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Abstract
The weighted squared loss is a common compo-
nent in several Collaborative Filtering (CF) algo-
rithms for item recommendation, including the
representative implicit Alternating Least Squares
(iALS). Despite its widespread use, this loss func-
tion lacks a clear connection to ranking objec-
tives such as Discounted Cumulative Gain (DCG),
posing a fundamental challenge in explaining
the exceptional ranking performance observed
in these algorithms. In this work, we make a
breakthrough by establishing a connection be-
tween squared loss and ranking metrics through
a Taylor expansion of the DCG-consistent surro-
gate loss—softmax loss. We also discover a new
surrogate squared loss function, namely Ranking-
Generalizable Squared (RG2) loss, and con-
duct thorough theoretical analyses on the DCG-
consistency of the proposed loss function. Later,
we present an example of utilizing the RG2 loss
with Matrix Factorization (MF), coupled with a
generalization upper bound and an ALS optimiza-
tion algorithm that leverages closed-form solu-
tions over all items. Experimental results over
three public datasets demonstrate the effective-
ness of the RG2 loss, exhibiting ranking perfor-
mance on par with, or even surpassing, the soft-
max loss while achieving faster convergence.

1. Introduction
Collaborative filtering is a typical technique in item recom-
mendations that leverages similarities between user behav-
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iors to predict user preferences. The objective functions
in CF for item recommendation tasks, which performs rec-
ommendation with implicit feedback, can be separated into
two tracks: sampling methods and non-sampling methods.
Sampling methods, such as BPR (Rendle et al., 2012), se-
lect a subset of items as negative samples to help distinguish
positive samples, significantly reducing computational com-
plexity and speeding up the training process. Non-sampling
methods leverage all un-interacted items as negatives for
comparison, ensuring more accurate ranking performance
over all items. Typical objective functions include Softmax
Loss and Weighted Squared Loss. Softmax Loss aims to
maximize the probability of interacted items compared with
uninteracted items (Sun et al., 2019; Rendle, 2021), whose
optimization goal is consistent with ranking metrics such as
Normalized Discounted Cumulative Gain (NDCG) (Bruch
et al., 2019; Ravikumar et al., 2011), endowing it with sig-
nificant advantages for item recommendation.

The Weighted Squared Loss, commonly referred to as
the loss in Weighted Regularized Matrix Factorization
(WRMF) (Hu et al., 2008; Pan et al., 2008), is widely em-
ployed in item recommendation. This loss assigns a fixed
value of 1 to interacted items and smaller values, accom-
panied by lower weights, to un-interacted items. The re-
search community has widely acknowledged such type of
non-sampling method, which incorporates all un-interacted
items into the training process, due to its superior ranking
performance (Rendle, 2021; Chen et al., 2023; 2020; Yuan
et al., 2021). By considering all instances, this approach
contributes to better distinguishing between interacted and
un-interacted items, leading to improved recommendation
accuracy. The effectiveness of the weighted squared loss
can be observed in the continued competitive performance
of iALS (Rendle et al., 2021; 2022), which utilizes this loss,
compared to more recent approaches such as SLIM (Ning
& Karypis, 2011), EASE (Steck, 2019), and VAE (Liang
et al., 2018). iALS consistently demonstrates strong ranking-
oriented metrics, despite being developed over a decade ago.
Moreover, the simplicity of the weighted squared loss func-
tion also allows for an applicable derivation (Bayer et al.,
2017; Takács & Tikk, 2012), leading to more efficient con-
vergence with the help of optimization methods leveraging
closed-form solutions or higher-order gradients. Compared
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to commonly used stochastic gradient descent (SGD) meth-
ods (Amari, 1993), those methods often achieve desirable
performance within a few iterations, demonstrating its ef-
fectiveness and efficiency for item recommendations.

However, existing research on weighted squared loss func-
tions has primarily relied on conjectures about their superior
performance rather than thorough investigations of the un-
derlying mechanisms. Notably, there is an absence of com-
prehensive, in-depth, and theoretical analysis that explore
the relationship between the objectives of squared loss func-
tions and ranking metrics. In comparison, the softmax loss
function serves as a valuable counterpart, which has been
revealed as a consistent surrogate loss to DCG. However,
the non-linear operations inherent in softmax raise chal-
lenges in optimizing ranking objectives across the entire
item corpus, which hinders the application of closed-form
solution-based or higher-order gradient-based optimization
algorithms. Considerable bias and variance are also intro-
duced during the estimation of the gradient with mini-batch
updating, which harms both efficacy and efficiency.

In this work, we revisit the connections between the squared
loss function and ranking-oriented metrics. We discover
that a surrogate squared loss, referred to as the Ranking-
Generalizable squared (RG2) loss, closely aligns with the
ranking objective DCG. To achieve this, we apply the Taylor
expansion rule to the DCG-consistent softmax loss, resulting
in a squared-form surrogate loss that serves as a good ap-
proximation and upper bound of the softmax loss. Through
rigorous analysis, we establish the consistency of the RG2

loss with DCG. We then apply the RG2 loss to item rec-
ommendation tasks with MF models, where we derive an
generalization upper bound and incorporate the Alternating
Least Squares (ALS) optimization method, which optimizes
the model with closed-form solutions. This integration leads
to improved ranking performance compared to the existing
iALS approach, as the RG2 loss closely approximates soft-
max and aligns with the ranking metric.

The main contributions of this paper are presented in the
following folds:

• We propose a novel squared loss function named RG2

loss, which is an efficient approximation and upper bound
of Softmax loss inspired by Taylor expansion. This novel
approach unveils the connection between the squared loss
and the ranking metric, offering new insights into recom-
mender system optimization.

• We establish the theoretical properties of RG2 loss,
demonstrating its consistency with the ranking metric
DCG, which highlights its reliability.

• We incorporate the RG2 loss to MF-based CF tasks, and
provide an upper bound regarding generalization. Be-
sides, we make a rational application of ALS optimization

method, which further improves the ranking performance
compared to the traditional non-sampling method, push-
ing the boundaries of recommender system accuracy.

• Experimental results on three public real-world datasets
indicate the effectiveness of our loss function, with par-
ticular advantages in efficiency improvements without
sacrificing recommendation performance.

2. Preliminaries
2.1. Softmax Loss

The softmax loss function was first introduced to handle
multi-class classification tasks and was soon generalized
to various applications, including recommender systems.
Consider a recommendation scenario predicting whether
item i ∈ I is preferred in context u ∈ U (e.g., user, lo-
cation, behavior history, etc.) with a positive preference
set D = {(u, i) | item i is preferred in context u}. Logits
o
(u)
i = fθ(u, i) represent the output of model f denoting

the score of the predicted preference for item i in context u.
The softmax operation transforms them into:

p(o
(u)
i ) =

exp(o
(u)
i )∑

i∈I exp(o
(u)
ik

)
(1)

which essentially converts o(u) = [o
(u)
i1
, · · · , o(u)iN

]i∈I into
a probability distribution over N = |I| items for each input
context u. Subsequently, the softmax loss, also commonly
referred to as Categorical Cross-Entropy, is computed for
each context-item pair (u, i) as follows:

L(o(u)) = − log
(
p(o

(u)
i )
)

(2)

The standard form of Softmax Loss can be expressed as:

LSM = − 1

|D|
∑

(u,i)∈D

log
(
p(o

(u)
i )
)
+ λψ(θ) (3)

where λψ(θ) stands for some regularization term (usually
l2-norm) in practice.

In the subsequent sections, we will illustrate the alignment
between the softmax loss and ranking-oriented metrics,
such as DCG, which explains the superior performance
of the softmax loss in item recommendation tasks. How-
ever, the non-linear operations within the softmax function,
particularly the normalization of exponential calculations,
pose challenges for efficient optimization using optimiza-
tion methods using closed-form solutions or higher-order
gradients, especially when dealing with large-scale item
corpora.
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2.2. Weighted Squared Loss

The weighted squared loss function is another typical non-
sampling loss for handling implicit feedback in item rec-
ommendation. It assigns different weights to interacted and
un-interacted items, indicating higher confidence in positive
instances and lower in negative ones. A specific form of
weighted squared loss can follow WRMF (Hu et al., 2008)
as:

LWRMF =
∑

u∈U,i∈I
wui

(
o
(u)
i − rui

)2
+ λψ(θ) (4)

where

rui =

{
1, (u, i) ∈ D
0, (u, i) /∈ D

, wui =

{
α+ 1, (u, i) ∈ D

1, (u, i) /∈ D

and α≫ 1 represents a higher weight corresponding to pos-
itive instances during training, which is adjusted empirically
as a hyperparameter in different scenarios.

The weighted squared loss mentioned is frequently em-
ployed in dual encoders. iALS (Rendle et al., 2022) uti-
lizes this loss to optimize matrix factorization models, while
SAGram (Krichene et al., 2018) applies it to optimize non-
linear encoders. The effectiveness of this loss stems from
the utilization of ALS or second-order gradient descent op-
timization methods, which involve updating the user and
item latent matrices using the closed-form solutions or the
second-order Hessian matrix. The competitive performance
demonstrated by iALS, outperforming contemporary ap-
proaches despite being proposed over a decade ago, further
emphasizes the efficacy of the weighted squared loss. How-
ever, the optimization objectives associated with this loss
currently lack a clear theoretical foundation to fully under-
stand the underlying mechanism, as the squared form of the
loss appears to operate independently of ranking metrics.
Consequently, further investigation is necessary to uncover
the underlying principles.

3. RG2: Ranking-Generalizable Squared Loss
3.1. Theoretical Properties of Softmax Loss

The widespread application of softmax loss is not only at-
tributed to its excellent performance in recommendation but
also to its profound theoretical properties. The efficacy of
softmax can be understood from the following two perspec-
tives. Firstly, the softmax loss indirectly regulates the upper
bound of important ranking metrics like NDCG,
Definition 3.1.

DCG(o(u),D) =
∑
i∈I

2rui − 1

log(1 + π(u)(i))
, (5)

NDCG(o(u),D) = DCG(o(u),D)
maxo DCG(o,D)

, (6)

where π(u)(i) stands for the rank of o(u)i in o(u) ∈ RN ,
rui ∈ {0, 1} stands for whether (u, i) ∈ D.

Proposition 3.2. (Bruch et al., 2019) Softmax loss is a
bound on mean Normalized Discounted Cumulative Gain
in log-scale, i.e.

− logNDCG ≤ − 1

|D|
∑
u∈U

1

|Iu|
∑
i∈Iu

log
(
p(o

(u)
i )
)

(7)

where Iu = {i | (u, i) ∈ D}.

This characteristic makes it particularly effective in handling
ranking-oriented recommendations. Secondly, from a more
fundamental viewpoint, the softmax loss is a surrogate loss
that is top-k calibrated and DCG-consistent.

Definition 3.3. (Top-k preserving) Given vectors s,η ∈
RN , s is top-k preserving with respect to η, denoted as
Pk(s,η), if for ∀n ∈ [N ],

ηn > η[k+1] =⇒ sn > s[k+1]

ηn < η[k] =⇒ sn < s[k]
(8)

Here s[j] stands for the j-th largest value in s.

Definition 3.4. (Inverse Top-k preserving function) Given
A,B ⊆ RN , a function f : A → B is inverse top-k pre-
serving if ∀s ∈ A,Pk(s, f(s))
Definition 3.5. (Order preserving) Given s,η ∈ RN , s is
order preserving with respect to η, denoted as s ↪→ η if

∀i, j, ηi > ηj =⇒ si > sj (9)

A function g(·) is order preserving iff g(s) ↪→ s.

Definition 3.6. (Top-k calibration): Let ∆N = {η ∈
RN |

∑N
i=1 ηi = 1}. A loss function ψ : RN × Y → R

is top-k calibrated if for all η ∈ ∆N ,

inf
s∈RN∩¬Pk(s,η)

Lψ(s,η) > inf
s∈RN

Lψ(s,η) = Lψ(η)

(10)

Definition 3.7. (Bregman Divergence) Given s, t ∈ RN
and a convex, differentiable function ϕ : RN → R, the
Bregman divergence Dϕ is defined by

Dϕ(s, t) = ϕ(t)− ϕ(s)− ⟨∇ϕ(s), t− s⟩. (11)

Proposition 3.8. (Yang & Koyejo, 2020) Rewrite the soft-
max loss as a Bregman divergence, i.e.,

− log(p(o
(u)
i )) = Dϕ(g(o

(u)), ei) (12)

where ϕ(o) =
∑
j oj log oj , g(o)i = p(oi). Since ϕ is

strictly convex and differentiable, g is inverse top-k preserv-
ing, then the softmax loss is top-k calibrated.

Proposition 3.9. Since ϕ is strictly convex and differen-
tiable, g is inverse order-preserving, and the softmax loss is
DCG-consistent.
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Remark 3.10. The importance of normalization in surrogate
losses for NDCG-consistency was emphasized in (Raviku-
mar et al., 2011). However, this term is not critical for item
recommendation since implicit feedback can be modeled
as single-click behaviors, which transform all normaliza-
tion terms to 1 (Bruch, 2021). To prevent ambiguity, we
uniformly discuss DCG-consistency without normalization.

This reveals the softmax loss’s theoretical soundness in op-
timizing these ranking-related objectives, offering an ideal
alternative for recommendation models.

3.2. Revealing Connections by Taylor Expansion

Reflecting on the loss form in Eq.(2), we analyse with a
direct Taylor expansion at 0 with respect to any given o(u):

L(o(u))
Taylor
= L(0) +∇L(0)⊤o(u) +

1

2
o(u)⊤∇2L(0)o(u)

= logN − o
(u)
i +

1

N
1⊤
No(u) +

1

2N
o(u)⊤(I − 1

N
1N1⊤

N )o(u)

≤ logN − o
(u)
i +

1

N
1⊤
No(u) +

1

2N
o(u)⊤o(u)

The final inequality comes from the semi-positive definition
of matrix 1N1⊤

N . Here, we omit the remainder for the sake
of simplicity, while the softmax loss is still upper bounded
by the approximation under a rational assumption. The
detailed process of expansion and upper bound proofs are
referred to Appendix B.2. To further simplify the above
form, we formulate

L(o(u)) ≤ logN − o
(u)
i +

1

2N
∥o(u) + 1N∥2 − 1

2N
1⊤
N1N

=

(
logN − 1

2

)
− o

(u)
i +

1

2N
∥o(u) + 1N∥2

Through the above expansion analysis with respect to the
softmax loss, we surprisingly find the connection between
the squared-form formula ∥o(u) + 1N∥2 and the softmax
loss. At the same time, we observe and define the RG2 loss1

function as:

Leps = −
∑

(u,i)∈D

o
(u)
i −

1

2N
∥o(u) + 1N∥2 (13)

Intuitively, the newly designed loss function is composed
of two parts. The first part tends to maximize the outputs
corresponding to all interacted items, while the second part
aims to converge the scores for all items toward a fixed value
of −1. An interesting observation is that such loss can be
presented in a squared form by some simple transformations.
The detailed process is in Appendix B.3.

LRG2 = − 1

|D|
∑
u,i

−|Iu|
2N

(
o
(u)
i + 1− rui

N

|Iu|

)2

+λψ(θ)

(14)
1Note that such form omits constant terms, hence leading to a

high probability of loss value less than zero.

where rui = 1 if (u, i) ∈ D and 0 otherwise. Similar to
WRMF, the proposed squared loss tends to converge the
scores for all positive instances toward a large value while
all negative ones toward −1.
Remark 3.11. Due to the flexibility of the RG2 loss, we use
the subscript ‘eps’ to denote the result obtained from Taylor
expansions and ‘RG2’ for its squared-form transformation.

3.3. Consistency

Having derived a novel form of the loss function, our next
step is to establish its consistency with the ranking metric.

Assuming that the interaction set D i.i.d drawn from sample
space X = {(u, i)}u∈U,i∈I with some distribution, the
expected DCG loss is given as:

LDCG(o
(u)) = ED∼X

[
−DCG(o(u),D)

]
(15)

Consider a potential surrogate ϕ, whose expected loss can
then be given as:

Φ(o(u)) = ED[ϕ(o
(u),D)] (16)

Hence, the definition of consistency is provided as follows:
Definition 3.12. A surrogate ϕ is consistent with DCG if for
any distribution on sample space X and for any sequence
{o(u)

n}∞n=1, s.t.
Φ(o(u)

n )→ Φ∗ (17)

we have
LDCG(o

(u)
n )→ L∗

DCG (18)

where
Φ∗ = min

o(u)
Φ(o(u))

L∗
DCG = min

o(u)
LDCG(o

(u))
(19)

whose minimum are assumed to be achievable.

Following the above definition, we are to prove the consis-
tency of LRG2 with the targeted optimization objective DCG.
The detailed proof is in Appendix.B.4.
Theorem 3.13. For any given o ∈ RN , consider the surro-
gate loss

Φ(o) = ED[LRG2(o)] (20)

then the following satisfies with some constant C,

LDCG(o)− L∗
DCG ≤ C(Φ(o)− Φ∗)

1
2 (21)

hence proving the DCG-consistency of surrogate loss LRG2 .

In fact, the consistency proof about the surrogate loss LRG2

can also be understood in terms of order-preserving.
Proposition 3.14. Consider g(r) = N

|Iu|r − 1 which is
linear therefore invertible order-preserving. LRG2 reaches
its minimum when o(u)∗ = g(E[r]), which is intuitive for a
squared loss form. Thus revealing LRG2 is DCG-consistent.
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The above discussion demonstrates that the proposed
squared loss also has DCG-consistency compared to the
softmax loss, providing an explanation for the squared-form
loss to have good performance in ranking metrics.

3.4. Instantiation with Matrix Factorization

In this section, we utilize the RG2 loss in MF model with
analysis on a generalization upper bound and optimize it
using the ALS method. The details for graph-based models
are provided in Appendix. C.2.

Matrix factorization (MF) is a typical and flexible collabo-
rative filtering method that has been comprehensively devel-
oped in various recommendation scenarios (Koren, 2008;
Hu et al., 2008; Koren et al., 2009; Rendle et al., 2012;
Lian et al., 2014). It decomposes the large interaction ma-
trix R ∈ {0, 1}M×N where rui = 1 if (u, i) ∈ D, into
two lower-dimensional matrices. Consider a MF-based rec-
ommendation scenario with M users and N items. Let
P ∈ RM×K , Q ∈ RN×K stand for the representation ma-
trices of users and items to be learned, where K stands for
the dimension of latent embeddings. The predicted matrix
is computed as O = P · Q⊤, with an apparent property
rank(O) ≤ K. The flexibility of MF lies in the selection
of different objective functions, which significantly impact
the model’s performance and recommendation quality. By
utilizing our proposed RG2 loss, rewriting Eq.(14) into MF-
based form with Frobenius-norm regularizers, we have

LRG2 =

M,N∑
u,i=1

Wui(Sui−Pu· ·Q⊤
·i )

2+λ(∥P∥2F +∥Q∥2F ) (22)

where

Sui = rui
N

|Iu|
− 1;Wui =

|Iu|
2N |D|

. (23)

Compared to original WRMF loss in Eq.(4), our proposed
LRG2 highlights the effect of positive pairs by increasing
the predicted values instead of setting different weights, and
avoids the manual adjustment of hyperparameter α.

Before we analyse the efficient ALS method in detail, we
first provide a generalization upper bound for RG2.

3.4.1. GENERALIZATION ANALYSIS

To analyse RG2’s generalization performance in MF, we
give out a definition of the hypothesis space. Suppose the
interaction set D = {(u, i) ∈ X} is i.i.d drawn from some
unknown distribution P(X ). Denote hypothesis function
h(u, i) = o

(u)
i = Pu· · Q⊤

·i . The hypothesis space can be
expressed as:

H :=
{
hO : (u, i) → hO(u, i) = o

(u)
i | rank(O) ≤ K

}
(24)

Correspondingly, the empirical error and generalization er-
ror in our settings are formed as:

R̂D(h) =
1

|D|

M,N∑
u,i=1

|Iu|
2N

(
o
(u)
i + 1− rui

N

|Iu|

)2

(25)

R(h) = ED∼Pm
X

[
|Iu|
2N

(
o
(u)
i + 1− rui

N

|Iu|

)2
]

(26)

Remark 3.15. This is a classical form of squared loss. By
assuming an upper bound B of the loss function, the error
is restricted by a 2B-Lipschitz continuity.

To obtain the upper bound of the generalization error, con-
sider the pseudo-dimension of the hypothesis spaceH with
the following estimates:

Proposition 3.16. (Srebro et al., 2004) The pseudo-
dimension of the low-rank matrix hypothesis space H is
at most K(M + N) log 16eM

K , where M,N,K represent
the number of users, items, and embedded dimensions.

This estimate is important for approximating the complexity
of the hypothesis space due to the following inequality with
respect to the L1-covering number,

Lemma 3.17. (Anthony et al., 1999) LetH be a nonempty
set of real functions mapping from a domain X into [0, 1]
and suppose thatH has finite pseudo-dimension d. Then

N1(ε,H,m) < e(d+ 1)

(
2e

ε

)d
(27)

Remark 3.18. Even though the hypothesis space we define
may not satisfy mapping all inputs into [0, 1], the optimiza-
tion behavior of the loss function ensures that the hypothesis
space is embedded into a bounded interval, which does not
harm generalizability.

With the Lipschitz condition of the loss function, L1-
covering number of hypothesis space H establishes a di-
rect relation to the generalized error bound, from which
obtaining the following theorem.

Theorem 3.19. (Anthony et al., 1999) Suppose H be a
nonempty set of real functions mapping from a domain X
into [0, 1]. Let P be any probability distribution on X × R,
∀ε > 0 with any positive integer m. Then for any loss
function ℓ(h(x), y) with |ℓ(h(x), y)| ≤ B with L-Lipschitz,

Pm
(
∃h ∈ H s.t. |R(h)− R̂D(h)| ≥ ε

)
≤ 4N1

( ε

8L
,H, 2m

)
exp

(
−mε2

32B4

) (28)

We have listed all the conditions required to prove an upper
bound on generalization error. By combining the above
conclusions, we obtain the following theorem.
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Theorem 3.20. For all conditions in our settings, with prob-
ability at least 1− δ, we have

R(h) ≤ R̂D(h) + d+2

√
4(d+ 1)B3(32eB)d+1

|D|δ (29)

where d = K(M +N) log 16eM
K .

Proof. Starting from Theorem 3.19, we have

Pm
(
|R(h)− R̂D(h)| ≥ ε

)
≤4N1

( ε

16B
,H, 2m

)
exp

(
−|D|ε2

32B4

)
≤4e(d+ 1)(

32eB

ε
)d exp

(
−|D|ε2

32B4

)
≤4e(d+ 1)(

32eB

ε
)d

32B4

|D|ε2

(30)

The last inequality comes from exp(−x) ≤ 1
x . By setting

δ = 4e(d+ 1)(
32eB

ε
)d
32B4

|D|ε2
, (31)

we obtain the final form of ε in Eq.(29).

We further combine this upper bound with Theorem 3.13 to
obtain a lower bound for ranking metric DCG.
Proposition 3.21.

ED

[
−DCG(o(u),D)

]
≤ C(R(h)− Φ∗)

1
2 + L∗

DCG

≤ C

(
R̂D(h) + d+2

√
4(d+ 1)B3(32eB)d+1

|D|δ − Φ∗

)
+ L∗

DCG

Note that L∗
DCG = ED

[
IDCG(o(u),D)

]
. Then with ele-

mentary transformations, we have

ED

[
DCG(o(u),D)

]
≥ ED

[
IDCG(o(u),D)

]
− C

(
R̂D(h)− inf

h
R(h) + TD(d,B, e, δ)

) (32)

where TD(d,B, e, δ) = d+2

√
4(d+1)B3(32eB)d+1

|D|δ .

It is worth noting that the generalization lower bound of
DCG derived from this proposition is constrained by the
pseudo-dimension d of the hypothesis space and the num-
ber of interactions |D| with O((d + 1)

1
d+2 · C1− 1

d+2 ) and
O(|D|−

1
d+2 ), respectively.

3.4.2. OPTIMIZATION WITH ALS

Given that the proposed RG2 loss involves linear operations,
it is well-suited for utilization in the ALS optimization algo-
rithm. This algorithm updates the model parameters based

Algorithm 1 Weighted Alternating Least Squares.

1: Input: Data Matrix R ∈ {0, 1}M,N

2: Output: P and Q
3: Initialize P and Q
4: M,N ← R.shape[0], R.shape[1]
5: u← [

∑
Ri·]1≤i≤M

6: W ← 1
2N Diag(u)R

7: S ← 1
N Diag(u)−1R− 1

8: repeat
9: Update Pi,·, ∀ i with Eq.(33)

10: Update Qi,·, ∀ i with Eq.(34)
11: until convergence

on the closed-form solutions. Regarding Eq.(22), by fixing
one of the matrix P or Q, the derivative with respect to the
other term is calculated as:

∂L∗

∂Puk
= 2

∑
j

Wuj(Pu·Q
⊤
i· − Suj)Qik + 2λ(

∑
j

Wuj)Puk

∂L∗

∂Pu·
=

[
∂L∗

∂Pu1
, · · · , ∂L∗

∂PuM

]
= 2Pu·

(
Q⊤W̃i·Q+ λ

(∑
j

Wuj

)
I

)
− 2Su·W̃u·Q

where W̃u·, W̃·i are diagonal matrices with the elements of
Wu·,W·i on the diagonal.

Therefore, the objective reaches its minimum at a closed-
form solution by setting derivatives to zero as below:

Pu· = Su·W̃u·Q

(
Q⊤W̃u·Q+ λ

(∑
i

Wui

)
I

)−1

(33)

Qi· = S⊤
·i W̃·iP

(
P⊤W̃·jP + λ

(∑
u

Wui

)
I

)−1

(34)

The equations above serve as the update rule for model pa-
rameters as illustrated in Algorithm.1. First, the matrices
P,Q are initialized uniformly in line 3, and the matrices
W,S are calculated according to Eq.(23) in lines 4-7. After
initialization, we update the matrix P referring Eq.(33) and
then Q referring Eq.(34) alternatively. The training phase is
repeated until convergence. We also provide the optimiza-
tion based on the Gauss-Newton method in Appendix D.

3.4.3. COMPLEXITY ANALYSIS

We give out a brief analysis on the time complexity of Alg.1.
Recall that P,Q are matrices shaped M ×K and N ×K,
with K ≪ min{M,N}. Note all users share the same con-
stant matrices S and W and thus they can be pre-computed.
The update procedure of Pu· comprises the following ma-
trix operations. The complexity of multiplying Q⊤W̃u· is
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O(NK) since W̃u· is diagonal. The subsequent multiplica-
tion with Q yields a complexity of O(NK2), with O(K3)
for the matrix inversion. S is divided into a sparse interac-
tion matrix and an all-one matrix, leading to a complexity of
O(|D|K+MK+NK) calculating Su·W̃u·Q, with another
O(MK2) on multiplying Su·W̃u·Q with the inversion part.
The overall complexity yieldsO(|D|K2+(M+N)K3) for
updating the user and item latent matrix. After T iterations,
the total complexity achievesO(T (|D|K2+(M+N)K3)).

4. Experimental Results
4.1. Experimental Settings

4.1.1. DATASET AND EVALUATION

Dataset. We evaluate our method on three public datasets:
MovieLens-10M, Amazon-electronics, and Steam Games
collected from different real-world online platforms, involv-
ing domains of movies, shopping, and games, which are
abbreviated as MovieLens, Electronics and Steam. Movie-
Lens comprises approximately 10 million movie ratings
ranging from 0.5 to 5, in increments of 0.5. Electronics
collects the customer’s reviews on electronics products on
the Amazon platform, where each review consists of a rat-
ing ranging from 0 to 5 and the reviews about the product.
Steam is a dataset crawled from the large online video game
distribution platform Steam (Kang & McAuley, 2018), com-
prising the player’s reviews plus rich information such as
playing hours. As for MovieLens and Electronics, we treat
items rated below 3 as negatives and the remains as posi-
tives. For Steam, since there is no explicit rating, we treat
all samples as positives. We employ the widely used k-core
filtering strategy to filter out the users and items with inter-
actions less than 5. The detailed statistics of those datasets
after filtering are illustrated in Table 1.

Table 1: Statistics of datasets.

Dataset #User #Item #Interact Sparsity

MovieLens 69,815 9,888 8,240,192 98.81%

Electronics 192,403 63,001 1,689,188 99.99%

Steam 281,204 11,961 3,484,497 99.90%

Data Split. We partition all datasets into training, validation,
and test sets with a split ratio of {0.8, 0.1, 0.1} for each
user, respectively. The validation set is utilized to assess the
model’s performance, while the metrics derived from the
test set serve as the foundation for comparative analysis.

Metrics. We adopt two widely used ranking evaluation met-
rics, Mean Reciprocal Rank with cutoff set as K(MRR@K)
and NDCG@K, to measure the ranking performance of dif-
ferent methods, which aligns with the theoretical understand-

ings in previous discussions. The definition of NDCG@K
is given in Def.3.1 with a top-K cutoff, while

MRR@K =
1

|Q|

|Q|∑
i=1

1

ranki

where Q represents all queries in the test set, ranki stands
for the rank of the first relevant item in top-K of the rec-
ommended list. We set K = 10 on all datasets and use
NDCG@10 as the early stop indicator to demonstrate the
broad validity of our loss on ranking metrics.

4.1.2. BASELINES

To validate the effectiveness of the proposed novel loss
function, we incorporate various types of loss functions as
baseline methods, including sampling-based methods (BPR,
BCE, S-Softmax, UIB,SML), variants of log Softmax loss
(Sparsemax), and the competitive method WRMF opti-
mized with the ALS method.

• BPR (Rendle et al., 2012): Bayesian Personalized Rank-
ing Loss is designed for personalized ranking in implicit
feedback, which maximizes the score difference between
interacted and non-interacted items.

LBPR = − 1

|D|
∑
u∈U

∑
i∈Iu,j∈I−

u

log
(
σ
(
o
(u)
i − o

(u)
j

))

• BCE (He et al., 2017): Binary Cross-Entropy Loss re-
gards the observed items as positives and unobserved
items as negatives.

LBCE = −
∑

(u,i)∈D

log σ
(
o
(u)
i

)
−

∑
(u,j)∈D−

log
(
1− σ

(
o
(u)
j

))

• Sampled Softmax (Covington et al., 2016; Yi et al.,
2019): Sampled Softmax is an efficient approximation
depending on importance sampling, with a sampling set
N according to the sampling probability q(u)i .

LS-Softmax = − 1

|D|
∑

(u,i)∈D

eo
(u)
i /q

(u)
i

eo
(u)
i /q

(u)
i +

∑
j∈N

eo
(u)
j /q

(u)
j

• Sparsemax (Martins & Astudillo, 2016): Sparsemax is a
variant of Softmax that returns sparse posterior distribu-
tions by assigning zero probability to some classes.

LSparse = −
∑

(u,i)∈D

−o
(u)
i +

1

2

N∑
j∈S(u)

(
o
(u)
j

2
− τ (u)2

)
+

1

2


where τ (u) =

((∑
j∈S(u) o

(u)
j

)
− 1
)
/|S(u))|,

S(u) = {j ∈ I | sparsemaxj
(
o(u)

)
> 0} and

sparsemax
(
o(u)

)
= argmin

p∈∆K−1

∥p− o(u)∥2.
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Table 2: Comparisons of recommendation performance. S-Softmax and Softmax are the abbreviations of Sampled Softmax
and Softmax loss functions. Bold and underline numbers represent the best and the second-best results respectively.

Dataset Metric BPR BCE S-Softmax Sparsemax UIB SML WRMF Softmax RG2

MovieLens MRR@10 0.3476 0.3602 0.3785 0.3177 0.3836 0.3386 0.4475 0.4487 0.4723
NDCG@10 0.2116 0.2228 0.2378 0.1738 0.2426 0.2045 0.2797 0.2849 0.2963

Electronics MRR@10 0.0124 0.0098 0.0119 0.0078 0.0101 0.0074 0.0146 0.0172 0.0173
NDCG@10 0.0154 0.0126 0.0152 0.0100 0.0130 0.0098 0.0178 0.0212 0.0212

Steam MRR@10 0.0434 0.0435 0.0466 0.0317 0.0410 0.0307 0.0464 0.0493 0.0492
NDCG@10 0.0521 0.0532 0.0549 0.0359 0.0506 0.0353 0.0544 0.0579 0.0575

• UIB (Zhuo et al., 2022): This loss introduces a learnable
auxiliary score bu for each user to represent the User In-
terest Boundary (UIB) and penalizes samples that exceed
the decision boundary. With ϕ(·) being MarginLoss, the
loss form is given as follows:

LUIB =
∑

(u,i)∈D

ϕ(bu − o(u)i ) +
∑

(u,i)∈D

ϕ(o
(u)
i − bu)

• SML (Li et al., 2020): SML improves the limitation of
CML by introducing dynamic margins. Let d(u, i) denote
the distance function between embeddings of user u and
item i, the loss form is given as follows:

LSML =
∑

(u,i)∈D

∑
(u,i−)/∈D

([d(u, i)− d(u, i−) +mu]+

+λ[d(u, i)− d(i, i−) + ni]+)− γ(
1

|U|
∑
u

mu +
1

|I|
∑
i

ni),

mu ∈ (0, l], ni ∈ (0, l], ∀u, i ∈ U , I

• Softmax: Log softmax loss maximizes the probability of
the observed items normalized over all items by Eq.(3).

• WRMF (Hu et al., 2008; Rendle et al., 2021): WRMF
uses ALS methods to optimize the loss value in Eq.(4).

• RG2: Our Ranking-Generalizable Squared loss also uti-
lizes ALS methods to optimize the loss value in Eq.(14).

4.1.3. IMPLEMENTATION DETAILS

We conduct all experiments on a highly-modularized recom-
mendation library RecStudio (Lian et al., 2023). The loss
functions and baselines are implemented on a linear model2,
i.e., a matrix factorization model, with the embedding size
set to 64. For BPR and BCE loss function, we draw 10,
20, and 10 negative samples uniformly for each positive
in the training procedure for MovieLens, Electronics, and
Steam, respectively. For Sampled Softmax, the proposal
distribution is set as uniform sampling, and the numbers of
negative samples are set as 100, 200, and 100, respectively.

2Experimental results on graph-based model (LightGCN) are
provided in Appendix.C.2.

As for UIB and SML, the respective negative sampling num-
bers are 10, 10, 1 and 1, 100, 50. We use a single Nvidia
RTX-3090 with 24GB memory in training for all methods.
Except for WRMF, all the baselines are optimized with the
Adam(Kingma & Ba, 2014) optimizer, which is a variant
of SGD. As for the SGD optimization, the batch size is
set to 2048. Learning rate and weight decay are tuned in
{0.1,0.01,0.001} and {0, 10−6, 10−5, 10−4}, respectively.
As for WRMF, the hypermeters λ and α are tuned in {0,
0.1, 0.01, 0.001} and {0.5, 1, 2, 4, 8}, respectively. There is
only one tunable hypermeter λ in our loss function, which
is tuned in {0, 0.1, 0.01, 0.001}. The code is available at
https://github.com/yuanhao53/RG2.

4.2. Overall Recommendation Performance

To validate the effectiveness of our loss function in rec-
ommendation performance, we compare our method with
baselines in terms of the ranking metrics in the experiments.
The results are presented in Table 2 and results with con-
fidence interval are reported in Appendix. C.1. From the
results, we can summarize the following findings.

Non-sampling methods (WRMF, Softmax and RG2) show
significant enhancement in performance compared with sam-
pling ones (BPR, BCE, S-Softmax, UIB and SML). De-
spite optimized by SGD, Softmax loss demonstrates signifi-
cant superiority over all (SGD-based) sampling baselines,
which obtains 20.49% and 20.19% average relative improve-
ments compared with the best sampling baseline in terms
of MRR@K and NDCG@K on all datasets, which aligns
with its theoretical properties in consistency with ranking
metrics. Furthermore, due to the randomness introduced
by sampling methods, bias has emerged as a critical factor
constraining the performance of all sampling-based meth-
ods. Sparsemax, as a sparse variant of Softmax, sets most
probabilities in the output distribution as zero, resulting in
the underfitting of representations of inactive users and cold
items, thereby suffering severe performance degradation.

For ALS-based non-sampling methods, WRMF employs a
deterministic optimization process, which avoids the vari-
ance introduced by SGD. It achieves a 7.53% average rel-
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Figure 1: Comparisons of convergence speed on all datasets.

ative degradation on all metrics with Softmax but outper-
forms other baselines.

Our proposed RG2 achieves a balance between efficiency
and effectiveness. Firstly, our method showcases a compara-
ble ranking performance with Softmax, specifically 4.63%
and 0.31% average relative improvements yet a 0.70% rela-
tive decrease on MovieLens, Electronics, and Steam in terms
of all metrics, respectively, but a faster convergence speed.
This substantiates the effectiveness of our approximation
and the advantage of ALS optimization, which preserves
a deterministic updating direction through a closed-form
solution compared with the first-order gradient-based SGD
optimization. Secondly, our RG2 achieves a comparable
speed but better performance with WRMF, demonstrating
the better alignment of RG2 with ranking metrics within the
same ALS optimization method. The detailed analysis of
convergence is referred to in Section 4.3.

4.3. Comparison of Convergence Speed

Furthermore, to investigate the convergence speed of our
method, we record the metrics after each epoch evaluated on
the validation set during the training process over all three
datasets, as illustrated in Figure 1, where we record the data
point of each epoch and their running time.

As shown in the figures, both RG2 and WRMF demonstrate
faster convergence speed than Softmax in terms of NDCG
and MRR, proving the efficacy of ALS optimization that
directly optimizes the convex problem with a closed-form
solution. Notably, our RG2 shows a comparable final per-
formance to Softmax which exceeds WRMF and all other
baselines, indicating that RG2 possesses both efficacy from

softmax loss approximation and efficiency from ALS op-
timization. Besides, sampling-based approaches, such as
BPR and SampledSoftmax can reduce the training time of
each epoch compared with Softmax, especially for datasets
with more items, such as Electronics. However, they all
exhibit poor performances.

5. Conclusion
In conclusion, our exploration into squared-form loss func-
tions and the introduction of the RG2 loss mark strides in
the domain of recommender systems. The RG2 loss, inge-
niously approximating and upper bounding the Softmax loss
through Taylor expansion, represents an innovative forward
in item recommendation. This innovation maintains RG2’s
alignment with DCG, thus ensuring relevance and perfor-
mance on ranking metrics. Our rigorous empirical analysis,
conducted across three public datasets with both MF and
GNN-based models, has confirmed the superiority of the
RG2 approach. Through the adaptation to both ALS and
SGD optimizations, RG2 not only achieves performance
comparable to the established benchmarks of Softmax loss
but, in several instances, surpasses them, demonstrating re-
markable efficiency improvements in the training process
without compromising on performance. Such advancements
underscore the potential of squared-form loss functions in
enhancing the scalability and effectiveness of recommender
systems.
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A. Related Works
Recommender systems have become an indispensable component in a wide range of applications, significantly enhancing
user experience by providing personalized suggestions (Huang et al., 2013; Guo et al., 2017; Zhou et al., 2018; Lian et al.,
2020b). Collaborative filtering is a typical technique in recommender systems, leveraging similarities between user behaviors
to predict user preferences. As mentioned above, the objective functions in CF for item recommendation tasks can be
separated into two tracks: sampling methods and non-sampling methods.

A.1. Non-sampling Loss for Recommenders

In recommendation scenarios, the feedback data is characterized by a highly sparse nature, with only a small fraction of
user-item pairs displaying interaction. The selection of an appropriate loss function is crucial for optimizing the performance
of recommendation algorithms, especially when dealing with a large number of un-interacted items. In recent research, the
community has raised a consensus that taking all user-item pairs into consideration, rather than leveraging small sample
fractions, leads to performance improvement (Rendle, 2021; Chen et al., 2023; 2020; Yuan et al., 2021). This kind of
approach is generally regarded as non-sampling losses.

• Squared Loss. One straightforward approach is to treat all interacted samples as positive and non-interacted samples as
negative (Ning & Karypis, 2011). By assigning target scores of 1 and 0, respectively, the algorithm can perform regression
on these samples. The weighted regression squared loss (Hu et al., 2008; Ding et al., 2018) further improved the performance
by introducing weights to capture the confidence of each user-item pair. Due to the absence of non-linear operations, these
loss functions exhibit the advantageous property of possessing closed-form solutions. Consequently, optimization becomes
more tractable and efficient by utilizing methods like alternating least squares (Hu et al., 2008; Takács & Tikk, 2012) and
coordinate descent (Bayer et al., 2017). However, with the increasing number of users/items and the complex encoders
for embeddings, the update of all maintained large matrices in these methods can become computationally costly. To
address this, researchers have proposed approaches such as the Newton method (Yuan et al., 2021) or the Gram-Matrix
trick (Krichene et al., 2018), which facilitate efficient learning of non-linear embeddings. Another challenge is the limited
correlation observed between the regression squared loss function and ranking metrics, which lacks deep exploration
compared to its well-established exceptional ranking performance.

• Softmax Loss. Unlike the squared loss, which treats ranking problems as regression tasks, the softmax loss takes a
different approach, which assumes that user interests follow a multinomial distribution (Shen et al., 2014; Liang et al., 2018;
Sun et al., 2019) and aims to maximize the likelihood function. The softmax loss has been proven to align well with the
ranking metrics (Bruch et al., 2019; Ravikumar et al., 2011; Huang et al., 2023). This alignment brings notable advantages
to the softmax loss, particularly in scenarios with implicit feedback. However, the presence of the exponential operation
in the softmax loss prevents the derivation of a closed-form solution or higher-order gradient over all items, necessitating
stochastic gradient descent (SGD) methods for optimization. SGD approximates the global gradient by sampling a subset
of data in each iteration, which would result in slower convergence compared to methods utilizing closed-form solutions.
Besides, the training process involves the summation of all predicted scores over the entire dataset, which has significant
computational complexity. Feasible solutions include approximating the item set scores using sampling methods (Wu et al.,
2022) or employing sparse approximations of the original probability vector (Martins & Astudillo, 2016).

A.2. Sampling Loss for Recommenders

Non-sampling methods that consider relationships across the entire item set generally deliver superior accuracy. However,
their computational costs are generally prohibitive, particularly when dealing with a significantly large number of items.
Negative sampling has been introduced as an efficient approach to mitigate this challenge. This kind of method involves
sampling a subset of items as negative samples and approximating the computation over the entire item set. Particularly,
Bayesian Personalized Ranking (BPR) loss (Rendle et al., 2012), a pair-wise ranking loss, uniformly samples items from
the un-interacted items as negatives to help distinguish the positive samples. To select more informative items, several
sampling strategies have been proposed, including WARP (Weston et al., 2011), AOBPR (Rendle & Freudenthaler, 2014),
DNS (Zhang et al., 2013), to enhance the performance during the training process. Additionally, PRIS (Lian et al., 2020a)
assigns different weights to different ranking pairs based on their importance, which attends further enhancements. Another
commonly used approach is sampled softmax (Yi et al., 2019; Bengio & Senécal, 2008), which estimates the gradient
expectation through importance sampling. Although these sampling-based methods effectively reduce the computational
overhead for large-scale recommender systems by reducing the number of computed items, it is crucial to recognize that
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these approximations can introduce biases and variances in the estimation for the first-order gradient. This bias comes from
the limited number of sampled items and the biased sampling distribution. The challenges become even more significant
when approximating higher-order gradients, rendering advanced optimization algorithms inapplicable.

B. Computational and Proof Details
B.1. Notations

All notations in this paper are listed in Table.3.

Table 3: Table of Notations

Notation Description
u, i A context (user, location, behavior history, etc.) and an item
U , I The context set and item set

M,N,K The number of contexts(users), items and embedded dimensions
D The interaction set with all interacted pairs (u, i) ∈ D
R The interaction matrix
rui The (u, i)-th element of interaction matrix
X The sample space where interaction set drawn from
P(X ) Some unknown distribution on sample space X
H The hypothesis space
h A hypothesis function in hypothesis spaceH

R̂D(h) The empirical error of h on dataset D
R(h) The generalization error of h on P(X )
o
(u)
i The predicted preference score of item i in context u

o(u) The vector formed by the scores of context u on all items
p(o

(u)
i ) The normalized probability transformed by softmax function

θu,θi The learnt representations of context(user) u and item i
P,Q The matrix form of representations by stacking all θu,θi into M ×K,N ×K shape

Pu·, Qi· The u-th row and i-th row of P,Q
W The weight matrix used in Weighted Alternating Least Square Algorithm
S The matrix used in Weighted Alternating Least Square Algorithm

λψ(θ) Some regularization term with coefficient λ
π(u)(i) The rank of o(u)i in o(u)

Iu The set of all items interacted in context u
ϕ A surrogate loss function
Dϕ The Bregman Divergence of function ϕ
Φ The expectation form of surrogate loss ϕ
Φ∗ The minimum of Φ

B.2. Details of approximated loss

Although the derivation is not complicated, the main procedure of the softmax loss Taylor expansion is provided as follows.

L(o(u))
Taylor
= L(0) +∇L(0)⊤o(u) +

1

2
o(u)⊤∇2L(0)o(u)

L(0) = − log(
1

N
) = logN

∇L = [
∂L
∂o

(u)
i1

, · · · , ∂L
∂o

(u)
iN

]⊤ = [p(o
(u)
i1

), p(o
(u)
i2

), · · · , p(o(u)i )− 1, · · · , p(o(u)iN
)]⊤

=⇒ ∇L(0)⊤o(u) = −o(u)i +
1

N
1⊤
No(u)
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As for the second-order parts, we have

∂2L
∂(o

(u)
j )2

= p(o
(u)
j )(1− p(o(u)j )),

∂2L
∂(o

(u)
j )∂(o

(u)
k )

= −p(o(u)j )p(o
(u)
k )

=⇒ ∇2L(0) = 1

N
(I − 1

N
1N1⊤

N )

from which we arrive at the given final form.

Further, to prove that the approximation is an upper bound for the original softmax loss, consider the following theorem:

Theorem B.1. For any multi-variable function f : x→ R, x ∈ RN with Jacobian vector ∇f and Hessian matrix∇2f , let
M be a symmetric matrix satisfying M ⪰ ∇2f , then for ∀x, y ∈ RN ,

f(y) ≤ f(x) +∇f(x)(y − x) + 1

2
(y − x)⊤M(y − x) (35)

Proof. With the mean value theorem, one can simply expand f(y) with

f(y) = f(x) +∇f(x)(y − x) + 1

2
(y − x)⊤∇2f(ξ)(y − x) (36)

Now that M ⪰ ∇2f , thus for ∀x ∈ RN , x⊤Mx ≥ x⊤∇2f(ξ)x, hence finishing the proof.

With the following assumption, the symmetric matrix M = 1
N IN is greater than∇2f .

Proposition B.2. Suppose that 1
N IN − diag(ai)Ni=1 + (ajak)

N,N
j,k=1 is positive semi-definite, where ai = p(o

(u)
i ), then the

softmax loss LSM is upper bounded by Leps.

The proof is a direct application of the above theorem. Note that ai satisfies
∑N
i=1 ai = 1 and ai ≥ 0,∀i. This positive

semi-definite assumption holds when the predicted logits have a sufficiently small distance from 0, either centralized on
certain points or uniformly distributed among all instances.

For centralized circumstances, consider one specific item with probability 1 and all other logits equal to 0, i.e. ai =
1, aj ̸=i = 0 Then for ∀[x1, · · · , xN ] = x ∈ RN ,

x⊤
(

1

N
IN − diag(ai)Ni=1 + (ajak)

N,N
j,k=1

)
x =

1

N

N∑
j=1

x2j − x2i + x2i =
1

N

N∑
j=1

x2j ≥ 0

For uniformly distributed instances, all logits have an equal value of 1
N , then

x⊤
(

1

N
IN − diag(ai)Ni=1 + (ajak)

N,N
j,k=1

)
x =

1

N

N∑
j=1

x2j −
1

N

N∑
j=1

x2j +
1

N2

N∑
j=1

x2j =
1

N2

N∑
j=1

x2j ≥ 0

As a result, in the practice of recommendation scenarios, since implicit feedback can be modeled as single-click behaviors,
we can safely conclude this semi-positive assumption acceptable.
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B.3. Transformation to squared form

Starting from Leps, we are able to obtain an equivalent LRG2 after a simple transformation,

Leps = −
1

|D|
∑

(u,i)∈D

(
o
(u)
i −

1

2N
∥o(u) + 1N∥2

)
+ λψ(θ)

= − 1

|D|
∑

(u,i)∈D

o(u)i −
N∑
j=1

1

2N
(o

(u)
j + 1)2

+ λψ(θ)

= − 1

|D|

 ∑
(u,i)∈D

o
(u)
i −

∑
u∈U
|Iu|

N∑
j=1

1

2N
(o

(u)
j + 1)2

+ λψ(θ)

= − 1

|D|

 ∑
(u,i)∈D

(
o
(u)
i −

|Iu|
2N

(o
(u)
i + 1)2

)
−

∑
(u,i)/∈D

|Iu|
2N

(o
(u)
j + 1)2

+ λψ(θ)

= − 1

|D|

 ∑
(u,i)∈D

−|Iu|
2N

(
o
(u)
i

2
+ 2o

(u)
i −

2N

|Iu|
o
(u)
i + 1

)
−

∑
(u,i)/∈D

|Iu|
2N

(o
(u)
j + 1)2

+ λψ(θ)

= − 1

|D|

 ∑
(u,i)∈D

−|Iu|
2N

((
o
(u)
i + 1− N

|Iu|

)2

+ 1−
(
1− N

|Iu|

)2
)
−

∑
(u,i)/∈D

|Iu|
2N

(o
(u)
j + 1)2

+ λψ(θ)

∝ − 1

|D|

 ∑
(u,i)∈D

−|Iu|
2N

((
o
(u)
i + 1− N

|Iu|

)2
)
−

∑
(u,i)/∈D

|Iu|
2N

(o
(u)
j + 1)2

+ λψ(θ)

= − 1

|D|
∑

u∈U,i∈I
−|Iu|

2N

(
o
(u)
i + 1− rui

N

|Iu|

)2

+ λψ(θ) = LRG2

B.4. Proof of Objective Consistency

Inspired by (Cossock & Zhang, 2006), we resort to an intuitive loss as a springboard to complete the proof of alternative loss
consistency. For the sake of simplicity, we define ci = 1

log(1+i) and f(u, i) = o
(u)
i . Besides, we replace the notation π(u)(i)

into πi with some fixed user u, and π = {π1, · · · , πN}. Given that our task is built on a 0-1 interaction dataset, we have
2rui − 1 = rui, thus rewriting DCG as

DCG(π,D) =
N∑
i=1

cπirui

Given any dataset D drawn from X , the Bayesian scoring function is defined as:

fB(u, i) = EDrui

which optimizes LDCG and assumed available in the hypothesis spaceH. Correspondingly, π∗ = [π∗
1 , · · · , π∗

N ] stands for
rank information of fB(u, i), i = 1, · · · , N . Based on the above discussion, we have the following lemma:

Lemma B.3.

LDCG(π)− L∗
DCG ≤

(
2

N∑
i=1

c2i

) 1
2
(

N∑
i=1

(f(u, i)− fB(u, i))2
) 1

2

(37)
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Proof.

LDCG(π) = ED

[
−

N∑
i=1

cπi
rui

]
= −

N∑
i=1

cπi
fB(u, i)

= −
N∑
i=1

cπi
f(u, i)−

N∑
i=1

cπi
(fB(u, i)− f(u, i))

≤ −
N∑
i=1

cπ∗
i
f(u, i)−

N∑
i=1

cπi
(fB(u, i)− f(u, i))

= −
N∑
i=1

cπ∗
i
fB(u, i)−

N∑
i=1

cπ∗
i
(f(u, i)− fB(u, i))−

N∑
i=1

cπi
(fB(u, i)− f(u, i))

= L∗
DCG −

N∑
i=1

cπ∗
i
(f(u, i)− fB(u, i))−

N∑
i=1

cπi
(fB(u, i)− f(u, i))

≤ L∗
DCG +

(
2

N∑
i=1

c2i

) 1
2
(

N∑
i=1

(f(u, i)− fB(u, i))2
) 1

2

Consider the following surrogate loss function,

ϕsur(f,D) =
N∑
i=1

(f(u, i)− rui)2 =
∑

i|(u,i)∈D

(f(u, i)− 1)2 +
∑

i|(u,i)/∈D

(f(u, i))2 (38)

Φsur(f) = ED[ϕsur(f,D)] =
N∑
i=1

(f(u, i)− fB(u, i))2 (39)

with the following theorem holding consistency from the above lemma:

Theorem B.4. The surrogate loss Φsur is DCG-consistent, i.e.,

LDCG(π)− L∗
DCG ≤

(
2

N∑
i=1

c2i

) 1
2

(Φsur(f)− Φ∗
sur)

1
2 (40)

Notably, the ground truth of interaction scores is not strictly limited to rui ∈ {0, 1}. Since DCG only cares about the rank
information of predicted scores, with any order-preserving mapping g(·) : R→ R,DCG(f) = DCG(g(f)). Thus we are
free to replace rui in Theorem.B.4 and obtain the following corollary,

Corollary B.5. A squared-form surrogate function with the following form

ϕsur(f,D) =
N∑
i=1

wui(f(u, i)− rui)2 (41)

is DCG-consistent if and only if

1. wui > 0,∀i ∈ [N ]

2. min(u,i)∈D rui > max(u,i)/∈D rui

Based on this corollary, we safely obtain the objective consistency of LRG2 with the DCG metric, hence finishing the proof.
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C. Experimental Results
C.1. Confidence Intervals

The experiments in Table. 2 are conducted where each algorithm is run for 5 competitions with different random seeds.
Results with standard deviation are reported in Table. 4.

Table 4: Confidence Intervals of all baselines and RG2.

Dataset MovieLens Electronics Steam

Metric MRR@10 NDCG@10 MRR@10 NDCG@10 MRR@10 NDCG@10

BPR 0.3476±0.0038 0.2116±0.0016 0.0124±0.0003 0.0154±0.0004 0.0434±0.0005 0.0521±0.0005

BCE 0.3602±0.0007 0.2228±0.0006 0.0098±0.0002 0.0126±0.0002 0.0435±0.0007 0.0532±0.0005

S-Softmax 0.3785±0.0032 0.2378±0.0014 0.0119±0.0003 0.0152±0.0003 0.0466±0.0005 0.0549±0.0005

Sparsemax 0.3177±0.0054 0.1738±0.0024 0.0078±0.0006 0.0100±0.0004 0.0317±0.0003 0.0359±0.0004

UIB 0.3836±0.0020 0.2045±0.0018 0.0101±0.0004 0.0130±0.0003 0.0410±0.0008 0.0506±0.0006

SML 0.3386±0.0043 0.2045±0.0017 0.0074±0.0002 0.0098±0.0005 0.0307±0.0005 0.0353±0.0008

WRMF 0.4475±0.0014 0.2797±0.0008 0.0146±0.0003 0.0178±0.0002 0.0464±0.0003 0.0544±0.0003

Softmax 0.4487±0.0037 0.2849±0.0026 0.0172±0.0002 0.0212±0.0002 0.0493±0.0001 0.0579±0.0002

RG2 0.4723±0.0014 0.2963±0.0004 0.0173±0.0001 0.0212±0.0002 0.0492±0.0002 0.0575±0.0002

C.2. RG2 Loss for LightGCN

To verify the effectiveness of the objective function in RG2, we extend the evaluation beyond the traditional MF framework
to include the backbone of a typical GNN-based recommender – LightGCN (He et al., 2020). Despite our inclination
towards the ALS method, which is inherently suited for MF, we do not intend but have to utilize Stochastic Gradient Descent
Methods for fair comparison on LightGCN backbone.

Table 5: Comparisons of recommendation performance on LightGCN backbone. We select well-performed baselines in
Table. 2 to validate RG2’s consistency in evaluation. Bold and underline numbers represent the best and the second-best
results respectively.

Dataset Metric UIB SML Softmax RG2

MovieLens MRR@10 0.3530 0.2482 0.4414 0.4652
NDCG@10 0.2171 0.1535 0.2814 0.2919

Electronics MRR@10 0.0152 0.0088 0.0171 0.0176
NDCG@10 0.0191 0.0115 0.0215 0.0219

Steam MRR@10 0.0486 0.0396 0.0476 0.0464
NDCG@10 0.0569 0.0463 0.0564 0.0542

We perform a 3-layer LightGCN with the embedding size set to 64 on each layer, all baselines using the same experimental
settings for other parameters in Section 4.1.3 in our manuscript, and select well-performed objective loss functions in
Table. 2 for comparison. All experimental results on LightGCN are shown in Table. 5. Our experimental results demonstrate
that RG2 still performs competitively in GNN-based backbones on ML-10M and Electronics, consistent with MF results.

D. Gauss-Newton Method for Optimization
The utilization of ALS to optimize squared-form losses for general linear models has been discussed in the main text, which
cannot be applied when complex encoders are applied for user-item representations. Although gradient descent methods
are still applicable and widely used, methods leveraging higher-order gradient information, such as Newton’s method,
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still have the potential to improve the efficiency of model convergence. The main obstacle for current recommenders
on adapting to higher-order methods is the high complexity of solving second-order gradient information (or Hessian
matrix), which is particularly evident for loss functions involving nonlinear operations. NewtonCG (Yuan et al., 2021)
proposed an optimization method for extreme similarity learning based on Newton’s method, where they took the O(MN)
complexity into account in optimizing loss function by transforming all the unobserved interactions ((u, i) /∈ D) with a
certain squared-form structure. Suppose ℓ is the original loss function, the transformation applies by:

ℓ̂(o
(u)
i ) =

{
ℓ(o

(u)
i ) (u, i) ∈ D

1
2ωaubi(o

(u)
i − rui)2 (u, i) /∈ D

In this way, they were able to replace the O(MN) complexity with a smaller O(M + N). It is worth noting that our
proposed RG2 in Eq.(13) satisfies this form exactly and directly, without introducing any bias due to the approximation
to un-interacted pairs. This allows us to directly plug in our proposed loss function to NewtonCG and update the model
with second-order gradient information. This opens up the possibility for our RG2 to handle models beyond the capability
of ALS, like deep encoders, demonstrating the flexibility of this loss function and its ability to remain efficient in more
scenarios.

For simplicity, we use θu,θi ∈ RK as outputs of user-side and item-side encoders for a two-tower recommender with an
inner product scoring. By a direct reformatting of Eq.(13), we have

LRG2 = − 1

|D|
∑

(u,i)∈D

(o
(u)
i −

1

2N
∥ou + 1∥2) + λψ(θ)

= − 1

|D|
∑

(u,i)∈D

(θ⊤
u θi) +

1

2N |D|
∑
u∈U

∑
i∈I
|Iu|(θ⊤

u θi + 1)2 + λψ(θ)

Let θ̃u, θ̃i be fixed throughout training with θ̃⊤
u θ̃i = −1 (with all elements equal to − 1√

K
), thus we have

LRG2 = − 1

|D|
∑

(u,i)∈D

θ⊤
u θi +

1

2N |D|
∑
u∈U

∑
i∈I
|Iu|(θ⊤

u θi − θ̃⊤
u θ̃i)

2 + λψ(θ).

Divide the loss form into L+ and L− with

L+ = − 1

|D|
∑

(u,i)∈D

θ⊤
u θi

L− =
1

2N |D|
∑
u∈U

∑
i∈I
|Iu|(θ⊤

u θi − θ̃⊤
u θ̃i)

2.

Let au = |Iu|, then

L− =
1

2N |D|
∑
u∈U

∑
i∈I

au(θ
⊤
u θi − θ̃⊤

u θ̃i)
2

=
1

2N |D|
∑
u∈U

(auθ̃
⊤
u (
∑
i∈I

θ̃iθ̃
⊤
i )θ̃u − 2auθ̃

⊤
u (
∑
i∈I

θiθ̃
⊤
i )θ̃u + auθ

⊤
u (
∑
i∈I

θiθ
⊤
i )θu)

=
1

2N |D|
[⟨P̃c, Q̃c⟩F − 2⟨P̂c, Q̂c⟩F + ⟨Pc, Qc⟩F ]

where A = diag(au) and ⟨·, ·⟩F stands for the Frobenius product, with all matrices formalized as,

P̃c = P̃⊤AP̃ , P̂c = P̃⊤AP,Pc = P⊤AP

Q̃c = Q̃⊤Q̃, Q̂c = Q̃⊤P,Qc = Q⊤Q

Furthermore, we handle the gradient information of the loss function, consider

∇L∗ =
∑

(u,i)∈D

∂o
(u)
i

∂θ

∂L+
ui

∂o
(u)
i

+
∑
u∈U

∑
i∈I

∂o
(u)
i

∂θ

∂L−
ui

∂o
(u)
i

+ λ∇ψ(θ)
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Figure 2: Comparisons of convergence speed on all datasets.

where ∂o
(u)
i

∂θ = [θ⊤
i
∂θu(θ)
∂θ ,θ⊤

u
∂θi(θ)
∂θ ], thus

∇L+ =

[ ∑
u∈U

∑
i∈I(

∂θu(θ)
∂θ )⊤θiRui∑

u∈U
∑
i∈I(

∂θi(θ)
∂θ )⊤θuRui

]

Suppose ∂θu(θ)
∂θ ∈ Rk×Du , ∂θi(θ)

∂θ ∈ Rk×Di , let Juser ∈ RM×Du×k,J item ∈ RN×Di×K be 3-dimension tensors with
slices Juseru,:,: = ∂θu(θ)

∂θ , J itemi,:,: = ∂θi(θ)
∂θ , then

∇L+(θ) =

[
⟨Juser, RQ⟩
⟨J item, R⊤P ⟩

]
∇L−(θ) =

[
⟨Juser, APQc −AP̃Q̂c⟩
⟨J item, QPc − Q̃P̂c⟩

]
=⇒ ∇LRG2(θ) = − 1

|D|

[
⟨Juser, RQ+ 1

2N (APQc −AP̃Q̂c)⟩
⟨J item, R⊤P + 1

2N (QPc − Q̃P̂c)⟩

]
where the inner product operation between a tensor and a matrix is given by

⟨J ,M⟩ =
∑
i∈I

Ji,:,:(Mi,:)
⊤

Similarly, the second-order information of the Gauss-Newton method has the form of,

Gd = − 1

|D|

[
⟨Juser, 1

2N (AWQc +APcH)⟩
⟨J item, 1

2N (HPc −QcW )⟩

]
+ λ∇2ψ(θ)d

where

Wu· =
∂θu(θ)

∂θu
du

Hi· =
∂θi(θ)

∂θi
di
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A significant advantage of our loss function is that the second-order derivative with respect to L+ is equal to zero, which
bypasses a computationally expensive step in NewtonCG. Here we omit the detailed NewtonCG Algorithm.

Although NewtonCG is not restricted on linear models, we still perform its experiments on a MF backbone with RG2

loss (RG2+NewtonCG) and plot the comparisions with RG2+ALS and other baselines. Our experiments on NewtonCG
optimization are based on publicly available code by (Yuan et al., 2021) which has been accelerated by some C-language
functions. The results are illustrated in Figure 2. We can observe that although NewtonCG sometimes shows competitive to
ALS methods (RG2, WRMF) on certain datasets (MovieLens), it merely maintains a high rate of convergence (which may
be highly relevant to the code acceleration) but hard to converge on better performance (Electronics, Steam). This may be
explained by the fact that second-order approaches still introduce a large bias to the training process, making it difficult for
the loss function converging to the optimum. Another possible reason stems from the complexity of NewtonCG’s parameter
space, which requires careful parameter tuning compared to the ALS whose search spaces is simple and barely adjusted.
This challenge also in effect hinders NewtonCG’s potential to achieve higher performance.

Given the extensive variety of nonlinear encoders within the domain of recommender systems, our discussion on the
aforementioned NewtonCG with our proposed RG2 loss function still remains in exploratory stage. We acknowledge its
potential and intend to proceed a more thorough exploration in our future work.
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