)d70 + At
fO dT(m 1)f (n d’T(m 2) fO ’7'0 d’To ES 0
fo dT(m—3) fo D A7y gy - fo (10)dT0+

(A1 +A2) fo AT(m— 2) fT(m » dT(m 3 fo

e( )d(To) + A2 fo dT(m— 1)f (m= 1) dT(m 2)
fO 7'0 d’To = O

fo AT(m—a) fT(’" D AT(p—3) - fo (10)d70+
()\1"‘1‘)\24‘)\3 fO dT(m 3) f(m )dT(m 4)
- Jote(ro)dTo + (A e +)\1)\3 +/\2/\3)
f AT(m—2) fO(m D A7ty .- fy " e(r0)dTo
+/\1)\2)\3 fo AT(m-1y Jo " )dT(m 2)
fO ’7'0 d’TO = 0

(T)+E H(fo drnn 7 dn s -
f (TO)dTO) )Zg 1Zz j+1 Ew m—i
)\ Aroc A HF A AL A fO fT('" Do
foﬁ e(TO)dTO =0,

()(”)+Z”+m (o A1y Jy 7V AT
Sy e(mo)dro) ) ST SN L

zg*j;gm A A A An+m)

deTm 1) f("‘ l)drm 9 - fo (10)dT0 = 0.

11 n-Times-Integral ZE inequations of UPV situ-
ation

In this section, we discuss n-Times-integral ZE in-
equations of UPV. We also derive and analyze the for-
mulas pertaining to n-Times-Integral of various orders,
specifically —n, —(n — 1), —(n — 2), —(n — 3) and 0.

1) (—n)-order n-Integral General Formula:

t T(n—1) T1
/ / . / 6(7‘0)(:17‘0 § 0. (63)
0 JO 0

In the context of ¢ > 0, we define e(t) in e(t) <0

as fo T-1) .fon e(1o)dTo.



2) (1 —n)-order n-Integral General Formula:
By defining e(t) in é(t) + Me(t) < 0 as
fo T(n—1) ..foﬁ e(19)dy, we arrive at (63) when
A1 >> 0 and t — oo.

t T(n,2) T1
/ / / G(TQ)dTQ-l-)\l
0 Jo 0
t T(n—1) T1
/ / / e(To)dTo < 0.
0 Jo 0

According to ZE, we arrive at the (66) when A; > 0
and ¢t — oo.

3) (2 — n)-order n-Times-Integral General Formula:
By defining e(t) in é(t) + Xge(t) as fot Joo
Jo*e(ro)dmo + A\ fot Jo v [y e(mo)dTo, we ar-
rive at the following formula when A1 > 0, Ay > 0
and ¢t — oo:

t pT(n—a) T1 b [T(n-2)
/ / / e(To)dTo—l-()\l —l—)\g)/ /
0 0 0 0 0

(64)

T1 t T(n—l)
[ ety [
0 0 0

/ e(mp)dr < 0.
0

(65)
4) (3 — n)-order n-Times-Integral General Formula:
By defining e(t) in é(t) + Aze(t) as (64), we arrive

at the following formula when Ay > 0, A2 > 0,
A3 > 0 and t — oo:

t T(n—4) T1
/ / / €(To)d70+(>\1+)\2+)\3)
T(n—3) T1
/ / / e(TQ)dTQ + (/\1/\2 + A A3+
T(n—2) T1
/\2)\3)/ / / (To)d’l'o + A1 23
T(n—1) T1
/ / / e(ro)dr < 0.

(66)

5) 0-order n-Times-Integral General Formula:

@ n

+§:</ /m1) /ﬁqWMm> 2;

E: E:AA .

z=j+1 w=n—1

t T(n—1) T1
/ / / e(To)dTo < 0.
0 JO 0

(67)

Aw A A2 Ay

We suppose that the formula is valid for the (—1)
order. By incorporating this into formula é(t) +
Ane(t) < 0, we can obtain (66). Moreover, when
d(t) = 0, the formula for the 0-order derivative is

given by the following formula.

n—1 IS T1 (i)
+Z(/0/0( ).../0 a(TQ)dTo) Z
1=1

Jj=1

n

z:“.ijyku.

z=j+1 w=n—1

t T(n—1) T1
/ / / a(To)dTO S 0.
0 JO 0

Additionally, when A; > 0, Ao > 0, ..., A, > 0
and t — oo, the derived inequations are equivalent.

Aw F A A A\,

fo T(n—1) 07'1 e(To)dTo <0,
fO T(n=2) ”‘/‘07'1 6(7’0)(17'0 + M fot fOT('Pl) 07'1
(To)dTO S O,
kmwmgwmm+m+hﬁ”“
fO To +)\1)\2f0 Tn— 1> ..

fOT (TO)dTO S 0

fo Y ) e(ro)d o+ (A Ao+ )
fO fT(n 8 .. fOT (To)d’l'o + ()\1)\2 + )\1)\3"'
)\2)\3 fo T 2 [yt e(m0)dTo 4+ AMida s

fo Tn-n) fo (10)d70 <0,

Uy Jo e o elro)dro) D S0
Zz j+1 anz/\)\ )\ +)\1
)\ fO Tn-1) e fOT (To)dTo S 0.

12 Conclusion

In this paper, we have discussed the Zhang equiva-
lency of integral type, including equalities and inequal-
ities with unequal parameter values. We have estab-
lished the validity of these formulas through the use of
mathematical induction.

Moreover, building on the established formulas, we
have readily observed the following formula.

en(t) = e™(t) + Sf (Z:E: E:A

i=1 j=1z=j+1 w=n—1i

M>+AL”M40
(68)

In the case of equalities, it is necessary only to let
€n(t) = 0. Furthermore, e(t) can be any general func-
tion, and it can also correspond to a first derivative, a
second derivative, or even derivatives of higher orders.
In the case of inequalities, it is necessary only to let
en(t) < 0. Furthermore, e(t) can be any general func-
tion, and it can also correspond to a first derivative, a
second derivative, or even derivatives of higher orders.
The two formulas stated above are both valid Ay >,
A2 >0, ..., A, > 0and t — oo.
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