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Abstract
The ability to predict future outcomes given con-
trol actions is fundamental for physical reasoning.
However, such predictive models, often called
world models, remain challenging to learn and
are typically developed for task-specific solutions
with online policy learning. To unlock world mod-
els’ true potential, we argue that they should 1)
be trainable on offline, pre-collected trajectories,
2) support test-time behavior optimization, and
3) facilitate task-agnostic reasoning. To this end,
we present DINO World Model (DINO-WM), a
new method to model visual dynamics without
reconstructing the visual world. DINO-WM lever-
ages spatial patch features pre-trained with DI-
NOv2, enabling it to learn from offline behavioral
trajectories by predicting future patch features.
This allows DINO-WM to achieve observational
goals through action sequence optimization, fa-
cilitating task-agnostic planning by treating goal
features as prediction targets. We demonstrate
that DINO-WM achieves zero-shot behavioral so-
lutions at test time on six environments without
expert demonstrations, reward modeling, or pre-
learned inverse models, outperforming prior state-
of-the-art work across diverse task families such
as arbitrarily configured mazes, push manipula-
tion with varied object shapes, and multi-particle
scenarios.

1. Introduction
Robotics and embodied AI have seen tremendous progress
in recent years. Advances in imitation learning and rein-
forcement learning have enabled agents to learn complex
behaviors across diverse tasks (Agarwal et al., 2022; Zhao
et al., 2023; Lee et al., 2024; Ma et al., 2024; Hafner et al.,
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2024; Hansen et al., 2024; Haldar et al., 2024; Jia et al.,
2024). Despite this progress, generalization remains a ma-
jor challenge (Zhou et al., 2023). Existing approaches pre-
dominantly rely on policies that, once trained, operate in
a feed-forward manner during deployment—mapping ob-
servations to actions without any further optimization or
reasoning. Under this framework, successful generalization
inherently requires agents to possess solutions to all possi-
ble tasks and scenarios once training is complete, which is
only possible if the agent has seen similar scenarios during
training (Reed et al., 2022; Brohan et al., 2023b;a; Etukuru
et al., 2024). However, it is neither feasible nor efficient to
learn solutions for all potential tasks and environments in
advance.

Instead of learning the solutions to all possible tasks dur-
ing training, an alternative is to fit a dynamics model on
training data and optimize task-specific behavior at runtime.
These dynamics models, also called world models (Ha &
Schmidhuber, 2018), have a long history in robotics and
control (Sutton, 1991; Todorov & Li, 2005; Williams et al.,
2017). More recently, several works have shown that world
models can be trained on raw sensory data (Hafner et al.,
2019; Micheli et al., 2023; Robine et al., 2023; Hansen
et al., 2024; Hafner et al., 2024). This enables flexible use
of model-based optimization to obtain policies as it circum-
vents the need for explicit state-estimation. Despite this,
significant challenges remain in its use for solving general-
purpose tasks.

To understand the challenges in world modeling, let us con-
sider the two broad paradigms in learning world models:
online and offline. In the online setting, access to the envi-
ronment is often required so data can be continuously col-
lected to improve the world model, which in turn improves
the policy and the subsequent data collection. However,
the online world model is only accurate in the cover of the
policy that was being optimized. Hence, while it can be
used to train powerful task-specific policies, it requires re-
training for every new task even in the same environment.
Instead, in the offline setting, the world model is trained
on an offline dataset of collected trajectories in the environ-
ment, which removes its dependence on the task specificity
given sufficient coverage in the dataset. However, when
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required to solve a task, methods in this domain require
strong auxiliary information which can take the form of ex-
pert demonstrations (Pathak et al., 2018; Wang et al., 2023),
structured keypoints (Ko et al., 2023; Wen et al., 2024), ac-
cess to pretrained inverse models (Du et al., 2023; Ko et al.,
2023) or dense reward functions (Ding et al., 2024), all of
which reduce the generality of using offline world models.
The central question in building better offline world models
is if there is alternate auxiliary information that does not
compromise its generality?

In this work, we present DINO-WM, a new and simple
method to build task-agnostic world models from an offline
dataset of trajectories (Figure 1). DINO-WM models the
world dynamics on compact embeddings of the world, rather
than the raw observations themselves. For the embedding,
we use pretrained patch-features from the DINOv2 model,
which provides both a spatial and object-centric representa-
tion prior. We conjecture that this pretrained representation
enables robust and consistent world modeling, which re-
laxes the necessity for task-specific data coverage. Given
these visual embeddings and actions, DINO-WM uses the
ViT architecture to predict future embeddings. Once this
model is trained on the offline dataset, planning to solve
tasks is constructed as visual goal reaching, i.e. to reach a
future desired goal given the current observation. Since the
predictions by DINO-WM are high quality (see Figure 4),
we can simply use model predictive control with inference-
time optimization to reach desired goals without any extra
information during testing.

DINO-WM is experimentally evaluated on six environ-
ment suites spanning maze navigation, sliding manipulation,
robotic arm control, and deformable object manipulation
tasks. Our experiments reveal the following findings:

• DINO-WM produces high-quality future world modeling
that can be measured by improved visual reconstruction
from trained decoders. On LPIPS metrics for our hardest
tasks, this improves upon prior state-of-the-art work by
56% (See Section 4.7).

• Given the latent world models trained using DINO-WM,
we show high success for reaching arbitrary goals on
our hardest tasks, improving upon prior work by 45% on
average (See Section 4.3).

• DINO-WM can be trained across environment variations
within a task family (e.g. different maze layouts for nav-
igation or different object shapes for manipulation) and
achieve higher rates of success compared to prior work
(See Section 4.5).

Code and models for DINO-WM are open-sourced to
ensure reproducibility and videos of planning are made

available on our project website: https://dino-wm.
github.io/.

2. Related Work
We build on top of several works in developing world mod-
els, optimizing behaviors from them, and leveraging com-
pact visual representations. For conciseness, we only dis-
cuss the ones most relevant to DINO-WM.

Model-based Learning: Learning from models of dynam-
ics has a rich literature spanning the fields of control, plan-
ning, and robotics (Sutton, 1991; Todorov & Li, 2005; As-
tolfi et al., 2008; Holkar & Waghmare, 2010; Williams et al.,
2017). Recent works have shown that modeling dynam-
ics and predicting future states can significantly enhance
vision-based learning for embodied agents across various ap-
plications, including online reinforcement learning (Micheli
et al., 2023; Robine et al., 2023; Hansen et al., 2024; Hafner
et al., 2024), exploration (Sekar et al., 2020; Mendonca
et al., 2021; 2023a), planning (Watter et al., 2015) (Finn
& Levine, 2017; Ebert et al., 2018; Hafner et al., 2019),
and imitation learning (Pathak et al., 2018). Several of
these approaches initially focused on state-space dynamics
(Deisenroth & Rasmussen, 2011; Lenz et al., 2015; Chua
et al., 2018; Nagabandi et al., 2019), and have since been
extended to handle image-based inputs, which we address in
this work. These world models can predict future states in
either pixel space (Finn & Levine, 2017; Ebert et al., 2018;
Ko et al., 2023; Du et al., 2023) or latent representation
space (Yan et al., 2021). Predicting in pixel space, however,
is computationally expensive due to the need for image re-
construction and the overhead of using diffusion models
(Ko et al., 2023). On the other hand, latent-space prediction
is typically tied to image reconstruction objectives (Hafner
et al., 2019; Micheli et al., 2023; Hafner et al., 2024), which
raises concerns about whether the learned features contain
sufficient information about the task. Moreover, many of
these models incorporate reward prediction (Micheli et al.,
2023; Robine et al., 2023; Hafner et al., 2024), or use reward
prediction as an auxiliary objective to learn the latent repre-
sentation (Hansen et al., 2022; 2024), inherently making the
world model task-specific. In this work, we aim to decou-
ple task-dependent information from latent-space prediction,
striving to develop a versatile and task-agnostic world model
capable of generalizing across different scenarios.

Generative Models as World Models: With the recent
excitement of large scale foundation models, there have
been initiatives on building large-scale video generation
world models conditioned on agent’s actions in the do-
main of self-driving (Hu et al., 2023), control (Yang et al.,
2023; Bruce et al., 2024), and general-purpose video gen-
eration (Liu et al., 2024). These models aim to generate
video predictions conditioned on text or high-level action

2

https://dino-wm.github.io/
https://dino-wm.github.io/


DINO-WM: World Models on Pre-trained Visual Features enable Zero-shot Planning

Figure 1. We present DINO-WM, a method for training visual models by using pretrained DINOv2 embeddings of image frames (a).
Once trained, given a target observation oT , we can directly optimize agent behavior by planning through DINO-WM using model
predictive control (b). The use of pretrained embeddings significantly improves performance over prior state-of-the-art world models (c).

sequences. While these models have demonstrated utility in
downstream tasks like data augmentations, their reliance on
language conditioning limits their application when precise
visually indicative goals need to be reached. Additionally,
the use of diffusion models for video generation makes them
computationally expensive, further restricting their applica-
bility for test-time optimization techniques such as MPC.
In this work, we aim to build a world model in latent space
instead of raw pixel space, enabling more precise planning
and control.

Pretrained Visual Representations: Significant advance-
ments have been made in the field of visual representa-
tion learning, where compact features that capture spatial
and semantic information can be readily used for down-
stream tasks. Pre-trained models like ImageNet pre-trained
ResNet (He et al., 2016), I-JEPA (Assran et al., 2023), and
DINO (Caron et al., 2021; Oquab et al., 2024) for images,
as well as V-JEPA (Bardes et al., 2024) for videos, and R3M
(Nair et al., 2022), MVP (Xiao et al., 2022) for robotics have
allowed fast adaptation to downstream tasks as they contain
rich spatial and semantic information. While many of these
models represent images using a single global feature, the
introduction of Vision Transformers (ViTs) (Dosovitskiy
et al., 2021) has enabled the use of pre-trained patch fea-
tures, as demonstrated by DINO (Caron et al., 2021; Oquab
et al., 2024). DINO employs a self-distillation loss that
allows the model to learn representations effectively, captur-
ing semantic layouts and improving spatial understanding
within images. In this work, we leverage DINOv2’s patch
embeddings to train our world model, and demonstrate that
it serves as a versatile encoder capable of handling various
precise tasks.

3. DINO World Models
Overview and Problem Formulation: Our work follows
the vision-based control task framework, which models
the environment as a partially observable Markov deci-
sion process (POMDP). The POMDP is defined by the tu-
ple (O,A, p), where O represents the observation space,
and A denotes the action space. The dynamics of the
environment are modeled by the transition distribution
p(ot+1 | o≤t, a≤t), which predicts future observations
based on past actions and observations.

In this work, we aim to learn task-agnostic world models
from precollected offline datasets, and use these world mod-
els to perform visual reasoning and control at test time. At
test time, our system starts from an arbitrary environment
state and is provided with a goal observation in the form of
an RGB image, in line with prior works (Ebert et al., 2018;
Wu et al., 2020; Mendonca et al., 2023b), and is asked to
perform a sequence of actions a0, ..., aT to reach the goal
state. This approach differs from the world models used in
online reinforcement learning (RL) where the objective is to
optimize the rewards for a fixed set of tasks at hand (Hafner
et al., 2024; Hansen et al., 2024), or from text-conditioned
world models, where the goals are specified through text
prompts (Du et al., 2023; Ko et al., 2023).

3.1. DINO-based World Models (DINO-WM)

We model the dynamics of the environment in the latent
space. More specifically, at each time step t, our world
model consists of the following components:

Observation model: zt ∼ encθ(zt | ot)
Transition model: zt+1 ∼ pθ(zt+1 | zt−H:t, at−H:t)

Decoder model: ôt ∼ qθ(ot | zt)
(optional for visualization)
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Figure 2. Architecture of DINO-WM. Given observations ot−k:t, we optimize the sequence of actions at:T−1 to minimize the predicted
loss to the desired goal og . All forward computation is done in the latent space z. Here pθ indicates DINO-WM’s dynamics model,
which is used for making future predictions.

where the observation model encodes image observations to
latent states zt, and the transition model takes in a history of
past latent states of length H . The decoder model takes in
a latent zt, and reconstructs the image observation ot. We
use θ to denote the parameters of these models. Note that
our decoder is entirely optional, as the training objectives
for the decoder are independent for training the rest part of
the world model. This eliminates the need to reconstruct
images both during training and testing, which reduces com-
putational costs compared to otherwise coupling together
the training of the observational model and the decoder, as
in (Micheli et al., 2023; Hafner et al., 2024). We ablate and
show the effectiveness of this choice in Appendix A.4.2.

DINO-WM models only the information available from
offline trajectory data in an environment, in contrast to re-
cent online RL world models that also require task-relevant
information, such as rewards (Hafner et al., 2020; Hansen
et al., 2022; 2024), discount factors (Hafner et al., 2022;
Robine et al., 2023), and termination conditions (Micheli
et al., 2023; Hafner et al., 2024).

3.1.1. OBSERVATION MODEL

To learn a generic world model across many environments
and the real world, we argue that the observation model
should 1) be task and environment independent, and 2)
capture rich spatial information for navigation and manip-
ulation. Contrary to previous work where the observation
model is always learned for the task at hand (Hafner et al.,
2024), we argue instead that it can be inefficient and often
not possible to learn a good observation model from scratch
when facing a new environment, as perception is a general
task that benefits from large-scale internet data. Therefore,
we use the pre-trained DINOv2 model as our world model’s
observation model, leveraging its strong spatial understand-
ing for tasks like object detection, semantic segmentation,
and depth estimation (Oquab et al., 2024). The observa-
tion model remains frozen during training and testing. At

each time step t, it encodes an image ot to patch embed-
dings zt ∈ RN×E , where N denotes the number of patches,
and E denotes the embedding dimension. This process is
visualized in Figure 2.

3.1.2. TRANSITION MODEL

We adopt the ViT architecture (Dosovitskiy et al., 2021)
for the transition model due to its suitability for processing
patch features. We remove the tokenization layer, as it
operates on patch embeddings, effectively transforming it
into a decoder-only transformer. We further make a few
modifications to the architecture to allow for additional
conditioning on proprioception and controller actions.

Our transition model takes in a history of past latent states
zt−H:t−1 and actions at−H:t−1, where H is a hyperparam-
eter denoting the context length of the model, and predicts
the latent state at next time step zt. To properly capture
the temporal dependencies, where the world state at time t
should only depend on previous observations and actions,
we implement a causal attention mechanism in the ViT
model, enabling the model to predict latents autoregres-
sively at a frame level. Specifically, each patch vector zit
for the latent state zt attends to {zit−H:t−1}Ni=1. This is
different from past work IRIS (Micheli et al., 2023) which
similarly represents each observation as a sequence of vec-
tors, but autoregressively predict zit at a token level, attend-
ing to {zit−H:t−1}Ni=1 as well as {zit}<k

i=1. We argue that
predicting at a frame level and treating patch vectors of
one observation as a whole better captures global structure
and temporal dynamics, modeling dependencies across the
entire observation rather than isolated tokens, leading to
improved temporal generalization. The effectiveness of this
attention mask has been shown in our ablation experiments
in Appendix A.4.1

To model the effect of the agent’s action to the environ-
ment, we condition the world model’s predictions on these
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actions. Specifically, we concatenate the K-dimensional ac-
tion vector, mapped from the original action representation
using a multi-layer perceptron (MLP), to each patch vector
zit for i = 1, . . . , N . When proprioceptive information is
available, we incorporate it similarly by concatenating it to
the observation latents, thereby integrating it into the latent
states.

We train the world model with teacher forcing. During
training, we slice the trajectories into segments of length
H +1, and compute a latent consistency loss on each of the
H predicted frames. For each frame, we compute

Lpred = ∥pθ (encθ(ot−H:t), ϕ(at−H:t))− encθ (ot+1)∥2
(1)

where ϕ is the action encoder model that can map actions
to higher dimensions. Note that our world model training
is entirely performed in latent space, without the need to
reconstruct the original pixel images.

3.1.3. DECODER FOR INTERPRETABILITY

To aid in visualization and interpretability, we use a stack
of transposed convolution layers to decode the patch repre-
sentations back to image pixels, similar as in (Razavi et al.,
2019). Given a pre-collected dataset, we optimize the pa-
rameters θ of the decoder qθ with a simple reconstruction
loss defined as:

Lrec = ∥qθ(zt)− ot∥2 , where zt = encθ(ot) (2)

The training of the decoder is entirely independent of the
transition model training, offering several advantages: 1)
The decoder does not affect the world model’s reasoning and
planning capabilities for solving downstream tasks, and 2)
There is no need to reconstruct raw pixel images during plan-
ning, thereby reducing computational costs. Nevertheless,
the decoder remains valuable as it enhances the interpretabil-
ity of the world model’s predictions. While backpropagating
this decoder loss to the predictor is possible, we ablate this
choice and find that it negatively impacts performance com-
pared to omitting the decoder loss. Full details are provided
in Appendix A.4.2.

3.2. Visual Planning with DINO-WM

To evaluate the quality of the world model, we perform tra-
jectory optimization at test time and measure performance.
While the planning methods themselves are fairly standard,
they serve as means to emphasize the quality of the world
models. For this purpose, our world model receives the
current observation o0 and a goal observation og, both rep-
resented as RGB images. We formulate planning as the
process of searching for a sequence of actions that the agent
would take to reach og. We employ model predictive con-
trol (MPC), which facilitates planning by considering the
outcomes of future actions.

We utilize the cross-entropy method (CEM) to optimize the
sequence of actions at each iteration. The planning cost
is defined as the mean squared error (MSE) between the
current latent state and the goal’s latent state, given by

C = ∥ẑT − zg∥2 , where

ẑt = p(ẑt−1, at−1),

ẑ0 = enc(o0),
zg = enc(og).

The MPC framework and CEM optimization procedure are
detailed in Appendix A.5.1. Since our world model is differ-
entiable, a possibly more efficient approach is to optimize
this objective through gradient descent (GD), allowing the
world model to directly guide the agent toward a specific
goal. The details of GD are provided in Appendix A.5.2.
However, we empirically observe that CEM outperforms
GD in our experiments with full results in Appendix A.5.3.
We hypothesize that incorporating regularizations during
training and in the planning objectives could further improve
performance, and leave this for future work.

4. Experiments
Our experiments are designed to address the following key
questions: 1) Can we effectively train DINO-WM using
precollected offline datasets? 2) Once trained, can DINO-
WM be used for visual planning? 3) To what extent does
the quality of the world model depend on pre-trained vi-
sual representations? 4) Does DINO-WM generalize to
new configurations, such as variations in spatial layouts and
object arrangements? 5) How does DINO-WM’s perfor-
mance scale with offline dataset size? We train and evaluate
DINO-WM across six environment suites (full description
in Appendix A.1), comparing it to state-of-the-art world
models that predict in either latent space or raw pixel space.

4.1. Environments and Tasks

We evaluate six environment suites with varying dynam-
ics complexity, some of which are drawn from standard
robotics benchmarks, such as D4RL (Fu et al., 2021) and
DeepMind Control Suite (Tassa et al., 2018), as shown in
Figure 3. These environments include maze navigation
(Maze, Wall), fine-grained control for tabletop pushing
(PushT) and robotic arm control (Reach), and deformable
object manipulation with an XArm (Rope, Granular).

In all environments, the task is to reach a randomly sampled
goal state specified by a target observation, starting from
arbitrary initial states. For PushT, target configurations are
sampled to ensure feasibility within 25 steps. For Granu-
lar, targets require gathering all particles into a square with
randomized locations and sizes. Observations in all environ-
ments are RGB images of size (224, 224). A full description
of the environments is provided in Appendix A.1.
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Figure 3. We evaluate DINO-WM on six environment suites, from
left to right, top to bottom: Maze, Reach, Wall, Push-T, Rope
Manipulation, and Granular Manipulation.

4.2. Baselines

We compare DINO-WM with the following state-of-the-art
models commonly used for control. For IRIS, DreamerV3,
and TD-MPC2, we train the models with our offline datasets
without any reward or task information, and perform MPC
on the learned world model for solving downstream tasks.

a) IRIS (Micheli et al., 2023): IRIS encodes visual in-
puts into tokens via a discrete autoencoder and predicts
future tokens using a GPT Transformer, enabling policy
and value learning through imagination.

b) DreamerV3 (Hafner et al., 2024): DreamerV3 en-
codes visual inputs into categorical representations, pre-
dicts future states and rewards, and trains an actor-critic
policy from imagined trajectories.

c) TD-MPC2 (Hansen et al., 2024) : TD-MPC2 learns
a decoder-free world model in latent space and uses
reward signals to optimize the latents.

d) AVDC (Ko et al., 2023): AVDC uses a diffusion model
to generate task execution videos from an initial observa-
tion and textual goal. We provide qualitative evaluations
and MPC planning results for an action-conditioned
variant in Section 4.6.

4.3. Optimizing Behaviors with DINO-WM

With a trained world model, we study if DINO-WM can be
used for zero-shot planning directly in the latent space.

For Maze, Reach, PushT, and Wall environments, we sample
50 initial and goal states and measure the success rate across
all instances. Due to the environment stepping time for the
Rope and Granular environments, we evaluate the Chamfer

Distance (CD) on 10 instances for them. In Granular, we
sample a random configuration from the validation set, with
the goal of pushing the materials into a square shape at a
randomly selected location and scale.

Table 1. Planning results for offline world models on six control
environments.
Model Maze Wall Reach PushT Rope Granular

SR ↑ SR ↑ SR ↑ SR ↑ CD ↓ CD ↓
IRIS 0.74 0.04 0.18 0.32 1.11 0.37
DreamerV3 1.00 1.00 0.64 0.30 2.49 1.05
TD-MPC2 0.00 0.00 0.00 0.00 2.52 1.21
Ours 0.98 0.96 0.92 0.90 0.41 0.26

As seen in Table 1, on simpler environments such as Wall
and PointMaze, DINO-WM is on par with state-of-art
world models like DreamerV3. However, DINO-WM sig-
nificantly outperforms prior work at manipulation environ-
ments where rich contact information and object dynamics
need to be accurately inferred for task completion. We no-
tice that for TD-MPC2, the lack of reward signal makes
it difficult to learn good latent representations, which sub-
sequently results in poor performance. Visualizations of
planning on all environments can be found in Appendix A.8.

Does DINO-WM learn better environment dynamics as
more data become available? We conduct a set of ablation
experiments in Section 4.8, showing that the planning per-
formance scales positively with the amount of training data.
We also present the full inference and planning times for
DINO-WM in Appendix A.6, showing significant speedup
over traditional simulation, particularly in the computation-
ally intensive deformable environments.

4.4. Does pre-trained visual representations matter?

We use different pre-trained general-purpose encoders as the
observation model of the world model, and evaluate their
downstream planning performance. Specifically, we use
the following encoders commonly used in robotics control
and general perception: R3M (Nair et al., 2022), ImageNet
pretrained ResNet-18 (Russakovsky et al., 2015; He et al.,
2016) and DINO CLS (Caron et al., 2021). Detailed descrip-
tions of these encoders are in Appendix A.3.

Table 2. Planning results for world models with various pre-trained
encoders.
Model Maze Wall Reach PushT Rope Granular

SR ↑ SR ↑ SR ↑ SR ↑ CD ↓ CD ↓
R3M 0.94 0.34 0.40 0.42 1.13 0.95
ResNet 0.98 0.12 0.06 0.20 1.08 0.90
DINO CLS 0.96 0.58 0.60 0.44 0.84 0.79
DINOPatch (Ours) 0.98 0.96 0.92 0.90 0.41 0.26

We report the planning performance in Table 2. In the Point-
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Figure 4. Open-loop rollouts of world models on Push-T and Granular. Given the first frame and action sequence, each model predicts
future frames, reconstructed by its decoder. For each environment, the bottom row denotes the ground truth. DINO-WM (Ours) rollouts
are bolded and are visually indistinguishable from the ground truth observations.

Maze task, which involves simple dynamics and control,
we observe that world models with various observation en-
coders all achieve near-perfect success rates. However, as
the environment’s complexity increases—requiring more
precise control and spatial understanding—world models
that encode observations as a single latent vector show a
significant drop in performance. We posit that patch-based
representations better capture spatial information, in con-
trast to models like R3M, ResNet, and DINO CLS, which
reduce observations to a single global feature vector, losing
crucial spatial details necessary for manipulation tasks.

To better understand the strong planning performance en-
abled by DINOv2 features, we analyze the features directly.
A well-established method for evaluating feature quality
in downstream control tasks is linear probing from the fea-
tures to environment states, which assesses how well the
features encode task-relevant state information. To this end,

we compare the linear probe results on three environments
across both patch-based features (DINOv2 of various ViT
sizes, pre-trained MAE (He et al., 2021) and global features
(DINO CLS, R3M). The validation loss for these linear
probes is reported in Table 3, where DINO-S Patch and
DINO-B Patch achieve the lowest validation loss, indicating
their superior task representation capabilities. While the
pre-trained MAE also has patch-based features, it has much
higher validation loss. We hypothesize this is because MAE
prioritizes reconstruction over task relevance, making it a
less preferable choice for control tasks.

4.5. Generalizing to Novel Environment Configurations

We evaluate the generalization of our world models not
only across different goals but also across various en-
vironment configurations. We construct three environ-
ment families—WallRandom, PushObj, and GranularRan-
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Table 3. Linear Probe Validation Loss for Pre-trained Encoders.
We evaluate the linear probe performance by mapping the embed-
dings from each encoder to the state vector of each environment.
DINO-S and DINO-B denote DINOv2 models with ViT-Small
and ViT-Base architectures, respectively. For patch-based features
(DINO-S Patch, DINO-B Patch, and Pre-trained MAE), we first
flatten the patch embeddings, project them to a 1536-dimensional
vector, and then feed them into a linear probe model. Our results
show that DINO-S Patch and DINO-B Patch achieve the lowest
validation loss.

Method PointMaze PushT Wall

DINO-S Patch 0.017 0.434 0.184
DINO-B Patch 0.014 0.504 0.163
DINO-S CLS 0.475 0.833 0.519
Pre-trained MAE 0.856 0.804 0.711
R3M 0.192 0.902 0.539

Figure 5. Training and testing setups for WallRandom, PushObj
and GranularRandom. Test setups are highlighted in blue.

dom—where the model is tested on unseen configurations
with random goals. Visualizations of training and testing
examples are shown in Figure 5, and detailed descriptions
of the environments can be found in Appendix A.2.

Table 4. Planning results for offline world models on three suites
with unseen environment configurations.

Model WallRandom PushObj GranularRandom
SR ↑ SR ↑ CD ↓

IRIS 0.06 0.14 0.86
DreamerV3 0.76 0.18 1.53
R3M 0.40 0.16 1.12
ResNet 0.40 0.14 0.98
DINO CLS 0.64 0.18 1.36
Ours 0.82 0.34 0.63

From Table 4, we observe that DINO-WM demonstrates
significantly better performance in WallRandom, indicat-
ing that model has effectively learned the general concepts
of walls and doors, even when they are positioned in lo-
cations unseen during training. In contrast, other methods
struggle to accurately identify the door’s position and nav-
igate through it. The PushObj task remains challenging
for all methods, as the model was only trained on the four
object shapes, which makes it difficult to precisely infer rel-
evant physical parameters. In GranularRandom, the agent

encounters fewer than half the particles present during train-
ing, resulting in out-of-distribution images compared to the
training instances. Nevertheless, DINO-WM accurately
encodes the scene and successfully gathers the particles
into a designated square location with the lowest Chamfer
Distance (CD) compared to the baselines, demonstrating
better scene understanding. We hypothesize that this is due
to DINO-WM’s observation model encoding the scene as
patch features, making the variance in particle number still
within the distribution for each image patch.

4.6. Qualitative Comparisons with Generative Video
Models

Given the prominence of generative video models, it’s natu-
ral to assume they could serve as world models. We compare
DINO-WM with AVDC (Ko et al., 2023), a diffusion-based
generative model. As shown in Figure 6, while AVDC can
generate visually realistic future images, these images lack
physical plausibility. Large, unrealistic changes can occur
within a single timestep, and the model struggles to reach
the exact goal state. Future advancements in generative
models may help address these issues.

Figure 6. Plans generated by DINO-WM and AVDC.

We further compare DINO-WM with a variant of AVDC,
where the diffusion model is trained to generate the next
observation ot+1 conditioned on the current observation ot
and action at, rather than generating an entire sequence of
observations at once conditioned on a text goal. We present
open-loop rollout results on validation trajectories using
this action-conditioned AVDC, with visualizations shown in
Figure 7. It can be seen that the action-conditioned AVDC
diverges from the ground truth observations over long-term
predictions, making it insufficient for accurate task planning.

4.7. Decoding and Interpreting the Latents

Although DINO-WM operates in latent space and the ob-
servation model is not trained with pixel reconstruction ob-
jectives, training a decoder aids in interpreting predictions.
We evaluate the image quality of predicted futures across all
models and find that our approach outperforms others, even
those whose encoders are trained with environment-specific
reconstruction objectives. Open-loop rollouts in Figure 4
demonstrate DINO-WM’s robustness despite the lack of
explicit pixel supervision. We report the Learned Perceptual
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Figure 7. Open-loop rollout on PushT with DINO-WM and action-
conditioned AVDC (AVDC-AC). For each trajectory, the model
is given the first frame as well as sequence of actions. The world
models perform open-loop rollout with these actions.

Image Patch Similarity (LPIPS) (Zhang et al., 2018) and
Structural Similarity Index (SSIM) (Wang et al., 2004) on
the world models’ predicted future frames in Table 5 and
Table 6. SSIM measures the perceived quality of images by
evaluating structural information and luminance consistency
between predicted and ground-truth images, with higher
values indicating greater similarity. LPIPS assesses percep-
tual similarity by comparing deep representations of images,
with lower scores reflecting closer visual similarity.

Table 5. Comparison of world model precitions on LPIPS (↓).

Method PushT Wall Rope Granular

R3M 0.045 0.008 0.023 0.080
ResNet 0.063 0.002 0.025 0.080
DINO CLS 0.039 0.004 0.029 0.086
AVDC 0.046 0.030 0.060 0.106
Ours 0.007 0.0016 0.009 0.035

Table 6. Comparison of world model precitions on SSIM (↑).

Method PushT Wall Rope Granular

R3M 0.956 0.994 0.982 0.917
ResNet 0.950 0.996 0.980 0.915
DINO CLS 0.973 0.996 0.980 0.912
AVDC 0.959 0.983 0.979 0.909
Ours 0.985 0.997 0.985 0.940

4.8. Scaling Laws of DINO-WM

To analyze the scaling behavior of DINO-WM, we trained
world models and performed planning using datasets of
varying sizes, ranging from 200 to 18500 trajectories on the
PushT environment. Our results in Table 7 demonstrate a
clear trend: as the dataset size increases, both the quality
of the world model’s predictions and the performance of
the planned behavior improve significantly. Larger datasets
enable the world model to capture more diverse dynamics
and nuances of the environment, leading to more accurate
predictions and better-informed planning.

Table 7. Planning performance and prediction quality on PushT
with DINO-WM trained on datasets of various sizes. SSIM and
LPIPS are measured on the predicted future latents after decoding.
We observe consistent improvement in performance as we increase
the dataset size.

Dataset Size SR ↑ SSIM ↑ LPIPS ↓
n=200 0.08 0.949 0.056
n=1000 0.48 0.973 0.013
n=5000 0.72 0.981 0.007
n=10000 0.88 0.984 0.006
n=18500 0.92 0.987 0.005

5. Conclusion
We introduce DINO-WM, a simple yet effective technique
for modeling visual dynamics in latent space without the
need for pixel-space reconstruction. We have demonstrated
that DINO-WM captures environmental dynamics and gen-
eralizes to unseen configurations, independent of task spec-
ifications, enabling visual reasoning at test time and gen-
erating zero-shot solutions for downstream tasks through
planning. DINO-WM takes a step toward bridging the
gap between task-agnostic world modeling and reasoning
and control, offering promising prospects for generic world
models in real-world applications.

Limitations and Future Work: First, DINO-WM assumes
access to offline datasets with sufficient state-action cover-
age, which can be challenging to obtain for highly complex
environments. This can potentially be addressed by combin-
ing DINO-WM with exploration strategies and updating
the model as new experiences are available. Second, DINO-
WM still relies on the availability of ground truth actions
from agents, which may not always be feasible when train-
ing with vast video data from the internet. Lastly, while
we currently plan in action space for downstream task solv-
ing, an extension of this work could involve developing
a hierarchical structure that integrates high-level planning
with low-level control policies to enable solving more fine-
grained control tasks.
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A. Appendix
A.1. Environments and Dataset Generation

a) PointMaze: In this environment introduced by (Fu et al., 2021), the task is for a force-actuated 2-DoF ball in the
Cartesian directions x and y to reach a target goal. The agent’s dynamics incorporate physical properties such as
velocity, acceleration, and inertia, making the movement realistic. We generate 2000 fully random trajectories to train
our world models. We refer to this task as Maze for brevity in our tables.

b) Wall: This custom 2D navigation environment features two rooms separated by a wall with a door. The agent’s task is
to navigate from a randomized starting location in one room to a goal in the other, passing through the door. We present
a variant where wall and door positions are randomized, testing the model’s generalization to novel configurations. For
the fixed wall setting, we train on a fully random dataset of 1920 trajectories each with 50 time steps. For the variant
with multiple training environment configurations, we generate 10240 random trajectories.

c) Reacher: A continuous control task from DeepMind Control Suite (Tassa et al., 2018), where a 2-joint robotic arm
reaches a target in 2D space. We increase difficulty by requiring the entire arm, not just the end-effector, to match
arbitrary target poses. To train the world model, we generate 3000 trajectories with 100 steps. We refer to this task as
Reach for brevity in our tables.

d) Push-T: This environment introduced by (Chi et al., 2024) features a pusher agent interacting with a T-shaped block.
The goal is to guide both the agent and the T-block from a randomly initialized state to a known feasible target
configuration within 25 steps. The task requires both the agent and the T to match the target locations. Unlike previous
setups, the fixed green T no longer represents the target position for the T-block but serves purely as a visual anchor
for reference. Success requires precise understanding of the contact-rich dynamics between the agent and the object,
making it a challenging test for visuomotor control and object manipulation. We generate a dataset of 18500 samples
replayed the original released expert trajectories with various level of noise. Additionally, we introduce variations by
altering the shape and color of the object to assess the model’s capability to adapt to novel tasks. For this variant, we
generate 20000 randomly sampled trajectories with 100 steps.

e) Rope Manipulation: Introduced in (Zhang et al., 2024), this task is simulated with Nvidia Flex (Zhang et al., 2024)
and consists of an XArm interacting with a soft rope placed on a tabletop. The objective is to move the rope from an
arbitrary starting configuration to a goal configuration specified at test time. For training, we generate a random dataset
of 1000 trajectories of 20 time steps of random actions from random starting positions, while testing involves goal
configurations set from varied initial positions, incorporating random variations in orientation and spatial displacement.

f) Granular Manipulation: This environment uses the same simulation setup as Rope Manipulation and involves
manipulating about a hundred particles to form desired shapes. The training data consists of 1000 trajectories of 20
time steps of random actions starting from the same initial configuration, while testing is performed on specific goal
shapes from diverse starting positions, along with random variations in particle distribution, spacing, and orientation.

A.2. Environment Families for Testing Generalization

1. WallRandom: Based on the Wall environment, but with randomized wall and door positions. At test time, the task
requires navigating from a random starting position on one side of the wall to a random position on the other side, with
non-overlapping wall and door positions seen during training.

2. PushObj: Derived from the Push-T environment, where we introduce novel block shapes, including Tetris-like blocks
and a ”+” shape. We train the model with four shapes and evaluate on two unseen shapes. The task involves both the
agent and object reaching target locations.

3. GranularRandom: Derived from the Granular environment, where we initialize the scene with a different amount of
particles. The task requires the robot to gather all particles to a square shape at a randomly sampled location. For this
task, we directly take the models that are trained with a fixed amount of materials used in Section 4.3.

Visualizations can be found in Figure 5.
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A.3. Pretraining Features

a) R3M: A ResNet-18 model pre-trained on a wide range of real-world human manipulation videos (Nair et al., 2022).

b) ImageNet: A ResNet-18 model pre-trained on the ImageNet-1K dataset (Russakovsky et al., 2015).

c) DINO CLS: The pre-trained DINOv2 model provides two types of embeddings: Patch and CLS. The CLS embedding
is a 1-dimensional vector that encapsulates the global information of an image.

d) Pre-trained MAE: A ViT model trained using Masked Autoencoding (He et al., 2021), where a large portion of input
image patches are masked and the model learns to reconstruct them. We use a ViT-Base checkpoint, which has a feature
dimension of 768 and approximately 86 million parameters.

A.4. Ablations

A.4.1. DINO-WM WITH VS. WITHOUT CAUSAL ATTENTION MASK

We introduce a causal attention mask in Section 3.1.2. We ablate this choice on PushT by training DINO-WM with and
without this causal attention mask with varying history length h, such that the model takes in input ot−h+1, ot−h+2, ...ot,
and output ot−h+2, ...ot+1. For models with mask, the model can only attend to past observations for predicting each ot,
whereas in the w/o mask case, predicting any observation in the output sequence can attend to the entire input sequence
of observations. We show planning success rate on our PushT settings in Table 8. When h = 1 where the model with
and without this causal mask is equivalent, both models get decent and equivalent success rate. However, as we increase
the history length, we see a rapid drop in the w/o mask case, since the model can cheat during training by attending to
future frames, which is not available at test time. Adding the causal mask solves this issue, and we observe improvement in
performance as longer history could better capture dynamics information like velocity, acceleration, and object momentum.

Table 8. Comparison of DINO-WM with and without causal attention mask on PushT. We train models with varying history h, representing
the number of past observations the model takes as input.

h = 1 h = 2 h = 3

w/o mask 0.76 0.36 0.08
with mask 0.76 0.88 0.92

A.4.2. DINO-WM WITH RECONSTRUCTION LOSS

While DINO-WM eliminates the need to train world models with a pixel reconstruction loss—avoiding the risk of learning
features irrelevant to downstream tasks—we conduct an ablation study where the predictor is trained using a reconstruction
loss propagated from the decoder. As shown in Table 9, this approach performs reasonably well on the PushT task but falls
slightly short of our method, where the predictor is trained entirely independently of the decoder. This underscores the
advantage of disentangling feature learning from reconstruction objectives.

Table 9. Comparison of DINO-WM trained with and without loss from the decoder on PushT, highlighting the advantage of disentangling
feature learning from reconstruction objectives.

Success Rate

w/o decoder loss 0.92
with decoder loss 0.80

A.5. Planning Optimization

In this section, we detail the optimization procedures for planning in our experiments.
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A.5.1. MODEL PREDICTIVE CONTROL WITH CROSS-ENTROPY METHOD

a) Given the current observation o0 and the goal observation og, both represented as RGB images, the observations are
first encoded into latent states:

ẑ0 = enc(o0), zg = enc(og). (3)

b) The planning objective is defined as the mean squared error (MSE) between the predicted latent state at the final
timestep T and the goal latent state:

C = ∥ẑT − zg∥2 , where ẑt = p(ẑt−1, at−1), ẑ0 = enc(o0). (4)

c) At each planning iteration, CEM samples a population of N action sequences, each of length T , from a distribution.
The initial distribution is set to be Gaussian.

d) For each sampled action sequence {a0, a1, . . . , aT−1}, the world model is used to predict the resulting trajectory in the
latent space:

ẑt = p(ẑt−1, at−1), t = 1, . . . , T. (5)

And the cost C is calculated for each trajectory.

e) The top K action sequences with the lowest cost are selected, and the mean and covariance of the distribution are
updated accordingly.

f) A new set of N action sequences is sampled from the updated distribution, and the process repeats until success is
achieved or after a fixed number of iterations that we set as hyperparameter.

g) After the optimization process is done, the first k actions a0, ...ak is executed in the environment. The process then
repeats at the next time step with the new observation.

A.5.2. GRADIENT DESCENT:

Since our world model is differentiable, we also consider an optimization approach using Gradient Descent (GD) which
directly minimizes the cost by optimizing the actions through backpropagation.

a) We first encode the current observation o0 and goal observation og into latent spaces:

ẑ0 = enc(o0), zg = enc(og). (6)

b) The objective remains the same as for CEM:

C = ∥ẑT − zg∥2 , where ẑt = p(ẑt−1, at−1), ẑ0 = enc(o0). (7)

c) Using the gradients of the cost with respect to the action sequence {a0, a1, . . . , aT−1}, the actions are updated
iteratively:

at ← at − η
∂C
∂at

, t = 0, . . . , T − 1, (8)

where η is the learning rate

d) The process repeats until a fixed number of iteractions is reached, and we execute the first k actions a0, ..., ak in the
enviornment, where k is a pre-determined hyperparameter.

A.5.3. PLANNING RESULTS

Here we present the full planning performance using various planning optimization methods in Table 10. CEM denotes the
setting where we use CEM to optimize a sequence of actions, and execute those actions in the environment without any
correction or replan. Similarly, GD denotes optimizing with gradient decent and execute all planned actions at once in an
open-loop way. MPC denotes allowing replan and receding horizon with CEM for optimization.
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Table 10. Planning results of DINO-WM with various planning optimization methods.

PointMaze Push-T Wall Rope Granular

CEM 0.8 0.86 0.74 NA NA
GD 0.22 0.28 NA NA NA
MPC 0.98 0.90 0.96 0.41 0.26

A.6. Inference Time

Inference time is a critical factor when deploying a model for real-time decision-making. Table 11 reports the time required
on an NVIDIA A6000 GPU for a single inference step, the environment rollout time for advancing one step in the simulator,
and the overall planning time for generating an optimal action sequence using the Cross-Entropy Method (CEM). The
inference time of DINO-WM remains constant across environments due to the fixed model size and input image resolution,
resulting in significant speedup over traditional simulation rollouts. Notably, in environments with high computational
demands, such as deformable object manipulation, simulation rollouts require several seconds per step while DINO-WM
enables rapid inference and efficient planning. Planning time is measured with CEM using 100 samples per iteration and 10
optimization steps, demonstrating that DINO-WM can achieve feasible planning times while maintaining accuracy and
adaptability across tasks.

Table 11. Inference time and planning time for DINO-WM. Inference time represents the time required for a single forward pass for one
step, while environment rollout time measures the simulator’s speed for advancing one step. Planning time corresponds to Cross-Entropy
Method (CEM) with 100 samples per iteration and 10 optimization steps.

Metric Time (s)

Inference (Batch 32) 0.014
Simulation Rollout (Batch 1) 3.0
Planning (CEM, 100x10) 15.89

A.7. Hyperparameters and Implementation

We present the DINO-WM hyperparameters and relevant implementation repos below. We train the world models for all
environments with the same hyperparameters shown in Table 13.

The world model architecture is consistent across all environments. We use an encoder based on DINOv2, which extracts
features with a shape of (14× 14, 384) from input images resized to 196× 196 pixels. The ViT backbone has a depth of 6,
16 attention heads, and an MLP dimension of 2048, amounting to approximately 19M parameters.

To ensure the prediction task is meaningful, as nearby observations can be highly similar, we introduce a frameskip parameter
during data processing. This parameter specifies how far into the future the model is predicting. The frameskip values for
each environment are provided in Table 12.

• DINOv2: https://github.com/facebookresearch/dinov2

• DreamerV3: https://github.com/NM512/dreamerv3-torch

• AVDC: https://github.com/flow-diffusion/AVDC

• R3M: https://github.com/facebookresearch/r3m/

We base our predictor implementation on https://github.com/lucidrains/vit-pytorch/.

A.8. Additional Planning Visualizations

We show visualizations of planning instances for DINO-WM and our baselines in Figure 8. For comparison, we show the
best performing world models DINO CLS and DreamerV3. We also show visualizations of DINO-WM on all tasks in
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Table 12. Environment-dependent hyperparameters for DINO-
WM training. We report the number of trajectories in the
dataset under Dataset Size, and the length of trajectories under
Traj. Len.

H Frameskip Dataset Size Traj. Len.

PointMaze 3 5 2000 100
Reacher 3 5 3000 100
Push-T 3 5 18500 100-300
PushObj 3 5 20000 100
Wall 1 5 1920 50
WallRandom 1 5 10240 50
Rope 1 1 1000 5
Granular 1 1 1000 5

Table 13. Shared hyperparameters for DINO-WM training

Name Value

Image size 224
Optimizer AdamW
Decoder lr 3e-4
Predictor lr 5e-5
Action encoder lr 5e-4
Action emb dim 10
Epochs 100
Batch size 32

Figure 8. Planning visualizations for PointMaze, Push-T, and Granular, on randomly sampled initial and goal configurations. The task is
defined by Start and Goal, denoting the initial and goal observations. Final shows the final state the system arrives at after planning with
each world model. For comparison, we show the best performing world models DINO CLS and DreamerV3.

Figure 9. For each environment, the top (shaded) row shows the environment’s observation after executing the planned
actions, and the bottom row shows the world model’s imagined observations.

To demonstrate DINO-WM’s ability to generalize to different goals at test time, we show additional visualizations for
DINO-WM when provided with the same initial observation but different goal observations in Figure 10 and Figure 11.
Similarly, we show trajectory pairs to compare the environment’s observations (top shaded rows) after executing a sequence
of planned actions with DINO-WM’s imagined trajectories (bottom rows). The left-most column denotes the initial
observations, and the right-most shaded column denotes the goal observations.
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Figure 9. Trajectories planned with DINO-WM on all six environments. For each environment, the top (shaded) row shows the
environment’s observation after executing the planned actions, and the bottom row shows the world model’s imagined observations.
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Figure 10. Trajectories planned with DINO-WM on PushT with the same initial states but different goal states.

20



DINO-WM: World Models on Pre-trained Visual Features enable Zero-shot Planning

Figure 11. Trajectories planned with DINO-WM on PointMaze with the same initial states but different goal states.
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