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ABSTRACT

Multimodal learning typically requires expensive paired data for training and
assumes all modalities are available at inference. Many real-world scenarios,
however, involve unpaired and heterogeneous data distributed across institutions,
making collaboration challenging. We introduce Unpaired Multimodal Learning
(UML) as the problem of leveraging semantically related but unaligned data across
modalities, without requiring explicit pairing or multimodal inference. This set-
ting naturally arises in collaborative scenarios such as satellite imagery, where
institutions collect data from diverse sensors (optical, multispectral, SAR), but
paired acquisitions are rare and data sharing is restricted. We propose a col-
laborative framework that combines modality-specific projections with a shared
backbone, enabling cross-modal knowledge transfer without paired samples. A
key element is post-hoc batch normalization calibration, which adapts the shared
model to each modality. Our framework also extends naturally to federated train-
ing across institutions. Experiments on multiple satellite benchmarks and ad-
ditional visual datasets show consistent improvements over unimodal baselines,
with particularly strong gains for weaker modalities and in low-data regimes.

1 INTRODUCTION

Many applications benefit from combining information from multiple data sources. Satellite moni-
toring integrates radar and optical observations of the Earth’s surface; medical diagnosis combines
CT and MRI scans; and robots exploit both visual and depth cues. Such multimodal learning has
the potential to provide more robust and accurate models.

Despite this promise, most existing approaches make two strong assumptions: paired samples are
available across modalities during training, and all modalities are accessible at inference. In practice,
neither assumption holds. Data are often collected independently by different institutions, coverage
is disjoint, sensors are heterogeneous, and privacy constraints limit sharing. As a result, multimodal
datasets are frequently unpaired, fragmented, and distributed.

Existing strategies often fall into two extremes. On one side, an unimodal training approach which
learns models from a single sensor or modality, without requiring any alignment or collaboration
(Helber et al., 2019; Sumbul et al., 2021). On the other side, fully paired fusion that improves
accuracy, yet requires costly alignment, depends on scarce co-acquisitions, and typically assumes
multimodal inputs at inference (Schmitt et al., 2019; Baltrušaitis et al., 2018). A new line of work ex-
plores intermediate solutions that reduce the reliance on pairing. Some methods combine a small set
of paired samples with a large unpaired corpus to align shared representations (Yacobi et al., 2025).
Others address missing modalities during training or inference by designing imputation strategies or
learning models that are robust to incomplete inputs (Wu et al., 2024). There are also approaches for
unpaired alignment through pseudo-pairs, cycle consistency, or distillation, particularly in medical
imaging and multimodal representation learning (Dou et al., 2020; Timilsina et al., 2024). These
efforts demonstrate the importance of the unpaired setting, but they typically assume partial pairing,
multimodal inference, or homogeneous encoders. In contrast, our goal is to develop a practical
framework for fully unpaired multimodal collaboration that requires no paired samples, supports
unimodal inference, and is simple enough to deploy in realistic distributed settings.
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Figure 1: Motivation for unpaired multimodal collaborative learning. At one end, unimodal training is inexpen-
sive and avoid data sharing but fails to exploit complementary information. At the other end, paired multimodal
fusion improves accuracy but requires costly aligned data and multimodal inference. Our framework targets
the middle ground, enabling cross-modal benefits without paired data or multimodal inputs at test time.

This motivates our central question: Can we transfer knowledge across modalities without paired
data, without multimodal inference, and while respecting heterogeneous architectures and privacy
constraints? Figure 1 illustrates this trade-off.

Motivating example. Satellite imagery provides a concrete example. Sentinel-1, which carries a
Synthetic Aperture Radar (SAR) instrument, captures surface structure and is robust to clouds and
illumination. Sentinel-2, in contrast, provides multispectral optical imagery with high spatial detail1.
Each modality is useful on its own, but when paired, they provide shared and unique information.
In practice, paired acquisitions across these missions are rare, co-registration is error-prone, and
institutions often cannot share raw data. Similar challenges arise in medical imaging and robotics.

Our approach. We propose a framework that enables cross-modal knowledge transfer without
requiring paired samples or multimodal inference. Each modality is equipped with a projection into
a shared representation, where a backbone learns modality-agnostic semantics. After training, post-
hoc batch normalization calibration adapts the backbone to each modality, yielding strong unimodal
performance.

Contributions. This paper makes three contributions:

• Problem formulation. We define Unpaired Multimodal Learning (UML) as the task of leverag-
ing semantically related but unaligned data across modalities, without requiring paired samples or
multimodal inference. Unlike prior settings that assume partial pairing, missing-modality mod-
els, or homogeneous encoders, UML captures realistic constraints faced in satellite imagery and
other distributed domains.

• Method. We propose a lightweight collaborative framework for UML that combines modality-
specific projections, a shared backbone, and post-hoc batch normalization (BN) calibration (Ioffe
& Szegedy, 2015). The design requires no paired data, supports unimodal inference, and we can
perform federated training across institutions while not sharing raw data.

• Empirical findings. Across three satellite benchmarks and additional visual datasets, our ap-
proach consistently improves over unimodal baselines. Gains are largest for weaker modalities
and in low-data regimes, and we show that BN calibration is critical to stable performance. These
results establish clear principles for when and why collaboration is most beneficial.

Together, these contributions establish a practical and general framework for multimodal collabora-
tion under the realistic constraints of unpaired, heterogeneous, and distributed data.

1Sentinel missions. Sentinel-1 (radar) and Sentinel-2 (optical) are part of the European Copernicus pro-
gram, which provides freely available global Earth observation data at large scale (Torres et al., 2012; Drusch
et al., 2012).
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2 PROBLEM FORMULATION

We consider a collaborative learning scenario with K institutions, where each institution k ∈
{1, 2, . . . ,K} holds data from a distinct modality. Let Dk = {(xki , yki )}

Nk
i=1 denote the dataset

at institution k, where xki ∈ Xk represents an input sample from modality k, yki ∈ Y is the cor-
responding label, and Nk is the number of samples. Each input space Xk is heterogeneous, with
Xk ⊂ Rdk , where the dimensionality dk may vary across modalities.

Key constraint. The datasets are unpaired across modalities, meaning there exists no correspon-
dence function ϕ : Xj → Xk that maps samples between any two modalities j and k. This eliminates
the possibility of pixel-wise or sample-wise alignment.

Objective. Each institution aims to learn an improved classifier hk(xk;ωk) : Xk → Y for its
own modality, where hk is a neural network parameterized by ωk. The goal is to achieve this
improvement by collaborating with other institutions, without sharing raw data or requiring paired
samples.

Key assumptions. We make two key assumptions that enable effective collaboration in this chal-
lenging setting:

Assumption 1 (Semantic Coherence). Although data are unpaired, modalities capture semantically
related phenomena and share common high-level semantic structures. Formally, there exists a shared
semantic space S such that meaningful mappings ψk : Xk → S exist for all modalities. In our
satellite imagery context, this assumption holds because both SAR and optical sensors observe the
same Earth surface phenomena, unlike more disparate modality combinations (e.g., text-image).

Assumption 2 (Shared Label Space). All institutions operate on the same classification task with
identical label spaceY . This enables knowledge transfer through supervised learning signals without
requiring explicit sample correspondences.

These assumptions are realistic in many collaborative scenarios: (i) Earth observation, where dif-
ferent institutions collect complementary sensor data (SAR, optical, hyperspectral) for the same
land cover classification objectives; (ii) medical imaging, where hospitals may specialize in differ-
ent modalities (CT, X-ray, MRI) for the same diagnostic task (e.g., lung disease classification), but
acquiring paired scans from the same patient across all modalities is rare due to cost and patient
burden.

3 PROPOSED APPROACH

3.1 MODEL ARCHITECTURE

Since our data consist of heterogeneous modalities distributed across K institutions, we decompose
the modality-specific classifier hk(xk;ωk) into two components: (i) Modality-specific projection
fk(x

k;ϕk) : Xk → Z , which maps raw input xk to a shared latent space Z; and (ii) Shared
backbone g(z; θ) : Z → Y , which performs classification in the common representation space.
The complete model for modality k is:

hk
(
xk;ωk

)
= g

(
fk
(
xk;ϕk

)
; θ
)
, (1)

where ωk = {ϕk, θ} denotes the set of parameters involved for modality k.

Design rationale. The projection fk handles modality-specific characteristics (e.g., different chan-
nel dimensions, sensor properties), while the shared backbone g learns modality-agnostic semantic
features that generalize across modalities.

3.2 TRAINING OBJECTIVE

In the centralized setting, we minimize the empirical risk across all modalities:

L =
1

K

K∑
k=1

Lk (2)
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Algorithm 1 Centralized Unpaired Multimodal Learning

Require: epochs E, batch size b, number of modalities K, learning rate η
Require: per-modality datasets {Dk}Kk=1 with |Dk| = N (balanced); hence M ≜ N/b mini-

batches per epoch
1: Initialize: shared backbone g(·; θ); modality-specific projections {fk(·;ϕk)}Kk=1
2: for e = 1 to E do ▷ epoch
3: Shuffle each Dk and form M mini-batches of size b
4: for m = 1 to M do ▷ mini-batch within epoch
5: for k = 1 to K do
6: Sample mini-batch {(xki , yki )}bi=1 from Dk

7: Lk = 1
b

∑b
i=1 ℓ

(
g
(
fk(x

k
i ;ϕk); θ

)
, yki

)
▷ calculate mini-batch loss of each modality

8: Total loss (per step): L = 1
K

∑K
k=1 Lk

9: Update: (θ, ϕ1, . . . , ϕK)← (θ, ϕ1, . . . , ϕK)− η∇(θ,ϕ1,...,ϕK)L
10: Post-processing: Perform Algorithm 2 for BN calibration

where Lk is the classification loss for modality k:

Lk =
1

Nk

Nk∑
i=1

ℓ
(
g
(
fk
(
xki

))
, yki

)
(3)

and ℓ(.) is the cross-entropy loss. This objective encourages the shared backbone to learn features
that are discriminative across all modalities.

Training Procedure. Algorithm 1 presents our training procedure. A critical challenge in mul-
timodal learning is that the batch normalization (BN) statistics computed during training may be
biased toward dominant modalities or inappropriate for individual modalities during inference. To
address this, we propose a simple yet effective post-training calibration procedure (Algorithm 2).
Standard BN uses exponential moving averages to track running statistics during training. How-
ever, in the multimodal setting, these statistics represent a mixture across modalities and may not be
optimal for any single modality during inference.

After training, we create modality-specific copies of the shared backbone and recalibrate their BN
layers using only data from the corresponding modality. Specifically, we freeze all learned pa-
rameters to preserve trained weights, reset BN running statistics, and disable exponential moving
averages Finally, we recompute statistics using cumulative moving averages (CMA) over multiple
calibration epochs with larger batch sizes B ≫ b.

This procedure requires no additional parameter training and maintains privacy since each modal-
ity’s statistics are computed independently. The calibration is computationally efficient, requiring
only Ecal ≪ E, where E is the original training epochs.

Benefits. The calibrated models hk(·;ωk) maintain the representational power of the shared back-
bone while providing modality-appropriate normalization statistics, leading to improved perfor-
mance without additional learnable parameters or privacy concerns.

Connection to multi-task learning. Our training objective resembles multi-task learning with a
shared backbone, where each modality constitutes a distinct ”task.” This similarity is intentional—it
allows our framework to inherit the well-established regularization benefits of multi-task learning,
where the shared parameters prevent overfitting to any single modality while learning generalizable
representations across tasks.

Federated Extension. Our approach naturally extends to federated learning settings (Algorithm 3).
The key insight is selective parameter sharing: only the shared backbone parameters θ are aggregated
across clients using FedAvg, while modality-specific projections(ϕk remain local to preserve data
heterogeneity and privacy. This design ensures that raw data never leaves client devices, with only
model parameters being exchanged. Following federated training, each client performs the same BN
calibration procedure (Algorithm 2) using local data to obtain personalized models. Our framework
is agnostic to the choice of federated aggregation algorithm (FedProx, SCAFFOLD) and optimizer
(Adam, SGD), making it broadly applicable to various federated scenarios.

4
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Algorithm 2 Post-hoc Batch Normalization(BN) Calibration

Require: Trained backbone g( · ; θ), projections {fk( · ;ϕk)}Kk=1

Require: Calibration epochs Ecal, per-modality datasets {Dk}Kk=1, batch size B
1: for k = 1 to K do
2: gk( · ; θk)← copy(g( · ; θ)) ▷ independent copy
3: Freeze all parameters in gk and fk ▷ weights fixed
4: Reset BN running statistics in gk and fk to zero
5: Set BN layers to accumulate statistics without momentum (with CMA)
6: for e = 1 to Ecal do
7: for mini-batch {xki }Bi=1 ∼ Dk do
8: Z ← fk({xki }Bi=1;ϕk) ▷ batch processing
9: gk(Z; θk) ▷ forward only, updates BN stats

10: Output: Calibrated model hk = gk ◦ fk

3.3 THEORETICAL INTUITION

Why this works. The shared backbone g observes diverse feature representations from all modal-
ities during training, acting as a regularizer that prevents overfitting to any single modality’s char-
acteristics. Simultaneously, the common classification objective provides a supervisory signal that
aligns the feature spaces without requiring explicit sample correspondences.

Cross-modal knowledge transfer. Weaker modalities benefit from the richer representations
learned by stronger modalities through the shared backbone, while stronger modalities gain robust-
ness through exposure to diverse feature patterns.

BN calibration necessity. Collaborative training causes BN statistics to drift toward dominant
modalities. Post-hoc recalibration using modality-specific data realigns the feature distributions,
ensuring optimal performance for each client.

4 EXPERIMENTATION

4.1 DATASETS AND EXPERIMENTAL SETUP

We evaluate on three multimodal Earth observation benchmarks: BigEarthNet-MM (Sumbul et al.,
2021), EuroSAT-S1-RGB (Helber et al., 2019; Wang et al., 2023), and SEN12MS (Schmitt et al.,
2019). All datasets are originally imbalanced and multi-label; we construct class-balanced subsets
and recast them as single-label classification to isolate unpaired multimodal learning effects. Each
dataset provides Sentinel-1 (S1) SAR and Sentinel-2 (S2) multispectral imagery with varying spec-
tral richness: BigEarthNet-MM (2 SAR + 12 S2 bands), SEN12MS (2 + 13), and EuroSAT-S1/RGB
(2 + 3 RGB). The complete data set statistics and band descriptions are in Appendix C and D.

Training protocol. We implement our framework with Algorithm 1 primarily in a centralized set-
ting. All methods use identical ResNet-18 (He et al., 2015) computational budgets: unimodal base-
lines train one ResNet-18 per modality, while our method decomposes ResNet-18 into modality-
specific projections fk plus shared backbone g with matching total parameters. Post-training, we
recalibrate BatchNorm statistics per modality using local data. We control for all other factors: opti-
mizer, schedule, augmentations, epochs, and early stopping (details in Appendix F). We report top-1
accuracy (correct predictions/total samples), which is appropriate given the balanced nature of all
datasets.

Experimental configurations. (i) Fine-grained: Each spectral band/channel becomes a separate
client (K = 5 to 15), demonstrating scalability; (ii) Bi-modal: The standard setting of two clients
(K = 2), reflecting practical deployment scenarios.

4.2 MAIN RESULTS: CROSS-MODAL COLLABORATION BENEFITS

Fine-grained collaboration (Experiment 1). Figure 2a and Figure 5 compare unimodal baselines
(blue) to our method (orange) for every band/channel. Our approach improves mean test accuracy

5
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Figure 2: Results of unpaired multimodal learning. (Left) Experiment 1: BigEarthNet-MM fine-grained modal-
ities, showing consistent gains over unimodal baselines (blue vs. orange). (Right) Experiment 2: Bi-modal
setting, where Sentinel-1 (SAR) benefits strongly from collaboration. Results for SEN12MS and EuroSAT-
S1/RGB in Experiment 1 are provided in the Appendix A.

on all three datasets: +13.84 percentage points (pp) on BigEarthNet-MM, +4.59 pp on SEN12MS,
and +6.24 pp on EuroSAT-S1/RGB.

Bi-modal collaboration (Experiment 2). Figure 2b summarizes the bi-modality case. S2 base-
lines are already high on BigEarthNet-MM and SEN12MS, so adding S1 yields marginal uplifts
for S2. In contrast, S1 benefits greatly from collaboration: +11.7 pp (BigEarthNet-MM), +10.9 pp
(SEN12MS), and +6.8 pp (EuroSAT-S1-RGB). On EuroSAT, RGB also improves by +7.8 pp. Ver-
tical gray markers indicate paired-data references where available; in SEN12MS and EuroSAT, the
stronger modality occasionally exceeds that paired, consistent with reduced overfitting when collab-
orating without pixel-level pairing. Takeaway: collaboration predominantly lifts the weaker modal-
ity, while already-informative S2 bands see small but stable changes.

4.3 ANALYSIS: SOURCES OF IMPROVEMENT

Regularization vs. semantic transfer. We disentangle two potential mechanisms through con-
trolled experiments (Tables 1, 2 ). Collaborating semantically related modalities (S1↔ S2, MNIST
↔ SVHN) yields larger gains than unrelated pairs (satellite ↔ natural images, digits ↔ fash-
ion). However, even semantically distant collaborators provide positive regularization effects (e.g.,
SAR+Imagenette2: +9.1 pp vs. SAR+optical: +11.7 pp), confirming that both mechanisms con-
tribute.

Data efficiency and BN calibration. Figure 3 demonstrates that collaboration benefits are most
pronounced in low-data regimes, with diminishing returns as per-modality data increases. Remov-
ing BN calibration severely degrades performance across all data scales, with larger degradation at
high data volumes—consistent with BN statistics drifting toward dominant modalities during col-
laborative training.

4.4 BASELINE COMPARISONS

Unpaired multimodal methods. We compare our approach against Identifiable Shared Component
Analysis (ISCA), the only existing method to our knowledge designed for completely unpaired
multimodal learning. As shown in Table 3, our method consistently outperforms ISCA across all
datasets and modalities.

Domain adaptation baselines. Standard DA methods assume shared encoders and often unsuper-
vised targets. We adapt DANN, CDAN, MCC, and MDD to our supervised, heterogeneous-modality
setting by using separate encoders per modality with shared classifiers and providing the labels for
both modalities(domains). Table 4 shows that our method outperforms all DA variants. Critically,
several DA methods underperform unimodal baselines, indicating that standard domain alignment
objectives are ill-suited for heterogeneous modalities with different architectural requirements.

2ImgNette is a subset of Imagenet Dataset containing natural images: https://github.com/
fastai/imagenette
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Supplementary ModalityEvaluated
Modality MNIST SVHN FMNIST
MNIST - +1.00 -1.00
SVHN +3.67 - +2.00
FMNIST -2.00 +1.67 -

Table 1: Cross-modal collaboration benefits on digit
datasets.Delta accuracy (%) when adding supple-
mentary modalities. Semantically similar datasets
(MNIST+SVHN) show mutual benefits

Supplementary ModalityEvaluated
Modality BGE-S1 BGE-S2 ImgNette
BGE-S1 - +11.7 +9.1
BGE-S2 +1.0 - +0.8
ImgNette +8.4 +8.7 -

Table 2: Cross-modal collaboration on remote sensing
data. Delta accuracy (%) with supplementary modali-
ties. BGE-S1/S2 gain most from each other due to se-
mantic similarity.
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Figure 3: Effect of dataset size on BigEarthNet-
MM. Collaboration yields larger gains in the low-data
regime, while BN calibration remains critical at all
scales.

BigEarthNet-MM SEN12MS EuroSAT S1–RGBMethod S1 S2 Mean S1 S2 Mean S1 RGB Mean
Unimodal Baseline 73.86 94.14 84.00 70.25 88.92 79.59 58.30 66.57 62.44

ISCA 80.76 93.45 87.10 70.67 89.29 79.98 62.75 69.35 66.05
Proposed 85.59 95.16 90.38 81.17 90.00 85.59 65.07 74.35 69.71

Paired Data
(Multimodal inference) - 95.76 - 89.68 - 72.50

Table 3: Comparison with unpaired multimodal learning methods. Classification accuracy (%) across remote
sensing datasets. Our method outperforms ISCA, the only existing unpaired multimodal approach, and ap-
proaches the performance of paired multimodal methods (shown in gray for reference)

Federated Learning Extension As discussed earlier, our proposed method naturally extends to
privacy-aware (no raw data exchange) federated settings, as demonstrated in Algorithm 3. Fig-
ure 4 shows performance across different local epochs (L ∈ {2, 5, 10, 25, 50}). Our method main-
tains effectiveness across communication-efficiency trade-offs, with optimal performance typically
achieved around L = 5–10 depending on dataset characteristics. Higher local epoch values re-
duce communication frequency between clients and the server. We denote the number of com-
munication rounds by R, where each round involves clients sharing their local backbone weights
θk for aggregation. For fair comparison with the centralized setting (200 training epochs), we set
R ∈ {100, 40, 20, 8, 4} such that R × L = 200 remains constant across all federated experiments
(see Appendix F for details).

Limitations. Our approach has several important limitations that suggest directions for future
work. First, the benefits of collaborative learning diminish as per-modality data becomes abun-
dant (Figure 3). Second, our experimental evaluation focuses on CNN architectures, which are
well-suited to the limited-data scenarios that motivate our approach. Modern transformer architec-
tures (Dosovitskiy et al., 2021) with LayerNorm (Ba et al., 2016) may not require BN calibration,
though they typically require substantially larger datasets for effective training from scratch. Third,
our evaluation primarily considers balanced per-modality data distributions. In severely imbalanced
scenarios—where one modality contains orders of magnitude more data than others—the collabora-
tion dynamics between modalities may shift significantly, potentially leading to domination effects
that our current framework does not explicitly address. Finally, our method is designed for the purely
unpaired setting and lacks a principled mechanism to leverage partially paired data when available.
If some pixel-wise aligned samples exist across modalities, our current framework cannot systemat-
ically incorporate this valuable supervisory signal, representing a missed opportunity for improved
performance in hybrid scenarios.
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Method BigEarthNet-MM SEN12MS EuroSAT S1–RGB
S1 S2 Mean S1 S2 Mean S1 RGB Mean

Unimodal Baseline 73.86 94.14 84.00 70.25 88.92 79.59 58.30 66.57 62.44
DANN 71.31 94.09 82.70 69.71 88.79 79.25 58.67 68.25 63.46
CDAN 77.81 93.76 85.79 71.25 86.18 78.71 58.07 68.92 63.50
MCC 76.95 93.47 85.21 70.00 88.64 79.32 59.67 66.00 62.84
MDD 70.36 94.16 82.26 67.25 87.29 77.27 62.17 66.42 64.30

Proposed 85.59 95.16 90.38 81.17 90.00 85.59 65.07 74.35 69.71

Table 4: Comparison with domain adaptation baselines. Classification accuracy (%) across three remote
sensing datasets. Our method consistently outperforms DA approaches and unimodal baselines. Results demon-
strate that our framework achieves superior cross-modal knowledge transfer compared to traditional domain
adaptation techniques that require source-target domain alignment.
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Figure 4: Results on BigEarthNet-MM dataset showing the effect of local epochs L on test accuracy under
FedAvg with fixed total training budget (R × L = 200). Our method maintains superiority over unimodal
baselines across different communication frequencies, with optimal performance at L = 5 to 10. Higher local
epochs reduce communication overhead but may degrade performance due to client drift, with convergence to
baseline performance at L = 50 in both scenarios.

5 RELATED WORK

Multimodal representation learning. Multimodal learning is the process of jointly leveraging
information from multiple data modalities (e.g., images, text, audio, or sensor signals) to learn richer
and more robust representations than from any single modality alone (Baltrušaitis et al., 2018; Liang
et al., 2023). A central challenge is dealing with heterogeneity across modalities and the need for
alignment. Traditional fusion methods can be categorized into early, middle, and late fusion. Early
fusion concatenates modalities at the input level, middle fusion shares intermediate representations,
and late fusion aggregates modality-specific predictions. These approaches often assume paired
data and require all modalities during inference. Recent dual-encoder frameworks such as CLIP
(Radford et al., 2021), OneLLM (Han et al., 2024), VLMo (Bao et al., 2022), SIMVLM (Wang
et al., 2021), ImageBind (Girdhar et al., 2023), VL-GPT (Zhu et al., 2023), and CROMA (Fuller
et al., 2023) address modality heterogeneity by assigning each modality its own encoder and aligning
representations via contrastive objectives. While effective across heterogeneous modalities, these
methods still depend on paired data for training in contrast to our method where we do not need any
paired data.

Domain Adaptation Our problem of unpaired multimodal learning shares connections with domain
adaptation (DA), where the goal is to align feature spaces across source(s) and target(t) domains
so that f(x(s)) and f(x(t)) yield consistent representations when semantically similar (Wilson &
Cook, 2020). Popular DA methods include adversarial alignment, e.g., DANN (Ganin et al., 2016)
and CDANN (Long et al., 2018), and discrepancy-based approaches such as MDD (Li et al., 2020a)
and MCC (Jin et al., 2020). These methods encourage domain-invariant features through a single
shared encoder and have proven effective for homogeneous domains. However, they are not directly
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applicable to multimodal settings, where each modality requires a distinct encoder due to hetero-
geneous input structures. In our work, we adapt representative DA baselines by equipping each
modality with its own encoder. Empirically, these adapted methods struggle to close the modality
gap, highlighting their design limitations for unpaired multimodal learning, whereas our approach
achieves stronger cross-modal knowledge transfer (see Table 4).

Multimodal Learning with Missing or Unpaired Data Several works extend multimodal learning
beyond the fully paired assumption. Nakada et al. (2023) introduce a contrastive framework that
integrates unpaired samples into training. Kim & Kim (2024) propose predicting embeddings of
missing modalities in the joint representation space to handle incomplete inputs during inference.
Ma et al. (2021) address scenarios with severely missing modalities using a meta-learning approach,
while large-scale vision-language models such as Singh et al. (2022) leverage self-supervised learn-
ing to train on a mix of paired and unpaired data. Timilsina et al. (2024) introduce Identifiable Shared
Component Analysis, which disentangles shared and private components from unpaired multimodal
distributions to enable a joint classifier. We benchmark against this approach and find that our
framework achieves stronger performance while avoiding reliance on paired data (see Table 3)

Federated learning with heterogeneous data Classical FL algorithms such as FedAvg (McMa-
han et al., 2017), FedProx (Li et al., 2020b), and SCAFFOLD (Karimireddy et al., 2020) assume
homogeneous architectures across clients, allowing parameter averaging. Personalization-oriented
methods like FedPer Arivazhagan et al. (2019) and FedRep (Collins et al., 2021) relax this by shar-
ing early layers or representations while keeping task-specific heads local, but they still assume a
homogenous data input structure. More recent approaches, including HeteroFL (Diao et al., 2020)
and LG-FedAvg (Liang et al., 2020), support heterogeneous client models or backbone splits, yet
they are not designed for fundamentally different modalities. A key challenge in such settings is
handling batch normalization (BN) statistics, which become inconsistent across modalities. In our
proposed method, running statistics of BN layers are not tracked during training similar to static
Batch Normalization (sBN) (Diao et al., 2020). We perform post-hoc BN calibration. This design
has two main advantages: (i) it preserves privacy by avoiding the exchange of first- and second-
order statistics across clients, thus addressing one of the key limitations highlighted in Diao et al.
(2020); and (ii) it ensures that BN statistics are well aligned with the distributional characteristics
of each modality. Notably, this differs from Li et al. (2021) where both the affine parameters and
BN statistics are client-specific. In contrast, our approach keeps affine parameters shared while only
calibrating BN statistics post-training.

6 CONCLUSION AND FUTURE WORK

We addressed the problem of Unpaired Multimodal Learning (UML), where data from different
sensors or modalities are semantically related but not aligned across samples. While prior work
has explored partial solutions, such as semi-paired training or missing-modality models, a prac-
tical framework for fully unpaired collaboration remained elusive. We proposed a simple yet ef-
fective approach that combines modality-specific projections, a shared backbone, and post-hoc BN
calibration. This design enables cross-modal knowledge transfer without requiring paired data or
multimodal inference, and scales naturally to distributed training across institutions without sharing
raw data. Our experiments on three satellite benchmarks, complemented by digits and natural image
datasets, demonstrate consistent gains over unimodal baselines, with the strongest improvements for
weaker modalities and in low-data regimes. These results show that even lightweight architectural
changes can unlock significant cross-modal benefits in realistic unpaired settings. Looking ahead,
extensions to transformer backbones, alternative normalization schemes, and richer modality com-
binations promise to broaden the scope of this framework. This work is a step towards multimodal
collaboration under the real-world constraints of unpaired, heterogeneous, and private data.

REPRODUCIBILITY STATEMENT

We implement all experiments in PyTorch following official reproducibility guidelines3 with fixed
random seeds and deterministic operations. Complete hyperparameters are provided in Appendix F,
and code will be made publicly available upon acceptance.

3https://docs.pytorch.org/docs/stable/notes/randomness.html
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Figure 5: Experiment 1 results for SEN12MS and EuroSAT-S1/RGB. Unimodal baselines (blue) vs. proposed
method (orange). Trends are consistent with those reported in the main text.

APPENDICES

A ADDITIONAL EXPERIMENT 1 RESULTS

In the main text (Section 4.2), we presented Experiment 1 results on BigEarthNet-MM and discussed
the general trends across datasets. For completeness, Figure 5 provides the corresponding results for
SEN12MS and EuroSAT-S1/RGB. These follow the same pattern: our method consistently improves
over mean unimodal baselines.

B FEDERATED EXTENSION OF UNPAIRED MULTIMODAL LEARNING

We demonstrate the Federated learning extension of our proposed method in Algorithm 3. We also
performed experiments on the the BigEarthNet-MM dataset. The results are shown in Figure 4.

Algorithm 3 Federated Unpaired Multimodal Learning

Require: Communication rounds R, local epochs L, learning rate η batch size b
Require: per-modality datasets {Dk}Kk=1 with |Dk| = N (balanced); hence M ≜ N/b mini-

batches per epoch
1: Initialize: Shared backbone parameters g( · ; θ0), modality-specific projections {fk(·;ϕk)}Kk=1
2: for round r = 1 to R do
3: Server broadcasts g(·; θr−1) to all clients
4: for each client k in parallel do
5: Receive g(·; θr−1) from server
6: Initialize local backbone: g(·; θk,r)← g(·; θr−1)
7: for local epoch l = 1 to L do
8: Shuffle each Dk and form M mini-batches of size b
9: for m = 1 to M do ▷ mini-batch within epoch

10: Compute loss: Lk = 1
b

∑b
i=1 ℓ

(
g
(
fk(x

k
i ;ϕk); θ

k,r
)
, yki

)
11: Update: ϕk, θk,r ← (ϕk, θk,r)− η∇(θk,r)Lk

12: Send θk,r to server ▷ Only backbone parameters
13: Server aggregates: θr ← 1

K

∑K
k=1 θ

k,r ▷ FedAvg
14: Post-processing: Perform Algorithm 2 for BN calibration
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Satellite Bands Pixel size (m) Typical Application

Sentinel-2

B01 (Aerosol) 60 Aerosol detection
B02 (Blue) 10 Visible range (RGB)

B03 (Green) 10 Visible range (RGB)
B04 (Red) 10 Visible range (RGB)

B05 (Red Edge 1) 20 Vegetation
B06 (Red Edge 2) 20 Vegetation
B07 (Red Edge 3) 20 Vegetation

B08 (NIR) 10 Shorelines, biomass
B8A (Narrow NIR) 20 Vegetation
B09 (Water Vapour) 60 Water vapour detection

B10 (Cirrus) 60 Cloud detection
B11 (SWIR 1) 20 Snow, moisture
B12 (SWIR 2) 20 Snow, moisture

Sentinel-1 VV 10 Texture, backscatter
VH 10 Moisture, vegetation structure

Table 5: Spectral bands of Sentinel-1 and Sentinel-2 with pixel size and typical applications.

C INFORMATION ABOUT BANDS

For completeness, we list the spectral bands of Sentinel-1 and Sentinel-2 along with their spatial res-
olution and typical applications. The information was compiled from Sentinel Hub documentation4

5 and TorchGeo dataset documentation6.

D INFORMATION ABOUT DATASETS USED

In this section, we provide details of the datasets employed in our experiments. We describe the
modalities, selected classes, and experimental splits. Table 6 summarizes the dataset statistics, and
Figure 6 shows representative examples from the visible spectrum.

BigEarthNet-MM. The BigEarthNet-MM dataset consists of co-registered Sentinel-1 (SAR) and
Sentinel-2 (multispectral optical) image patches.

• Features: Sentinel-1 provides two polarization bands (VV, VH), while Sentinel-2 provides
12 spectral bands (B01–B12, excluding B10) with spatial resolutions of 10–60 m/pixel. All
bands were upsampled to 10 m and cropped into 120× 120 patches.

• Format: Each image patch is provided as multiple single-channel GeoTIFFs. Labels are
originally multi-class, but we retain only single-label samples.

• Classes: We selected six representative classes: Arable land, Broad-leaved forest, Conif-
erous forest, Marine waters, Pastures, and Urban fabric.

Figure 6(a) shows a visible-spectrum sample, and Table 6 lists the distribution.

SEN12MS. SEN12MS is a large-scale dataset of Sentinel-1 and Sentinel-2 patches annotated with
MODIS land cover labels. We utilize only single-label International Geosphere-Biosphere Program
(IGBP) labels provided by the authors.

• Features: Sentinel-1 provides VV and VH backscatter (dB scale), while Sentinel-2 pro-
vides 13 spectral bands (B01–B12). Patches are 256× 256.

• Preprocessing: The original dataset is seasonally partitioned; we retain only the summer
subset.

4https://custom-scripts.sentinel-hub.com/sentinel-2/bands/
5https://custom-scripts.sentinel-hub.com/custom-scripts/sentinel/

sentinel-1/
6https://torchgeo.readthedocs.io/en/stable/api/datasets.html#

bigearthnet
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Dataset Classes Train Validation Test Resolution
BigEarthNet-MM 6 1800 (100) 400 700 120× 120

SEN12MS 7 300 (100) 400 400 256× 256
EuroSAT S1–RGB 10 1000 (100) 400 400 64× 64

Table 6: Dataset statistics used in our experiments. The numbers in parentheses denote the reduced training
samples used in low-data settings (Experiment 1 and Experiment 2).

• Classes: We select seven land cover types: Evergreen broadleaf forest, Open shrublands,
Savannas, Grasslands, Croplands, Urban and built-up, and Water bodies.

A representative sample is shown in Figure 6(b).

EuroSAT S1–RGB. The EuroSAT dataset contains Sentinel-2 imagery with 10 target classes. For
our experiments, we also include Sentinel-1 SAR patches aligned to the same grid, forming an
S1–RGB subset. Original EuroSAT has only RGB images, we obtain the SAR from Wang et al.
(2023).

• Features: RGB bands (B02, B03, B04) from Sentinel-2 and SAR (VV, VH) from Sentinel-
1. Each patch is 64× 64.

• Classes: All 10 original classes are retained, including Annual Crop, Forest, Herbaceous
Vegetation, Residential, Sea Lake, Highway,Permanent Crop, Industrial, River, Pasture.

Figure 6(c) illustrates an RGB example.

ImgNette. ImgNette is a curated subset of ImageNet designed to reduce label noise and simplify
evaluation.

• Features: RGB natural images, resized to 224× 224.
• Classes: Ten classes corresponding to high-level object categories. For our work, shown

in 2, we only used 6 classes.

MNIST (LeCun, 1998), SVHN (Netzer et al., 2011), and FMNIST (Xiao et al., 2017). We
additionally include canonical vision benchmarks for results shown in 1:

• MNIST: Grayscale handwritten digits (10 classes, 28× 28).
• SVHN: RGB house numbers trimmed from Google Street View (10 classes, 32× 32). We

crop these image to 28× 28 while collaborating with MNIST and Fashion-MNIST.
• Fashion-MNIST: Grayscale fashion items (10 classes, 28× 28).

E SIZE OF THE PROJECTION LAYERS VS ACCURACY

We conducted an ablation to study how the capacity of the modality-specific projection versus the
shared backbone affects performance. Specifically, we varied the number of ResNet basic blocks
allocated to the projection layer, while keeping the total capacity (projection + backbone) equal to
a ResNet-18. As shown in Figure 7, when the projection layer is too deep (and the backbone corre-
spondingly shallow), performance drops significantly (down to ∼69%), falling below the unimodal
baseline. In contrast, allocating fewer blocks to the projection and more to the backbone yields
higher test accuracy (blue curve). This highlights the importance of preserving sufficient depth in
the shared backbone.

The orange curve shows results without batch normalization (BN) calibration. The gap clearly
demonstrates that BN calibration is critical, especially when the backbone is deeper and contains
more BN layers that can drift under multimodal training. Overall, this experiment emphasizes the
need for careful capacity allocation between modality-specific and shared components, as well as
the necessity of BN calibration.

This experiment was performed on BigEarthNet-MM in the fine-grained clients setting (Experi-
ment 1). For clarity, a ResNet BasicBlock is defined as follows in Python with Pytorch in 1.
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Arable land Broad-leaved forest Coniferous forest Marine waters Pastures Urban fabric

(a) BigEarthNet-MM
Water bodies Grasslands Urban and built-up Croplands Savannas Open shrublands Evergreen broadleaf forests

(b) SEN12MS
AnnualCrop Forest HerbaceousVegetation Highway Industrial Pasture PermanentCrop Residential River SeaLake

(c) EuroSAT

Figure 6: Representative visible-spectrum examples for selected classes from each dataset.
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Figure 7: Effect of projection layer depth (in ResNet blocks) on BigEarthNet-MM fine-grained clients (Exper-
iment 1). The blue curve shows results with BN calibration, while the orange curve shows results without.

F HYPERPARAMETERS

The hyperparameters selected for different experiments in our Unpaired multimodal learning are
shown in the Table 7

G USE OF LARGE LANGUAGE MODELS

We used large language models (ChatGPT-5 and Claude Sonnet 4) as writing assistance tools to im-
prove grammatical correctness and sentence clarity. The LLMs were employed solely for language
polishing and did not contribute to research ideation, experimental design, technical methodology,
or scientific content generation.
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Listing 1: Implementation of a ResNet BasicBlock.

c l a s s B a s i c B l o c k ( nn . Module ) :
e x p a n s i o n = 1
def i n i t ( s e l f , i n p l a n e s , p l a n e s , s t r i d e = 1 ) :

super ( Bas icBlock , s e l f ) . i n i t ( )
s e l f . conv1 = nn . Conv2d (

i n p l a n e s , p l a n e s , k e r n e l s i z e =3 , s t r i d e = s t r i d e ,
padd ing =1 , b i a s = F a l s e )

s e l f . bn1 = nn . BatchNorm2d ( p l a n e s )
s e l f . conv2 = nn . Conv2d (

p l a n e s , p l a n e s , k e r n e l s i z e =3 , s t r i d e =1 ,
padd ing =1 , b i a s = F a l s e )

s e l f . bn2 = nn . BatchNorm2d ( p l a n e s )
s e l f . s h o r t c u t = nn . S e q u e n t i a l ( )
i f s t r i d e != 1 or i n p l a n e s != s e l f . e x p a n s i o n * p l a n e s :

s e l f . s h o r t c u t = nn . S e q u e n t i a l (
nn . Conv2d ( i n p l a n e s , s e l f . e x p a n s i o n * p l a n e s ,

k e r n e l s i z e =1 , s t r i d e = s t r i d e , b i a s = F a l s e ) ,
nn . BatchNorm2d ( s e l f . e x p a n s i o n * p l a n e s )

)
def f o r w a r d ( s e l f , x ) :

o u t = F . r e l u ( s e l f . bn1 ( s e l f . conv1 ( x ) ) )
o u t = s e l f . bn2 ( s e l f . conv2 ( o u t ) )
o u t += s e l f . s h o r t c u t ( x )
o u t = F . r e l u ( o u t )
re turn o u t
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Unimodal Learning Unpaired multimodal
learning Federated UML

(Experiment 1 and 2)
Optimizer AdamW AdamW AdamW

Weight Decay 0.01 0.01 0.01
Initial

Learning Rate 0.001 0.001 0.001

Batch size b 32 32 32
Scheduler Step Step Step

Total Epochs 200 200 200
Scheduler step

and decay (150, 0.1) (150, 0.1) (150, 0.1)

Augmentations No Augmentations
(Only Normalization)

No Augmentations
(Only Normalization)

No Augmentations
(Only Normalization)

Early stopping
Model saved

after 190 epochs
(Best Val ACC)

Model saved
after 190 epochs
(Best Val ACC)

Model saved
after RxL >190
(Best Val ACC

Number of Resnet
blocks in projection 8 2 2

Number of Resnet
blocks in backbone - 6 6

Number of
communication

Round(R)
- - (100, 40, 20, 8, 4)

Local Epochs(L) - - (2, 5, 10, 25, 50)
BN Calibration

Epochs - 10 10

BN calibration
Batch size - 600 600

Table 7: The table shows the selection of hyperparameters for different experiments for the BigEarthNet-MM
dataset.
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