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ABSTRACT

Reinforcement Learning from Human/AI Feedback (RLHF/RLAIF) has been ex-
tensively utilized for preference alignment of text-to-image models. Existing
methods face certain limitations in terms of both data and algorithm. For train-
ing data, most approaches rely on manual annotated preference data, either by
directly fine-tuning the generators or by training reward models to provide train-
ing signals. However, the high annotation cost makes them difficult to scale up,
the reward model consumes extra computation and cannot guarantee accuracy.
From an algorithmic perspective, most methods neglect the value of text and only
take the image feedback as a comparative signal, which is inefficient and sparse.
To alleviate these drawbacks, we propose the InstructEngine framework. Re-
garding annotation cost, we first construct a taxonomy for text-to-image gener-
ation, then develop an automated data construction pipeline based on it. Lever-
aging advanced large multimodal models and human-defined rules, we generate
25K text-image preference pairs. Finally, we introduce cross-validation align-
ment method, which refines data efficiency by organizing semantically analogous
samples into mutually comparable pairs. Evaluations on DrawBench demonstrate
that InstructEngine improves SD v1.5 and SDXL’s performance by 10.53% and
5.30%, outperforming state-of-the-art baselines, with ablation study confirming
the benefits of InstructEngine’s all components. A win rate of over 50% in human
reviews also proves that InstructEngine better aligns with human preferences.

1 INTRODUCTION

Advancements in text-to-image generation are pushing the boundaries of AIGC Croitoru et al.
(2023); Yang et al. (2023). Text-to-image models, especially diffusion-based models Ho et al.
(2020), can generate appealing images that align with input texts to meet user intentions, garnering
substantial research and application interest. Although large-scale pre-trained text-to-image gener-
ators exhibit impressive performance Podell et al. (2024); AI (2025), challenges such as text-image
consistency, aesthetics, and image distortion continue to persist Xu et al. (2023a). Inspired by the
training paradigm of large language models (LLMs) Grattafiori et al. (2024); Liu et al. (2024), which
typically follow a pre-train + post-train approach, several RLHF-style alignment methods Lee et al.
(2024); Zhang et al. (2024a); Miao et al. (2024) have been proposed to tackle above questions for
text-to-image generation.

Most of these methods rely on annotated data to align text-to-image models with user preferences.
For example, Diffusion-DPO Wallace et al. (2024a) takes positive/negative image pair from online
users to optimize diffusion models. Although training with manual data is effective, the cost of
annotation hinders the scaling of preference data and fine-grained preference modeling. The emer-
gence of reward models Xu et al. (2023a); Liang et al. (2024) partially addresses these issues by
scoring images with models rather than annotators. Reward models can evaluate whether generated
images align with different dimensions of human preferences and provide reward scores. However,
the preference modeling of reward models also relies on annotated data, training and inference of
reward models introduce additional costs. Besides, their reward scores lack interpretability and can
cause bias Wu et al. (2023a). Another drawback of existing methods is that, whether for training
generators or reward models, the construction of preference data focuses solely on the evaluation of
images, neglecting the significance of the text side in preference modeling. PRIP Zhan et al. (2024)
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Figure 1: Differences in preference modeling: Previous alignment methods convey preferences
through preferred/disliked images or reward model, InstructEngine framework encodes fine-grained
preference information in three dimensions through text, making the injected preferences under-
standable by humans.

and PAE Mo et al. (2024) has shown that refining input text can lead to substantial enhancements
for image generation. However, they have not attempted to improve the generator.

Recognizing the potential of text, we propose to alleviate above drawbacks with a new paradigm
for text-to-image alignment: Injecting multifaceted preference information through fine-grained in-
structions. We present InstructEngine framework, which consists of: (1) Taxonomy for image-to-
text instructions. Combining LLM prompt engineering and rigorous human review, our instruction
taxonomy divides text-to-image scenarios into 33 major themes, each containing 20+ subtopics. We
generate instructions based on it to ensure diversity. (2) Automated preference data construction
pipeline: For all subtopics, we first generate coarse-grained base instructions, then add opposite
details of three dimensions to construct preference instruction pairs. Finally, we generate images
consistent with these instructions. We construct 25K samples for alignment training with low re-
quirement for human annotation. (3) Cross-validation alignment algorithm. Given samples consists
of two semantically analogous insturctions and two corresponding images, we select the appropriate
triples to calculate multiple DPO loss. With paired instructions serving as validation for each other,
generators can learn fine-grained preference information efficiently.

We conduct automated and human evaluation on DrawBench to test the efficacy of InstructEngine:
After alignment, the average performance of SD v1.5 and SDXL improves by 10.53% and by 5.30%,
surpassing the suboptimal baseline by 1.47% and by 1.83%. In the human evaluation, InstructEngine
beats all baselines with a win rate over 50%.

We summarize the contributions of this paper as follows:

(1) We identify several limitations of existing text-to-image alignment methods: Reliance on anno-
tated preference data, lack of interpretability in preference modeling, and insufficient utilization of
text for preference alignment.

(2) We propose InstructEngine framework to alleviate these shortcomings. InstructEngine con-
sists of a text-to-image taxonomy for data efficiency and diversity, an automated data construction
pipeline to inject fine-grained preferences through differentiated instructions, making preference
modeling interpretable, and a cross-validation alignment algorithm to construct multiple preference
pairs from a single sample, increasing sample efficiency.

(3) InstructEngine demonstrates excellent efficiency and efficacy: With only 25K data samples for
alignment training, which is much smaller than that of other methods, the two trained models achieve
superior performance compared to SOTA baselines in automated evaluation and human review. Our
results confirm the significant potential of instructions for text-to-image alignment.
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2 RELATED WORK

Text-to-Image Generation. Text-to-image generation has evolved significantly with the advent of
deep generative models. Early approaches rely on Generative Adversarial Networks (GANs) Esser
et al. (2021); Zhou et al. (2022) and auto-regressive architectures Ding et al. (2021; 2022); Yu et al.
(2022). Recently, diffusion models Podell et al. (2024); Rombach et al. (2022b); Saharia et al.
(2022) that transform multi-mode distributions into the standard Gaussian have dominated the field
Dhariwal & Nichol (2021) due to their exceptional fidelity and diversity. Diffusion methods can
divided into two categories: latent-based and pixel-based. Latent-based methods, such as Stable
Diffusion Podell et al. (2024); Face (2024), leverage auto-encoders to operate in compressed latent
spaces, enabling efficient high-resolution synthesis. Pixel-based approaches, including DALL·E
2 Ramesh et al. (2022) and Imagen Saharia et al. (2022), directly model the image space, often
integrate large language models for enhanced semantic alignment.

While evaluation metrics such as Inception Score (IS) Salimans et al. (2016), Fréchet Inception Dis-
tance (FID) Heusel et al. (2017) and CLIP score Radford et al. (2021) provide quantitative measures
of image quality and text alignment, recent efforts emphasize semantic coherence generation. Works
like Attend-and-Excite Chefer et al. (2023) enhance semantic guidance in diffusion models through
attention mechanisms, while Instruct-Imagen Hu et al. (2024) leverages multi-modal instructions for
precise control. However, achieving robust alignment between text prompts and generated images
remains challenging, particularly. Recent work has focused more on human feedback, evaluating
the generated results with user satisfaction Dong et al. (2023).

Learning from Human Feedback. Incorporating human feedback into generative models has
proven pivotal for aligning outputs with user intent, as demonstrated by Reinforcement Learning
from Human Feedback (RLHF) in large language models Ouyang et al. (2022); Bai et al. (2022).
For text-to-image generation, RLHF-inspired approaches aim to bridge the gap between statistical
metrics and human preferences. ImageReward Xu et al. (2023b) trains a reward model on human-
annotated data to guide diffusion models toward aesthetically pleasing outputs. Similarly, PickScore
Kirstain et al. (2023a) leverages large-scale user preferences collected via interactive platforms,
while HPS Wu et al. (2023b) and its successor HPS v2 Wu et al. (2023a) curate datasets to align
generated images with holistic human judgments.

Recent innovations extend RLHF to multi-dimensional preference learning Zhang et al. (2024a). Vi-
sionReward Xu et al. (2024) introduces a fine-grained evaluation framework that decomposes human
preferences into interpretable dimensions, mitigating biases inherent in single-score metrics. Di-
rect Preference Optimization (DPO) Rafailov et al. (2023b) methods represented by Diffusion-DPO
Wallace et al. (2024b) bypass reward modeling. However, these approaches risk over-optimizing
specific attributes at the expense of others. To address this, DRaFT Clark et al. (2023) employ multi-
objective reinforcement learning, balancing diverse rewards during fine-tuning and Parrot Lee et al.
(2024) tries to reach pareto-optimal with multiply rewards. A key challenge lies in scaling human
feedback collection while preserving diversity Zhang et al. (2025). While datasets like AGIQA-1k
Zhang et al. (2023b) and AGIQA-3k Li et al. (2023) annotate both overall quality and text-image
alignment, their limited size restricts generalization. Recent work Lin et al. (2024); Zhang et al.
(2023a) leverages Vision-Language Models (VLMs) to simulate human judgments, though their
accuracy remains suboptimal compared to specialized reward models. These advancements under-
score the importance of integrating multi-faceted human feedback into training pipelines to achieve
robust, user-aligned text-to-image generation.

3 INSTRUCTENGINE

3.1 TEXT-TO-IMAGE TAXONOMY

In this section, we introduce the InstructEngine taxonomy. Our taxonomy comprehensively covers
text-to-image scenarios, serving as the basis for diverse prompt construction.

Taxonomy Construction. Inspired by TaskGalaxy Chen et al. (2025), which develops diverse multi-
modal understanding tasks, demonstrating high efficiency and significant improvements, we com-
bine LLM agents and human labor for taxonomy construction. InstructEngine taxonomy construc-
tion process consists of three steps: (1) Seed theme set construction: We randomly sample 1,000
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Figure 2: Visualization of themes in In-
structEngine’s taxonomy.

1. Text Sampling

Primary Themes:
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abstraction
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Figure 3: Construction pipeline of In-
structEngine’s preference data.

input texts from the Pick-a-pic Kirstain et al. (2023b) dataset and manually categorize them into
six primary themes: people, animals, landscapes, scenes, architecture, and art & abstraction. (2)
Primary theme expansion: We design instructions to prompt GPT-4o to expand the seed theme set.
After the expansion, we obtain 33 distinct primary themes. (3) Subtopic division: We further prompt
GPT-4o to divide each primary theme into 20+ subtopics based on dimensions such as themes, styles,
purposes, time and space, and vertical domains. For example, animals are divided based on space
into savanna, forest, and domestic animals. They are also categorized based on actions into running,
flying, swimming, and feeding animals.

Quality Control. During theme expansion and subtopic division, GPT-4o initially generates multi-
ple responses to ensure diversity. The rationality and independence of each theme and subtopic are
then manually reviewed. For semantically repetitive themes and subtopics, annotators merge them
to ensure the taxonomy’s conciseness and accuracy.

3.2 PREFERENCE DATA CONSTRUCTION PIPELINE

To inject multifaceted preference information through instructions, we first construct various fine-
grained preference instructions based on all subtopics in our taxonomy and then generate the corre-
sponding images as preference data.

Coarse-grained Instructions Construction. For each subtopic in the taxonomy, we first instruct
GPT-4o to provide multiple specific entities belonging to that subtopic. Then, we use CLIP embed-
ding to filter out entities with low text similarity to the subtopic. Finally, GPT-4o confirms one by
one whether the retained entities belong to the subtopic. In this way, we equip 800 subtopics with
a total of 15,000 entities. For example, the subtopic Sports Architecture contains entities including
football fields, swimming pools, and climbing gyms. These entities serve as coarse-grained base
instructions, defining the content for each sample.

Fine-grained Preference Injection. We add multifaceted descriptions to the base instructions to
generate fine-grained preference instructions. For each base instruction, we provide contrasting
descriptions from three dimensions: content consistency, counterfactual scenarios, and aesthetics,
forming paired preference instructions. The content consistency divergences refer to the variations
in object type, quantity, physical attributes, etc., between two instructions, like “A model showcases
new accessories, wearing a necklace and a pair of earrings” and “Multiple models showcase new
fashion, none of them wears accessories”. The counterfactual divergences refer to the inclusion of
imaginary or distorted content in one of the instructions, like “An indoor swimming facility with a
standard swimming pool and regular chairs” and “An indoor swimming facility with a pool smaller
than a bathtub and gigantic chairs”. Aesthetic divergence refers to two instructions having dif-
ferent aesthetic styles, like “A sea of flowers, vibrant and colorful blooms full of life” and “A sea
of flowers, but with gray blooms that appear lifeless”. These three kinds of divergences respec-
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tively inject preferences in terms of image-text consistency, authenticity, and aesthetics. In this way,
the preferences are represented by the differences between each pair of instructions, making them
interpretable. We ultimately obtained 26,430 pairs of preference instructions with 15,000 entities.

Preference Data Generation. After constructing the preference instructions, we take a foundation
text-to-image model, SDXL Podell et al. (2024), to generate matching images for each fine-grained
instruction. Since we primarily focus on exploring preference information injection through text,
we pay more attention to ensure the consistency between the generated images and the text than the
image quality. We first apply SDXL to generate 8 images for each instruction with different random
seeds. Then we take BLIP Li et al. (2022) to pick the image that best matches the instruction from 8
images. At last, GPT-4o serves as a judge to filter out mismatched image-text samples. Ultimately,
we pick out 24,716 data instances from the 26,430 instruction pairs. Each instance contains two
contrasting instructions with fine-grained differences and two corresponding images.

3.3 CROSS-VALIDATION ALIGNMENT TRAINING

3.3.1 BACKGROUND OF DPO AND DIFFUSION-DPO

The main idea of Direct Preference Optimization (DPO) Rafailov et al. (2023a) is to integrate the
reward modeling loss into the LLM’s training loss, thereby eliminating the separate reward model
to simplify the alignment process. Specifically, given condition c, winning/losing output yw/yl, the
Bradley-Terry loss for the reward function r(c,y) with parameter ϕ is:

LBT(ϕ) = −Ec,yw,yl

[
log σ

(
rϕ(c,y

w)− rϕ(c,y
l)
)]

, (1)

The RLHF loss for LLM parameter θ under dataset Dc is:

max
pθ

E [r(c,y)]− βDKL [pθ(y|c)∥pref(y|c)] , (2)

where c∼Dc,y∼pθ(y|c) (conditional distribution), β controls KL-divergence regularization from
reference model ref . With the unique global optimal solution p∗θ and partition function Z(c) =∑

y pref(y|c) exp (r(c,y)/β), the reward function r(c,y) can be rewritten as:

r(c,y) = β log
p∗θ(y|c)
pref(y|c)

+ β logZ(c). (3)

Replace rϕ(c,y) in Eq. (1) with Eq. (3) and we get:

LDPO(θ)=−Ec,yw,yl

[
log σβ

(
log

pθ(y
w|c)

pref(yw|c)−log
pθ(y

l|c)
pref(yl|c)

)]
. (4)

For diffusion models Ho et al. (2020), given y0∼q(y0) as data distribution, the T -step forward
process q(y1:T |y0) adds noise ϵ to the data y0, reverse process pθ(y0:T ) transits to recover y0. The
squared difference for noise prediction is defined as:

δθ(ϵ,yt, t) = ∥ϵ− ϵθ(yt, t)∥22 (5)

The training loss is to minimize the evidence lower bound:

LDM = Eϵ∼N (0,I),y0,t [δθ(ϵ,yt, t)] , (6)

yt∼q(yt|y0), timestep t∼ U(0, T ). Give D = (c,yw
0 ,y

l
0), Diffusion-DPO Wallace et al. (2024a)

adapts DPO to align diffusion models:

∆w = δθ(ϵw,y
w
t , t)− δref(ϵw,y

w
t , t),

∆l = δθ(ϵl,y
l
t, t)− δref(ϵl,y

l
t, t),

L(θ) = −E(yw
0 ,yl

0)∼D,t log σ [−βTω(λt)(∆w −∆l)] ,

(7)

y∗
t = αty

∗
0 + σtϵ

∗, ϵ∗∼N (0, I) is a draw from q(y∗
t | y∗

0). λt = α2
t /σ

2
t is the signal-to-noise ratio,

αt and σt are noise scheduling functions Rombach et al. (2022a), we omit c for compactness.
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3.3.2 CROSS-VALIDATION PREFERENCE ALIGNMENT

Alignment Method. As previously introduced, each sample of InstructEngine contains two con-
trasting instruction-image pairs (x1, y1) and (x2, y2). To utilize these preference data for alignment,
a natural approach is to follow the IOPO Zhang et al. (2024b) method by combining the two instruc-
tions and two images into four DPO-style preference triples: (x1, y1, y2), (x2, y2, y1), (y1, x1, x2)
and (y2, x2, x1). However, although IOPO has demonstrated its superiority over DPO in pure text
scenarios, it is not reasonable to directly adapt IOPO to the text-to-image task. We first introduce
our cross-validation alignment algorithm and then explain why we retain only two preference triples,
(x1, y1, y2) and (x2, y2, y1), that contain one instruction and two images for training.

Following Eq. (7), we calculate two pairs of ∆w and ∆l:

∆xw
1
= δθ(ϵw1 ,y1, t)− δref(ϵw1 ,y1, t),

∆xl
1
= δθ(ϵl1 ,y2, t)− δref(ϵl1 ,y2, t),

∆xw
2
= δθ(ϵw2 ,y2, t)− δref(ϵw2 ,y2, t),

∆xl
2
= δθ(ϵl2 ,y1, t)− δref(ϵl2 ,y1, t),

In each triples, the image that aligns/dis-aligns with the instruction is designated as the win-
ning/losing output. The two instruction-image pairs thus serve as a cross-validation for each other.
And the optimization loss is defined as:

L(θ) = −E(x1,x2,y1,y2)∼D,t∼U(0,T ) log σ [−βTω(λt)((
∆xw

1
−∆xl

1

)
+

(
∆xw

2
−∆xl

1

))]
,

(8)

Explanation for Triple Selection. We discard the other two triples for two reasons: (1) The core
of text-to-image generator is to learn the mapping from text to image. However, for triples that
contain two instructions and one image, the causal relationship is reversed, i.e., distinguishing the
differences between texts based on the image. It is not guaranteed that this reverse causal modeling is
beneficial for text-to-image generation. (2) Two contrasting instructions are generated from the same
base instruction and contain some identical words. After tokenizing and encoding, the embeddings
of these parts are very similar, leading to almost identical text embeddings, which can interfere with
the generator’s learning. In contrast, for images, although the base entity in the two images is the
same, there are usually significant differences between their pixels: The randomness of the diffusion
model and the different details can reduce the redundancy between the two images.

In the Appendix and Section 4.5, we provide the loss curves and evaluation metrics of using un-
chosen triples for training. Rapidly converging loss demonstrates that two discarded triples do not
provide information and performance degradation shows their detrimental effect for training. We
leave the exploration of underlying causes for future work.

4 EXPERIMENTS

4.1 SETTING

Baselines & Datasets. We select the following state-of-the-art alignment methods as baselines for
comparison: (1) ReFL: ReFL adopts the reward score from the ImageReward model as the human
preference loss for a latter step in the backward denoise process. The pre-training loss is retained
to re-weight and regularize the preference loss. For training, we sampled 50,000 text-image pairs
from DiffusionDB. (2) Diffusion-DPO: Diffusion-DPO takes the filtered Pick-a-pic v2 dataset for
training, which contains 851,293 pairs of winning and losing images, with 58,960 unique prompts.
Its training loss function is introduced in Eq. (7). (3) HPSv2: HPSv2 is one of the SOTA reward
models for image evaluation. We separately take 58,960 prompts from Pick-a-pic v2 dataset and
49432 prompts from InstructEngine as the text source. After generating 8 images with SDXL, we
choose the image with the highest HPSv2 score and the image with the lowest HPSv2 score as a pair
and train the generator with the Diffusion-DPO loss.

Training Settings. We select Stable Diffusion v1.5 Face (2024) and SDXL Podell et al. (2024) as
foundation models to compare the effectiveness of different alignment methods. For InstructEngine,
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Method Human Preference Content Consistency Image Quality AveragePickScore ImageReward HPSv2 CLIP BLIP Aesthetic

Stable Diffusion v1.5
Origin 0.2137 -0.0170 0.2768 0.2705 0.4875 5.2369 1.0781
ReFL 0.2144 0.4262 0.2819 0.2749 0.4951 5.2557 1.1580
Diffusion-DPO 0.2183 0.3794 0.2820 0.2730 0.4899 5.3064 1.1582
HPSv2pick−a−pic 0.2160 0.4061 0.2845 0.2733 0.4926 5.3173 1.1650
HPSv2InstructEngine 0.2150 0.4563 0.2857 0.2751 0.4942 5.3285 1.1758
InstructEngine 0.2171 0.5240 0.2824 0.2870 0.5033 5.3356 1.1916
SDXL
Origin 0.2256 0.6102 0.2863 0.2780 0.5066 5.5015 1.2347
ReFL 0.2264 0.7406 0.2902 0.2853 0.5145 5.5155 1.2621
Diffusion-DPO 0.2300 0.8473 0.2914 0.2715 0.5015 5.4268 1.2614
HPSv2pick−a−pic 0.2237 0.8128 0.2968 0.2742 0.5060 5.5118 1.2709
HPSv2InstructEngine 0.2251 0.7843 0.2957 0.2753 0.5062 5.5785 1.2775
InstructEngine 0.2285 0.8720 0.2923 0.2918 0.5259 5.5902 1.3001

Table 1: Performance of various text-to-image alignment methods on the DrawBench. We quantify
the performance of these methods with six common metrics for images evaluation. Optimal and
sub-optimal performance is denoted in bold and underlined fonts, respectively. Our method dose
not achieve the highest results on the PickScore and HPSv2 because Diffusion-DPO is trained with
preference data sourced from the same origin as PickScore, and HPSv2 method selects data based
on the HPSv2 score.

we set the learning rate at 1e-5, the batch size at 128. Similarly to other studies, we use a constant
learning rate scheduler and set the warm-up step to 0. For all baselines, we follow their reported
settings, including batch size, learning rate, and other relevant settings. For methods whose hy-
perparameters are not provided, we set their hyperparameters the same as our InstructEngine. For
fair comparison, all methods are trained for one epoch on corresponding datasets, with only the
image generation module (U-Net) tunable. And all experiments are conducted in half-precision on
NVIDIA A800-SXM4-80GB machines.

Evaluation Settings. We perform both automatic and human evaluation on DrawBench to test the
performance of different methods. In the automated evaluation, we use three kinds of metrics. For
Human Preference, we generate reward scores with reward models trained with human preference
data: PickScore, ImageReward, and HPSv2. For Content Consistency, we apply CLIP and BLIP
models to calculate the text-image matching score. For Image Quality, we select the Aesthetic score
to reflect the aesthetic quality of the images. In the human evaluation, we require 10 annotators to
compare images generated by different methods and decide which image is better or if it is a tie,
considering aesthetics, safety, rationality, and consistency.

4.2 PRIMARY RESULTS

In Table 1, we present the performance of different alignment methods. We reach the following
conclusions: (1) InstructEngine achieves optimal results in most metrics and in the overall aver-
age metric: InstructEngine improves the average metrics of SD v1.5 and SDXL on DrawBench by
10.53% and 5.30%, respectively, and outperforms the second-best method by 1.47% and 1.83%,
respectively. This indicates that InstructEngine comprehensively improves the capabilities of the
text-to-image generation model in terms of aesthetics, consistency, and meeting human preferences.
However, InstructEngine fails to achieve optimal results in HPSv2 and PickScore. We attribute this
to differences in data distribution: Diffusion-DPO trained with the Pick-a-pic v2 dataset achieves the
highest PickScore, as PickScore’s training data also comes from the Pick-a-pic dataset. Similarly,
the two methods that use HPSv2 reward scores to filter training data achieves the highest HPSv2
scores. However, their scores are much lower on reward models from different sources. This also
indicates that human preferences learned by reward models can be biased. Recognizing the risk of
reward hacking, we also provide results of human evaluation to demonstrate the advantages of our
method in Section 4.3. (2) Alignment training is powerful and efficient: All alignment methods can
improve the foundation models’ performance. After InstructEngine’ alignment, the average metrics
of SD v1.5 are very close to those of the original SDXL, which has a larger scale of pre-training and
more parameters. This demonstrates the potential of alignment and its higher data efficiency com-
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Figure 4: Data efficiency comparison across
datasets. Gray dashed line: original model per-
formance.

Figure 5: Human evaluation: InstructEngine
achieves >50% win rate against baselines.

pared to pre-training. However, we also notice that the absolute improvement for SDXL is smaller
compared to SD v1.5. This might be because SDXL is our data generator, and SD v1.5 effectively
distills the knowledge from SDXL. (3) The instruction construction methodology of InstructEngine
balances both efficiency and diversity: Among the two methods based on HPSv2, the one using
InstructEngine instructions achieves higher performance. This demonstrates that our taxonomy ef-
fectively ensures coverage of text-to-image scenarios and maintains data diversity.

4.3 IN-DEPTH ANALYSIS

Data Efficiency. To verify the effectiveness of InstructEngine’s instruction construction method in
enhancing data efficiency, we select text prompts from Pick-a-Pic v2, DiffusionDB, and our dataset
as instructions for alignment data construction. We set a data limit of 50,000 entries. Since the other
two dataset do not contain paired preference instructions, our cross-validation method is not usable,
so we follow the HPSv2 data construction and training process introduced in Section 4.1. We then
compare the average metric values of the SDXL model across different data sources and scales.
As shown in Figure 4, the model trained with our data consistently outperforms the models trained
with the other two datasets across different data scales. Additionally, in the other two datasets,
doubling the data scale sometimes does not lead to performance improvements and even results in
declines. In contrast, the data from InstructEngine consistently yields stable gains. We attribute this
to our taxonomy, which ensures data diversity and reduces redundancy. Moreover, even with only
2k data, InstructEngine still slightly improves SDXL’s performance, whereas the other two datasets
lead to performance degradation. The above phenomena indicate that the construction method of
InstructEngine results in higher data efficiency, it also demonstrates the importance of instructions
for text-to-image alignment.

Case Study for Preference Injection. As introduced in section 3.2, we inject three types of pref-
erence: consistency, realism, and aesthetics. Four examples in Figure 14 visually demonstrate the
impact of the injected preference information on the model’s generated results. In example (a),
original SDXL misunderstood the prompt and generated multiple seats with wrong legs, while In-
structEngine generated consistent content. In example (c), different from SDXL, InstructEngine
only generated ivory in the correct parts. In examples (c) and (d), the images generated by In-
structEngine are more exquisite than those generated by SDXL, especially in example (d), the gen-
erated text includes a fireworks effect. With vivid colors, fine detail, and a harmonious overall style,
InstructEngine better aligns with human preferences. More comparison cases for InstructEngine and
baselines are provided in the Appendix H.

4.4 HUMAN EVALUATION

Using SDXL as the base model, InstructEngine and four baselines generate 200 images separately in
DrawBench. For HPSv2, we choose the better version with InstructEngine data. Ten annotators
compare the images generated by InstructEngine and those generated by other baselines in terms
of consistency, aesthetics, and realism. During annotation, we obscure the image source to ensure
fairness. As shown in Figure 5, InstructEngine achieves a win rate of more than 50% compared to all
base models. The human evaluation result more significantly reflects the advantage of our method
compared to automated metrics. We display the annotation interface in the Appendix F.
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SDXL InstructEngine

(a) A separate seat for one person, 
with a back and four legs.

(c) An elephant under the sea. (d) New York Sky with 'Diffusion' written with fireworks 
on the sky.

SDXL InstructEngine

(b) A large plant-eating mammal with solid hoofs, flowing 
mane and tail, used for riding, racing, and carrying loads.

Figure 6: The images generated by InstructEngine
are significantly more aligned with the input in-
structions, exhibiting better realism and aesthetics.

Method ImageReward HPSv2 BLIP Aesthetic

Origin 0.6102 0.2863 0.5066 5.5015

InstructEngine 0.8720 0.2923 0.5259 5.5902

w SFT 0.6900 0.2923 0.5207 5.4847

w/o Cross-val 0.7277 0.2917 0.5159 5.4548

w/o Discard 0.1604 0.2816 0.4838 5.4784

w Random select 0.8220 0.2878 0.5219 5.5747

w Flux 0.8614 0.2910 0.5068 5.7191

Figure 7: Ablation study on each component of
InstructEngine.

4.5 ABLATION STUDY

To validate the effectiveness of each component, we compare InstructEngine with its five variants on
SDXL model: (1) Supervisely fine-tune (SFT) SDXL with loss in Eq. (6) on all text-image pairs. (2)
Replace cross-validation alignment with Diffusion-DPO, instructions are not paired. (3) Retain the
discarded triplets for training. (4) Randomly select images from 8 generations. (5) Take the more
advanced commercial Flux-pro-1.1 model as image generator.

As shown in Figure 7, InstructEngine’s each design is essential. With the same dataset, when our
alignment method is replaced with SFT and DPO, the model performance decreases significantly.
This indicates that our cross-validation alignment method learn preference information more ef-
ficiently. When we retain triples that contain two instructions and one image for training, there
appears a significant drop in performance. We have hypothesized from two perspectives, causal
modeling and modality granularity, to explain the unsuitability of such samples. We are still work-
ing on providing support for our hypotheses. Finally, we explore the impact of image quality on
InstructEngine. Removing the filtering about text-image consistency causes compromised perfor-
mance. This is reasonable because inconsistent images hinder the generator from learning preference
information in the instructions. Due to resource constraints, we generate a single image with Flux
for each instruction, this variant only shows an advantage in the Aesthetic score, since the images
generated by Flux are more refined. This also indicates that our focus on text-image consistency is
justified for comprehensive improvement.

5 CONCLUSION

We propose the InstructEngine framework to alleviate several text-to-image alignment issues includ-
ing the reliance on manual annotation, the uninterpretability of reward models, and the neglect of
instruction design. InstructEngine consists of an instruction taxonomy to ensure diversity, an auto-
mated data construction pipeline to reduce data annotation cost, and a cross-validation optimization
algorithm to refine data efficiency. By injecting fine-grained preference information into contrast-
ing instructions, InstructEngine performs efficient alignment: After training with 25K constructed
samples, InstructEngine achieves SOTA performance. In the automated evaluation, the performance
of SD v1.5 and SDXL improves by 10.53% and by 5.30%, surpassing the suboptimal baseline by
1.47% and by 1.83%. In the human review, InstructEngine achieves win rates higher than 50% over
all baselines. In conclusion, InstructEngine verifies the potential of instruction for the alignment
of text-to-image models. Through further experiments (Appendix G), we have verified that this
method is applicable not only to diffusion-based text-to-image models but also to auto-regressive
models (Emu3).
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A LLM USAGE DECLARATION

In this research, Large Language Models (LLMs) were used exclusively for grammar checking and
to assist with the clarity of language. No LLM was involved in the ideation or content generation
processes. The authors take full responsibility for all content presented in the paper, including any
generated by the LLM. We have ensured that the use of LLMs complies with ethical standards and
does not constitute any form of scientific misconduct or plagiarism.

B ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
perimentation was involved. All datasets used were sourced in compliance with relevant usage
guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discrimi-
natory outcomes in our research process. No personally identifiable information was used, and no
experiments were conducted that could raise privacy or security concerns. We are committed to
maintaining transparency and integrity throughout the research process.

C REPRODUCIBILITY STATEMENT

To ensure the reproducibility of InstructEngine, we provide detailed implementation specifications
throughout this work. In Section 3.1, we present the taxonomy of the data in detail. In Section 3.2,
we describe the data construction process of InstructEngine comprehensively. In Section 3.3, we
elaborate on the cross-validation alignment training pipeline. The experimental hyperparameters,
hardware specifications and the evaluation settings are detailed in Section 4.1. Code implementation
and model checkpoints will be released to facilitate the reproduction of our results.
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D SHOWCASE

Figure 8: We propose InstructEngine, a text-to-image alignment framework injecting preference in-
formation through contrasting instructions. After training with our preference data and alignment
method, the SDXL model generates images that are more realistic and align better with human
aesthetic preferences. We present generation results across human, animal, artwork, food, and land-
scape.

E LOSS CURVE

Figure 9: Loss curve for the discarded triples that contains two instructions and one image

In Figure 9 and Figure 10, We plot the resulting DPO loss curves calculated from different kinds
of triples during training. In Figure 9, it can be seen that the loss from triples containing two
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Figure 10: Loss curve for the retained triples that contains two images and one instruction

instructions as positive and negative samples for generating an image quickly converge to near 0.
This indicates that they cannot form an valid contrast for the image generation model. We hypothesis
that such triples’ positive and negative texts can only provide preference information in text format,
which can not be utilized by the generator. So we discard this kind of triples.

In Figure 10, we plot the loss curve for the retained triples that consist of one instruction and two
image. During the training process, two images form a contrast, providing effective preference
information for the generator to create images based on instruction information. As a result, the loss
decreased slowly but did not ultimately converge to 0.
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F DATA ANNOTATION INTERFACE.

In below Figure 11, we show the annotation interface used by annotators to compare the quality of
images. To ensure fairness, image 1 and image 2 are randomly selected from our model and the
baseline model.

Figure 11: Annotation interface and instructions for annotators to judge which image is better
aligned with the prompt text and looks better.

G ADAPTION

Base Method T2I-CompBench++
Attribute Layout Non-spatial Complex

SD v1.5

SUR-Adapter 0.3426 0.2907 0.3095 0.3044
PAE 0.3480 0.3015 0.2863 0.3239

AGFSync 0.4907 0.3129 0.3160 0.3314
ELLA 0.5732 0.3133 0.3138 0.3436

InstructEngine 0.6238 0.3176 0.3244 0.3425

SDXL AGFSync 0.5737 0.3764 0.3181 0.3497
InstructEngine 0.6315 0.3760 0.3286 0.3534

Emu3
AGFSync 0.5878 0.3614 0.3119 0.3390
SILMM 0.5971 0.3603 0.3051 0.3393

InstructEngine 0.5883 0.3629 0.3142 0.3418

Figure 12: Evaluation Result on T2I-
CompBench++

Base Method DPGBench
Glob Enti Attr Rela Other All

SD v1.5

SUR-Adapter 73.16 71.13 72.34 73.23 72.82 62.24
PAE 73.24 72.30 73.59 73.59 76.00 62.71

AGFSync 78.14 76.19 77.33 79.26 78.05 67.73
ELLA 73.46 73.49 73.20 77.46 74.24 63.11

InstructEngine 77.62 76.27 75.37 81.55 80.10 68.55

SDXL AGFSync 83.51 83.48 81.86 87.44 82.35 75.45
InstructEngine 84.07 83.25 82.54 89.16 82.61 76.52

Emu3
AGFSync 83.70 82.42 84.78 87.79 69.03 77.39
SILMM 84.19 81.57 84.52 89.01 64.80 77.45

InstructEngine 84.82 82.61 83.94 89.38 68.97 77.96

Figure 13: Evaluation Result on DPGBench

In Figure 12 and 13, we demonstrate that InstructEngine can be adapted to both diffusion
(SD v1.5 and SDXL) and auto-regressive models (Emu3), outperforming various baselines in
both T2ICompBench++ and DPGBench. This comprehensively illustrate the superiority of In-
structEngine.
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H CASE COMPARISON

In below Figure 14, we provide six prompts and the corresponding images generated by our model
and the baselines. Compared to other baselines, the images generated by our model have better color
contrast, text-image alignment, object realism, and aesthetic quality.

New York Skyline with 
'Diffusion' written with 
fireworks on the sky.

An elephant under the 
sea.

A cube made of denim，
with the texture of 
denim.

A large motor vehicle 
carrying passengers by 
road, serving the public 
on a route for a fare.

Two dog on the street.

Origin

Ours

A separate seat for 
one person, typically 
with a back and four 
legs.

DPO

HPSv2

ReFL

Figure 14: Qualitative comparison between InstructEngine and baseline methods (SDXL, ReFL,
DPO, HPSv2) across six diverse text prompts.
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