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Abstract

Real world uses of deep learning require predictable model behavior under distribution shifts. Mod-
els such as CLIP show emergent natural distributional robustness comparable to humans, but may
require hundreds of millions of training samples. Can we train robust learners in a domain where data
is limited? To rigorously address this question, we introduce JANuS (Joint Annotations and Names
Set), a collection of four new training datasets with images, labels, and corresponding captions, and
perform a series of carefully controlled investigations of factors contributing to robustness in im-
age classification, then compare those results to findings derived from a large-scale meta-analysis.
Using this approach, we show that standard ResNet-50 trained with the cross-entropy loss on 2.4
million image samples can attain comparable robustness to a CLIP ResNet-50 trained on 400 mil-
lion samples. To our knowledge, this is the first result showing (near) state-of-the-art distributional
robustness on limited data budgets.

1 Introduction

1.1 Motivation

A natural distribution shift is defined as evaluation data which differs from the data on which a model was trained due
to natural factors. Real world uses of deep image classifiers require predictable model behavior under such shifts. Un-
fortunately, several “standard” image classification models perform significantly worse under natural shifts (Hendrycks
& Dietterich, 2019; Miller et al., 2021), in contrast with human vision (Recht et al., 2019).

Vision-Language (VL) models such as CLIP, introduced in Radford et al. (2021), have shown emergent natural distri-
butional robustness comparable to humans across a wide range of shifts of ImageNet, at the cost of base accuracy. Jia
et al. (2021) showed CLIP-like models can be carefully fine-tuned to be robust as well as achieve high base accuracy.
However, such models require massive amounts of data for training, and in some cases, orders of magnitude more
samples than standard supervised models (Pham et al., 2021).

These results raise challenging questions: are data scaling laws at work for robust computer vision, similar to those
discovered in NLP tasks? Does robustness only emerge when models are trained on massive datasets? And is vision-
language pre-training necessary for robustness? Radford et al. (2021) argue that VL pre-training in CLIP offers unique
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Figure 1: (L) Under a data budget, standard CE-loss models outperform VL-loss models in both accuracy and
robustness. (R) For most evaluation metrics, this effect continues in ultra-high data regimes. (L) We train
ResNet-50 models using both CE-loss and VL-loss across a wide range of data scales, and find that accuracy of
VL-loss and CE-loss models is extremely similar at small scales. For scaling 4X and above, CE-loss models exhibit
superior robustness; the CE-loss model trained on just 2.4 Mn JANuS samples has comparable robustness, as well as
comparable accuracy, to the CLIP ResNet-50 trained on 400 Mn samples. (See Tab. 1 for information on the JANuS
dataset, which we create and use to train these models, and Sec. 5.1 for a detailed explanation of our methods.) (R)
We compare the most robust VL-loss and CE-loss models for every tier of dataset size across three different evaluation
metrics. Models trained on fewer than 1.5m samples are trained exclusively on supervised data; larger models are
trained on a mix of supervised and semi-supervised data. VL-loss models are more robust on IN100. CE-loss models
are more robust on IN1000 and IN100-Dogs, and when less data is available. See Sec. 5.2 for a detailed explanation
of our methods. Image best viewed in color.

advantages when compared to conventional large-data model training techniques. By contrast, Fang et al. (2022) and
Nguyen et al. (2022) argue that VL robustness is a consequence of the training data diversity and quantity, with
vision-language pretraining playing little role.

In most real-world applications, data is limited, and unlikely to be accompanied by informative natural language
captions. For example, the PCam medical imaging dataset from Veeling et al. (2019) has only around 320, 000 images.
Nevertheless, distributional robustness is of paramount importance in the setting. What can be done to train robust
models in data-limited settings without access to informative captions? Can we leverage other attributes of model
training which have largely been disregarded in the distributional robustness literature, such as architecture, model
size, and image resolution?

1.2 Our Contributions

Our objective in this paper is to clearly delineate the potential factors influencing distributional robustness for image
classification. To achieve this, we evaluate a vast suite of existing models trained on diverse data budgets, supplement-
ing with dozens of new models trained from scratch. Overall, our key contributions are as follows:

1. We introduce JANuS (Joint Annotations and Names Set), a new class-balanced dataset with images, labels, and
captions. To our knowledge, this is the first such dataset of its kind. (See Tab. 1).

2. We conduct ablation studies of several categories of image classification models using JANuS as a controllable
training dataset. For the first time, we show that it is possible to train highly robust and accurate models, using
conventional cross-entropy (CE) loss, even when both data and model size are limited (See Fig. 1).

3. We conduct the largest meta-analysis (to date) of robustness of image classification models (numbering over 650),
including many recent architectures, and show that even with relatively modest model and data scaling (compared
to Brown et al. (2020), Radford et al. (2021)), one can achieve robust classification performance. (See Fig. 2 and
Fig. 3.)

4. We outline useful heuristics to improve distributional robustness when data budgets are limited. (See Sec. 7).
5. In order to enable future research and reproducibility, we release our code, our dataset, and a complete enumeration

of our results for all models in the study (see supplemental attachments).
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2 Related Work

Our paper follows a series of recent works studying robustness under distribution shift in the context of image classi-
fication (Recht et al., 2019; Taori et al., 2020; Miller et al., 2021; Fang et al., 2022; Nguyen et al., 2022). This line of
inquiry into distributional robustness focused on the linear fit between in-distribution and out-of-distribution accuracy
found between common image classification datasets (such as ImageNet) and their distribution shifts. In contrast to
most of these earlier papers, our analysis takes place in a realistic setting where models are trained on a wide range of
datasets. Therefore, following the results in Nguyen et al. (2022), we do not use linear fit measures in our analysis,
instead relying on average out-of-distribution robustness.

Jia et al. (2021); Pham et al. (2021) showed that human-level distributional robustness is possible even as base accuracy
approaches state-of-the-art, as long as sufficient data is available for training. The gains are not limited to CLIP; other
VL-loss (vision-language loss) functions also achieve strong distributional robustness (Yu et al., 2022; Wang et al.,
2022b). We discuss some of these alternate approaches in Appendix Sec. A, while noting that none of these exhibit
superior robustness than CLIP.

The internals of CLIP differ from those of typical models in several important ways: the choice of loss function, the
training dataset, and the use of natural language captions as labels. However, identifying which of these differences
lead to CLIP’s outstanding robustness is still an open question. Recent works have addressed this question from differ-
ent angles. Fang et al. (2022) argue that intrinsic diversity of training image data is the main source of the distributional
robustness gains of VL models in the zero-shot setting, with factors such as language supervision contributing little
to no distributional robustness. However, in a different (transfer learning) setting, Santurkar et al. (2022) argue that,
given a sufficiently large pretraining dataset and descriptive, low variability captions, contrastively trained VL mod-
els are more robust than self-supervised image-only models trained with the SIMCLR-loss. We conduct controlled
comparisons between vision-language classifiers and conventional classifiers, and find that when controlling for data
quantity and diversity, high accuracy VL-loss models are actually less robust than high accuracy CE-loss models.

Nguyen et al. (2022) is an important precursor to our work. Their extensive experiments on vision-language models
in the low accuracy regime showed that controlling for the pretraining dataset was essential for understanding dis-
tributional robustness. We extend this understanding, and show that model architecture, size, image resolution, and
even the label set selected for the classification problem can all have substantial effects on robustness. Finally, unlike
Nguyen et al. (2022), all our results are shown in both low and high accuracy regimes, and across different test sets.

In their paper investigating the role of language on robustness, Fang et al. (2022) introduced ImageNet-Captions,
which added Flickr-captions to nearly 450,000 ImageNet images. We extend this work by introducing JANuS, which
add over 50,000 new human-supervised samples to 100 classes in ImageNet-Captions in order to rebalance the classes,
as it has been shown that CE-loss models often struggle with imbalanced classes (Phan & Yamamoto, 2020).

3 Preliminaries

Metrics for distributional robustness. Our primary metric is average robustness (abbv: Avg. Rob.), which is the
average test-set accuracy of a model on a set of distribution shifts. Although this measure is easy to interpret, it can
conceal substantial performance differences between shifts. Another metric we use is effective robustness, introduced
by Taori et al. (2020), primarily to situate our work within the existing literature. This metric is a graphical tool
to describe how robust a model is on natural distribution shifts. For human vision, a graph of base-versus-shift test
accuracy follows the y = x trendline; for neural networks, this trend-line generally is parallel to but below y = x.
Finally, we include Effective Robustness Ratio (abbv: E.R.R.), from Feuer et al. (2022) in our appendix tables. This is
defined as the ratio of average robustness over base task accuracy. This is an effective measure for comparisons among
models with roughly similar base accuracy.

Fine-tuning. Fine-tuning is the extremely common practice of initializing the weights of a model to values attained
during pretraining, and then adjusting them based on a new dataset. It has been shown that large-scale pretraining can
dramatically improve the base accuracy of computer vision models when compared to random initialization (Doso-
vitskiy et al., 2021; Steiner et al., 2022), and that the ImageNet dataset is very well suited to this task (Kornblith
et al., 2019). However, distributional robustness generally does not improve in proportion to the gains in base ac-
curacy. (Recht et al., 2019) In fact, Radford et al. (2021) found that pretraining and fine-tuning rapidly can erode
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Dataset G.T. Label Machine La-
bel

Caption
Source

Supervised Filtered Balanced

ImageNet-100 (IN100) ✓ ✓ Flickr, BLIP ✓ Human ✓
OpenImages-100 (OI100) ✓ ✓ Flickr, BLIP, annotated ✓ None X
LAION-100 (LAION100) X ✓ alt-text X CLIP X
YFCC-100 (YFCC100) X ✓ Flickr X Algo X

Table 1: The JANuS dataset allows for controlled comparisons between models in a high accuracy regime. The
experiments in Fig. 1 (L) were conducted using a combination of the four main datasets in JANuS, which are described
here. G.T. Lbl. indicates the presence of human-annotated ground truth labels in the dataset. Machine Lbl. indicates
availability of synthetic labels; labeling strategies are detailed in 4.3. Caption Src. lists the sources for captions in
the dataset. Supervised indicates when ground truth labels exist for the dataset. CE-loss models benefit most from
supervised data. Filtered indicates when the dataset contents were processed in some way prior to inclusion. VL-loss
models struggle on unfiltered data. Balanced indicates whether the dataset is approximately class-balanced.

distributional robustness, even as base accuracy increases. Zhai et al. (2021); Wortsman et al. (2022a;b) closed the gap
but were unable to reproduce the zero-shot robustness attained by Radford et al. (2021). Given the limited efficacy of
fine-tuning, the majority of our results are reported on models trained from scratch. We confine our specific remarks
on transfer learning to Sec. A.

Glossary. For ease of understanding, we provide a glossary of common terms and abbreviations.

Loss functions. We examine models trained with two types of losses. VL-loss refers to the InfoNCE loss used by
CLIP (Radford et al., 2021). CE-loss is the typical cross-entropy loss used to train image classification models.

Label types. CE-loss models use integer labels (referring to discretely labelled classes), and VL-loss models use
caption labels. We refer to human-annotated labels (whenever available) as ground-truth. We refer to labels generated
by automated processes as either synthetic or subset-matched (defined below in Sec. 4).

Data filtration. We define data filtration as any strategy which sub-selects image-caption pairs.

4 JANuS: A New Benchmark Dataset for Robust Model Training

Training large-scale image classification models from scratch on existing benchmarks may present resource challenges
for academic researchers, particularly vision-language models with dual architectures. Prior papers such as Fang et al.
(2022) resolve this by obtaining low- or medium-accuracy results, and using the linear fit hypothesis of Miller et al.
(2021) to project those results to high accuracy regimes. However, as observed in Nguyen et al. (2022), trends observed
in low-accuracy regimes may not persist in high-accuracy regimes, unless the training dataset, loss function, and label
set are controlled for across different models.

For this reason, we postulate that a 100-class, broad scope problem is ideal for comparative studies of robustness.
However, no training dataset exists which is designed for 100-class ImageNet problems and is sufficiently diverse to
train high accuracy, high-robustness models with both VL-loss and CE-loss objectives.

To resolve this, we introduce JANuS (Joint Annotations and Names Set), a collection of four new training datasets
with images, labels, and corresponding captions. Each dataset in JANuS builds upon an existing dataset by selecting
or adding data from a known data source. Data sources for which ground truth labels exist are filtered by class. For
data sources where ground truth labels do not exist, we use a technique called subset matching to prefilter JANuS; a
detailed explanation of this technique can be found in Sec. H. The constituent datasets are the following:

1. ImageNet-100 (IN100): The 100 largest ImageNet-Captions classes from Fang et al. (2022), followed by class
rebalancing by addition of over 50,000 new image samples annotated with human-authored ground-truth labels.

2. OpenImages-100 (OI100): A subset of the OpenImages dataset, Kuznetsova et al. (2018), with restored original
Flickr-captions, and new BLIP-captions; samples selected by mapping human-labeled OpenImages-100 classnames
to ImageNet-100 classnames.
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3. LAION-100 (LAION100): A subset of the unlabeled LAION dataset, Schuhmann et al. (2021a), with samples
selected via subset matching on ImageNet-100 classes.

4. YFCC-100 (YFCC100): A subset of the unlabeled YFCC dataset, Thomee et al. (2016), with samples selected via
subset matching on ImageNet-100 classes.

We compare some of the key properties of each component of JANuS in Tab. 1.

The most important new contribution in JANuS is ImageNet-100, which is, to the best of our knowledge, the only
version of ImageNet which duplicates the original distribution’s class balance and supervision properties (ImageNet
is not perfectly class balanced, but it does not contain any long-tail classes; all classes in ImageNet have at least 750
samples), while also being fully captioned with original web-scraped labels.

Every JANuS sample has descriptive captions as well as class labels (either as human annotated or synthetic labels).

Furthermore, either VL-loss or CE-loss models trained on JANuS alone can achieve high validation accuracy, making
it possible for the first time to compare model distributional robustness while controlling for base accuracy.

These properties enable JANuS to be used to fairly compare both image-only and image-text training approaches while
controlling for dataset size and quality, making it a useful new benchmark for robustness comparisons.

4.1 IN100 performance is comparable to ImageNet.

In order to ensure that the baseline performance of VL-loss and CE-loss models is comparable on IN100 and the stan-
dard ImageNet despite the 50,000 newly labeled images, we train a VL (using the standard “A photo of a $CLASS-
NAME” prompt) and CE-loss model from scratch on IN100, and compare it to a CE-loss model trained for 256 epochs
on the same 100-class subset of ImageNet. Controlling for size, we find that our dataset performs slightly worse than
the baseline, but considerably better than that subset of ImageNet-Captions (Fang et al., 2022) alone.

4.2 Dataset Construction

The 100 classes in JANuS were selected randomly from a subset of all classes with more than 600 captions available
in ImageNet-Captions (Fang et al., 2022). The list of classes selected is available in Sec. J. We acknowledge that as
with any filtration strategy, this class selection approach favoring classes with more captioned images may introduce a
potential selection bias (which might spuriously correlate with accuracy or robustness). However, we feel that the risk
of this is outweighed by the many benefits of having such a dataset publicly available for future studies.

4.3 Supervision strategy

In Table 8 in the Appendix, we discuss in detail the supervision (labeling) strategy used for JANuS, with a per-class
breakdown of each class. An overview of the supervision process is as follows:

• All image samples were supervised by the authors of this paper.
• Samples were sourced from Flickr using the available API, sorted by ‘interesting’, with safesearch enabled, search-

ing only samples with Creative Commons licenses.
• Additional filtering terms were passed to the API in order to eliminate common confounds in the search terms.
• After the search term was selected, items were downloaded in bulk.
• All downloaded samples were then individually tagged by the researchers as either "IN-class" or "out-of-class",

using reference photographs from each class as a baseline comparison.

We found that classes varied in several respects:

• Some classes had far greater availability than others (ranging from 450,000 to 283 available samples).
• Some classes were much cleaner than others (ranging from 100 percent clean to around 25 percent).
• Some classes tended to be the ‘subject’ of images (such as dog breed) while others, such as mashed potato, tended

to be featured as secondary items in the ‘background’ of a image saple.
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5 Experimental Design

Our motivating goal in this paper is to identify which factors are most decisive in determining distributional robustness
in data-limited regimes. We enumerate several possibilities below:

(Q1) Are models trained on more samples more robust than models trained on fewer samples?
(Q2) Are models with more parameters more robust than models with few parameters?
(Q3) Are VL-loss models more robust than CE-loss models?
(Q4) Are ViT models more robust than convolution-based models?

We address each of this questions by designing careful experiments to evaluate model robustness. For each question,
we conduct two distinct types of evaluations. Approach 1 is a small-scale evaluation of models trained under highly
controlled settings. Approach 2 is a large-scale meta-analysis of publicly available pretrained models. We note that
both approaches have strengths and limitations, but we believe that trends found to be consistent in both approaches
are likely indicative of future model performance. Where trends differ, as in Q4, we try to understand the root cause
of these differences.

5.1 Approach 1: Controlled comparisons on JANuS-trained models

In our first set of experiments, we measure accuracy and robustness of various models trained on our proposed JaNUS
dataset. Using this approach, we can control for confounding factors by changing one aspect of the training reg-
imen at a time, and we can control for the pretraining dataset. This is important if we are to truly isolate archi-
tectural/algorithmic factors influencing robustness, which has thus far been absent from many existing studies of
distributional robustness in the literature1.

In all our model training experiments, we train with mixed precision, at a batch size of 256, and do not use gradient
clipping. We use the AMP library to implement the training process. Model hyperparameters are chosen via grid
search. Models are typically distributed across a single node with 4 NVIDIA A100 GPUs; our largest models were
trained on 16 NVIDIA GPUs. All JANuS models were trained for 256 epochs. Following Santurkar et al. (2022), we
use SimCLR augmentations (resize, crop, flip, jitter, blur, grayscale) rather than CLIP augmentations (resize and crop)
for model training. Our code is publicly available for reproducibility purposes.

Models. We train over twenty-five models on the JANuS dataset; the complete list can be found in Tab. 9. Our baseline
model against which all variations are compared is a ResNet-50 with a 1000-class linear classification head (He et al.,
2015). Specific variations are discussed in more detail below.

Labels. We evaluate on a single, broad-scope label set of 100 classes corresponding to ImageNet-100 (IN100), which
is the first constituent dataset of JANuS; see Sec. 4 above. We refer to the validation set for IN100 as IN100-Val.

Shifts. Following Radford et al. (2021), we focus on the following four distribution shifts: Imagenet-Sketch, Imagenet-
R, Imagenet-A, and Imagenet-V2, for our evaluation. For ImageNet-R and ImageNet-A, which are subsets of Ima-
geNet, we evaluate only the 35 shared classes. We reference the validation sets for these shifts on IN100 as IN100-V2,
IN100-S, IN100-R, and IN100-A. Additional details on the datasets, distribution shifts, and class indices are in Ap-
pendices Sec. C, Sec. D, and Sec. J.

Metrics. We evaluate our models every 32 epochs, and report the “best” average robustness across all shifts, with
“best” being determined by the model’s peak performance across all evaluated checkpoints.

With these basics in place, we design experiments specific to questions (Q1)-(Q4).

(Q1) Comparing across dataset size. We report dataset size in approximate multiples of the size of JaNUS’s IN-100
training set. For example, a 1x JANuS model is trained on approximately 120, 000 samples. A 10x JANuS model is
trained on approximately 1, 200, 000 samples. We primarily compare models at 1x, 2x, and 10x scales. In addition
to directly reporting the effects of scaling dataset size, we report the secondary effects of scaling dataset size when
changing parameter count, loss function and architecture.

1Controlling for a fixed training dataset has some limitations. We cannot evaluate the effects of scaling pretraining data beyond the training set
size of JANuS (2.4 million images); we cannot evaluate the effects of pretraining on a wider range of label classes; and we cannot evaluate models
trained on classes outside ImageNet-100. We address these in the larger meta-analysis presented in Sec. 5.2.
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(Q2) Comparing across parameter counts. Our models comparing the effects of scaling parameter count in CE-loss
models are a ResNet-26, a ResNet-50, and a ResNet-50x4 model with identical 1000-class linear heads. The latter is
a ResNet-50, scaled up 4x according to the EfficientNet scaling rule (Radford et al., 2021; Santurkar et al., 2022).

(Q3) Comparing VL and CE-loss. Our models comparing CE-loss and VL-loss are a ResNet-50, and a CLIP
architecture with a ResNet-50 vision backbone. The only difference in the two architectures is that for CE-loss mod-
els, we append a ResNet-50 with a 1000-class linear head, whereas our VL-loss model uses a text transformer for
classification. Because of this, our vision-language models have significantly higher parameter counts than standard
computer vision models; we allow for this difference when controlling for parameter count – EG, we compare a RN50
using VL-loss to a RN50 using CE-loss, rather than comparing the RN50 using VL-loss to a parameter-equivalent
RN50x4 using CE-loss. We choose this approach because, as noted in Radford et al. (2021); Santurkar et al. (2022),
the difference does not measurably affect distributional robustness.

(Q4) Comparing ViTs and convolutional models. When comparing ViTs to convolutional models, we compare the
ViT-S-16 model introduced in Dosovitskiy et al. (2021) to our ResNet-50 baseline. ViT-S-16 has approximately 88%
as many parameters as the ResNet-50. We do not ablate the effects of this difference on architecture performance, but
our scaling experiments across parameter counts lead us to believe that the effect is minor, compared to other factors.

5.2 Approach 2: Large-scale Meta-Analysis of Pre-trained Models

Approach 2 is a large-scale meta-analysis of publicly available pre-trained models, similar to the setting previously
adopted in Taori et al. (2020); Miller et al. (2021). This approach illuminates the effects of scaling pretraining data
across large ranges, as well as the effects of pre-training on a wide range of classes. While this enables us to compare
trends across hundreds of models, we note that such observational studies cannot carefully control for architectural
and/or algorithmic confounding factors. Our complete results can be found in our main results table in the supplemen-
tary attachment, 1_captionnet_in1k_model_results_and_metadata. Our experiments are designed as follows.

Models. We compare over 650 models drawn from the pytorch-image-models (timm) repository (Wightman, 2019),
the open-clip repository (Ilharco et al., 2021), and a few newly trained models2. Architectural details about the models
included in this approach are listed in Sec. G. We conduct no additional fine-tuning of these models.

Labels. We report evaluation results on the label set of ImageNet-1K, which is the standard benchmark in the majority
of existing works. We refer to this validation set as IN1000-Val. In addition, we also report results on the label
set of ImageNet-100 (defined above), which is a broad scope label set; we also evaluate on a fine-grained subset of
ImageNet-1K that we call ImageNet-Dogs (IN100-Dogs, for short). This consists of a subset of ImageNet class labels
corresponding to 100 dog breeds, and we do this in order to provide an alternative view of 100-class classification
using ImageNet models. We refer to this validation set as IN100-Dogs-Val.

Shifts. We utilize the same four shifts as in Approach 1. We abbreviate these shifts following the same pattern as
described in Approach 1; IN1000-V2, IN100-Dogs-V2, IN1000-S, IN100-Dogs-S, etc.

Metrics. The metrics are identical to those used in Approach 1, except that we provide the average for each label
set individually, rather than reporting the aggregate over all label sets. We do not report the average of all models
fitting a certain category, as that would skew the evaluation against older releases in the repository. Instead, we report
the average of the ten highest performing models in each category. For example, if we are evaluating the effects of
parameter count, we first bin the models by parameter count, and then report the average of the ten best performing
models in each bin. We also present individual model scores in scatterplot format in our figures.

6 Results, Trends, and Ablations

We now present a series of experimental results that address each of the questions Q1-Q4 listed in Sec. 5. For
each question, we present our key findings, and then support these from our experimental results with Approach 1
(controlled experiments on JANuS) and Approach 2 (meta-analysis with pre-trained models.)

2We intended to restrict our meta-analysis to models available in existing public repositories; however, there seems to be a dearth of models
trained with a number of samples between 15M and 300M. We fill this gap by training several models on increasing-size subsets of the LAION-2B
dataset.
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Avg. robustness by label set
Model IN1000 Val. IN1000 Avg. Rob. IN100 Avg. Rob. IN100-Dogs Avg. Rob.

VOLO-D5-224 (1.2 Mn) .857 .594 .725 .723
VGG-16 (1.2 Mn) .716 .266 .402 .433

Avg. robustness by shift

Model V2 S R A

VOLO-D5-224 (1.2 Mn) .814 .55 .652 .707
VGG-16 (1.2 Mn) .66 .251 .363 .195

Table 2: Choice of architecture can strongly impact model performance in controlled-data settings. In contrast
to recent claims in the robustness literature, we find that factors other than data can strongly affect distributional
robustness. Specifically, when we compare a VGG-16 (Simonyan & Zisserman, 2014) baseline to a recent VOLO
model (Yuan et al., 2021), we see substantial gains in robustness. The gain is not localized to particular shifts, nor
does it scale in proportion with base accuracy.
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Figure 2: (L) Effects of scaling parameter count (Approach 1). (R) Effects of scaling parameter count (Approach
2). (L) We find that increasing the parameter count has a positive effect on average robustness, but the effect is limited
on small data budgets, and can invert when data is very limited. (R) When we compare the average robustness of
models in the study by their parameter count using approach 2, we see reliable improvements as model size increases;
larger models are more robust on all label sets. Image best viewed in color.

(Q1) Are models trained on more samples more robust than models trained on fewer samples?

Increasing quantity of training data is known to positively impact robustness. Fang et al. (2022) argued that diverse,
and presumably large, training distributions nearly exclusively account for the strong robustness of VL-loss models,
and Taori et al. (2020); Miller et al. (2021) contend that among CE-loss models, factors other than data have little
impact on robustness, except insofar as they increase base accuracy. If so, then we should expect that data (and data
alone) can impact distributional robustness.

The findings in Fang et al. (2022) relied on prior work from Taori et al. (2020) in order to project their findings from
low to high accuracy models. However, the work of Taori et al. (2020) predates the introduction of some unusually
robust architectures, including Yuan et al. (2021); Hatamizadeh et al. (2023); Liu et al. (2022). The linear trend in the
accuracy/robustness space described in that work no longer holds for all shifts and all models, even when controlling
for pretraining dataset; we document this in (Q4), as well as in Appendix Tab. 10, Tab. 13, Tab. 11.

Overall, we find that although it is not the only factor, dataset size is still an important determinant of distributional
robustness.

Evidence using Approach 1. We find that increasing the quantity of training data has a reliable and positive effect on
average robustness. Specifically, our baseline model at 1x scaling averages .42 robustness, whereas with 2x scaling, it
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improves to .51. The marginal improvements decline at 10x (.66) and 20x (.7) scales, suggesting the returns of data
scaling diminish at the extremes. See Table 9 for additional results in this vein.

Evidence using Approach 2. This finding persists when we make large-scale comparisons of over 650 pre-trained
models. For example, a standard ResNet-50 model trained on ImageNet-1K (i.e., a 10x data budget in our terminology)
achieves a robustness of 0.504. The SWSL ResNet-50 model trained by Mahajan et al. (2018) on a 7800x data
budget achieves robustness of .74. The full table is too large to parse; please refer to the supplementary attachment,
1_captionnet_in1k_model_results_and_metadata.

(Q2) Are models with more parameters more robust than models with fewer parameters?

Earlier works such as Mahajan et al. (2018); Radford et al. (2021); Tan & Le (2019) have shown empirically that
parameter count, in conjunction with other factors, can affect both validation accuracy and distributional robustness.
However, Miller et al. (2021); Taori et al. (2020) found that when pretraining on ImageNet, increasing parameter
counts improved robustness only within certain predictable limits.

Evidence using Approach 1. Our findings here agree with both groups; on JANuS, we find that increasing the
parameter count has a positive effect on average robustness, but the effect is limited on small data budgets; when
dataset size is very limited (1x or below), increasing parameter count can actually decrease robustness. (see Fig. 2)

Evidence using Approach 2. In our analysis, 438 of the models have fewer than 50 million parameters, 126 have
between 50 and 100 million, and 86 have over 100 million parameters. Of the top 100 most robust models, 13 have
fewer than 50 million, 33 have between 50 and 100 million, and 54 have over 100 million parameters.

In Fig. 2 (L), we compare model performance on our three evaluation metrics, grouped by parameter count. We find
that average robustness improves reliably with model size across all evaluations. The gains are most significant on
IN100.

(Q3) Are VL-loss models more robust than CE-loss models?

Large VL-loss models such as those of Radford et al. (2021); Pham et al. (2021) have been conventionally presented as
robust generalist models which can handle arbitrary (open vocabulary) classification tasks. However, to our knowledge
no large-scale validation studies quantifying the value of VL-training in terms of robustness have been reported thus
far in the literature. We fill this gap.

Overall, when controlled for other factors, we find that VL-loss models are no more robust than CE-loss models.

Evidence using Approach 1. We train VL-loss and CE-loss models from scratch on JANuS and evaluate them on
IN100 across a wide range of data scales.

Ground-truth labels have been shown to improve base accuracy of VL-loss models. Fang et al. (2022) found that a
ResNet-50 VL-loss model trained on ImageNet-1k with ground truth labels ("A photo of the CLASSNAME") achieved
accuracy and robustness parity with a CE-loss ResNet-50 for IN1000 classification. In Fig. 1, we show that this is also
the case for ResNet-50 models trained and evaluated on IN100.

However, we see that at no point does VL-loss offer a robustness advantage. On the contrary, at larger data scales,
VL-loss is at a disadvantage; a CE-loss model trained on just 2.4M JANuS samples has comparable robustness, as
well as comparable accuracy, to CLIP ResNet-50 trained on 400M samples.

Evidence using Approach 2. For dataset sizes below 400M samples, we find no reliable evidence that VL-loss models
are more robust than CE-loss models in absolute terms on IN1000 or IN100-Dogs; see Fig. 2 (R). We also note that
VL-loss models have lower base accuracy on these problems. VL-loss models do show a robustness advantage on
IN100.3

3We postulate that this discrepancy may be because smaller label sets are easier to disambiguate using natural language, and provide two
experiments as evidence. First, in Sec. F, we provide per-class accuracies for a VL-loss and CE-loss ResNet-50 trained on many samples, and note
that several of the classes on IN1000 where VL-loss models substantially underperform CE-loss models have identical natural language descriptions;
in IN1000, OpenAI’s classnames include two classes labeled “missile” and two classes labeled “sunglasses”, reflecting ambiguities in the underlying
problem (Radford et al., 2021; Beyer et al., 2020). Second, we train a VL-loss model on 10 million YFCC samples, filtering out all samples whose
caption contains a matching term with an ImageNet class; the resulting model has, in theory, not been trained on any of the classes on which we
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Above 400M samples, our investigation is limited by the fact that relatively few public models have been trained on
such huge datasets; our largest CE-loss models were trained on half the data of the largest VL-loss models, and they
have few other architectural features in common. The limited evidence we have indicates that VL-loss models might
enjoy a robustness advantage at very high data regimes (See Fig. 1); however, this might be confounded with the fact
that no publicly released ViTs have been trained with CE-loss at this scale.

Model Dataset IN1000 Val. Acc. IN100 Val. Acc. IN100-Dogs Val. Acc.

ResNet-50 YFCC-10Mn-N.I. .127 .329 .034
ResNet-50 YFCC-15Mn .324 .741 .086

Table 3: VL-loss models trained on web-scraped caption labels learn classes unevenly. VL-loss models learn
a lot about broad distinctions between classes from captions, and little about fine-grained class boundaries. This
finding holds even when we remove all samples which match with any term in the OpenAI ImageNet classnames
from the YFCC-15Mn dataset (YFCC-10Mn-N.I.). Robustness scores can be found in our main results table in the
supplementary attachment, 1_captionnet_in1k_model_results_and_metadata.

(Q4) Are ViT models more robust than convolution-based architectures?

In Tab. 2, we demonstrate that the marginal robustness gain of going from a VGG-16 from Simonyan & Zisserman
(2014) to VOLO-D5-224, the best model using Approach 2, trained on ImageNet-1k alone, at 224px image resolution,
is much greater than the gains of data scaling alone. This finding motivates a consideration of which architectures are
likely to be more robust, given a data budget. One natural way to divide approaches is to compare models based on
the vision transformer architecture to convolution-based approaches.

Overall, we find that architecture can strongly impact distributional robustness, controlling for all other factors.

Evidence using Approach 1. We observe that a ViT-S-16 performs worse than the parameter-equivalent RN50 on
JANuS. This finding is consistent from the smallest to the largest scales we consider. (see Fig. 3) This finding is
in keeping with Dosovitskiy et al. (2021), who found that ViTs only reach parity with CNNs after very large scale
pretraining. Unlike Dosovitskiy et al. (2021), we find that pretraining and fine-tuning does not necessarily help close
the gap. ViTs are more robust and more accurate than ResNets after pre-training but before fine-tuning. After fine
tuning, the advantage disappears. (see Tab. 4)

Dataset Data Scale Fine Tune RN50 IN100 RN50 IN100 ViT-S-16 IN100 VIT-S-16 IN100
Val. Acc. Avg. Rob. Val. Acc. Avg. Rob.

IN100 (JANuS) 1x FALSE 0.87 0.424 0.713 0.256
IN100+OI100 (JANuS) 2x FALSE 0.904 0.511 0.785 0.325
IN100+LAION100 (JANuS) 4x FALSE 0.901 0.57 0.787 0.376
IN1k 10x FALSE 0.956 0.505 0.942 0.474
IN1k+IN100 10x TRUE 0.937 0.564 0.926 0.502
JANuS 10x FALSE 0.908 0.655 0.823 0.464
JANuS+YFCC 20x FALSE 0.927 0.702 0.878 0.576
IN21k+IN1k 100x FALSE 0.939 0.538 0.957 0.543
IN21k+IN1k+IN100 100x TRUE 0.924 0.499 0.926 0.501

Table 4: ViTs are usually less accurate and robust than ResNets on data budgets. ViTs consistently underperform
ResNets across a wide range of data budgets. After pretraining but before fine-tuning, ViTs are more robust and
more accurate than ResNets. After fine tuning, the advantage disappears. This indicates that the robustness advantage
enjoyed by massively pretrained ViTs may not be preserved during fine-tuning.

Evidence using Approach 2. The 650 models in our analysis include 385 convolution-based architectures and 204
vision transformers; despite the relative overrepresentation of convolution architectures in the study, of the 100 timm

evaluate it. When we do this, we find that the resulting model achieves just 3% accuracy on IN100-Dogs, but achieves 33% accuracy on IN100; in
the absence of ground truth labels, the model ‘guesses better’, in essence, when classes are dissimilar. See Tab. 3.

10



Published in Transactions on Machine Learning Research (08/2023)

1× 2× 5× 10× 20×
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Data Budget (1x = 120,000 samples)

A
cc

ur
ac

y/
A

ve
ra

ge
R

ob
us

tn
es

s

Convolution Validation Accuracy
Convolution Average Robustness
ViT Validation Accuracy
ViT Average Robustness

IN1000 IN100 IN100 − Dogs
0.6

0.7

0.8

0.9

Label set

A
ve

ra
ge

R
ob

us
tn

es
s

ViTs
Convolution-based architectures

Figure 3: (L) Effects of architecture (Approach 1). (R) Effects of architecture (Approach 2). (L) We compare
average robustness of a ViT-S-16 and a ResNet-50 on JANuS, using a range of data scales, and find that the ViT
underperforms the ResNet throughout. (R) We evaluate average robustness of models in the study when grouped by
architecture, and find ViTs outperform convolution-based architectures. Individual marks on the graph represent the
average robustness of the ten most robust convolution-based and transformer-based models, respectively. Trend lines
follow the group average. Image best viewed in color.

models with the highest average robustness on IN1000, 60 are ViTs and 40 are convolution-based architectures. On
IN100, the split is 70 / 30, and on IN100-Dogs, 72 / 28.

Comparing the top 100 most robust models for each problem, we find that ViTs are, on average, substantially more
robust, and the advantage grows at massive data scales (see Fig. 3).

Interpreting the trends. Aside from the aforementioned limitations of ViTs when training on limited data, we attribute
the strong performance of ViTs in Approach 2 to the recent emergence of new variations on the ViT architecture which
are more robust than the standard ViTs. Recent effective interventions have modified the attention mechanism Yuan
et al. (2021); Hatamizadeh et al. (2023) or the pretraining strategy Bao et al. (2022); Touvron et al. (2022) to achieve
substantial gains in this regard. See Tab. 5 for further details.

Model IN100-Val IN100-V2 IN100-S IN100-R IN100-A IN100 Avg. Rob.

in100-ViTS16 0.713 0.584 0.124 0.204 0.11 0.256
in100-DeITS16 0.756 0.643 0.164 0.222 0.137 0.292
in100-GCViTS16 0.803 0.702 0.378 0.356 0.143 0.395

Table 5: Recent ViT-based architectures are more robust and accurate on data budgets. Although they do not
match the performance of ResNets, recent improvements to the ViT such as DeIT from Touvron et al. (2022) and the
GC-ViT from Hatamizadeh et al. (2023) improve dramatically on standard ViTs. All models listed here were trained
on IN100, at a 1x data budget, for 256 epochs.

7 Discussion and Useful Heuristics

7.1 Summary of Key Findings

Our detailed experimental results in Section 6 demonstrate the effects of various architectural, algorithmic, and data-
dependent factors on distributional robustness of image classification models. We conclude with a summary of key
takeaway points, along with a list of suggested useful heuristics for training robust models in future applications.

1. Motivated by our findings for Q1, scaling data quantity is likely to have the most reliable impact on distributional
robustness during training.

2. Motivated by our findings for Q3 (Approach 2), for few-class problems where either the classes themselves or their
visual properties (color, shape, etc.) are easily disambiguated using text alone, we conclude that the most robust
and most efficient approach is to use a zero-shot VL model.
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3. Motivated by our findings Q2, Q3 and Q4, for fine-grained classification problems, for problems with ambiguous
class names and many-class problems, the best approach when training from scratch is a CE-loss model with a
tailored convolution-based architecture such as ConvNeXt, scaled to parameter counts at which returns diminish.

7.2 Future Work

As computer vision models and datasets grow in size, and multimodal generative models such as OFA from Wang
et al. (2022a) introduce and solve new, complex problems, the task of developing a prescriptive set of “scaling laws”
for emergent distributional robustness will only increase in importance (Cherti et al., 2022). Equally important will be
comparing the behavior of models on distribution shifts for datasets other than ImageNet. Finally, a comprehensive
understanding of model performance on more challenging, long-tailed classification problems (such as iNaturalist)
will shed more light on the robustness profile of models in the real world.
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Figure 4: Wise-FT, optimized to balance id/ood accuracy, fits the LiT-tuned effective robustness line. Both Wise-
FT and LiT-tuning exhibit lower effective robustness than conventional vision-language pretraining.

A Transfer learning in vision-language models

Another approach to robust classification in VL is using some form of transfer learning instead of training from scratch.
The robustness advantages of transfer learning are well understood in conventional computer vision (see Kolesnikov
et al. (2019)), and many recent model releases include variants which are pretrained on ImageNet-21k. Such models
generally exhibit improved robustness when compared to models trained on ImageNet-1k alone (See main table in
supplemental attachments).

There are a few prominent strategies for transfer learning in VL-loss models as well; we catalog them below and
discuss their strengths and weaknesses.

Fine-tuning VL models. Unfortunately, the unique robustness properties of VL-loss models are not conserved
when the image tower alone is fine-tuned. As reported in Radford et al. (2021), fine-tuning the VL-loss vision tower
using a CE-loss objective improves base accuracy but degrades robustness. This effect grows stronger the longer the
model is fine tuned, making fine-tuning the image-tower an inefficient solution for problems where robustness is a
consideration.

A similar effect takes place if both vision and language towers are fine-tuned on ground-truth caption data; after
4 epochs of fine tuning on IN1000, a ViT-L-14 CLIP base accuracy improves from .76 to .83; however, average
robustness declines from .72 to .69. (See main table in supplemental attachments).

Wise-FT, introduced by Wortsman et al. (2022a) is a fine-tuning method which interpolates the weights of zero-shot
CLIP with its fine-tuned counterparts. For certain distribution shifts, it is possible to find a ’sweet spot’ where both
i.d. and o.o.d. accuracy increase. However, Wise-FT models lose zero-shot capability, and are still not as robust as
VL-loss models with the same base accuracy.4

LiT-tuning. LiT-tuning, or locked-image text-tuning, is an alternate approach to vision-language training in which
a pretrained image tower is aligned with an untrained language model. LiT-tuned models are somewhat more data-
efficient than VL models trained from scratch, but they, too, are not as robust as VL-loss models with the same base
accuracy. (See 4).

Additionally, we observe the following;

17



Published in Transactions on Machine Learning Research (08/2023)

Figure 5: LiT-tuning on a VL-trained image tower reduces accuracy without altering effective robustness, sug-
gesting that VL pretraining is at least as robust as LiT-tuning.Wise-FT tuning greatly increases base accuracy and
slightly improves effective robustness, at the cost of zero-shot capability. CE from-scratch training matches Wise-FT
accuracy, but sacrifices effective robustness and zero-shot.

1. Like Wise-FT, LiT-tuning produces models whose i.d. / o.o.d accuracy trade-off fits a line between that
of traditional models and VL models – more robust than the former, less robust than the latter. The only
exception we found was when we LiT-tuned the vision tower of a ViT trained on the CLIP objective – in
this case, LiT-tuning decreased base accuracy while holding effective robustness constant (the near-opposite
effect of Wise-FT)

2. LiT-tuning offers negative benefit for fully trained VL models, suggesting that it can only hope to approach,
rather than exceed, the accuracy of its baselines (See 5)

3. LiT-tuning performance tends to closely correlate to the base accuracy of the underlying vision model

4. Intriguingly, we find that this is true regardless of the specific dataset used for LiT-tuning – LiT-tuned models
trained on small amounts of data are able to recover accuracy on out-of-distribution tasks even when very
little data from that distribution shift appears in the pretraining data

5. These experiments suggest that some degree of effective robustness is "locked away" in many vision models,
but is lost during the training process, but that certain techniques are able to increase effective robustness
disproportionate to the loss in base accuracy, pushing the model ’above the line’ we would normally expect.
Furthermore, if the distribution shift of interest is known and well-defined, it is possible to select a tuning to
optimize for that shift

B Additional Findings Regarding Transfer Learning

However, as the commonly used robustness evaluations are themselves derived from ImageNet, it is difficult to know
to what extent model performance is dependent on class-specific ImageNet pretraining rather than general pretraining.

To better understand this distinction, we conduct an ablation study on the pretraining dataset; the results can be found
in Tab. 6.
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Pretraining Dataset Num Pt Classes Data type Includes IN100 Classes IN100 Val. IN100 V2 IN100 S IN100 R IN100 A Avg. Rob. Eff. Rob. Rat.
From Scratch N/A N/A N/A 0.693 0.584 0.184 0.224 0.122 0.279 0.402
JANuS 100 Natural T 0.698 0.588 0.208 0.237 0.128 0.29 0.416
Fractals 1000 Synthetic F 0.729 0.623 0.239 0.268 0.126 0.314 0.43
IN1k-minus-IN100 1000 Natural F 0.741 0.649 0.255 0.277 0.144 0.331 0.447
IN1k 1000 Natural T 0.771 0.683 0.293 0.314 0.144 0.358 0.465

Table 6: Gradations in performance as a result of pretraining dataset choice. Even when holding the size of the
pretraining dataset constant, as we do in this experiment, we find that many factors affect the downstream performance
of models. The presence of training classes in pretraining data is impactful; in1k-minus-in100 pretraining, where we
eliminate the in100 classes, causes a 3% drop in accuracy, compared to the in1k model. Pretraining on a purely
synthetic dataset of 1 Mn. fractal images is surprisingly effective, resulting in only a 4% drop in accuracy. JANuS
pretraining is the least effective, comparable to training from scratch. This may be attributable to the fact that JANuS
has fewer classes, or to the fact that JANuS has more label noise.

C Distribution Shifts

ImageNet is a large-scale visual ontology of images built upon the backbone of the WordNet structure. ImageNet
aims to populate the majority of the 80,000 synsets of WordNet with an average of 500–1000 clean and full resolution
images, making it a roughly class-balanced, fully supervised dataset. (Deng et al., 2009)

ImageNet-21k, the largest version of ImageNet, contains 14,197,087 images in 21,841 classes.

There now exist a wide range of distribution shifts on ImageNet. These are novel test datasets designed to overcome
some of the limitations of the original benchmark. While they cannot remedy issues with the labeling scheme, these
datasets do provide challenging new contexts in which to analyze classifier performance.

ImageNet-V2 was designed to duplicate, as closely as possible, the original ImageNet test set. It was intended to
answer the question of whether ImageNet-trained classifiers could successfully generalize even to the most mild of
distribution shifts. (Recht et al., 2019)

Imagenet-Sketch is a distribution shift covering sketches, paintings, drawings and illustrations of ImageNet classes.
This test set is very large and comprehensive. (Wang et al., 2019a)

Imagenet-R is a 200-class subset of ImageNet-2012 focused on renditions of everyday objects, defined broadly as
drawings, paintings, photographs of food art, etc. (Hendrycks et al., 2021a)

Imagenet-A is a 200-class subset of ImageNet-2012 which was algorithmically selected – the natural distribution
shift captured here is the set of ImageNet-class images which most often fool a RN50. This test is challenging, and
tends to include a lot of images with challenges such as occlusion, changes in angle or position, and changes in
brightness. (Hendrycks et al., 2021b)

C.1 Different shifts respond to different interventions

Recent works such as Fang et al. (2022) demonstrate the power of effective robustness as an explanatory tool for
performance differences in VL models; Miller et al. (2021) showed that there exists a strong correlation between most
models trained on random subsets of a data distribution, and the fully trained model. However, these authors also
caution that it has significant limitations – Taori et al. (2020) and Nguyen et al. (2022) show that models trained on
more (or different data) can significantly change the effective robustness line of a particular model, and also that these
changes were shift-specific, with stronger fits on shifts like ImageNet-V2 and weaker fits on shifts like ImageNet-A.

We find that ImageNet-V2 responds more to model architecture than other shifts, with the handful of non-ResNet
models we evaluated outperforming nearly all other models, regardless of training objective.

ImageNet-R and ImageNet-Sketch both showed high sensitivity to the training data, with the CC12M and LAION-15m
distributions considerably outperforming even the best YFCC-trained models. These types of shifts are particularly
amenable to subset matching strategies.See Fig. 13, Fig. 10 for examples.

On ImageNet-A, CE models significantly underperformed compared to VL models regardless of the data, and all
models significantly underperformed compared to the ViT-L CLIP. See Fig. 11 for examples.
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Model Name Average Validation Accuracy Average Robust Accuracy

CLIP-RN50 (1000-class) 0.5985 0.4306
CLIP-RN50 (Avg. 100-class) 0.8517 0.7182

SWSL-RN50 (1000-class) 0.8362 0.6857
SWSL-RN50 (Avg. 100-class) 0.9524 0.7612

Table 7: Zero-shot model robustness is affected by the difficulty of the task. Both quantity and quality of labels
alters model accuracy and robustness under shift; it also changes the comparative performance of VL-loss and CE-loss
models. In this table, we transform the 1000-class IN1000 label set into ten 100-class label sets, and find that the
resulting predictions are far more accurate and robust, particularly those of the VL-loss model. This finding motivates
our choice to study model robustness on multiple label set sizes.

We also note that there is no readily apparent logit-scaled linear trend in these distribution shifts when one consid-
ers models trained on a wide range of different datasets, underscoring the importance of a well-chosen baseline for
comparison.

We find that different shifts tend to disadvantage different kinds of models, which makes improving on all of them
simultaneously very challenging. The fact that ViT-L CLIP was able to do is both impressive and, given the vital
importance of the underlying data distribution in such measures, a mystery which is unlikely to ever be solved. Even
the massive public datasets such as LAION are unable to match the performance of the dataset CLIP was trained on,
although other factors might possibly have played a role.

A standardized benchmark of distribution shifts on ImageNet would be a welcome contribution to this area of research.

D Pretraining Datasets

Today, many SOTA models are pretrained on web-scale unsupervised data. We utilized three such datasets in our
experiments. We observe that one major challenge of conducting research on unsupervised datasets is that the links
provided as part of the dataset fail more and more over time, leading to each group getting a different version of the
dataset. Therefore, to the extent possible, we report the details of each dataset in the appendix, and encourage other
researchers working with these datasets to do the same.

CC-12M is a lightly supervised web-scale dataset created by Google. The image-caption pairs in CC-12M were
filtered and selected for the purposes of training models to caption images. (Changpinyo et al., 2021) Our version of
CC12M contained 9703885 image-caption pairs.

YFCC-15M is a subset of YFCC-100M, which is 100M image-metadata pairs taken from Yahoo-Flickr in 2016. The
subset was selected by OpenAI. This dataset contains images and metadata, which includes a "title" and a "description"
field. These fields are combined and processed in various ways by researchers in order to generate captions for models
to train on. (Thomee et al., 2016) Our version of YFCC contained 14825134 image-caption pairs.

LAION is a 5B image-caption dataset recently created by LAION.ai. It is the first publicly available dataset which
matches the scale of the datasets used by the large companies to train their best models. (Schuhmann et al., 2021a)
The subset of LAION we refer to as LAION-15m contained 13775512 image-caption pairs.

E Data Quality: Other Considerations

There are various other important considerations, aside from the raw count of per-class samples, in determining the
utility of a dataset. We follow Santurkar et al. (2022) in referring to these as data quality considerations.

We proceed to discuss some of these considerations.
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E.1 Image Size

In Fig. 12 (R), we plot average robustness against image resolution, expressed as the ratio of actual model resolution
to maximum model resolution in the study (800px). We find that increasing input image resolution leads to gains in
robustness on IN1000 and IN100-Dogs, but that these effects are smaller than choice of architecture and number of
model parameters.

E.2 Class Imbalance

Aside from simply considering the overall size of a dataset, it is important to also consider the per-class size of a
dataset.

The significance of this distinction can easily be seen on JANuS, when we compare the performance of OI100-trained
and IN100-trained models in Tab. 9.

Despite the fact that OI100 is a slightly larger than IN100, models trained on OI100 perform worse on IN100-Val than
models trained on IN100. We find that the extreme class imbalance shown in Fig. E.3 is the cause of most, but not all,
of the decrease in accuracy.

VL-loss class imbalances (detected by searching for exact-match classnames in caption strings) are also present in the
other web-scraped datasets in JANuS, LAION and YFCC; this may contribute to the lower performance of VL-loss
models on long-tailed classification.

E.3 Label Set Size

One important, but rarely considered, factor in distributional robustness is the size of the label set.

Specifically, we find that models trained on many-class problems become more accurate and robust when the label set
size is reduced to a subset of those classes at inference time, and the improvements are not necessarily proportionate

Very large label sets have previously been shown cause declines in base accuracy. (Mohammed & Umaashankar, 2018)
In Tab. 7, we show that this effect is present even when only 1000 classes are used (the size of ImageNet), and that it
affects distributional robustness as well as base accuracy.

Based on this observation, we recommend taking into account label set size when evaluating model robustness, and
propose reducing the size of the label set as an effective intervention for improving robustness.
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Figure 6: This log-scale figure shows the extreme class imbalance of the unfiltered OI100 dataset, compared to the
prefiltered IN100 dataset; certain classes which are very common in web-scraped images, such as laptops, are over-
rrepresented, while others are not represented at all. The OI100 class imbalance is produced by a difference in dataset
labeling strategies. VL-loss class imbalances (detected by searching for exact-match classnames in caption strings),
which are present in the other web-scraped datasets in JANuS, LAION and YFCC, co-occur with comparatively low
accuracy scores on fine-grained classification tasks.

Figure 7: ImageNet-100 samples from JANuS.
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Figure 8: OpenImages-100 samples from JANuS.

Figure 9: LAION-100 samples from JANuS.
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Figure 10: Non-linearities in ImageNet-Sketch. ImageNet-sketch performance is not linear, with only the very
largest VL models showing a reliable improvement over CEly trained models, when controlling for dataset size.

Figure 11: ImageNet-A is learnable by all models at extremely high base accuracy. Although VL models seem to
learn ImageNet-A faster than CE models, CE models reach near-parity with VL models when base accuracy gets very
high.
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Figure 12: Robustness effects of scaling input image resolution. Previous results from Tan & Le (2019) have
shown that image resolution is an important factor in base model accuracy. Our meta-analysis indicates that input
image resolution can have a strong positive effect on robustness as well.

Figure 13: VL performance on ImageNet-R outstrips base accuracy. On ImageNet-R, which is a 200-class subset
of ImageNet, VL models are able to achieve higher accuracy than on ImageNet itself. VL continues to outperform CE
models on this dataset, even at very high accuracies.
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in1k classname search term good samples total samples avail. samples pct. good

lion lion 962 1000 450000 0.96
wine bottle wine bottle 925 1000 29500 0.93
book shop bookstore 816 984 83000 0.83
parking meter parking meter 377 1000 9500 0.38
african elephant african elephant 885 1000 44000 0.89
bagel bagel 699 988 20500 0.71
tarantula tarantula 667 981 9000 0.68
ice cream ice cream 741 984 154500 0.75
fig fig 517 1000 46000 0.52
shoe shop shopping shoes 425 1000 13000 0.43
french bulldog french bulldog 887 996 7500 0.89
hen hen 412 1000 73000 0.41
guacamole guacamole 683 998 6500 0.68
broccoli broccoli 679 997 19000 0.68
howler monkey howler monkey 817 847 9000 0.96
scuba diver scuba diver 827 1000 15000 0.83
spindle "spindle wool, spindle -wool

thread"
311 867 867 0.36

lhasa lhasa dog 719 1000 2500 0.72
traffic light stoplight 622 991 5500 0.63
lionfish lionfish 552 897 6500 0.62
popsicle popsicle -animal -sticks -

animals -insect -insects -
icicle -garden -sticks -icicles
-gardens -toes -label -labels

638 943 7500 0.68

lampshade lampshade 446 807 6500 0.55
spiderweb spiderweb -spiderman

-halloween -pumpkin -
butterfly -pleiades -nebula
-stars

832 996 17500 0.84

lifeboat lifeboat 572 1000 13000 0.57
cucumber cucumber -sea -spider -beetle

-flower -spiral
730 999 26500 0.73

english springer english springer spaniel 772 993 3500 0.78
macaw macaw 972 1000 13500 0.97
mailbox mailbox 900 1000 36500 0.9
peacock peacock -butterfly 966 999 72000 0.97
bee bumblebee OR wasp OR

hornet -jet -airplane -
helicopter -navy -aircraft
-comic -RIAT -military
-Helicopter -Helicopters
-helicopters -aviation -
Hudson -car -basketball
-sports -Transformers -
cosplay -disfrazado -costume
-transformer AND flower

686 761 110000 0.9

dungeness crab dungeness AND crab -
restaurant -breakfast -lunch
-dinner -shack -creels -traps
-cannery

474 1000 1500 0.47
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banana banana -plant -blossom
-flower -seed -seedlings -tree
-spider -leaf -abstract -bay
-band -festival -doll -sexy
-sexiest -bread -soup -puree
-smoothie -car -plantation
-cake -cream -monkey
-pudding -zoo -republic
-boxes -buying -selling
-vendor -bridge -scone
-moon

793 995 65000 0.8

corn corncob 354 1000 1000 0.35
lemon lemon -plant -blossom

-flower -seed -seedlings
-tree -spider -leaf -abstract
-bay -band -festival -doll
-sexy -sexiest -bread -soup
-puree -smoothie -car -
plantation -scent -fresh
-cleaner -butterfly -grove
-shots -car -sunrise -paint -
graffiti -origami -cake -cream
-pudding -boxes -buying
-selling -vendor -bridge
-scone -don -lime

693 1000 65000 0.69

marimba marimba instrument 127 283 283 0.45
orange orange food fruit -plant

-blossom -flower -seed -
seedlings -tree -spider -leaf
-abstract -bay -band -festival
-doll -sexy -sexiest -bread
-soup -puree -smoothie -car
-plantation -cake -cream
-monkey -pudding -zoo
-republic -boxes -buying
-selling -vendor -bridge
-scone -moon -cupcake
-cake -sales -seller -pancakes
-crepes -crep -crepe -pancake
-cookie -flavored -juice -soda
-pop -beach -island -cove
-grove -street -drive -tea
-curd -marmalade -bars -cabs
-chicken -cheesecake -pie
-milk

744 1000 4000 0.74
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bell pepper bell pepper vegetable -plant
-blossom -flower -seed -
seedlings -tree -spider -leaf
-abstract -bay -band -festival
-doll -sexy -sexiest -bread
-soup -puree -smoothie -car
-plantation -cake -cream
-monkey -pudding -zoo
-republic -boxes -buying
-selling -vendor -bridge
-scone -moon -cupcake
-cake -sales -seller -pancakes
-crepes -crep -crepe -pancake
-cookie -flavored -juice -soda
-pop -beach -island -cove
-grove -street -drive -tea
-curd -marmalade -bars -cabs
-chicken -cheesecake -pie
-milk -market -spice

392 505 505 0.78

espresso espresso coffee -maker
-machine -beans -building
-exterior -window

828 1000 22000 0.83

mashed potato mashed potato 635 996 10000 0.64
stingray stingray water -dolphin -

shark -cruise -boat -scuba -
fish

600 983 2000 0.61

flagpole flagpole -lighthouse -church -
bank -station

614 991 7000 0.62

teapot teapot -tea -flower -tower
-building -dome -art -
fashion -vase -store -stores
-shop -shops -Sagittarius
-project365 -fountain -candle
-mug -teacup -keg -vessel
-amphora -urn -coffeepot

660 997 10500 0.66

umbrella umbrella 911 1000 126000 0.91
beer bottle beer bottle -house -door -

brewery -glass -cap
909 1003 19000 0.91

barn barn -swallow -owl -bird 980 1000 115000 0.98
christmas stocking christmas stocking fireplace 317 779 779 0.41
magpie magpie -screenshots -moth

-butterfly -coprinopsis
-thieving -mushroom

736 983 25500 0.75

mitten mitten glove 800 995 1500 0.8
ram ram sheep -Church -window

-Window -church -school
-dance -parade -festival
-celebration -festivities -
community -fair -ewe -fox
-lamb -bird -cat -dog -Dodge

742 1000 3000 0.74
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warthog warthog animal -zebra -
cheetah -leopard -giraffe
-gazelle -hippo -rhino -
donkey -armadillo -elephant
-crocodile -lion -leopard
-impala -cat -monkey -bird

946 997 2500 0.95

goose geese 474 500 69000 0.95
bubble soap bubble -dancer -dance

-fairy -tree -leaf -leaves -
flowers -water -toy -art -
abstract -museum -dog -cat -
butterfly -food -wine -beer -
chocolate -Chocolate

414 500 5000 0.83

cougar cougar animal -warthog
-mascot -zebra -cheetah
-leopard -giraffe -gazelle
-hippo -rhino -donkey
-armadillo -elephant -
crocodile -lion -leopard
-impala -cat -monkey -bird
-lake -Lake -river -River
-blonde -Blonde -woman
-girl -milf -bear -cliff -Cliffs
-cliffs -military -wallaby
-horse -jet -print

297 500 1000 0.59

daisy daisy flower 500 500 52000 1
menu menu 431 500 92000 0.86
bald eagle bald eagle 475 500 33500 0.95
necklace necklace jewelry -brooch

-pendant -creation -earring
-earrings -bracele -ring
-Engraver -bauble -anklet

478 500 12500 0.96

chickadee chickadee bird -Goldfinch -
goldfinch -robin -thrush -
jay -cardinal -woodpecker -
wren -hawk -raven -titmouse
-nuthatch

494 500 9000 0.99

stone wall """stone wall""" 424 500 32000 0.85
flamingo flamingo bird 476 500 38500 0.95
gas pump gas station 348 500 41000 0.7
vulture vulture bird -hawk -crow -

eagle
489 500 15500 0.98

pizza """pizza pie"" -Fest -festival
-summit -experience -party -
band -moon -parade -Parade
-harvard -mosaic -montage"

305 500 1000 0.61
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wallaby wallaby -warthog -mascot
-zebra -cheetah -leopard
-giraffe -gazelle -hippo
-rhino -donkey -armadillo
-elephant -crocodile -lion
-leopard -impala -cat -
monkey -bird -koala -sports
-kangaroo -soccer -football
-food -church -hills -stadium
-tribute -grass -rugby -
apartment -car

369 500 10000 0.74

hay haystack field -hole -trail -
poster -sign

360 500 1000 0.72

grand piano "kawai grand piano, steinway
grand piano"

312 455 455 0.69

laptop laptop 443 500 98000 0.89
dishwasher dishwasher appliance 191 268 268 0.71
cricket cricket -batting -sports -team

-match
337 500 44000 0.67

sea slug nudibranch 468 500 12500 0.94
mongoose mongoose -bike -bicycle -

park -tree -joe -rocket -
military -airplane -toy -car

379 500 5000 0.76

siamese cat siamese cat -bangkok -flower
-snake -campaign -wat
-costume -cosplay -festival

416 500 13000 0.83

freight car freight car 491 500 70500 0.98
vending machine """vending machine""" 411 500 13000 0.82
bottlecap bottlecap -tab 448 500 3500 0.9
acorn acorn -woodpecker -fairy

-squirrel -weevil -travel
-squash -street

352 500 25000 0.7

feather boa feather boa 135 500 2000 0.27
macaque macaque 485 500 14500 0.97
bolete boletus 444 500 3500 0.89
border terrier """border terrier""" 422 500 1500 0.84
barbell barbells 352 500 1000 0.7
fly housefly 398 500 1500 0.8
suspension bridge suspension bridge 432 500 33500 0.86
jellyfish jellyfish 477 500 46500 0.95
barbershop barbershop -quartet -singers 430 500 9000 0.86
koala koala 458 500 32500 0.92
bannister bannister staircase 174 183 183 0.95
pillow pillow -talk -fight -cat -dog -

moss -sky -cloud -sky
420 500 34500 0.84

bib baby bib -shower -food 406 500 1500 0.81
junco junco bird -finch -sparrow -

thrush -cardinal -woodpecker
-jay

475 500 7000 0.95

chainlink fence chainlink fence 375 500 3500 0.75
soccer ball """soccer ball"" -match -

game -milky -beach -Lewes"
349 500 2500 0.7

stupa stupa 418 500 23500 0.84
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quail quail bird -finch -sparrow -
thrush -cardinal -woodpecker
-jay -partridge -rabbit -hawk
-avocet -deer -dog -wolf -
coyote -gopher -eagle -vole -
molerat -butterfly

396 500 11000 0.79

padlock padlock 378 500 9500 0.76
great white shark """great white shark""" 309 500 2000 0.62
totem pole """totem pole"" wood" 383 500 1000 0.77
ant ant insect 447 500 18000 0.89
bison bison 429 500 41500 0.86
greenhouse greenhouse 407 500 82000 0.81

Table 8: JANuS Supervision: Search Terms and Sample Quality
Since many of the findings in our paper highlight the importance of both
the amount and type of label noise, this table records statistics pertaining
to our filtration process for the new samples in IN100. In the search term
field, a - symbol indicates that all samples which included that word in
the title, tags or description were NOT matched. Boolean OR, AND, and
"" symbols behave as they typically do.

Adding BLIP Captions to JANuS

Since we could not find human-authored captions for ImageNet, we used BLIP Li et al. (2022a) to generate descriptive
captions on ImageNet-100. BLIP often uses word fragments to describe objects, so we used a spell checker as a simple
intervention to improve the quality of BLIP captions. Finally, because BLIP’s vocabulary does not include many of
the specialized classes available in ImageNet, we augmented the BLIP captions with Flickr image titles, the form of
text which is most commonly available for an image. We used top p=0.9, max length=40, min length=5, repetition
penalty=1.1.

We repeated the process for OpenImages-100. However, we used human-authored captions sourced from Pont-Tuset
et al. (2020) instead of BLIP whenever available; around 16,000 out of the 135,000 OpenImages-100 samples had
human-authored captions.

F Classwise Shifts

F.1 Per class accuracies for CLIP RN50 and SWSL RN50

In the supplementary attachments (2_clip_rn50_per_class_acc, 3_swsl_rn50_in1000_conf_mat), we provide per-class
confusion matrices on IN1000 for CLIP ResNet-50, trained on 400 Mn samples, as well as a semi weakly supervised
ResNet-50 trained by Facebook on 1 Bn samples.Yalniz et al. (2019)

In addition to classnames which are literally identical (there are two instances of the class "missile" and two instances
of the class "sunglasses" in the OpenAI classnames for IN1000), we find that the model struggles to disambiguate
short words with similar starting token strings, such as "quail", "quilt" and "quill", and classes that start with common
(and contextually misleading) words, such as "night snake".

G Approach 2: Model details and results

Results

The complete results for approach 2 are available as part of our supplementary attachment (1_caption-
net_in1k_model_results_and_metadata).
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Model details: timm

Our meta-analysis made extensive use of the popular timm Wightman (2019) computer vision library, including models
from Zhang et al. (2021); Bao et al. (2022); Kolesnikov et al. (2019); Srinivas et al. (2021); Touvron et al. (2021); Xu
et al. (2021); Dai et al. (2021); d’Ascoli et al. (2021); Touvron et al. (2022); Huang et al. (2016); Yu et al. (2017); Chen
et al. (2017); Maaz et al. (2022); Li et al. (2022b); Xie et al. (2020); Tan & Le (2019); Wu et al. (2018); Han et al.
(2020); Wang et al. (2019b); Vaswani et al. (2021); Graham et al. (2021); for details about any of the timm models,
please refer directly to the timm repository. In our supplementary results spreadsheet, the name field for each model is
the same as that model’s name in the timm repository – where model names have been modified between the time our
evaluations took place and the time the paper was completed, we note the new names in the updated name column.

Model details: other

For non-timm models, we include a key for the terms used to describe them in the meta-analysis:

CLIP: denotes vision language pretraining using the CLIP objective

RN101: A ResNet-101 model from He et al. (2015).

RN50: A ResNet-50 model from He et al. (2015).

yfcc: The yfcc dataset from Thomee et al. (2016).

cc12m: The CC-12m dataset. (Changpinyo et al., 2021)

laion: the LAION dataset from Schuhmann et al. (2021b).

WIT-400m: The original dataset used to train CLIP models by Radford et al. (2021).

no-imagenet-classnames: All samples whose caption contained an ImageNet classname were filtered out of the dataset
using subset matching, as described in Sec. H.

RN50x64: A 64x scaling of the ResNet architecture according to the EfficientNet scaling rule, introduced by Radford
et al. (2021).

LiT: LiT tuning as described by Zhai et al. (2021).

H Subset matching

For unsupervised web-scraped captioned datasets (such as LAION and YFCC), ground-truth class labels do not exist.
Therefore, we must choose a strategy to assign class labels to samples in such datasets. VL-loss models use captions
as labels. There is no easy way for CE-loss models to directly use captions as labels. To facilitate this, we propose a
strategy we call subset matching, a modification of the “substring matching” technique proposed by Fang et al. (2022).

This strategy, illustrated in detail in 14, labels samples as follows. First, construct a dict of integers and “matching
terms”. A matching term is a string judged to be a good text representation of an image class, such as the string
‘elephant’ for an image of an elephant. Our standard choice of matching terms is based on Radford et al. (2021).

If a sample caption contains a matching term, then the corresponding integer class label is applied. If the sample
caption contains multiple matching terms, then we apply one of three strategies, which we label strict, multi-class
(mc) and single-class (sc) matching, explained in detail in Sec. H; we use single-class matching whenever possible,
since it usually performs best. If the sample caption contains no matching terms for any class, then no label is applied
and the image is dropped from the training set. Otherwise, the caption is replaced with the corresponding integer-
valued label.

A subset matching strategy is an algorithmic method for applying machine labels to images, based on caption labels.
All of these methods share in common the same underlying approach, as seen in Fig. 14.

In this section, we fully define and describe some important variations on the basic subset matching strategy as de-
scribed in the main paper. All of our subset matching experiments utilized one of these three strategies.

Strict: Strict subset matching means that the model only applies the label to the image if the caption contains term(s)
which map to exactly one class.
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Figure 14: Subset matching; an overview. Subset matching is a simple labeling strategy for unsupervised image-
caption pairs. The caption is processed and converted to n-grams which are then matched against a database of terms
which point to integer-label classes.

Strict subset matching was generally the most accurate method on ImageNet – we believe this is because of the
ImageNet dataset filtration strategy, in which label selection is strongly dependent on caption contents.

It was generally less accurate method than single-class on OpenImages, where labels and caption contents are inde-
pendently derived.

We find that strict matching performance tends to degrade when the pool of matching terms grow; it also tends to
punish synthetic captions, which use a smaller vocabulary than web-scraped or annotated captions.

Single class: In single-class subset matching, the model greedily takes the first matching term to be the true class and
ignores all subsequent matching terms.

As a general matter, we found that single-class matching struck the best balance between dataset utilization and
accuracy, and we used this method for most of our experiments.

Multi class: In multi-class subset matching, we match up to 25 classes per sample (if we see multiple terms for a
single class, we ignore those additional terms, and we do not attempt to rank classes by frequency).

The cross-entropy loss of the model is then given by the sum of the loss on each class; in other words, we reward the
model for applying a high probability on each label assigned to the sample and for applying a low probability to each
label which was not assigned to the sample.

This approach, while intriguing, was challenging because we only had one ground-truth label for each image; there-
fore, multi-class matching was always less accurate than single-class matching in direct comparison.

Since our cross-entropy model used a softmax loss, we found that model error tended to be high as the number of
matched classes grew. We also found empirically that images which actually required multiple labels were not partic-
ularly common in our dataset. Perhaps for these reasons, this approach performed worse than single-class matching in
most experiments.

Additional term definitions.
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Label accuracy. On datasets for which supervised ground-truth labels exist, we report label accuracy (Label acc.) as
the count of machine-generated labels which match ground truth labels, divided by the total number of samples in the
dataset.

Dataset utilization. Dataset utilization (Ds. Util) of a model on a dataset is the ratio of correctly labeled samples to
total number of samples (including correct, incorrect and unlabeled samples). We use this metric to judge how useful
a labeling strategy is; ground truth labels have a utilization of 100%; automated labeling methods gives typically
significantly less utilization.

I Approach 1 Results

Please see Tab. 9 for the results for models trained using approach 1 (JANuS). Baseline result for each constituent
dataset is in bold.

RESULTS KEY

imbal: Class-imbalanced dataset

384-res: Trained at 384 image resolution

RN50x4: Used RN50x4 backbone

RN26: Used RN26 backbone

int: Trained using CE-loss

VL: Trained using VL-loss

jpeg10: JPEG compression of images, strength 10

cliplabel: Trained using noisy integer labels generated by a CLIP ViT-L-14 model

swinlabel: Trained using noisy integer labels generated by a Swin transformer

ttd: VL model trained using noisy captions (title, tag, description from Flickr where available, alt-text where not
available)

tags: VL model trained using tags only

title: VL model trained using title only

sbm: Samples selected using subset matching

size: Sample size was size-controlled to be identical to supervised dataset size

gtcaps: VL model trained on ground-truth captions generated from human labels

tokscramble: VL model trained with the order of tokens randomly scrambled during training and inference

tokstrip: VL model trained with all tokens not used for inference stripped during training

blipcap: Captions generated using a BLIP captioning model

ofa: Captions generated using an OFA captioning model

annotcap: Human descriptive annotations for images (available only for a subset of OI100)

classname-only: Captions are classname and nothing else

classbal: Corrected for class imbalance prior to training
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Model Name IN100-Val IN100-V2 IN100-S IN100-R IN100-A Avg. Rob. Eff. Rob. Label Acc. DS Util.
Data Budget: 1/8x

in100(1/8th)-int 0.618 0.485 0.139 0.189 0.104 0.229 0.371 1 1
in100(1/8th)-VL-gtcaps 0.577 0.461 0.17 0.196 0.104 0.233 0.402 1 1

Data Budget: 1x (bal)

in100-int 0.87 0.791 0.373 0.378 0.153 0.424 0.487 1 1
in100-int-384-res 0.841 0.768 0.337 0.343 0.177 0.406 0.483 1 1
in100-int-RN26 0.81 0.736 0.377 0.363 0.135 0.403 0.498 1 1
in100-int-RN50x4 0.874 0.805 0.336 0.369 0.19 0.425 0.486 1 1
in100-int-ViT-S-16 0.713 0.584 0.124 0.204 0.11 0.256 0.359 1 1
in100-int-DeIT-S-16 0.756 0.643 0.164 0.222 0.137 0.292 0.386 1 1
in100-int-GCViT-S-16 0.803 0.702 0.378 0.356 0.143 0.395 0.492 1 1
in100-int-jpeg10 0.809 0.728 0.341 0.345 0.131 0.386 0.478 1 1
in100-int-cliplabel 0.813 0.717 0.278 0.328 0.127 0.363 0.446 0.9 1
in100-int-size-sbm-ttd 0.801 0.7 0.267 0.311 0.124 0.351 0.438 0.89 1
in100-int-sbm-ttd 0.754 0.674 0.285 0.331 0.123 0.353 0.468 0.89 0.72
in100-int-sbm-tags 0.723 0.636 0.251 0.297 0.109 0.323 0.447 0.87 0.58
in100-int-sbm-title 0.686 0.603 0.237 0.301 0.107 0.312 0.455 0.94 0.49
in100-VL-gtcaps 0.849 0.768 0.37 0.373 0.17 0.421 0.495 1 1
in100-VL-gtcaps-tokscramble 0.837 0.765 0.372 0.399 0.162 0.425 0.507 1 1
in100-VL-jpeg10 0.75 0.682 0.311 0.352 0.144 0.372 0.496 1 1
in100-VL-ttd 0.587 0.487 0.162 0.173 0.085 0.227 0.386 0.89 0.72
in100-VL-ttd-tokstrip 0.585 0.475 0.145 0.19 0.081 0.223 0.381 0.89 0.72
in100-VL-blipcap 0.405 0.351 0.138 0.165 0.07 0.181 0.447 0.61 0.28
in100-VL-classname-only 0.236 0.218 0.122 0.1 0.05 0.123 0.521 1 1

Data Budget: 1x (imbal)

oi100-int 0.667 0.595 0.316 0.399 0.156 0.367 0.549 1 1
oi100-int-classbal 0.812 0.734 0.39 0.399 0.167 0.423 0.520 1 1
oi100-int-cliplabel 0.631 0.553 0.273 0.343 0.134 0.326 0.516 0.9 1
oi100-int-sbm-ttd 0.369 0.304 0.109 0.2 0.104 0.179 0.486 0.48 0.08
oi100-VL-gtcaps 0.694 0.644 0.35 0.423 0.177 0.399 0.574 1 1
oi100-VL-ttd 0.26 0.22 0.065 0.121 0.066 0.118 0.454 0.53 0.11
oi100-VL-blipcap+annotcap 0.343 0.291 0.09 0.174 0.055 0.152 0.443 0.46 0.14
oi100-VL-blipcap 0.298 0.28 0.095 0.151 0.065 0.148 0.495 0.42 0.12

Data Budget: 2x

in100+oi100-int 0.904 0.829 0.489 0.515 0.213 0.512 0.566 1 1
in100+oi100-int-384-res 0.878 0.807 0.442 0.455 0.241 0.486 0.554 1 1
in100+oi100-int-ViT-S-16 0.785 0.667 0.211 0.277 0.146 0.325 0.414 1 1
in100+oi100-int-RN26 0.858 0.771 0.463 0.465 0.204 0.476 0.555 1 1
in100+oi100-int-RN50x4 0.903 0.838 0.458 0.478 0.229 0.501 0.555 1 1

Data Budget: 4x

in100+laion100-int 0.901 0.827 0.614 0.636 0.201 0.57 0.633 N/A N/A
in100+laion100-int-ViT-S-16 0.787 0.675 0.314 0.379 0.135 0.376 0.478
in100+laion100-VL-ttd 0.529 0.438 0.289 0.299 0.107 0.283 0.536 N/A N/A

Data Budget: 10x

JANuS-int 0.908 0.863 0.678 0.731 0.35 0.656 0.722 N/A N/A
JANuS-int-384-res 0.868 0.792 0.559 0.622 0.355 0.582 0.671 N/A N/A
JANUS-int-RN50x4 0.909 0.866 0.66 0.718 0.387 0.658 0.724 N/A N/A
JANuS-int-ViT-S-16 0.823 0.736 0.4 0.484 0.237 0.464 0.564 N/A N/A
JANuS-int-gt+swinlabels-1.1m 0.908 0.863 0.678 0.731 0.349 0.655 0.721 N/A N/A
JANuS-int-gt+sbm-1.1m 0.871 0.817 0.625 0.659 0.276 0.594 0.682 N/A N/A
JANuS-VL-gt+ttd-1.1m 0.846 0.757 0.447 0.506 0.204 0.478 0.566 N/A N/A
JANuS-VL-ofa-1.1m 0.67 0.587 0.392 0.453 0.147 0.395 0.589 N/A N/A

Data Budget: 20x

JANuS+yfcc-2.4m-int-cliplabels 0.927 0.877 0.7 0.78 0.449 0.702 0.757 N/A N/A
JANuS+yfcc-2.4m-int-cliplabels-ViT-S-16 0.878 0.829 0.508 0.596 0.372 0.576 0.656 N/A N/A

Table 9: Approach 1; Full results. Results for models trained from scratch using Approach 1 (JANuS).
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Figure 15: Class frequency count using subset matching on ImageNet-100.

Figure 16: Class frequency count using subset matching on YFCC-100.

J Class Frequency Counts for IN100 subset matching distributions, openai
labels, mc matching

The figures referenced below depict the distribution of noisy, web-scraped labels with respect to true labels for each
of the constituent datasets in JANuS.

ImageNet-100: 15. YFCC-100: 16. LAION-100: 17.

Figure 17: Class frequency count using subset matching on LAION-100.
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Figure 18: Per class accuracy when using subset matching on IN-100.

Figure 19: Per class accuracy when using subset matching on OI-100.

K Per Class Accuracy for Subset Matching, openai classnames, sc

We report the accuracy of the subset-matched labels, compared to ground-truth labels, for the following constituent
datasets in JANuS:

ImageNet-100: 18. OpenImages-100: 19.

L JANuS Spreadsheet Column Explanations

JANuS contains many different kinds of metadata, and the meaning of some of the column labels used may not be
immediately apparent to the reader.

We do not provide explanations for metadata columns which are explained in one of the original dataset descriptions;
for those, we recommend referring to the original authors of the datasets. (Deng et al., 2009; Fang et al., 2022;
Schuhmann et al., 2021a; Thomee et al., 2016; Kuznetsova et al., 2020)

BLIPCaption refers to captions generated by us using a BLIP captioning model. BLIPTitle captions are a combina-
tion of the BLIP caption and the title field of flickr captions. Li et al. (2022a)

FlickrCaption refers to captions sourced from flickr.

annot_caption refers to OpenImages captions that were authored by human image annotators. prose_caption com-
bines BLIP and annotator captions, favoring the latter when available.

clip_idx are ImageNet labels chosen by a zero-shot CLIP ViT-L model from OpenAI.

idx_ labels refer to labels generated using various subset-matching strategies.

37



Published in Transactions on Machine Learning Research (08/2023)

mc is multiclass, sc is single class, strict is strict. Ours, default, openai refer to the three different sets of class labels
we experimented with throughout this paper.
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