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Abstract

As hypothesis generation becomes increasingly automated, a new bottleneck has
emerged: hypothesis assessment. Modern systems can surface thousands of sta-
tistical relationships—correlations, trends, causal links—but offer little guidance on
which ones are novel, non-trivial, or worthy of expert attention. In this work, we
study the complementary problem to hypothesis generation: automatic hypothesis
assessment. Specifically, we ask—given a large set of statistical relationships, can
we automatically assess which ones are novel and worth further exploration? We
focus on correlations as they are a common entry point in exploratory data analysis
that often serve as the basis for forming deeper scientific or causal hypotheses.

To support automatic assessment, we propose to leverage the vast knowledge
encoded in LLMs’ weights to derive a prior distribution over the correlation value
of a variable pair. If an LLM’s prior expects the correlation value observed, then
such correlation is not surprising, and vice versa. We propose the Logit-based
Calibrated Prior, an LLM-elicited correlation prior that transforms the model’s raw
output logits into a calibrated, continuous predictive distribution over correlation
values. We evaluate the prior on a benchmark of 2,096 real-world variable pairs
and it achieves a sign accuracy of 78.8%, a mean absolute error of 0.26, and 95%
credible interval coverage of 89.2% in predicting Pearson correlation coefficient. It
also outperforms a fine-tuned RoBERTa classifier in binary correlation prediction
and achieves higher precision@XK in hypothesis ranking. We further show that
the prior generalizes to correlations not seen during LLM pretraining, reflecting
context-sensitive reasoning rather than memorization.

1 Introduction

Generating hypotheses from large data repositories is quickly becoming easier. Modern data discovery
systems [2, 18,125, 21]] can enumerate every statistical relationship across datasets, and LLMs can draft
thousands of plausible ideas by mining literature and data [33} 31} 29]]. What used to take a researcher
weeks now happens in minutes. This ease of generation, however, introduces a new bottleneck:
assessment. Experts are flooded with machine-suggested relationships—correlations, causal links,
trends, anomalies—without a clear signal for which ones merit deeper investigation. Many of these
relationships are trivial, redundant, or already well known, forcing human experts to sift through a
long list just to find a few that are novel.

For example, as illustrated in Figure[I} a correlation discovery system has surfaced tens of thousands of
correlated variable pairs, leaving human experts to manually filter out trivial or expected patterns using
their prior knowledge. A strong correlation between daily temperature and ice cream sales,
for instance, is intuitive and quickly dismissed. In contrast, a negative correlation between household
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income and housing prices might appear counterintuitive and warrant further scrutiny. This
manual triage must be repeated across thousands of pairs to uncover truly novel or surprising
correlations, making the process highly labor-intensive. One might hope that ranking correlations by
magnitude could alleviate this burden. However, as shown in Figure[I] (left panel where variable pairs
are ranked by |rops|), stronger correlations are not necessarily more surprising—in fact, they often
reflect well-known or redundant relationships, a trend we further verify in Section 3]
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Figure 1: How Human Experts Assess Correlations Manually and How an LLM Can Help

In this paper, we study the complementary problem to hypothesis generation: automated hypothesis
assessment. Specifically, we ask—given a large set of statistical relationships, can we automatically
assess which ones are novel and worth further exploration? We focus on correlation relationships as a
starting point, since they are a common entry point in exploratory data analysis and often serve as
seeds for forming deeper scientific or causal hypotheses [[11} i4].

To tackle this problem, we draw inspiration from how experts reason: they use prior knowledge to
form expectations about a correlation’s direction and magnitude. If the observed correlation (7,ps)
matches expectations, it is unsurprising; if it deviates, it may signal something worth exploring. In
essence, experts apply an implicit prior shaped by their knowledge and the variable context.

Our core idea is to approximate this human prior using the rich, encoded knowledge within LLMs [27,
18]. Specifically, we define the LLM-elicited correlation prior, pm(rx,y | Cx,y ). as a predictive
distribution over correlation values 7y y between a variable pair X, Y conditioned on their context
Cx.y, such as the description for each variable. By prompting the LLM with this context, we elicit
its belief about the correlation values, treating these beliefs as a proxy for human expectations.

The LLM-elicited correlation prior helps identify which correlations are novel and worth expert
attention. For instance, in Figure |1} piv(7paily Temp, ice Cream sales | C) centers around 0.7, making
an observed value of 0.8 unsurprising. In contrast, a correlation of -0.2 against a prior centered at
0.5 signals high surprise. This surprise-based scoring offers a scalable way to surface potentially
insightful correlations. In our later evaluation (Section [3)), we show that the LLM prior highlights
expert-validated hypotheses from noisy urban data [19].

In this work, we propose Logit-based Calibrated Prior, an LLM-elicited correlation prior which
transforms the LLM’s raw output logits into a calibrated, continuous predictive distribution over
correlation values (Section[2). But how do we evaluate its quality?

First, we assess accuracy: if the prior’s mode reliably predicts the sign and magnitude of observed
correlations, it suggests alignment with empirical patterns. Second, we evaluate information content.
A strong prior should assign high likelihood to observed correlations, reducing their information
content relative to an uninformative baseline (e.g., a uniform prior). When applied at scale, this
indicates the prior captures real-world patterns, easing the burden on analysts. Third, we measure
calibration—whether the prior’s uncertainty reflects reality—using 95% credible interval coverage. This
is crucial for decision-making: overconfident priors exaggerate surprise and risk misdirecting expert
attention. Finally, we ask a deeper question: is the prior reasoning from context, or merely recalling
memorized correlations based on variable names? To probe this, we introduce a novel evaluation
based on contextual contradiction to disentangle these possibilities.

To support these goals, we construct a benchmark of 2,096 variable pairs with observed correlations.
We evaluate predictive quality and information reduction (Section [)), hypothesis discovery utility
(Section[5), and whether the prior reflects contextual reasoning or memorization (Section [6)).



Results are promising: our Logit-based Calibrated Prior achieves 78.8% sign accuracy and a mean
absolute error of 0.26 on Pearson correlation coefficients in the range [—1, 1], with strong calibration—
95% intervals covering 89.2% of observed values. It also reduces the average information content
from 0.69 (uniform prior) to 0.27. Our method outperforms baselines, including uninformative priors,
Gaussian priors from LLM-verbalized parameters, and a fine-tuned RoBERTa classifier [30]. It
also achieves higher precision@K when retrieving meaningful correlations in noisy urban data. For
instance, it highlights a link between bike dock density and community wealth, a hypothesis studied
in prior work [7]], while down-ranking obvious patterns like library visitors and book circulation.
Finally, we show that the prior generalizes beyond correlations seen during pretraining.

These results show that LLMs encode informative prior beliefs about statistical relationships, demon-
strating their potential to serve as proxies for hypothesis assessment—a task that currently relies
on human expertise and is highly labor-intensive. Our work highlights a promising direction for
leveraging LLMs to help experts navigate large hypothesis spaces and make novel discoveries.

2 Logit-based Calibrated Prior (LCP): Constructing a Continuous
Correlation Prior from LLM Logits

In this section, we present the Logit-based Calibrated Prior (LCP), a method for constructing the
correlation prior, pLm(rx.y | Cx,y) —a predictive distribution over correlation values rx y between
a variable pair X, Y conditioned on their context Cx,y, such as the description for each variable.

One way to elicit a distribution from an LLM is to have it parameterize a fixed form—e.g., modeling
its belief over a correlation as a Gaussian by providing a mean and standard deviation. However,
this approach relies on the assumption that the model’s internal belief distribution conforms to the
chosen parametric form, which is not the case in most cases. To test this, we conducted a chi-square
goodness-of-fit analysis [28] on the LLM’s output distributions for 2,096 correlations. The normality
assumption was rejected in 2,095 cases at the 5% significance level, indicating that the LLM’s beliefs
are poorly approximated by a Gaussian fit (see Appendix [A]for details). Moreover, this parametric
approach introduces additional complexity: While the original goal is to estimate a single correlation
value, it requires estimating additional parameters whose values are themselves subject to error.

Our approach. Rather than asking the LLM to estimate parameters of a fixed distributional form, we
directly prompt it to predict the correlation coefficient (see prompt in Appendix [H.I]), and construct a
full distribution over possible correlation values. While one could obtain this distribution by sampling
from the model, it would be computationally expensive. To address this, we propose a more efficient
strategy by constructing the prior directly from the LLM’s logits. This approach does not assume the
distribution’s shape and allows the model to focus on estimating the correlation between the variables.

We begin by constructing a discrete probability distribution from the model’s raw token logits
(Algorithm [T)). Without loss of generality, we assume r denotes Pearson’s correlation coefficient,
constrained to the range [—1, 1]. At each decoding step ¢, the language model produces a real-valued

logit vector ¢;, where each entry E,(f) corresponds to a token in the vocabulary. These logits are
converted into log-probabilities via the softmax function. For a selected token v, at position , its

log-probability is given by log pi"" = £ —log 3", exp(£)).
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We design a prompt that elicits a structured scalar response, such as { "coefficient": "<value>"}. To
extract the correlation value, we first identify the start and end positions of "<value>" in the output
sequence (line 4). Starting from this token position, we extract the top-k tokens at each subsequent
decoding step (line 5). A complete numeric response, such as "-0.69", is composed of a valid
sequence of tokens—e.g., a sign, integer part, decimal point, and numeric suffix. For instance, at the
numeric suffix token, the model might assign different probabilities to completions like 69, 60, or
70. To prevent length biases, we ensure that positive and negative numbers use the same number of
tokens in their representation (see Appendix [B).

We enumerate all token sequences (line 5), concatenate them into strings (line 6), cast them to float
values (line 8), and compute their joint log-probabilities by summing the log-probabilities of each
token in the sequence (line 12). We discard any sequences that produce invalid float values or values
outside the valid correlation range [—1, 1] (line 10). When multiple token sequences map to the same
numeric value (e.g., "0.65" and ".65"), we aggregate their unnormalized probabilities (line 13-17).



Finally, we normalize across all valid correlation values using the softmax function to obtain a discrete
probability distribution, {(r;,p;)} ;-V:1 (line 19) where 7; is a decoded correlation value, and p; is its
model-assigned probability.

Impact of Single-Path Decoding. Our approach decodes one token at a time conditioned on the most
likely token from the previous step. In particular, we first select the most probable sign token (e.g., +
or -) and condition all subsequent decoding on that choice. This introduces an approximation: we
compute the joint probability of each numeric string under a single sign path, rather than marginalizing
over both. While a full multi-beam search would more faithfully capture the true joint distribution
by exploring multiple branches at each step, we find that this approximation works well in practice.
First, the model achieves high sign accuracy: as shown in Section [} it predicts the correct sign
78.8% of the time, so most sequences are decoded under the correct branch. Second, it exhibits high
sign confidence: across 2096 correlation predictions, the median probability gap between the two
signs is 99.8% (77.7% on average), indicating that the probability mass of the alternative branch
is negligible. Finally, our method ensures scalability: a full beam search would increase decoding
cost exponentially with sequence length, whereas the single-path strategy scales efficiently to tens of
thousands of variable pairs while maintaining strong empirical performance.

Smoothing to Obtain a Continuous Prior. The discrete distribution is sparse and limited to discrete
values determined by the tokenizer and top-k decoding strategy. However, downstream tasks—such as
computing surprise in Figure [T}-require probability density at arbitrary values. To support this, we
smooth the distribution using a weighted sum of Gaussian kernels centered at each decoded value.
Since Pearson correlations lie in [—1, 1], we truncate and renormalize the distribution to ensure it
integrates to one. The final LCP density function f(r) is defined as:
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where o is the standard deviation of each kernel and controls the degree of smoothing, and Z is the
normalization constant.

Algorithm 1 ConstructDiscretePriorFromLogits

: Input: Token logits {£; }7—1, structured output template 7~ such as { "coefficient": "<value>"}
: Output: Discrete prior {(r;,p;)} )<,
: Initialize empty map: logp_map <+ ()
. to,t1 < FindValueTokenSpan({/:}i—1,T) > Locate start and end positions of the value field
: for all sequences s = (vy,, . . ., vt, ) from top-k tokens at each position do
str < concat(s)
if is_valid_float(str) and float(str) € [—1,1] then
r < float(str)
else
10: continue
11: end if
12: log pr + ZES{OL logpi
13: if r € logp_map then
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14: logp_map[r] < log (exp(logp_map|[r]) + exp(logp.))

15: else

16: logp_map[r] « log p»

17: end if

18: end for

19: {(r5,p;)}L, + softmax(logp_map) > Normalize log-probs into a valid probability distribution

20: return {(r;,p;)} iy

Selecting an appropriate kernel standard deviation o is critical to ensure the prior reflects realistic
uncertainty. If o is too small, the resulting distribution will be overconfident and overly spiky; if
too large, it will be underconfident and overly diffuse. Standard bandwidth selection rules, such as
Scott’s [23] or Silverman’s rule [26], are not applicable in our setting, as they assume i.i.d. samples
from an underlying distribution. In our case, in contrast, the discrete values and their probabilities are
derived from LLM output logits and reflect model-specific beliefs, not empirical frequencies.



To address this, we tune o using a held-out validation set by minimizing the average negative
log-likelihood at the observed correlation values:

o = argmin By, [~ 1085, (re)]

This objective penalizes priors that assign low probability density to ground-truth correlations, thereby
encouraging distributions that place probability mass closer to the observed values. Optimizing o
this way calibrates uncertainty to reflect empirical variability and improves downstream reliability.
The validation set Dy, consists of 300 randomly sampled correlations, disjoint from our evaluation
dataset. The optimized value 0* = 0.4 is used for LCP.

The kernel standard deviation o does not need to be re-tuned as long as four key elements remain
unchanged: the LLM, the prompting strategy, the task (predicting Pearson correlation coefficients),
and the kernel function used. This is because o corrects for the systematic bias in the model’s
uncertainty—that is, whether the model tends to be consistently overconfident or underconfident in
its predictions. When the model architecture, prompt design, task, and the kernel function remain
fixed, this bias remains stable across inputs, even if individual predictions vary. In this setting, a
single globally tuned o is sufficient to calibrate the model’s uncertainty across a broad range of
variable pairs. We further demonstrate in our evaluation (Section[d] [3)) that the selected o generalizes
well on the evaluation dataset, demonstrating its robustness. However, if any of these components
change—such as switching to a different model, altering the prompt, targeting a different correlation
metric, or switching to a different kernel function—the structure of the output distribution may shift,
and o should be re-tuned to ensure proper calibration.

In the evaluation, we compare the Logit-based Calibrated Prior against two baseline methods for
constructing correlation priors, highlighting the advantages of avoiding parametric assumptions and
applying proper calibration. The first is a Gaussian prior, which assumes the LLM can directly
parameterize a normal distribution by predicting its mean and standard deviation. The second is an
uncalibrated KDE prior, which is similar to our method, but selects the kernel standard deviation
using Scott’s rule based on the empirical standard deviation of the discrete probability distribution.

3 Benchmark Construction

We curate a benchmark of 2,096 real-world variable pairs to evaluate correlation priors. Each
entry includes two variables, their descriptions, a dataset summary, and the observed Pearson
correlation 7ops € [—1, 1], computed from raw data. The benchmark combines variable pairs from
the Cause-Effect Pairs [[15] and Kaggle [30] datasets. We have open-sourced our code and data at
https://github.com/TheDataStation/LLM-Prior-for-Correlation-Assessment,

The Cause-Effect dataset contains 108 variable pairs with known
causal relationships. We retain 96 pairs where the correlation
is statistically significant (p < 0.05). The Kaggle dataset con-

sists of correlations between variable pairs extracted from pub- 3,1000
licly available tables on Kaggle. The original dataset provides g 750
variable names but lacks variable descriptions. To enrich the g 500
context for variables, we use the Kaggle API to retrieve dataset = 550

whether the variable names are self-descriptivg”} We filter out %0 02 04 06 08 10
Ir|

summaries and employ GPT-40 (see Appendi%@]} to assess

non-informative names (e.g., single characters or generic iden-
tifiers like “Unnamed: 0”) and retain only those pairs for which
both variables are judged meaningful. This further cleaning al- Figure 2: The Bias toward High
lows us to isolate and study the model’s ability to reason about ~Correlations in Kaggle dataset
relationships, rather than its ability to interpret metadata.

After filtering, we obtain 7045 statistically significant correlations (p < 0.05). To mitigate the bias
toward extreme correlations (see Fig. , we perform stratified sampling by |r|: divide the range
[—1, 1] into 10 equal-width bins and sample 200 correlations per bin, yielding a balanced set of 2,000.

2Kaggle API does not support retrieving variable descriptions


https://github.com/TheDataStation/LLM-Prior-for-Correlation-Assessment

A balanced sample ensures fair evaluation across all correlation strengths, preventing the model’s
performance from being skewed by overrepresented low or high |r| values.

4 How Well Does LCP Predict Empirical Correlations?

We evaluate LCP by measuring how well it predicts observed correlations. First, we assess predictive
accuracy using two metrics: sign accuracy, the fraction where 7 - rops > 0, and absolute error,
|7 — Tobs|, where 7 is the mode of the prior. We calculate the mode using grid sampling. Next,
we evaluate differential information content by computing — log p(rops ), adapting Shannon’s self-
information [24] to the continuous case. For simplicity, we refer to it as information content hereafter.
A good prior assigns high likelihood to observed values, reducing the information content of the
corpus and easing analyst workload. Finally, we assess calibration by 95% credible interval coverage—
the fraction of cases where 7 falls within the prior’s 95% credible interval. Calibration is critical:
an overconfident prior may exaggerate surprise from small deviations, leading to false positives and
misleading experts.

We compare LCP with the following baselines. All methods use GPT-40 (2024-08-06) [[17] as the
underlying model.

e Uniform Prior: A non-informative baseline with constant density 0.5 over [—1,1]. The sign
accuracy for it is measured by randomly guessing the sign of the correlation.

e Gaussian Prior: We adapt the method from Capstick et al. [1], which elicits Gaussian priors via
LLM-prompted mean and standard deviation, to model a truncated Gaussian prior over correlations

in [—1, 1] (see Appendix [H.2).

e KDE Prior: A kernel density estimation using Gaussian kernels, where the kernel standard

deviation o is set using a weighted version of Scott’s rule: ¢ = 1.06 - & - n;ffl/ 5, where ¢ is the
weighted standard deviation of {(r;, p;)}, and ncs is the effective sample size.

Results. Fig.[3|reports the average value of each metric across all correlations, positioned in a quadrant
plot. Complementarily, Fig. presents the full distributions of absolute error, p(7obs ), and information
content. Fig. 3| shows that LCP achieves the best balance, matching the highest sign accuracy
(78.8%) of KDE while providing significantly better calibration (89.2% coverage). In contrast, the
uncalibrated KDE and Gaussian priors are overconfident, assigning low likelihood to 745 and yielding
poor coverage (59.9% and 49.1%, respectively). On the other hand, the uniform prior offers high
coverage (92.3%) but suffers from poor accuracy and high absolute error (|7 — 7ops| = 0.51).

In addition, LCP significantly reduces the average information content of the correlation corpus—f{rom
0.69 under a uniform prior to 0.27, indicating that it assigns higher likelihood to observed correlations.
In contrast, the Gaussian and KDE priors increase the average information content to 4.10 and 1.73,
respectively, due to their overconfident predictions. This is reflected in the long tail of low-density
values in Fig.@p. As shown in Fig.[d} LCP yields more concentrated distributions for both likelihood
p(Tobs) and information content, highlighting better calibration .
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Figure 3: Accuracy vs. Calibration of Correlation Priors (IC=Information Content)

To understand the poor calibration of the Gaussian and KDE priors, we examine their kernel standard
deviations. Both produce overly small o values, leading to sharply peaked densities. The median o is
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Figure 4: Full Distribution of Metrics over Different Priors

0.10 for the Gaussian prior and 0.08 for the KDE prior—both much smaller than the fixed ¢ = 0.4 in
LCP. Under the Gaussian prior, the LLM returned o = 0.1 in 74% (1,552/2,096) of cases. The full
distribution of ¢ values is shown in Appendix [C] As we further examine in Appendix [D] this behavior
arises because the LLM interprets o as sampling variability and implicitly assumes a fixed sample
size of 100—producing a default value of o = 0.1 regardless of context. The predicted o captures
expected variation from random sampling (aleatoric uncertainty), but fails to adjust based on the input
context or account for uncertainty arising from limited knowledge (epistemic uncertainty) [12,13].

Figure [5| analyzes LCP’s behavior across ten bins of observed correlation ro,s. The bias 7 — rgps
decreases with rqps: the model overestimates strong negatives and underestimates strong positives.
Sign accuracy is lowest when |rops| is small, bottoming out near —0.15 and rising sharply beyond
|rons| = 0.3, reaching near-perfect accuracy for |rqps| > 0.7. In Fig. ,d, the prior assigns lowest
density (i.e., highest information content) to moderately negative correlations (rops ~ —0.5), indicat-
ing weaker estimation. In contrast, strong positives receive the highest density and lowest information
content. Overall, the prior shows asymmetric error: it performs best on strong positives and struggles
with moderate negatives, consistently underestimating correlation magnitude—a reflection of the
LLM’s conservative predictions without direct data access.
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Figure 5: Performance across ten bins of the true correlation

Comparison of LCP and RoBERTa on Binary Correlation Classification. While LCP models a
full distribution, BERT- and RoBERTa-based classifiers [[14} 6] can be adapted for binary correlation
prediction—determining whether a pair of variables is correlated based on a predefined threshold.
We adopt the method from Trummer [30], who fine-tune RoBERTa using labeled pairs to build a
correlation classifier. LCP is adapted to solve the binary classification task by thresholding its mode,
enabling direct comparison with classification-based approaches.

To ensure a fair comparison, we first evaluate ROBERTa in a zero-shot setting, matching LCP, which
requires no training. We then fine-tune RoBERTa on 20% of the benchmark, following standard
practice for applying ROBERTa to downstream tasks. Figure [6] shows performance across different
correlation thresholds. Note that RoOBERTa must be re-trained for each threshold.

LCP consistently outperforms both baselines in terms of accuracy, F1, and MCC across all thresholds—
achieving up to 0.84 accuracy, 0.79 F1, and 0.53 MCC-despite being entirely zero-shot. This indicates
that our method provides the most balanced predictions overall. Zero-shot ROBERTa behaves like
a one-class detector: it predicts correlated for every pair, yielding perfect recall but zero MCC
and rapidly deteriorating accuracy/precision as the threshold tightens from 0.5 to 0.8. Fine-tuned
RoBERTa corrects this imbalance to some extent after seeing 20% of the data, but its gains are
threshold-specific and require retraining whenever the decision boundary moves. In contrast, By
producing a full predictive distribution over r, LCP naturally adapts to different thresholds.
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Figure 6: Classification Performance over Different Correlation thresholds

Sensitivity Analysis of LCP. We conducted a sensitivity analysis to assess the effect of two factors
on LCP’s robustness: (i) the choice of kernel function used for smoothing, and (ii) the validation set
size used to calibrate the smoothing parameter o.

We compared three alternative kernels-Uniform, Epanechnikov, and Triangle-against the Gaussian
kernel used in our main results. For each kernel, we tuned the bandwidth parameter o on a held-out
validation set and evaluated performance on 2096 correlated pairs. The results in Table|I|show that
LCP maintains strong sign prediction accuracy and calibration across all kernel choices.

Table 1: Sensitivity to kernel function used for smoothing.

Kernel Sign Accuracy |7 — robs| 95% Coverage
Uniform 76.4% 0.32 82.1%
Epanechnikov 78.8% 0.26 89.7%
Triangle 78.8% 0.31 90.9%
Gaussian (reference) 78.8% 0.26 89.2%

These findings suggest that LCP’s performance
is not sensitive to the specific choice of kernel
function, as long as the bandwidth is appropri- -
ately tuned. However, due to differences in ker- SetSize 300 500 1000 2000
nel shape, the optimal o should be re-selected Oopimal 040 038 038 041
using a validation set when switching kernels.

Table 2: Optimal o across validation set sizes.

We also evaluated how the optimal smoothing bandwidth ¢ varies with the size of the held-out
validation set. As shown in Table 2] the optimal o remains stable across different validation sizes,
indicating that LCP is robust to sample size variations.

5 Using LCP to Retrieve Expert-Flagged, Hypothesis-Worthy Correlations

Can LCP support hypothesis assessment in noisy, real-world settings? We evaluate it on Nexus [8]],
a system designed to help domain experts discover correlations in urban data. Nexus computes
40,538 pairwise correlations from Chicago Open Data [[19] by aligning and aggregating numeric
attributes from different tables—either temporally (by month) or spatially (by census tract). Attributes
are summarized (e.g., via mean or sum), joined on a shared key, and then correlated. This pipeline
introduces real-world challenges: joins across sources, aggregation choices, and missing values—all
of which impact the resulting correlations.

Of the full set, 15 correlations were labeled as hypothesis-worthy by human experts in the original
Nexus evaluation. For example, a correlation between bike dock density and community wealth
suggests stations are more common in affluent areas, a hypothesis studied in [7]. We use these
expert-flagged examples to evaluate how well LCP retrieves hypothesis-worthy correlations in messy,
transformed data. Since ground-truth correlation values are unavailable due to data aggregation and
imputation, we adopt an information retrieval setup: treating the 15 expert-flagged correlations as
targets within a pool of 115, formed by adding 100 random samples from the full Nexus corpus.

We compare five ranking strategies: (i) random, (ii) by absolute correlation |r|, (iii) by increasing
probability assigned by a RoOBERTa model fine-tuned on 20% of the benchmark, where lower



probability of the “correlated” class indicates higher surprise, (iv) by LLM surprise, where the
LLM (GPT-40) is given the full metadata (column names, table names, description, and observed
correlation) and prompted to classify the correlation as “surprising” or “not surprising”, and (v) by
increasing prior likelihood p(robs) under LCP, treating lower likelihood as more surprising. We
report Precision@5, @10, @15, and the average rank of expert-labeled correlations.

Table 3: Retrieval Performance Comparison

Method Precision@5  Precision@10  Precision@15  Average Rank |
Random Ranking 0.13 0.13 0.13 58.0
Ranked by |r| 0 0 0 95.4
Ranked by RoBERTa 0.60 0.60 0.53 30.9
Ranked by LLM Surprise 0.4 0.2 0.13 29.1
Ranked by LCP 0.60 0.80 0.60 21.5

As shown in Table 3] ranking correlations by LCP outperforms all baselines—achieving up to 0.80
Precision@ 10 and reducing the average rank of expert-labeled correlations to 21.5, compared to 30.9,
58.0 and 95.4 for the RoOBERTa, random and |r|-based rankings, respectively (see Appendix E] fora
derivation of the expected performance under random ranking). Ranking by |r| performs worst, with
the highest average rank and zero precision, as extreme correlations often reflect trivial or redundant
relationships (e.g., repeated attributes across years), not meaningful insights in Chicago Open Data.

Using LCP, all four correlations related to the expert-labeled hypothesis—that bike stations are more
likely to be located in wealthier areas—are ranked within the top 6. In contrast, an unsurprising
correlation—the one between library visitors and library circulation—is ranked much lower at 95th.
These results demonstrate that LCP can surface correlations that align with expert judgment, even in
the presence of data transformations and noise.

6 Is LCP Reasoning from Context or Relying on Memorization?

We evaluate whether LCP is reasoning from context or simply relying on memorization, a crucial
distinction for generalization beyond the model’s pretraining data. This is essential for hypothesis
assessment, where many relationships are unseen during training and depend on context. To probe this,
we introduce an evaluation based on contextual contradiction. For each variable pair, we construct an
alternate context that plausibly reverses the original correlation, simulating a counterfactual. We then
re-derive the prior by prompting the LLM with this modified context (Appendix [H.4). If the model
adjusts its belief accordingly, it suggests reasoning from context rather than memorization.

Contradictory Context Generation. We use the Cause-Effect Pairs dataset to construct counter-
factual scenarios. From this dataset, we select 84 variable pairs where the model initially predicts
the correct correlation sign. For each pair, we prompt Gemini 2.5 Pro to generate a new context
that plausibly reverses the original relationship (see Appendix [H.3). All 84 generated contexts
are manually reviewed by the authors to ensure the reversal is logically sound and free of explicit
cues (e.g., phrases like “therefore there should be a negative correlation”). We assign the negated
correlation —rps as the new observed value. Since these contexts are synthetic and no real data exists,
these new 745 values serve as approximations.

Result. Table 4{shows the performance of correlation priors on reversed correlations. LCP achieves
100% sign accuracy on the original contexts, dropping slightly to 95.2% under contradictory contexts.
Manual inspection reveals that two of the four errors stem from reasoning failures: the model grasps
the high-level logic but fails at the final inference step in multi-hop scenarios (see Appendix [F).
LCP also maintains strong calibration, with 92.9% coverage at the 95% level, and achieves lower
information content (0.25 vs. 0.69) and absolute error (0.30 vs. 0.55) compared to the uniform prior.

Table 4: Performance of correlation priors on correlations with contradictory contexts.

Method Sign Acc. (1) |# — 7obs| (§)  Information Content ()  95% Coverage (1)
Uniform 0.464 0.55+0.25 0.69 +0.00 92.3%
LCP (ours) 0.952 0.30 +o0.28 0.25 +0.98 92.9%




This experiment shows that LCP is not merely recalling memorized correlations. When given
counterfactual contexts, it updates its predictions accordingly, achieving 95.2% sign accuracy with
strong calibration and low error. These results suggest that LCP generalizes beyond pretraining and
behaves dynamically, a crucial property for real-world hypothesis assessment.

7 Related Work

Elicit Priors from Human Experts. O’Hagan et al. [[16] and Gosling [9] introduce the SHELF
framework, a structured protocol for eliciting expert judgments and converting them into probability
distributions. The process involves training, individual assessments, group discussions, and consensus-
building, followed by fitting a statistical distribution to the agreed-upon judgments. This human
elicitation process is costly and time-consuming, whereas our approach exploits the rich knowledge
encoded in LLM weights to approximate expert priors automatically.

LLMs for Regression Tasks. Several works exploit the knowledge encoded in LLMs for regression.
Choi et al. [3]] use LLMs for feature selection by prompting whether a variable is predictive of a given
target, while others [20} [10, 1] aim to model prior distributions over feature weights. For example,
Requeima et al. [20] require training examples to guide the LLM in generating output distributions,
and Capstick et al. [[1]] assume the LLM can directly parameterize a distribution by prompting it to
output means and standard deviations given feature and target names. In contrast, our work focuses on
constructing a prior distribution over correlation coefficients between variable pairs before observing
any data, using raw LLM logits directly—without requiring the model to parameterize a distribution.

Additional Related Work. We include further discussion on data discovery systems and automatic
hypothesis generation in Appendix [G]

8 Conclusions

In this paper, we propose the Logit-based Correlation Prior, an LLM-elicited prior that transforms raw
output logits into a calibrated, continuous predictive distribution over correlation values—paving the
way for automatic hypothesis assessment. Our experiments show (i) LCP achieves the best balance
between accuracy and calibration for predicting empirical correlations, outperforming Uniform,
Gaussian, and KDE priors; (ii) LCP outperforms a fine-tuned RoBERTa classifier on binary correlation
classification; (iii) LCP effectively highlights hypothesis-worthy correlations flagged by human
experts in noisy urban data; and (iv) LCP goes beyond memorizing correlation values from pretraining,
performing contextual reasoning.

9 Limitations

Generating an LCP requires an LLM call per correlation, which can be costly at scale. To im-
prove scalability, preprocessing steps—such as filtering out redundant variable pairs across similar
datasets—can help reduce the number of required queries. LLMs may also produce false positives or
negatives. An LLM may possess knowledge beyond that of human experts, causing it to dismiss corre-
lations that are actually insightful to the experts (false negatives). It can also misinterpret well-known
relationships, incorrectly flagging them as surprising (false positives), as shown in Appendix [F
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claim in the abstract and introduction that knowledge encoded in LLMs
can support automatic hypothesis assessment. To this end, we contribute the Logit-based
Calibrated Prior—a correlation prior derived from an LLM’s output logits. Our evaluation
shows that this prior effectively highlights correlations considered hypothesis-worthy by
human experts. Thus, our main claims accurately reflect the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Section Bl
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all necessary details to enable full reproducibility of our experimen-
tal results. Specifically: (1) Section 2] presents a detailed description of our algorithm (see
Algorithm[I)); (2) Sections[3|and[6]describe our benchmark construction and evaluation proce-
dures; and (3) we release our code and data at https://github.com/TheDataStation/
LLM-Prior-for-Correlation-Assessment!

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide source code for reproducing our experiments at https://github,
com/TheDataStation/LLM-Prior-for-Correlation-Assessment, The repository
includes a README with detailed instructions for installation, configuration, and running
the experiments.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all necessary details for people to understand our results. Sectiond]
outlines the rationale behind the evaluation metrics and describes the setup for each method
in detail.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: We report the full distribution of evaluation metrics across all runs (Fig. @),
include error bars in the binned analysis (Fig. [5), and provide standard deviations in Table 4]

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify the LLM used in Section[d] including its knowledge cutoff date; its
usage cost is publicly available [[17].

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The authors have reviewed and adhered to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss positive impacts in the introduction, highlighting how our approach
supports analysts in identifying hypothesis-worthy statistical relationships. Potential negative
impacts are discussed in Section[9] including the risk of false positives and negatives from
LLMs. We emphasize that the prior is intended to assist, not replace, human experts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper does not release data or models that have a high risk for misuse.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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13.

14.

15.

Justification: All external assets used in this work are properly cited, and we have ensured
that their licenses and terms of use are fully respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide well-documented code and benchmark datasets at https://
github.com/TheDataStation/LLM-Prior-for-Correlation-Assessment/,

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Normality Test via Chi-Square Goodness-of-Fit

To assess whether the LLM’s output distribution over correlation values conforms to a Gaussian
shape, we perform a chi-square goodness-of-fit test. For each correlation prompt, we obtain a discrete
probability distribution {(r;,p;)};_,, where each r; € [—1,1] is a decoded numeric value and p is
the associated model-assigned probability mass, derived from token-level logits.

We convert the probability mass function into a set of pseudo-counts by assuming a nominal sample
size M = 1000, yielding observed counts O; = M - p;. We then estimate the mean p and variance
o2 of the distribution as follows:

Next, we compute the expected count for each support point r; under a fitted Gaussian:

q; = ! exp _7(74] _ M)Q
T V2ro? 202 ’

which we normalize to form a probability distribution p; = ¢;/ ;> and then scale to expected
counts E; = M - p;.

The chi-square test statistic is computed as:

N

0. — E.)?

=3 OB
j J

J=1

The null hypothesis is that the observed distribution comes from the fitted Gaussian. We evaluate the
p-value corresponding to the computed x? and reject the null at the 5% significance level.

Applied to the 2,096 correlations in our benchmark, the normality hypothesis was rejected in 2,095
cases, indicating that the LLM’s output distributions are poorly approximated by a parametric
Gaussian form. This result justifies our non-parametric approach, which avoids imposing a fixed
distributional shape.

B Preventing Length Biases

In our setup that uses the GPT-40 tokenizer, both positive and negative correlation values are
represented with the same number of tokens. Specifically, both forms include four tokens: sign,
integer part, decimal point, and fractional part.

For example, the response:

{
"coefficient": "0.5"
}
is tokenized as > "’,’0’, 7.7 57,
While:
{
"coefficient": "-0.6"
}

is tokenized as > "-?,°07,7.?, 767,

In our decoding process, we always treat the token immediately following the colon as the sign token,
trimming the prefix (° ") before it. For positive numbers, the sign token can be an empty string or
>+ while for negatives it is >-’. As a result, negative numbers do not suffer a disadvantage due to
extra token length.
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C Distribution of Kernel Standard Deviations

Figure[/|shows the distribution of kernel standard deviations ¢ used in the Gaussian and KDE priors.
Both priors tend to produce small o values, contributing to overconfident and poorly calibrated
predictions. The median o is 0.10 for the Gaussian prior and 0.08 for the KDE prior.

0.6
b
=
204
@ *
g LCP o
0.2
b
0.0 Gaussian KDE

Figure 7: Distribution of kernel standard deviations for Gaussian and KDE priors.

D Understanding the LLM’s Behavior in Reporting Standard Deviations

The LLM (GPT-40) favors the value 0.1 when reporting standard deviations. o = 0.1 appears in 74%
of cases (1,552 out of 2,096 prompts). To better understand this behavior, we conducted a targeted
analysis of the LLM’s internal assumptions when predicting o.

We prompted GPT-40 with 50 column pairs whose names were random strings with no semantic
meaning (e.g., abc123, xzy987). This design removes contextual cues, allowing us to observe the
model’s default behavior under maximum uncertainty. In all 50 cases, the predicted correlation
coefficient was exactly zero, and in 46 out of 50 cases, the predicted standard deviation was 0.1.
The strong preference for o = 0.1 even in the absence of context suggests that, when prompted to
express its uncertainty as the standard deviation of a normal distribution, the LLM may default to
fixed assumptions—such as an implicit sample size—rather than adjusting its estimate based on
contextual information.

To investigate why o = 0.1 is so commonly predicted, we analyzed the distribution of Sample
Pearson’s correlation coefficient » under the assumption that the true correlation p = 0. When data is
sampled from a bivariate normal distribution with zero correlation, the sampling distribution of r has
the following form:

I (%) g n—4
frr)=—24~-(1-r")"7, for —1<r<1,
7 VT (232)
where n is the sample size and I'(+) is the gamma function. This distribution is bell-shaped, and its
standard deviation decreases as n increases. Specifically, the variance is given by Var[r] = ﬁ S0

the standard deviation is SD[r] = \/% When n = 100, this yields SD[r] ~ 0.1, which aligns with

the value most often returned by the LLM.

To test this hypothesis, we asked GPT-4o to explicitly state the sample size it assumes when estimating
uncertainty. In all 50 test cases, it responded with n = 100, confirming that its predicted standard
deviation reflects a fixed assumption about sample size rather than context-specific reasoning.

This result suggests that GPT-40’s predicted o reflects aleatoric uncertainty—uncertainty due to
random sampling around a fixed true correlation. The model assumes a fixed value of p and estimates
how much empirical values of  might vary if repeatedly sampled. However, the type of uncertainty
we aim to capture in this work is primarily epistemic uncertainty—uncertainty arising from the
LLM’s lack of knowledge about the relationship.
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For example, if X represents altitude and Y represents precipitation, the correlation might be 0.7 in
the U.S. and 0.6 in Germany. If the LLM does not know which country the data comes from, the true
correlation is ambiguous—not due to sampling variability, but due to missing contextual information.
This is epistemic uncertainty. Unlike aleatoric uncertainty, it can be reduced by providing more
metadata or context about the table and dataset.

In summary, GPT-40’s use of o = 0.1 reveals a key limitation of the Gaussian prior: it captures a
fixed form of uncertainty based on sampling variability but fails to account for uncertainty arising
from a lack of knowledge—such as ambiguity in context or missing information. As a result, it often
produces overconfident predictions.

E Expected Performance Under Random Ranking

The random ranking baseline yields a constant expected Precision @k of approximately 15/115 =
0.13, since each of the 15 expert correlations is equally likely to appear in any of the 115 positions.
The corresponding average rank is 58.0, which is the expected value of a discrete uniform distribution

over ranks 1 to 115: E[rank] = 12 = 58

F Multi-hop Reasoning Failure

We analyze a case involving the variables Horsepower and acceleration time (measured as 0—100
km/h time), which are originally negatively correlated: higher horsepower typically leads to faster
acceleration and thus shorter time.

We introduce a counterfactual context: “Imagine a world where cars are powered by highly unstable,
experimental engines. More horsepower means a greater chance of catastrophic failure, forcing
drivers to accelerate slowly and cautiously to avoid explosions.” Under this context, we would expect
the correlation to flip—higher horsepower should now lead to longer acceleration time, yielding a
positive correlation.

However, the LLM still predicts a negative correlation. Its explanation is as follows:

“In this hypothetical world, cars with more horsepower are more prone to catas-
trophic failure due to their unstable engines. As a result, drivers of high-horsepower
cars are likely to accelerate more slowly and cautiously to avoid triggering an explo-
sion. This cautious driving behavior would lead to longer 0—100 km/h acceleration
times. Conversely, cars with lower horsepower are less likely to experience such
failures, allowing drivers to accelerate more quickly. Therefore, there is likely a
strong negative correlation between horsepower and acceleration time, as higher
horsepower results in slower acceleration due to the need for caution.”

While the model correctly reasons that higher horsepower leads to slower acceleration, it fails at
the final reasoning step—mapping slower acceleration to longer time. This results in an incorrect
correlation prediction, highlighting a multi-hop reasoning failure.

G Additional Related Work

Data Discovery. Modern data discovery systems [2}, 25 211,22 18] [30] efficiently compute statistical
relationships such as correlations, causality, and mutual information across datasets. They extend
beyond analyzing variables within a single dataset to discovering relationships between variables
across multiple datasets by automatically transforming and joining different datasets. Specifically, for
correlation discovery, Nexus [8] aligns large repositories of spatio-temporal datasets and identifies
correlations, while Trummer [30] use a RoBERTa classifier to predict whether two variables are
correlated based solely on their names. Data discovery systems surface a large number of potential
relationships, but helping analysts identify the ones most relevant to their needs remains a key
challenge in this field. Our approach, which uses an LLM-elicited prior to rank relationships, serves
as a stepping stone toward addressing this challenge.

Automatic Hypothesis Generation. While data discovery systems identify statistical relationships
from structured data that may lead to new hypotheses, a complementary line of work [29} 31|
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32,113}, 133] focuses on mining unstructured scientific literature. These methods extract semantic
knowledge—such as entities, links, and claims—from text, and store this knowledge for further
analysis. Some approaches [29,|13] construct knowledge graphs and use graph analysis to suggest
hypotheses, while others leverage language models to analyze the knowledge and suggest hypotheses
directly [32}131]]. Zhou et al. [33]] explores combining literature-derived insights with structured data.

H Prompts

H.1 Correlation Prediction Prompt to Construct Logit-based Calibrated Prior

(" Correlation Prediction Prompt for LCP )

Task: You are given two attributes from a tabular dataset. Your task is to predict the Pearson’s
correlation coefficient between the two attributes.

Now, begin to solve the following problem:

Attributes:
— {attri}
- {attr2}

Source Table: {table}

Descriptions:
* Dataset Description: {tbl_desc}
¢ Attribute Descriptions:

{attr1}: {varl_desc}
{attr2}: {var2_desc}

Respond with your predictions in the following format:

{

"coefficient": "<predicted correlation coefficient>",

}
- J

H.2 Correlation Prediction Prompt to Construct Gaussian Prior

(" Correlation Prediction Prompt for LCP )

Task: You are given two attributes from a tabular dataset. Your task is to predict the Pearson’s
correlation coefficient between the two attributes and estimate your confidence in the predicted
correlation by providing the standard deviation as a measure of uncertainty. Note that the
standard deviation cannot be zero.

Now, begin to solve the following problem:
Attributes:
- {attri}
- {attr2}

Source Table: {table}

Descriptions:
 Dataset Description: {tbl_desc}
¢ Attribute Descriptions:

{attr1}: {varl_desc}
{attr2}: {var2_desc}
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Respond with your predictions in the following format:

{
"coefficient": "<predicted correlation coefficient>",
"standard deviation": "<predicted uncertainty>",

3

H.3 Generate Contradictory Context

(" Counterfactual Context Generation Prompt

Task:

Your task is to invent a hypothetical context that flips the expected relationship between these
attributes.
For example, on Earth, income and education are positively correlated; in an alternate world
where education makes people less capable, income and education would be negatively
correlated.

Please provide your new context in 2-3 concise sentences, avoiding any explicit mention of
the correlation.

Now, solve the following:
Attributes:

— {attri}
— {attr2}

Source Table: {table}

Descriptions:
 Dataset Description: {tbl_desc}
* Attribute Descriptions:

{attri}: {varl_desc}
{attr2}: {var2_desc}

Expected Correlation: {r_obs}
Respond in JSON:
{

"new_context": ""

3
N

You are given two attributes and the expected correlation between them from a tabular dataset.

H.4 Correlation Prediction with Hypothetical context

("~ Correlation Prediction with Hypothetical context

~

Task: Given two attributes from a tabular dataset and a hypothetical context (which may
differ from Earth), predict the Pearson correlation coefficient between them.

Guidelines:
* Use the scenario described under Context to inform your reasoning.

¢ Return a single floating-point value in the range [-1, 1].

Now, solve the following:
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Context:
{context}

Attributes:
— {attri}
- {attr2}

Source Table: {table}

Descriptions:
* Dataset Description: {tbl_desc}
* Attribute Descriptions:

{attr1}: {varl_desc}
{attr2}: {var2_desc}

Format your answer as:

{

"coefficient": "<predicted correlation coefficient>",
"explanation": "<explanation of the prediction>"

}

-

H.5 Column Semantics Quality Assessment

(" Column Semantics Quality Assessment Prompt

You are given a column name and the context in which it appears. Your task is to judge
whether the column name clearly and accurately conveys its meaning.

Column Name: {col_name}

Dataset Name: {dataset_name}
Dataset Description: {dataset_desc}

Please respond in JSON using exactly this format:

{
"valid": "<yes or no>"

3

\
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