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Figure 1. We introduce RAMPNET, a custom two-stage pipeline for bootstrapping curb ramp detection models in streetscape images from
open government data. In Stage 1, we auto-generate a labeled streetview curb ramp dataset by translating government-provided curb ramp
location data (i.e., <lat, long> lists) into pixel labels on Google Street View panoramas. Stage 2 then uses this generated dataset to train a
detection model that predicts curb ramp points in unseen panoramas.

Abstract

Curb ramps are critical for urban accessibility, but robustly
detecting them in images remains an open problem due to
the lack of large-scale, high-quality datasets. While prior
work has attempted to improve data availability with crowd-
sourced or manually labeled data, these efforts often fall
short in either quality or scale. In this paper, we introduce
and evaluate a two-stage pipeline to scale curb ramp de-
tection datasets and improve model performance. In Stage
1, we generate a dataset of more than 210,000 annotated
Google Street View (GSV) panoramas by auto-translating
government-provided curb ramp location data to pixel co-
ordinates in panoramic images. In Stage 2, we train a curb
ramp detection model (modified ConvNeXt V2) from the

generated dataset, achieving state-of-the-art performance.
To evaluate both stages of our pipeline, we compare to man-
ually labeled panoramas. Our generated dataset achieves
94.0% precision and 92.5% recall, and our detection model
reaches 0.9236 AP—far exceeding prior work. Our work
contributes the first large-scale, high-quality curb ramp de-
tection dataset, benchmark, and model.

1. Introduction
Curb ramps are critical to urban accessibility [24, 33], im-
pacting both independence [26] and wellbeing [39] for peo-
ple with mobility disabilities. However, information re-
garding curb ramp location and condition is limited, mak-
ing it difficult to plan and maintain accessible infrastruc-



ture [10, 14]. To obtain this information, municipalities
currently perform “boots-on-the-ground” sidewalk inspec-
tions [40], which can be prohibitively expensive and time-
consuming. To address these challenges, computer vision-
based techniques using streetscape images have been at-
tempted [1, 12, 17, 45], but their results are limited by a
lack of high-quality datasets [45]. While great strides have
been made in the object detection space, curb ramp detec-
tion remains difficult due to data scarcity.

Existing curb ramp detection datasets are unsuitable for
training deep learning models. Project Sidewalk [35] is a
crowdsourcing initiative that allows users to identify and
assess curb ramps and other accessibility features through
a Google Street View (GSV) web interface. While this ap-
proach is scalable, its design does not require users to com-
prehensively label each panorama (pano), rendering the data
suboptimal for deep learning methods. Indeed, Weld et al.
discuss this “under-labeling” as a limitation of using Project
Sidewalk data to train object detection models [45]. Despite
its limitations, the Project Sidewalk dataset [38] is currently
one of the only publicly available data sources for image-
based curb ramp detection. One alternative is the Mapillary
Vistas dataset [25], which has a class for “curb cuts”; how-
ever, we found that their categorization was overly broad
and included driveways labeled as curb cuts.

In this paper, we introduce and evaluate a two-stage
pipeline (Fig. 1), called RAMPNET, that leverages open
government-provided curb ramp location datasets to auto-
label curb ramps in streetscape images. While many local
governments lack open data on curb ramp locations [10],
the datasets that are available contain only metadata (e.g.,
text lists of <lat, long>) without corresponding images,
precluding their usage with computer vision techniques.
Thus, in Stage 1 of our pipeline, we introduce an auto-
mated method to translate these city-collected location co-
ordinates to image pixel coordinates in GSV panoramas, al-
lowing us to create a dataset comprising over 840,000 auto-
generated curb ramp labels. During the translation process,
we use a ConvNeXt V2 [46] deep learning model to isolate
the exact point of a curb ramp given a crop in the direc-
tion of the object’s location (derived from the <lat, long>).
In Stage 2, we use our generated dataset to train a sepa-
rate deep learning model (again using ConvNeXt V2) that
detects curb ramps in GSV panoramas, demonstrating real
world applicability. By introducing a highly scalable, auto-
matic, image-based curb ramp labeling pipeline, along with
a new open dataset and initial benchmarks, our overarching
goal is to help standardize and advance curb ramp detec-
tion research—similar to how WIDER FACE [48] and VG-
GFace2 [7] advanced face detection research.

We evaluate both pipeline stages by comparing to man-
ually labeled panoramas (ground truth). We randomly se-
lected and manually labeled 1,000 panoramas, yielding

3,919 manual curb ramp labels. In comparing our Stage
1 output to ground truth, we find a high level of agreement
with the manual annotations, correctly identifying 92.5%
of curb ramps with 94.0% precision. For Stage 2, we find
that our model achieves state-of-the-art performance (0.924
AP) for curb ramp detection, greatly surpassing a previous
method [45] that relied solely on crowdsourced data.

In sum, our research contributes: (1) a new technique for
translating government-provided curb ramp location data
(<lat, long> lists) to pixel locations in streetscape panora-
mas; (2) the first large-scale, high-quality curb ramp detec-
tion dataset; (3) a comprehensive benchmark for measuring
curb ramp detection performance; and (4) a state-of-the-art
curb ramp detection model. Our code and datasets are also
open source1, allowing others to build off our work and es-
tablishing key benchmarks for the community. Importantly,
while Stage 1 relies on pre-existing government metadata,
this is only for bootstrapping. The Stage 2 model benefits
all cities with GSV availability.

2. Related Work
We describe work in curb ramp auditing and automated
streetscape analysis.

2.1. Curb Ramp Audit Methods
In the US, sidewalks are required to have curb ramps (or
“curb cuts”) to support mobility for all, including people
in wheelchairs, caregivers pushing strollers, or even trav-
elers pulling luggage [10, 43]. Traditionally, cities au-
dit curb ramps through “boots-on-the-ground” sidewalk in-
spections [40]. However, these manual audits are expensive
and time-consuming [34]. Indeed, in a recent study of 178
US cities, Deitz et al. found that only 10% published data
on curb ramps [10]. Recent work has attempted to accel-
erate this auditing process with handheld LiDAR devices
to reduce the amount of measurements performed manu-
ally [3, 9, 32, 42]. However, these tools still require work-
ers to conduct on-site data collection, limiting scalability.
Moreover, this approach focuses primarily on assessing the
quality of curb ramps at known locations, rather than de-
tecting where curb ramps are, as we do in this work. In
general, in-person data collection still faces challenges with
regards to cost and scalability despite attempts to improve
efficiency. Some municipalities offer community-oriented
tools [29] that allow residents to report accessibility issues,
but these systems again rely on in situ observation and ac-
tive citizen participation, limiting scalability.

Prior work has attempted to leverage sensor data (e.g.,
accelerometer, gyroscope, and magnetometer data) to aid
in urban accessibility assessment. Briometrix [6], a com-
pany that specializes in sidewalk mobility audits, uses in-

1https://github.com/ProjectSidewalk/RampNet



strumented wheelchairs to collect sensing data. Similarly,
SideSeeing [8], a multimodal dataset for sidewalk assess-
ment, uses video and sensing data captured with chest-
mounted mobile devices. Unlike traditional in-person side-
walk audits, this approach directly involves pedestrians in
the auditing process. Still, the need for physical, on-site
data collection and inspection hinders scalability.

Virtual crowdsourcing initiatives are a promising alterna-
tive [16]. For example, Project Sidewalk [35] allows users
to identify and assess accessibility features like curb ramps
through a GSV web interface. Compared to field audits,
this technique scales rapidly and at a lower cost. Impor-
tantly, users need not be physically present in the city to
contribute. Previous work has demonstrated a high level of
agreement between these crowdsourced labels and govern-
ment field data [4]. While Project Sidewalk’s crowdsourc-
ing approach scales, it is still limited due to its requirement
for human labor. In addition, Project Sidewalk does not re-
quire users to comprehensively label panoramas, complicat-
ing efforts to use its data in deep learning applications [45].

Others have explored computer vision techniques to de-
tect pedestrian features in aerial imagery [19], including for
sidewalks [18, 27], crosswalks [2], and roads [36]. How-
ever, detecting curb ramps [13] remains challenging due to
occlusions from shadows and trees, their relatively small
size, and their tendency to visually blend in with sidewalks.
It is also difficult to reliably assess curb ramp quality fac-
tors (e.g., steepness, presence of tactile warnings) due to the
low resolution and inherent limitations of aerial imagery.
While our work focuses on detection rather than quality as-
sessment, our usage of high-resolution streetscape imagery
instead of aerial imagery enables future work for this task.

2.2. Automated Streetscape Analysis

With the rise of computer vision and deep learning tech-
nologies, streetscape imagery has increasingly become an
important tool for large-scale urban analysis [5, 20]. GSV,
the largest repository of such imagery, primarily collects
panoramas along public roadways, offering a plethora of
data about the built environment. This data has been
used in multiple domains, including accessibility assess-
ment [1, 12, 17, 45], demographic studies [15], neigh-
borhood quality assessment [44], and real estate valua-
tion [23]. When used in conjunction with computer vi-
sion techniques, streetscape imagery provides a low-cost
and scalable method for understanding urban environments.

Prior work has attempted to leverage streetscape imagery
and computer vision models to detect curb ramps and other
accessibility features in images. For example, Hara et al.
developed Tohme [17], a system that combines crowdsourc-
ing and computer vision to semi-automatically detect curb
ramps in GSV imagery. While far from fully automated
curb ramp detection, their system results in a 13% reduction

in time cost compared to manual labeling alone. Building
on this work, Weld et al. introduced a customized ResNet
model trained on crowdsourced data to automatically detect
accessibility features (e.g., curb ramps, missing curb ramps,
obstructions, surface problems) in GSV panoramas [45].

Despite these efforts, no existing curb ramp detection
model comes close to human-level labeling performance.
Tohme achieves a recall of 67% and a precision of 26%
when benchmarked against manual labels [17]. Weld et al.
improve upon this with a recall of 78.7% and a precision
of 33.7% [45], but these results are still infeasible for fully
automatic urban accessibility assessment. While a variety
of factors play into this poor performance, two key factors
are: (1) the lack of large-scale, high-quality and open curb
ramp image datasets; (2) the lack of standardized bench-
marks. Our research attempts to address both, generating a
dataset that is both larger and cleaner than previous efforts,
and enabling a state-of-the-art curb ramp detection model
that greatly outperforms prior work.

3. Stage 1: Dataset Generation
We introduce and evaluate a two-stage pipeline (Fig. 1),
called RAMPNET, for bootstrapping curb ramp detection
in streetscape images from open government metadata.
We first describe Stage 1, which auto-generates a labeled
image-based curb ramp dataset by translating government-
provided curb ramp location data to image pixel coordinates
in GSV panoramas (Fig. 3). Rather than traditional object
detection datasets, which contain bounding boxes, we use
single points to represent curb ramps, mirroring prior work
in curb ramp detection [35, 45]. At a high level, our dataset
generation process involves identifying relevant panoramas,
extracting directional image crops, localizing curb ramps
within these crops, and aggregating the results back onto
the full panorama.

3.1. Dataset Selection
We describe our dataset selection process both for the open
government data as well as corresponding GSV panoramas.

Selecting government datasets. Stage 1 is dependent
on high quality curb ramp location data published by lo-
cal governments. However, as noted previously, this data is
rare: of the 178 US cities studied in [10], 90% published
open street data but only 34% had sidewalk data and far
fewer (10%) included curb ramps. Our goal is to leverage
those cities that do publish curb ramp locations, translate
those locations to pixels in GSV panos, and use this new
dataset to train computer vision models.

Even when government curb ramp data is available, we
observed location imprecision, which impacts our pipeline
(see Fig. 2). To evaluate location quality, we manually ex-
amined curb ramp data from eight different local govern-
ment datasets by overlaying curb ramp locations on top of



Figure 2. A visual comparison of location data quality. (a) High-
quality coordinates precisely align with curb ramps’ physical loca-
tion. (b) In contrast, low-quality coordinates are often misplaced,
rendering them unsuitable for our method.

City # of Curb Ramps Location Precision

Austin, TX 48,995 OK
Bend, OR 13,611 Good
Los Angeles, CA 91,759 OK
Nashville, TN 18,285 OK
New York City, NY 217,680 Good
Portland, OR 45,324 Good
Seattle, WA 45,653 Poor
Washington D.C. 34,859 OK

Table 1. Initial sample of government-provided curb ramp datasets
in the US and their location precision compared to aerial imagery.

an aerial imagery base map. Of the eight cities, one city
(Seattle) had poor location precision, four were OK, and
three were good—see Tab. 1. For our purposes, we use all
data from the good category: New York City, NY [30]; Port-
land, OR [31]; and Bend, OR [28]—all which offer precise
and diverse curb ramp styles.

While formats vary, each government-provided dataset
includes at least a unique identifier and a <lat, long> tuple
(e.g., see Figs. 1 and 3). For Stage 1, we need to convert
these location tuples to corresponding pixel locations in a
GSV panorama. For this, we need to determine which GSV
panoramas best correspond to the curb ramp location data.

Selecting GSV panoramas. To identify and select cor-
responding GSV panoramas, we define a 10-meter radius
around each government-defined curb ramp location and
download all available panoramas within this boundary as
an equirectangular image at 4096×2048 pixel resolution—
a resolution we selected because both prior work [17] and
our own testing conclude that further increasing the resolu-
tion results in minimal performance gain while significantly
increasing computational complexity.

Selecting label candidates. For each panorama within
the 10-meter radius, we then must determine which curb

ramps to label within it. Using the government data,
we select all curb ramps within a 35-meter radius of the
panorama’s location. This radius is intentionally larger
than the 10-meter radius used for panorama selection, as
it ensures that all curb ramps reasonably visible within the
panorama are captured and labeled. Therefore, while a
pano is selected based on a single nearby curb ramp that
is within 10 meters, its final set of labels includes all curb
ramps within a larger 35-meter radius. We also require
the curb ramp installation date (defined in the government
data) to be earlier than the panorama capture date. For
each panorama, all curb ramp locations that meet these con-
straints will be marked as label candidates and saved for the
auto-translation step, where we convert their locations to
image pixel coordinates.

To reflect real-world scenarios, we also infuse our
dataset with 20% null images (i.e., a panorama that con-
tains zero curb ramps). To download a null panorama, we
first randomly select one of the three cities: New York City,
Portland, or Bend. We then choose a random point on that
city’s street network and locate nearby panoramas. If none
of the nearby panos are positioned at least 60 meters away
from any known curb ramp location, we repeat the process,
continuing until we find a panorama that is at least 60 me-
ters away from all curb ramps.

In total, the above process yields 219,170 panoramas and
959,442 label candidates. Of these panoramas, 54.9% are
from New York City, 8.5% are from Bend, and 36.6% are
from Portland (left columns in Tab. 2). The discrepancy
between cities can be attributed to differences in city size,
GSV availability, and curb ramp quantity.

3.2. Auto-Translating Geo to Image Coordinates
With the government-based curb ramp location data and
corresponding GSV panos downloaded, we now need to
translate the curb ramp <lat, long> coordinates to image
pixel coordinates on the GSV panos. We do this in two
parts: first, for each potential curb ramp in a pano, we ex-
tract a directional crop around the curb ramp in the pano and
then, second, we use a trained ConvNeXtV2 [46] model to
isolate curb ramp points within these crops (Fig. 3).

Auto-cropping along curb ramp heading. To gener-
ate the crops around each curb ramp, we calculate the angle
between the panorama capture location and the curb ramp
location. Using this angle, we generate a square perspec-
tive crop in the direction of the curb ramp (1024 × 1024
pixels), akin to what a user would observe in GSV if they
were looking toward it. The crop has a 90-degree field of
view and a 30-degree downward pitch to better capture the
ground level. To focus our analysis on relevant context, we
retain only the middle third of the crop, producing a final
image that is 341× 1024 pixels.

Identifying curb ramp pixels. To isolate the exact pixel



Figure 3. The auto-translation method used to generate our dataset. For each label candidate (a government-provided curb ramp location),
we compute its angle with respect to the panorama location. With this angle, we extract a directional perspective crop from the full
panorama. We then pass this crop to our auto-translation model, which outputs a heatmap whose peaks represent possible curb ramp
points. These points are projected back onto the original equirectangular image, yielding a fully-labeled panorama.

coordinates of curb ramps within each crop, we use a mod-
ified ConvNeXt V2 [46] model (specifically, the base vari-
ant) that outputs a heatmap of probable curb ramp points.
Our model is initially pretrained on crops extracted from
20,698 annotated Project Sidewalk [35] panoramas span-
ning 12 US cities, including Chicago, Seattle, Pittsburgh,
and St. Louis. However, using Project Sidewalk data alone
results in poor performance due to its many missing labels2.
Indeed, a crop model that is solely trained on Project Side-
walk data alone achieves a recall of 76.7%, and a precision
of 77.2%. To rectify this issue, we add a second round
of training on crops extracted from a smaller, manually-
labeled dataset of 312 panoramas from Bend, NYC, and
Portland. Here, every curb ramp occurrence in each pano
was labeled using Label Studio [41]. By combining both
data sources, our final crop model achieves a recall of
89.0%, and a precision of 87.0%. This crop-level model
is not to be confused with our Stage 2 curb ramp detection
model, which identifies curb ramps in whole panoramas,
rather than just crops.

After the auto-translation process, our dataset contains
214,376 fully labeled panoramas and 849,895 curb ramp la-
bels, larger than any previous efforts (see Tab. 3).

3.3. Study Method
We now describe our evaluation approach. Though our im-
mediate focus here is on evaluating Stage 1 performance,
we describe methodological details shared between Stage
1 and 2. We first divide our auto-labeled Stage 1 dataset
of 214,376 panoramas into 70% training, 20% validation,
and 10% test splits. Because an individual curb ramp may
be present in more than one panorama at differing angles
or viewpoints, we must be wary of possible data leakage.

2As noted, users in Project Sidewalk are asked to label sidewalk fea-
tures and obstacles in GSV imagery, including curb ramps; however, they
may do so from multiple panoramas rather than comprehensively labeling
a single panorama—which makes the data suboptimal for model training

City Initial After Auto-Trans.

Curb Ramp Panoramas Curb Ramp Panoramas

Bend 20,451 18,545 19,082 18,205
New York 655,084 120,430 566,832 117,323
Portland 283,907 80,195 263,981 78,848

Total 959,442 219,170 849,895 214,376

Table 2. Table showing the number of initial curb ramp candidates
and panoramas, and the final counts of successfully generated la-
bels and panoramas after auto-translation in Stage 1.

To avoid this, we use a semi-random splitting strategy that
groups panoramas located within 60 meters of each other
into the same split. Our final experimental dataset contains
150,063 panoramas in the training split, 42,875 in valida-
tion, and 21,438 in test. While we do not use the valida-
tion split in this study, we provide it for other researchers
for tasks such as hyperparameter tuning or model selection.
We now describe our ground truth approach and correctness
metrics; both are used to evaluate Stage 1 and 2.

Ground truth. To create a ground truth, we manually
labeled curb ramps across 1,000 panoramas randomly sam-
pled from the test split (independent of the 312 aforemen-
tioned manually labeled panoramas). We used Label Stu-
dio [41] for this process. In total, we labeled the center
points of 3,919 curb ramps (3.9 ramps/pano).

Correctness metrics. To evaluate the accuracy of
predicted curb ramp labels against our manually-created
ground truth, we use a proximity-based comparison
method. For each predicted label, we check if there are
any ground-truth points within an 88-pixel radius in the
4096 × 2048 pixel panorama. If not, we mark the label
as a false positive. Conversely, if it does match one or more
ground-truth points, those within the radius will be counted
as a true positives. If more than one predicted label matches
the same ground-truth point, we pick the one with highest



Figure 4. We performed a qualitative analysis of 100 randomly sampled Stage 1 errors and inductively categorized them into five groups:
visually ambiguous (43% of errors), occlusion (27%), disagreements with government data (17%), driveways mistaken for curb ramps
(8%), and unlabeled adjacent curb ramps (5%).

confidence and ignore the others entirely in our calculation.
This is to ensure that no ground-truth points are counted
more than once. If any of the ground-truth points are not
detected, we count these as false negatives.

3.4. Results
In comparing the 3,919 ground truth labels to Stage 1 output
across 1,000 panoramas, our findings demonstrate a high
level of agreement, achieving 92.5% recall and 94.0% preci-
sion for an F-score of 0.932. Tab. 3 compares our dataset to
Project Sidewalk’s [35], demonstrating significant improve-
ments in both scale and comprehensiveness.

To advance understanding of performance, we randomly
sampled and analyzed 100 errors and inductively coded
them thematically. The most common error was disagree-
ments on visually ambiguous curb ramps (43%). These
cases involved distant or low-resolution objects where a
definitive identification is inherently subjective. Other com-
mon errors were the following: occlusions, where a car, bus,
or other object obscures the curb ramp itself but our model
still makes a speculative prediction (27%); disagreements
in government data either due to underlying errors in the
open datasets (e.g., a missing curb ramp labeled as a curb
ramp) or temporal differences between capture dates in the
government metadata vs. the GSV pano (17%); driveways
mistaken for curb ramps (e.g., an adjacent driveway leaks
into a crop) (8%); and unlabeled adjacent curb ramps (5%).

4. Stage Two: Curb Ramp Detection
While Stage 1 produces a large-scale dataset of auto-
generated curb ramp labels on GSV panos, in Stage 2, we
show how this generated dataset can be used to train a state-

Project Sidewalk RAMPNET Stage 1

Comprehensiveness Partially-Labeled Fully-Labeled
Data Source Crowdsourced Auto-Generated
# of Ramp Labels 427,435 849,895
# of Panoramas 149,574 214,376
Labels / Panorama∗ 2.86 4.96

∗Excludes panoramas with zero labels.

Table 3. Comparison of Project Sidewalk and RAMPNET datasets.

of-the-art curb ramp detection model using pixels alone–far
exceeding prior work [17, 45]. Crucially, unlike Stage 1,
which requires government data, the Stage 2 model works
on any city with streetscape imagery available.

4.1. Model Architecture
For the computer vision model, we again use the ConvNeXt
V2 [46] architecture, specifically the base model variant. To
speed up convergence and improve performance, we load
weights from a publicly available ConvNeXt V2 model that
is pretrained on the ImageNet-1k dataset [11].

To enable point-based object detection, we modify the
architecture’s output layers to perform heatmap regression.
We replace the classification head with a module consisting
of a 3 × 3 convolution, a ReLU activation, and a bilinear
upsampling layer, followed by a final 1 × 1 convolution that
produces a single-channel heatmap, as shown in Fig. 5. Our
model accepts a 4096 × 2048px panorama and outputs a
scaled-down 1024 × 512px heatmap of probable curb ramp
points. We represent each label in the heatmap by center-
ing a 2D gaussian kernel (σ = 10.0) at its corresponding



Figure 5. A heatmap generated by our Stage 2 curb ramp detection model. Peaks of the heatmap, which represent predicted curb ramp
points, are circled in blue.

Figure 6. Precision-recall curves of RAMPNET’s curb ramp detec-
tion model and the previous state-of-the-art [45]. Both are bench-
marked against our manually-labeled dataset.

location in the image. This heatmap regression approach
is commonly used in human pose estimation [47], but here
we use it for point-based object detection. To extract the
predicted points, we identify peaks in the heatmap whose
maximum value is above a certain threshold (currently set
to 0.55). This threshold can be tweaked depending on the
user’s desired balance of precision and recall.

4.2. Training

We use the same 70% training (150,063 panos), 20% val-
idation (42,875 panos), and 10% test split (21,438 panos)
described in Sec. 3. During the training process, we aug-
ment our data by randomly applying a horizontal flip, as
both our own testing and prior work [37] has demonstrated
that this increases performance. Our loss function is pixel-
wise mean squared error. We use the Adam optimizer [22]
with a learning rate of 1.0 × 10−5. We trained the model
for a single epoch on 16 NVIDIA L40s GPUs (distributed
across four nodes). Our batch size was limited to one, as
larger batch sizes were infeasible due to VRAM limitations.

Weld et al. [45] RAMPNET Stage 2

Input Type Depth+Image+Geo Data Image Data
Dataset Used Project Sidewalk [35] Auto-Generated
Avg. Precision 0.3803 0.9236

Table 4. Performance comparison of our curb ramp detection
model against the previous state-of-the-art. Average precision is
calculated by benchmarking against our manually-labeled subset.

4.3. Results

We then tested our trained model against the 1,000-
panorama ground truth dataset (with 3,919 manually la-
beled curb ramps). We report an average precision (AP)
of 0.924. To contextualize these results, we compared to
the previous state-of-the-art curb ramp detection system re-
leased by Weld et al. [45]. Using their released model
checkpoints and code [38], we evaluated their curb ramp
detection system on our manually labeled dataset, finding
that they achieve 0.380 AP, far lower than our 0.924 AP
(see Tab. 4 and Fig. 6).

Further, we also tested our trained model against the test
split of our auto-generated dataset (containing 21,438 panos
and 82,055 labels). We report an AP of 0.873. However, we
consider this benchmark to be less reliable than our above
comparison with the manually-labeled ground truth, due
to the higher likelihood of there being errors in the auto-
generated dataset.

Naturally, because we are eliminating one input (the gov-
ernment curb ramp data), we might expect lower perfor-
mance in Stage 2 than in Stage 1. However, we find this
performance gap to be surprisingly small, with our Stage
2 model essentially matching the performance of our Stage
1 dataset. When benchmarking against the 1000-panorama
ground truth dataset, our Stage 1 generated dataset had a re-
call of 92.5% and a precision of 94.0% versus our Stage 2
model’s precision of 93.9% at the same recall threshold.



5. Discussion

In this paper, we introduced RAMPNET, a custom two-
stage pipeline for bootstrapping curb ramp detection in
streetscape images using open government metadata and
deep learning. Below, we discuss limitations, suggest direc-
tions for future work, and describe the impact and potential
applications of automatic curb ramp detection.

5.1. Limitations
While our dataset includes more than 840,000 curb ramp
labels, many of the labels are duplicates of the same phys-
ical curb ramp captured from different panorama view-
points. Indeed, an individual curb ramp appears in 4.5 dif-
ferent panoramas on average. While still useful for train-
ing, these repeated views may offer less value than entirely
unique curb ramps. During the dataset splitting process, re-
searchers must take care to avoid data leakage by ensuring
that the same curb ramp is not distributed across multiple
splits, a precaution taken in our work.

As with any deep learning system, our dataset and model
contain biases that have the potential to limit generaliz-
ability. For example, our dataset was generated from just
three U.S. cities. While we strategically selected these lo-
cations for their diverse curb ramp styles, the limited cover-
age area likely introduces regional bias. While we believe
our dataset is sufficiently diverse to support the detection
of curb ramps in the United States, more work is needed
to create datasets for other regions, where curb ramp style
differs significantly.

Our system is also limited by its dependence on
streetscape imagery, which can sometimes be unavailable or
outdated. While up-to-date streetscape imagery is generally
available in major U.S. cities, coverage in rural areas, small
towns, or rapidly changing neighborhoods can be sparse or
outdated, reducing our system’s accuracy and timeliness.
Indeed, a recent study by Kim and Jang, which analyzed
45 small- and medium-sized cities, found that 44% of com-
mute routes lacked adequate GSV imagery and that there
was significant temporal variability in the coverage [21].

5.2. Future Work
Our long-term goal is to enable fully automatic urban acces-
sibility assessment. We have addressed a key component of
that goal by developing a method for automatic curb ramp
detection. However, other unsolved problems remain.

To assess curb ramp accessibility, cities must (1) know
where curb ramps are and (2) be able to evaluate key quality
factors (e.g., presence of tactile warnings, steepness). While
our work addresses the first requirement by enabling the
automatic detection of curb ramps, further work is needed
to enable automatic quality assessment. We posit that our
auto-translation technique could be extended for this task,

as quality information is often included in government-
provided curb ramp metadata. Although RAMPNET, like
Project Sidewalk [35], outputs single-point labels, future
work should explore generating bounding boxes to pro-
vide richer spatial information crucial for quality assess-
ment (e.g., ramp width and alignment).

While the focus of our work is auto-translating location
coordinates to image pixel coordinates, the reverse process
is equally important. Current city workflows are reliant on
location data rather than the image pixel coordinates that
our model outputs. The introduction of a system to trans-
late back to location coordinates would greatly enhance the
usability of our curb ramp detection model.

Lastly, curb ramps are not the only urban accessibil-
ity feature that could benefit from automatic detection and
analysis. Other features (e.g., pedestrian signals, missing
curb ramps, path obstacles, surface problems) play a simi-
larly vital role in ensuring urban accessibility. We encour-
age future work to explore ways of automatically detecting
and assessing these additional features to provide a more
comprehensive understanding of accessibility conditions.

5.3. Impact on Urban Accessibility
Our research aids in urban accessibility planning by en-
abling a low-cost, scalable method for curb ramp detection.
Our dataset achieves 92.5% recall and 94.0% precision, and
our curb ramp detection model reaches 0.924 AP, signif-
icantly outperforming prior work and, for the first time,
achieving near-human-level quality.

We envision a future where whole cities can be audited in
a single day instead of over the course of multiple months.
By reducing time and cost requirements, we allow more
cities to conduct crucial accessibility audits. We also give
accessibility advocates a powerful tool to hold cities ac-
countable to the legal requirements defined by the Ameri-
cans with Disabilities Act [43].

6. Conclusion
In conclusion, RAMPNET advances research in automatic
curb ramp detection by (1) offering a novel technique for
auto-translating open government datasets into GSV pano
labels, by (2) producing the largest and most comprehen-
sive curb ramp detection dataset, and by (3) establishing
key performance benchmarks for automatic curb ramp de-
tection (0.924 AP). We believe these contributions provide
a foundation for fully automatic urban accessibility assess-
ment and future research in the area.
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