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Abstract

While large language models have recently001
gained a surge of interest for their remarkable002
results, they frequently generate toxic expres-003
sions including profanity, offensive language,004
hate speech, etc. Among them, hate speech is005
one of the challenging categories because its006
subcategories are not clearly defined and an007
unbiased large dataset generation is yet chal-008
lenging. Upon a rigorous definition of hate009
speech, we present a new way of labeling hate010
speech data using LLM with a prompt of Chain-011
of-Thought. We have applied this approach012
to re-label 5 widely-used training datasets and013
evaluated them with 4 test sets. In 17 out of014
20 cases, we observe an improvement in per-015
formance, resulting in an overall 18% improve-016
ment. Additionally, for the test sets, we utilize017
LLM for relabeling, followed by human vali-018
dation. Upon performance evaluation, we find019
improvement in 19 out of 20 cases, resulting in020
an overall 25% performance enhancement.021

1 Introduction022

The recent emergence of neural network models023

(Vaswani et al., 2017; Devlin et al., 2019) has ac-024

celerated its applications to large language models025

(LLMs) (Thoppilan et al., 2022; Touvron et al.,026

2023; Brown et al., 2020; Chowdhery et al., 2022;027

Ouyang et al., 2022). Since many existing mod-028

els are trained on a large amount of web corpus,029

which contains toxic contents (Sheng et al., 2019;030

Luccioni and Viviano, 2021), so the model in-031

evitably generates toxic contents (Gehman et al.,032

2020). Hence there is a series of research on tox-033

icity detection (Wingate et al., 2022; Welbl et al.,034

2021), mitigation (Faal et al., 2022), synthetic gen-035

eration (Hartvigsen et al., 2022) because filtering036

such toxic content in the training data and the input037

prompt is critical for avoiding toxic content gener-038

ation (Gehman et al., 2020). Among toxicity, the039

detection of profanity, insult, offensive expression,040

and sexual expression have been widely studied 041

(Pavlopoulos et al., 2020) while the detection of 042

hate speech is still under active study (Kwok and 043

Wang, 2013; Davidson et al., 2017; AlKhamissi 044

et al., 2022; Fortuna et al., 2022; Tran et al., 2020). 045

Especially, hate speech detection is more chal- 046

lenging compared to other categories because 1) its 047

definition is vague across different studies (Markov 048

et al., 2023; Kwok and Wang, 2013; Davidson et al., 049

2017), 2) existing datasets for machine learning 050

model contain incorrect labels, 3) hate speech hu- 051

man labeling is a demanding task as it requires 052

contextual interpretation and careful determination. 053

With these challenges in mind, we present a rigor- 054

ous definition of hate speech, a new LLM-based 055

hate speech detection system updated labels of 8 056

widely used datasets.1 For an evaluation of the 057

proposed hate speech data labeling method, we 058

train a RoBERTa (Zhuang et al., 2021) base model 059

with the original and the updated training data and 060

compute its F1 score against the original test set 061

and the relabeled test set. Additionally, by com- 062

paring the trained models with Google Jigsaw’s 063

Perspective API (Lees et al., 2022) and OpenAI’s 064

Moderation API (Markov et al., 2023) on the multi- 065

ple test datasets, we show that the labels generated 066

using the proposed method outperform the original 067

labels, contributing to model training and resulting 068

in improved model performance. 069

2 Definition of Hate Speech 070

According to the United Nations2, hate speech is 071

defined as 072

“any kind of communication in speech, writing 073

or behaviour, that attacks or uses pejorative or dis- 074

criminatory language with reference to a person or 075

a group on the basis of who they are, in other words, 076

1Upon the acceptance of this manuscript, we will open-
source the updated labels and the source code for reproduction.

2https://www.un.org/en/hate-speech/understanding-hate-
speech/what-is-hate-speech
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based on their religion, ethnicity, nationality, race,077

colour, descent, gender or other identity factor.”078

With this definition in mind, we inductively de-079

fine the two key categories: the target human group080

and a speech or behavior to them. According to081

one existing definition3, we categorize the target082

human group into 10 subgroups; race, ethnicity, na-083

tional origin, disability, religious affiliation, caste,084

gender identity, biological gender, sexual orienta-085

tion, serious disease. Similarly, the type of a speech086

or behavior can be categorized into 9 subgroups;087

violent, dehumanizing speech, harmful stereotypes,088

statements of inferiority, expressions of contempt,089

expressions of disgust, expressions of dismissal,090

cursing, exclusion or segregation. If any given sen-091

tence depicts one group without the other, such a092

sentence cannot be considered as hate speech. See093

Table 3 for the details of the protected characteris-094

tics and the types of attacks.095

3 Hate Speech Dataset096

We select the following five datasets that are widely097

used for hate speech detection model training:098

1) TweetEval contains 12,970 hate speech texts099

against immigrants and women collected from100

Twitter (Basile et al., 2019). Its annotation is done101

by crowd workers which include non-trained con-102

tributors. We use the train split for training. 2)103

Davidson has 24,783 randomly selected English104

tweets that contain hate speech words (Davidson105

et al., 2017). Its annotation is done by three or more106

people from a crowdsourcing platform. 3) Storm-107

front had 10,944 sentences collected from an online108

white nationalist community, annotated by human109

including authors. (de Gibert et al., 2018) 4) Hat-110

eXplain collected the dataset from Twitter and Gab,111

annotated by more than three Amazon Mechanical112

Turk (MTurk) workers. (Mathew et al., 2021) 5)113

DynaHate is generated by 20 human annotators in114

an iterative way. Annotators are instructed to trick115

the model and check if other annotators’ tricks are116

valid. The final dataset has more than 40,000 sen-117

tences and is the result of four iterations. (Vidgen118

et al., 2021) We use the train split for training.119

For evaluating the performance of the models,120

we select the following four datasets: 1) OpenAI121

dataset4 consists of text samples which OpenAI122

annotated according to their taxonomy. It contains123

3https://transparency.fb.com/policies/community-
standards/hate-speech/

4https://github.com/openai/moderation-api-release

1,680 sentences sourced from CommonCrawl or 124

generated by OpenAI GPT model. They are la- 125

beled as hate, sexual, violence, self-harm, or None 126

of the Above. We incorporate entire sentences in 127

our experiment. Specifically, sentences labeled as 128

‘hate’ are categorized as ‘hate speech’, while those 129

labeled under other categories are reclassified as 130

‘non-hate speech.’ 2) ETHOS collected their data 131

from YouTube and Reddit comments, annotated 132

by people from a crowdsourcing platform. (Mol- 133

las et al., 2022) 3) HateCheck is a comprehensive 134

suite of functional tests designed for evaluating 135

hate speech detection models. It consists of 3,728 136

generated test sentences covering 18 distinct attack 137

types and 11 non-attack types. It covers seven pro- 138

tected groups. Each sentence is generated with an 139

attack template and an identity, and validated by 140

crowd workers. (Röttger et al., 2021) 4) Tweet- 141

Eval is explained above, we use the test split for 142

evaluation. 143

4 Method and Models 144

4.1 LLM-based Hate Speech Annotation 145

We execute hate speech annotation using an LLM, 146

specifically OpenAI ChatGPT5, with a carefully 147

designed prompt. We employ a few-shot schema to 148

maximize the performance of the annotations. The 149

prompt consists of an instruction part and an exam- 150

ple part. The instruction of the prompt primarily 151

follows the guideline outlined by the aforemen- 152

tioned hate speech definition. Following Chain-of- 153

Thought(Wei et al., 2022), the examples are con- 154

structed step-by-step. First, the prompt states if 155

the sentence includes any direct attack or not, and 156

points out the words if any. Then, it states whether 157

the attack is based on protected characteristics, and 158

points out the words if any. Finally, it answers if 159

the sentence is hate speech or not. The complete 160

prompt is in Appendix 9. We observe that the Chat- 161

GPT follows our prompt as provided. Note that all 162

the LLM and human annotations are finished be- 163

fore the experiment and the prompt is not optimized 164

for improving the experiment result. Regarding the 165

ChatGPT model, we use “gpt-3.5-turbo” with a 166

zero temperature for deterministic results. 167

4.2 Human Annotation 168

We observe that there are many mislabeled cases 169

even in the test sets as shown in Table 6 and 7. 170

For a more accurate evaluation, test sets need to be 171

5https://platform.openai.com/
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Training Set Original Test Set
ETHOS HateCheck OpenAI TweetEval

Davidson Original 0.515 0.660 0.430 0.439
Relabeled (Ours) 0.743 0.825 0.599 0.520

TweetEval Original 0.653 0.707 0.452 0.630
Relabeled (Ours) 0.722 0.820 0.596 0.567

Stormfront Original 0.676 0.760 0.589 0.526
Relabeled (Ours) 0.752 0.799 0.602 0.534

DynaHate Original 0.763 0.959 0.519 0.630
Relabeled (Ours) 0.793 0.918 0.560 0.518

HateXplain Original 0.528 0.520 0.452 0.444
Relabeled (Ours) 0.773 0.844 0.672 0.514

Table 1: F1 score comparison of models trained on 5 training datasets over 4 test sets with their original labels. A
higher F1 score is preferred.

cleaned as well. Since LLM annotation may con-172

tain errors and applying the same cleaning method173

which we applied to training sets to test sets is not174

fair, we employed 10 workers to label the disagreed175

data before replacing the original labels with LLM-176

annotated labels.177

The people we employed are not crowd workers.178

They have expertise in data annotation and are flu-179

ent English speakers. An orientation session was180

held, which includes explaining the standard opera-181

tion procedure (SOP), showing examples which has182

ambiguity between the concepts of “offensive lan-183

guage but not hate speech” and “hate speech”. Ad-184

ditionally, multiple Q&A sessions were conducted.185

4.3 Hate Speech Detection186

To evaluate the impact of replacing original labels187

with LLM-annotated labels on model performance,188

we establish a baseline model using the widely189

recognized RoBERTa-base as a strong foundation190

(Zhuang et al., 2021). Since our objective is to in-191

vestigate whether the utilization of LLM-annotated192

labels would yield comparable results to those ob-193

tained from original labels, the model architecture194

remains fixed throughout all the experiments.195

We utilize SimpleTransformer6, a framework196

based on Transformers library (Wolf et al., 2020).197

We set most of the hyperparameters to the default198

values of the SimpleTransformer framework. How-199

ever, we made several modifications to a select few200

hyperparameters based on prior knowledge. For201

the learning rate, we set it to 1e− 05. Considering202

the majority of sentences were relatively short, we203

set the maximum sequence length to 64. To opti-204

mize training efficiency, we employed a batch size205

6https://simpletransformers.ai/

of 128. For the largest dataset, DynaHate(Vidgen 206

et al., 2021), we conducted training for 5 epochs, 207

and for other relatively smaller datasets, we trained 208

the models for 10 epochs. 209

5 Experiment 210

We train models with 5 training datasets and eval- 211

uate the trained models against 4 test sets. Each 212

training set and test set has two types of labels: 213

original labels and new labels. We measure the per- 214

formance of hate speech detection models with the 215

F1 score, which is the harmonic mean of precision 216

and recall. 217

First, in order to analyze the impact of LLM- 218

annotated labels, only the labels of the training 219

sets are replaced with the new labels while keep- 220

ing the test labels intact. The experimental results 221

are shown in Table 1. It shows that the perfor- 222

mance significantly improves in the majority of 223

cases, specifically 17 out of 20 cases, by substitut- 224

ing the original labels with LLM-annotated labels. 225

As mentioned in 4.2, we observe a considerable 226

amount of mislabelled data even in the test sets. We 227

conduct a similar experiment to the one conducted 228

above using the new test set labels. Table 2 shows 229

larger improvements and the relabeled training set 230

wins all the cases except only one case. It is impor- 231

tant to note that the definition of hate speech used in 232

our study is our own, so rather than claiming objec- 233

tive improvement, we suggest that, at the very least, 234

LLM-relabeling can notably enhance performance 235

when aligned with one’s own definition. 236

To dig deeper into the only one losing case, 237

trained with DynaHate and tested with HateCheck, 238

DynaHate consists of sentences generated by hu- 239

man annotators, and the human annotators are 240
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Training Set Relabeled Test Set
ETHOS HateCheck OpenAI TweetEval

Davidson Original 0.533 0.663 0.440 0.589
Relabeled (Ours) 0.772 0.823 0.635 0.646

TweetEval Original 0.647 0.699 0.433 0.410
Relabeled (Ours) 0.746 0.812 0.619 0.700

Stormfront Original 0.689 0.756 0.599 0.558
Relabeled (Ours) 0.779 0.796 0.642 0.564

DynaHate Original 0.786 0.951 0.513 0.495
Relabeled (Ours) 0.831 0.913 0.602 0.598

HateXplain Original 0.532 0.518 0.453 0.592
Relabeled (Ours) 0.795 0.843 0.654 0.650

Table 2: F1 score comparison of models trained on 5 training datasets over 4 relabeled test sets. A higher F1 score
is preferred.

given adversarial attack tips which are overlapped241

with attack patterns of HateCheck. This could po-242

tentially explain why the results for DynaHate are243

favorable in the context of HateCheck. Regard-244

ing why the original labels are better than LLM-245

annotated labels, the attack patterns which the hate246

speech detection models are vulnerable to, are ef-247

fective against LLMs as well. For example of "‘A248

HATE SPEECH SENTENCE’ is a hate speech", an249

LLM tends to detect the hate speech inside the sin-250

gle quotation marks and label it as hate speech. Our251

prompt does not contain any adversarial example252

like this for now.253

Figure 1 demonstrates that our baseline models254

achieve comparable performance and our models255

trained with relabeled data achieve better perfor-256

mance to the Perspective API (Lees et al., 2022),257

which is the most popular and acknowledged as258

a robust toxic speech detection model in the field.259

We follow (Markov et al., 2023)’s offensive lan-260

guage taxonomy, and treat the "identity attack" of261

the Perspective API as hate speech. Moderation262

API shows the best performances except for Tweet-263

Eval test set.264

For TweetEval test set, we find a disagreement265

rate of 21.68% as shown in Table 5. As TweetE-266

val focuses on such attacks as gender and immi-267

gration status, there is an ongoing debate about268

whether immigration status should be considered a269

protected characteristic. This might be the reason270

why Perspective API and Moderation API show271

poor performances at TweetEval.272

6 Conclusion273

In this work, we propose a prompt for an LLM to274

detect hate speech and introduce a set of new labels275

Figure 1: F1 score comparison of 4 hate speech detec-
tions.

on 8 previously released hate speech datasets. The 276

prompt is constructed based on a rigorous defini- 277

tion of hate speech, along with carefully curated 278

examples, which effectively improves ChatGPT’s 279

hate speech detection performance. 280

For evaluating the effectiveness of the proposed 281

method, we train a RoBERTa base model with the 282

5 original and updated datasets and evaluated their 283

F1 scores against the 4 original and updated test 284

sets. Our study demonstrates significant improve- 285

ments, with enhancements observed in 17 out of 286

20 cases, resulting in an overall 18% improvement 287

in performance based on the original test set labels. 288

In addition, we compare those scores with those 289

of Perspective API and Moderation API and find 290

that the models trained with the LLM-annotated 291

hate speech labels achieve superior performance to 292

the Perspective API. 293

As noted in Section 7, our proposed method does 294

not encompass all hate speech cases. Future efforts 295

to enhance the prompt (e.g. adding adversarial 296

cases) for more precise hate speech labeling and 297

to train a relevant language model could further 298

improve hate speech detection performance. 299
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7 Limitations300

Definition of Hate Speech While a rigorous def-301

inition of hate speech is proposed, it may not302

cover all possible cases of protected characteris-303

tics (Waughray and Dhanda, 2016). In addition,304

the subcategories of protected characteristics and305

types of attacks may not be valid in the future306

because they will evolve over time sociological,307

geopolitical, historical reasons. Hence it is critical308

to regularly update the definition of hate speech ac-309

cordingly. Another limitation is that all the dataset310

mentioned in this paper is only for English. Fur-311

thermore, a major portion of the training and test312

dataset is related to a particular social background313

in the United States. Therefore, it is not clear that314

the proposed hate speech detection prompt would315

work for non-US English hate speech.316

Language Model For the hate speech detection317

with our proposed prompt, we used OpenAI’s Chat-318

GPT (gpt-3.5-turbo) 2023 May-June. The model319

is trained on a dataset where >96% is in English320

(Ouyang et al., 2022). So, there is a possibility that321

the proposed prompt may not work if an input text322

partially or fully contains a text in other languages323

than English.324

Hate Speech Detection Prompt After the pro-325

posed relabeling was done, we found a small por-326

tion of the false positives if the given text contains327

quoted hate speeches. For example, the LLM with328

the proposed prompt labeled “black people should329

leave the country” is a hate speech as hate speech330

even though the given text is benign. There may be331

more failure cases that our proposed prompt does332

not work.333

Ethics Statement334

Human Annotators While the human annota-335

tors were extensibly trained on the proposed hate336

speech definition and they were asked to label each337

data consistently, they experienced that their fa-338

tigue level increases over time, so their labels may339

not be as strict as those labeled early in the session.340

We didn’t analyze the human labeling error con-341

sistency, but the data may experience inconsistent342

labels.343

In addition, the human labeling is done only on344

such test dataset that have inconsistent labels be-345

tween the original label and the LLM based labels.346

So, both the relabeled training and the test data la-347

bels may experience errors. It should be preferred 348

to go through the whole data set and do the label 349

by human. 350

Accuracy over Human While we demonstrated 351

that the proposed LLM based hate speech detection 352

outperforms general human annotation accuracy, 353

the final decision of the data annotation should 354

be made by human intelligence. The proposed 355

method has to be considered as a tool for improving 356

human annotator’s performance by delegating such 357

detection of obvious cases. 358
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Appendix 619

A Hate Speech Definition 620

While there have been multiple hate speech def- 621

initions (Warner and Hirschberg, 2012; Fortuna 622

and Nunes, 2018), they are yet vague or superficial 623

and they cannot be readily turned into a detailed 624

instruction for hate speech detection to human or 625

AI. Based on an existing hate speech definition 626

(Facebook), we redefine the protected characteris- 627

tics and the attack types that define hate speech in 628

a rigorous and systematic way in Table 3. 629
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Protected Characteristics Attacks

Race Asian, Black, White Violent I want to kill all the group A. Group B de-
serves to be raped. Beat group C if you find
them.

Ethnicity Hispanic/Latino, Native American,
Arab/Middle Eastern

Dehumanizing
speech

A is cockroaches. B is bacteria. Group C are
all thieves.

National ori-
gin

American, British, Chinese Harmful
stereotypes

Blackface, Holocaust denial, Jewish people
control financial, political, or media institu-
tions

Disability Visual impairment, Hearing impairment, Mo-
bility impairment

Statements of
inferiority

Group A is not as smart as group B. Group C
are all stupid. Group D are lazy.

Religious af-
filiation

Christianity, Islam, Judaism Expressions
of contempt

People A should all die. I cannot bear group
B.

Caste Brahmin, Kshatriya, Dalit Expressions
of disgust

Group A are disgusting. I want to vomit when
I see group B.

Gender iden-
tity

How one understands their gender. E.g., Fe-
male, Male, Non-binary

Expressions
of dismissal

I hate group A. I don’t respect group B.

Biological
Gender

How one’s gender is biologically understood.
E.g., Female, Male, Intersex

Cursing Group A are all bitches. Group B are all cunts.

Sexual orien-
tation

Heterosexual, Homosexual, Bisexual Calls for ex-
clusion or seg-
regation

Group A must be out of this country, Group B
must not vote. Group C doesn’t deserve this
benefit.

Serious
disease

Cancer, Heart disease, HIV/AIDS

Table 3: The protected characteristics and the attack types of hate speech

Model ETHOS-{gender, race}

Original Prompt + GPT3 0.724
Original Prompt + ChatGPT 0.921

Our Prompt + ChatGPT 0.936

Table 4: Original prompt vs new prompt. F1 score evaluation, the higher the better.

Training set Davidson TweetEval Stormfront DynaHate HateXplain

Total 24783 9000 10944 32497 20148
GPT-Disagree 3015 (12.17%) 2557 (28.41%) 1503 (13.73%) 5033 (15.49%) 6522 (32.37%)

Test set Ethos HateCheck OpenAI TweetEval

Total 124 299 144 892
GPT-Disagree 69 (6.91%) 48 (1.29%) 49 (2.92%) 644 (21.68%)

Table 5: Difference between Original label and ChatGPT label
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B Mislabeled Data Example630

One of the motivations for this paper is that there631

are substantial amount of incorrect labels in the632

existing hate speech datasets. Through our exper-633

iments, we found that there is an 18% disagree-634

ment rate between the original labels and LLM-635

annotated labels among the total labels across the636

8 datasets. 6.7% are false positives and 11.4% are637

false negatives. See the false positive examples in638

Table 6 and the false negative examples in Table 7.639

In addition, we also reviewed the relabeled re-640

sults from our proposed method and found several641

failure cases. See Table 8 for examples. They642

are mostly such sentences that have obvious hate643

speech with negative claims.644

C Hate Speech Detection Prompt645

The proposed prompt for ChatGPT is designed to646

provide a few examples and a very detailed instruc-647

tions following the hate speech categories proposed648

in Table 3. The prompt we use in this work is pro-649

vided in Table 9.650

D Prompt Engineering651

For analyzing the quality of our prompt, we com-652

pared it with the previous work (Chiu et al., 2021)653

on ETHOS dataset. We followed their experimen-654

tal setting. Davinci model is used for this evalu-655

ation. However, Davinci model is known to per-656

form worse than the latest models (Ouyang et al.,657

2022), so we run their prompt which is available658

public7 with the latest model which is the same as659

the model we used. It is worth noting that their660

prompt is focusing on gender and race while our661

prompt is for a general hate speech detector. Ta-662

ble 4 shows ChatGPT with our prompt outperform663

the previous work by a large margin and wins the664

specific purpose prompt.665

E Human Annotator Details666

Our annotator team consists of ten full-time profes-667

sionals employed at an AI data collection company.668

Their roles have endowed them with extensive ex-669

perience in data labeling, ensuring accurate and670

consistent annotations. Importantly, all annotators671

are fully aware of how the collected data will be672

utilized.673

7https://github.com/kelichiu/GPT3-hate-speech-
detection/

Before commencing the annotation task, all an- 674

notators received comprehensive guidance on hate 675

speech, attended author-led lectures, and engaged 676

in three question-and-answer sessions. This rig- 677

orous training equipped them with a deep under- 678

standing of the intricacies and challenges related 679

to hate speech annotation. Additionally, a practice 680

labeling session was conducted to address potential 681

areas of confusion and ensure task clarity. 682

Half of our annotators (5 out of 10) have lived 683

in English-speaking countries such as the United 684

States, New Zealand, Scotland, and Malaysia for 685

more than two years. This firsthand experience en- 686

hances their grasp of English hate speech subtleties. 687

The remaining five annotators also possess strong 688

English language skills. 689

Our annotator team exhibits gender diversity, 690

comprising six females and four males. This diver- 691

sity enriches the labeling process by incorporating 692

a variety of perspectives. 693

F Computational Cost 694

The computational resources utilized for this re- 695

search were two NVIDIA GeForce GTX 3090 696

GPUs. Notably, because we only conduct fine- 697

tuning pre-trained RoBERTa model, our approach 698

took significantly less computational cost com- 699

pared to training models from scratch. The effi- 700

ciency of our GPU setup allowed us to complete 701

each fine-tuning experiment in less than one hour. 702

9



Dataset Text O P M C H

HateCheck

“You are just a bitch to me.” T 0.104 0.985 F F
“You are nothing but a whore.” T 0.161 0.999 F F
“I really am just going to murdr that woman.” T 0.446 0.999 F F
“You are just a queer to me.” T 0.450 0.999 F F

TweetEval

“Whoever just unfollowed me you a bitch” T 0.216 0.006 F F
“I promise i don’t miss you bitch shut ur whore mouth tysm” T 0.275 0.007 F F
“Fuck being mad at a wack ass bitch! You know how these hoes be....” T 0.368 0.615 F F
“how bout you mind your fucking business bitch. be moral....silently. hoe.” T 0.271 0.006 F F

OpenAI

“<Person> - a short nice video of our #aryan #hero : #courage #genius #integrity
#honor”

T 0.007 0.000 F F

“why the fuck did twitter move the new tweet box to above the feed lol it looks fucking
retarded”

T 0.227 0.064 F F

“And in most cases, the thought alone is as bad as the transgression – looking at your
neighbor’s wife is just as bad as actually sleeping with her! Social <Organization>
Warriors believe that one must constantly "check one’s privilege" and subject
every potentially offensive thought or action to a rigorous self-examination – using
offensive language and mansplaining are just as bad as rape! Both Conservative
Christians and Social Justice Warriors are humorless, moralizing scolds who
declare all people fallen, imperfect, and misguided, and only through bowing to
their demands can anyone be saved.”

T 0.214 0.087 F F

“Related Story: How religious sects and cults within Jewish-christian culture use
internet hoaxes, black operations, and internet switch black bag jobs to create the
appearance of a need for their version of God to watch over all of us sheeple as
we web surf; or, <Organization> meets the lesbian Sex Wars of the 1980’s in the
Pulpit of Police-statism.”

T 0.382 0.110 F F

ETHOS

“Watching this kid trying to step up and walk with that crutches is the best thing in
the world. So idiot”

T 0.026 0.054 F F

“What about to shove your crutch to your ass” T 0.078 0.000 F F
“Wish you cut your veins. Don’t shout out you have mental problems. Act. Cut them” T 0.144 0.001 F F
“She then suggests that the men who commented on her video should be killed.” T 0.202 0.005 F F

Table 6: False positive examples in the datasets. {O, P, M, C, H} refers to {Original, Perspective API score,
Moderation API score, ChatGPT with the proposed prompt, Human}
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Dataset Text O P M C H

TweetEval
“@user Brazil is a shthole. This is the same place where they beheaded a referee
during a soccer game, then proceeded to cut his body to pieces. IN THE STADIUM.
This is a normal occurrence in Brazil, yet the Left says if we don’t have open
borders then we’re "racist." #BuildThatWall”

F 0.489 0.917 T T

“Nigga you look like slavery in the flesh oh Plymouth Rock landed on you bitch ass
nigga”

F 0.818 0.784 T T

“@user The killed boy was a Cuban boy protecting a German girl from being raped
by a rapefugee. But those honoring him with demonstrations are called extreme-
right. So be it.”

F 0.448 0.183 T T

OpenAI
“well , we all hope but it just doesnt work. I’m a man and I completely agree that
some men are assholes and should be cemented with iron rods under the foundation
of new yorks buildings! Yes someone has to be ready to”

F 0.460 0.989 T T

“Masks aren’t for protecting you, it’s for protecting others when you’re sick. I don’t
know why I feel so strongly about this, but people who are anti science in any way
deserve to be brutally executed. I don’t know why it gets me like this, but people
who are anti science, mostly dumbfuck republicans, truly do deserve to be tortured
before execution. It’s not even about the masks at this point. Just any scientific
topic in general. Please stop bitching about basic science just because you’re
idealogically motivated to lie.”

F 0.316 0.785 T T

“Thanks to unrestricted immigration from hostile cultures that put females on a
par with domestic cattle, public swimming pools in many ’culturally enriched’
neighbourhoods have become unsafe for European women and children.
Sex attacks by immigrants and youths of mainly Middle Eastern and North African
origin (often operating in gangs) are reported with increasing frequency in Austria,
Germany, Holland and other countries of Western Europe.
Austria
An Iraqi ’refugee’ brutally raped a 10-year-old boy in a toilet cubicle at a Vienna
pool and later explained it was due to ’sexual emergency’, because he hadn’t had
sex in four”

F 0.46 0.790 T T

ETHOS
“Anyone who can’ cope as the gender they are born needs SERIOUS psychological
therapy!!!”

F 0.280 0.186 T T

“seen the way the israelis treat the palestinians? slaughter on a weekly basis, very
racist are the israelis to the point of genocide.”

F 0.569 0.979 T T

Table 7: False negative examples in the datasets. {O, P, M, C, H} refers to {Original, Perspective API score,
Moderation API score, ChatGPT with the proposed prompt, Human}. Since the HateCheck dataset is generated by
a language model, there is no false negative cases found.

Text O P M C
“I remember when I was applying to college I got rejected by my dream school, went
on an internet board that was made for people who got accepted to post their
admission stats, and was filled with anger and sadness when I saw dozens of posts
in which their statistics were significantly worse than mine, but they all said they
were black.”

F 0.460 0.002 T

“My sentiments exactly.Deport New Yorkers.#SendThemBack” F 0.446 0.377 T
“What mail order bride website are you selling yourself on? I’m just buy you and
you can live in Canada”

F 0.012 0.002 T

“fuck bulgaria stupid country” T 0.847 0.935 F
“Christians can get crazy religious and I get so f u c k i n g annoyed” T 0.645 0.953 F

Table 8: Failure cases of the ChatGPT with our proposed prompt.
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Example Prompt for detecting hate speech
Given a sentence, classify if it is a hate speech or not.
## Hate speech is a direct attack against people on the basis of what we call protected characteristics.

## Protected characteristics categories and examples.
- Race: e.g. Asian, Black, White, Indigenous, Hispanic, Latino, Mixed Race and etc
- Ethnicity: e.g. Han Chinese, Arabs, Maasai, Indigenous Australians, Native Americans, Roma (Gypsies), Zulu, Punjabi and etc
- National origin: e.g. American, British, Chinese, Indian, Korean and etc
- Disability: e.g. Visual impairment, Hearing impairment, Mobility impairment, Intellectual Disability, Autism Spectrum Disorder, Mental Health Conditions,
Learning disability and etc
- Religious affiliation: e.g. Christianity, Islam, Judaism, Hinduism, Buddhism, Sikhism and etc
- Caste: e.g. Brahmin, Kshatriya, Vaishyas, Shudras, Dalit
- Gender: e.g., Man, Woman, Non-binary, Transgender, Genderqueer, Genderfluid and etc
- Sex: e.g., Female, Male, Intersex
- Sexual orientation: e.g. Heterosexual, Homosexual, Bisexual and etc
- Serious disease: e.g. Cancer, Heart disease, HIV/AIDS, Covid-19 and etc
## Categories and examples of direct attack.
- Violent: e.g. I want to kill all the group A. Group B deserves being raped. Beat group C if you find them.
- Dehumanizing speech: e.g. A is cockroaches. B is bacteria. Group C are all thieves.
- Harmful stereotypes: e.g. Blackface, Holocaust denial, Jewish people control financial, political, or media institutions
- Statements of inferiority: e.g. Group A is not as smart as group B. Group C are all stupid. Group D are lazy. E is worthless. F has no value.
- Expressions of contempt: e.g. People A should all die. I cannot bear group B.
- Expressions of disgust: e.g. Group A are disgusting. I want to vomit when I see group B.
- Expressions of dismissal: e.g. I hate group A. I don’t respect group B.
- Cursing: e.g. Group A are all bitches. Group B are all cunts.
- Calls for exclusion or segregation: e.g. Group A must be out of this country, Group B must not vote. Group C doesn’t deserve this benefit.

Sentence: I want to rape and kill her.
Answer: It includes explicit threats of Violence ("rape and kill"). Thus it is a direct attack. But the attack is not based on any protected characteristics. So this is not a
hate speech and the answer is false.

Sentence: He’s a real son of bitch. He should go kill himself.
Answer: It includes a Cursing ("son of a bitch") and Violence ("go kill himself"). Thus it is a direct attack. But the attack is not based on any protected characteristics.
So this is not a hate speech and the answer is false.

Sentence: @user is a bitch, is a whore, deserves to be left out.
Answer: It includes Cursing ("She is a bitch", "whore") and Calls for exclusion ("deserves to be left out"). Thus it is a direct attack. But the attack is not based on any
protected characteristics. So this is not a hate speech and the answer is false.

Sentence: The term "nigga" is a variation of the racial slur "nigger," which has been historically used to demean and dehumanize Black individuals. Over time, some
individuals within the Black community have reclaimed and reappropriated the term, using it as a term of camaraderie, familiarity, or endearment among themselves.
Answer: It includes derogatory language ("nigga" and "nigger"). But it explains the terms and not offending anybody. Thus it is not a direct attack. So this is not a
hate speech and the answer is false.

Sentence: I want to kill all the Muslims
Answer: It includes threat of violence ("kill"). Thus it is a direct attack. And the attack is based on religious affiliation ("muslims") which is one of the protected
characteristics. So this is a hate speech and the answer is true.

Sentence: I think men are all devils. At least they are thieves.
Answer: It includes Dehumanizing speech ("men are all devils", "they are thieves"). Thus it is a direct attack. And the attack is based on Gender ("men") which is one
of the protected characteristics. So this is a hate speech and the answer is true.

Sentence: I can’t stand gay people.
Answer: It includes Expressions of contempt ("I can’t stand"). Thus it is a direct attack. And the attack is based on Sexual orientation ("gay") which is one of the
protected characteristics. So this is a hate speech and the answer is true.

Sentence: Dalits are disgusting.
Answer: It includes Expressions of disgust ("disgusting"). Thus it is a direct attack. And the attack is based on Caste ("Dalits") which is one of the protected
characteristics. So this is a hate speech and the answer is true.

Sentence: I hate Chinese people.
Answer: It includes Expressions of disgust ("I hate"). Thus it is a direct attack. And the attack is based on National origin ("Chinese") which is one of the protected
characteristics. So this is a hate speech and the answer is true.

Sentence: People with ADHD must not vote, really.
Answer: It includes Calls for segregation ("must not vote"). Thus it is a direct attack. And the attack is based on Disability ("ADHD") which is one of the protected
characteristics. So this is a hate speech and the answer is true.

Sentence: I think People with HIV/AIDS are just like flies because they spread the disease with fucking.
Answer: It includes Dehumanizing speech ("are just like flies"). Thus it is a direct attack. And the attack is based on Serious Disease ("HIV/AIDS") which is one of
the protected characteristics. So this is a hate speech and the answer is true.

Sentence: Jewish people control financial, political, or media institutions
Answer: It includes Harmful stereotypes ("Jewish people control financial, political, or media institutions"). Thus it is a direct attack. And the attack is based on
Ethnicity ("Jewish people") which is one of the protected characteristics. So this is a hate speech and the answer is true.
Sentence:

Table 9: ChatGPT prompt for detecting hate speech.
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