

000
001
002
003

PLANAR HOMEOMORPHIC EMBEDDINGS OF DECISION TREE

004
005
006
007
008003 **Anonymous authors**

004 Paper under double-blind review

009

ABSTRACT

010
011
012
013
014
015
016
017
018
019
020
021
022
023
024

Decision trees and their ensemble variants are widely celebrated for their accuracy, interpretability, and effectiveness on tabular data. Despite their intuitive structure, understanding the global geometric organization of the feature space partitions induced by these models remains challenging, particularly in high-dimensional settings. Traditional visualization techniques, such as node-link diagrams, fail to capture the topological relationships between decision regions, while standard dimensionality reduction methods prioritize data distribution over structural fidelity, often distorting adjacency and connectivity. To address this limitation, we propose a novel framework for embedding decision-tree-induced partitions into two-dimensional space while explicitly preserving adjacency relations among leaf regions. Our approach models the decision tree as a polyhedral complex and constructs a piecewise-linear (PL) embedding that maintains the combinatorial topology of the original high-dimensional partitioning. This adjacency-preserving visualization enables a more faithful interpretation of model behavior, revealing insights into decision boundary structure and data distribution. Our theoretical and experimental results demonstrate the feasibility of the proposed method and its ability to preserve the topological characteristics of the data.

025

1 INTRODUCTION

026027 Decision trees and their ensembles (e.g., random forests, gradient boosting machines) are among the most
028 widely used models in machine learning due to their balance of accuracy, interpretability, and scalability
029 Breiman (2001); Friedman (2001), especially on tabular data. Unlike black-box models such as deep neural
030 networks, decision trees partition the feature space into axis-aligned regions, each corresponding to a leaf node
031 with an associated prediction. This partition-based structure has made them especially valuable in domains
032 such as healthcare, finance, and scientific discovery, where understanding the decision process is as critical as
033 predictive accuracy Caruana et al. (2015); Rudin (2019).034 Yet despite their conceptual simplicity, visualizing and interpreting decision trees in high-dimensional settings
035 remains a challenging task. Each tree induces a subdivision of the feature space into adjacent polyhedral re-
036 gions, forming a complex geometric structure. While individual decision paths are easily interpretable, the
037 global organization of the partitions—how different regions interact, where decision boundaries meet, and how
038 predictions vary across boundaries—remains opaque when the feature dimension exceeds three Hastie et al.
039 (2009). This makes it difficult to answer questions such as: Which regions are adjacent in the input space?
040 Where are predictions most sensitive to perturbations? How is the data distributed in space?041 Existing visualization techniques only partially address these challenges. Classical approaches such as node-
042 link diagrams Louppe (2014) capture the branching structure of the tree but discard information about the
043 geometry of the induced partitions. Low-dimensional projections (e.g., 2D feature slices or partial dependence
044 plots Friedman (2001)) provide local snapshots of decision boundaries but fail to convey the global adjacency
045 relations between partitions. Dimensionality reduction methods such as PCA Abdi & Williams (2010), t-SNE
046 Maaten & Hinton (2008), and UMAP McInnes et al. (2018) have been successfully applied to visualize high-
047 dimensional data, yet they are designed to preserve variance, neighborhood density, or manifold structure, rather
048 than the combinatorial and topological properties of model-induced partitions. Consequently, when applied to
049 decision trees, these methods often distort adjacency, merge distinct regions, or artificially separate continuous
050 regions, limiting their utility for faithful visualization and interpretation.051 In this work, we address this gap by proposing a novel framework for embedding decision-tree-induced parti-
052 tions from high-dimensional spaces into two-dimensional domains while explicitly preserving adjacency rela-
053

052 tions among regions. Our method treats the decision tree as a geometric complex: each leaf corresponds to a cell,
 053 and adjacency is defined by shared boundaries in the original space. We then construct a piecewise-linear (PL)
 054 embedding that maps this complex into the plane, ensuring that adjacent cells in the high-dimensional space
 055 remain adjacent in the embedding. Unlike conventional dimensionality reduction techniques, our approach pri-
 056 oritizes structural fidelity over point-level similarity, yielding embeddings that are topologically faithful to the
 057 original model. This adjacency-preserving embedding enables new possibilities for model interpretability and
 058 analysis. For practitioners, it provides an intuitive visualization that reveals how regions of the feature space are
 059 organized, how decision boundaries intersect, and where the model may be overly sensitive to perturbations.
 060 For researchers, it bridges combinatorial representations of decision trees with geometric embeddings of high-
 061 dimensional complexes, connecting machine learning with tools from computational topology and piecewise-
 062 linear geometry Edelsbrunner & Harer (2010).

063 Our contributions are threefold:

- 065 • Adjacency-preserving embedding framework. We introduce the first principled approach for mapping
 066 decision-tree partitions into two dimensions while preserving adjacency relations between regions.
- 067 • Constructive algorithm. We design efficient approximate embedding algorithms that guarantee struc-
 068 tural fidelity of the decision tree complex.
- 069 • Experimental demonstration. We demonstrate the utility of our embeddings in visualization and de-
 070 cision boundary analysis, showing that they provide richer insights and topological characteristics
 071 preservation than tree visualization methods.

073 2 RELATED WORK

075 Decision trees: Decision trees are a fundamental family of supervised-learning algorithms for both classifica-
 076 tion Breiman (2001); Kotsiantis (2013); Quinlan (1986) and regression Bertsimas et al. (2017); Loh (2011).
 077 Structurally, a tree comprises a single root node, a set of internal (test) nodes, and a collection of terminal (leaf)
 078 nodes. Starting from the root, the instance space is recursively partitioned by means of axis-parallel, univari-
 079 ate splits of the form “ $x^j \leq t$,” each chosen to maximize the homogeneity of the resulting child subsets with
 080 respect to the target variable. Homogeneity is most commonly quantified through impurity-reduction criteria
 081 Raileanu & Stoffel (2004) such as information gain Kent (1983), Gini index Strobl et al. (2007), or variance re-
 082 duction Suen et al. (2005), although any monotonic measure of node impurity may be employed. The recursive
 083 partitioning process induces a hierarchical tessellation of the feature space into axis-aligned hyper-rectangles
 084 or semi-infinite hyper-rectangles, every leaf being assigned a single class label (classification) or a constant
 085 prediction (regression).

086 Homeomorphism: X and Y are topological spaces. A mapping $h : X \rightarrow Y$ is called a homeomorphism
 087 Archdeacon (1996) if h satisfies the following conditions: 1. It is a 1-1 mapping (in this case, injective); 2.
 088 It is surjective; 3. It is continuous, that is, it preserves the proximity properties of each point. 4. The inverse
 089 mapping is also continuous, and the topological properties of the homeomorphism are preserved. This paper
 090 aims to map the decision partitions of a high-dimensional decision tree to two dimensions while preserving its
 091 adjacency structure.

093 3 PRELIMINARIES

095 To facilitate the subsequent description, we first define the partitions formed by the decision tree and define the
 096 decision tree accordingly.

097 **Definition 3.1** (Polyhedral Complex). A *polyhedral complex* \mathcal{C} in \mathbb{R}^d is a finite collection of convex polyhedra
 098 (called *cells*) such that:

- 100 1. If $P \in \mathcal{C}$, then every face of P is also in \mathcal{C} .
- 101 2. The intersection of any two polyhedra $P, Q \in \mathcal{C}$ is a face of both P and Q .

103 The *underlying space* of \mathcal{C} , denoted $|\mathcal{C}|$, is the union of all its cells.

104
 105 **Definition 3.2** (Decision-Tree Complex). Let \mathcal{T} be a binary decision tree of depth Δ on $X \subset \mathbb{R}^d$. Each internal
 106 node ν is labelled by an affine function $f_\nu(x) = w_\nu^\top x + b_\nu$ with $w_\nu \in \{\pm e_j\}$ in case (A) or arbitrary $w_\nu \in \mathbb{R}^d$
 107 in case (B). The leaf regions $\{R_i\}$ are defined as

$$108 \quad R_i = \bigcap_{\nu \in \text{path}(i)} H_\nu, \quad H_\nu = \begin{cases} \{x : f_\nu(x) \leq 0\} & \text{if we turn left at } \nu, \\ 109 \quad \{x : f_\nu(x) > 0\} & \text{if we turn right at } \nu. \end{cases}$$

110
 111 The *decision-tree complex* $\mathcal{C}_\mathcal{T}$ is the polyhedral complex whose d -cells are the closures $\overline{R_i}$ and whose k -cells
 112 are the k -dimensional faces of these polyhedra.

113
 114 After defining the decision tree, we can define the partition it constructs as a graph. The definition of the graph
 115 is as follows:

116 **Definition 3.3** (Combinatorial Dual Graph). Let $G(\mathcal{T})$ be the graph whose vertices correspond to the d -cells
 117 (leaf regions) of $\mathcal{C}_\mathcal{T}$ and whose edges connect two vertices if the corresponding d -cells share a common $(d-1)$ -
 118 face.

119
 120 Let \mathcal{T} be a decision tree trained on a bounded domain $X \subseteq \mathbb{R}^d$. The tree induces a finite cell complex $\mathcal{C}_\mathcal{T}$ whose
 121 d -cells are the leaf regions $\{R_i\}_{i=1}^L$ and whose $(d-1)$ -cells are pieces of the split hyperplanes. We study when
 122 $\mathcal{C}_\mathcal{T}$ can be embedded into \mathbb{R}^2 *homeomorphically*, i.e., via an injective continuous map $h : |\mathcal{C}_\mathcal{T}| \hookrightarrow \mathbb{R}^2$ that
 123 preserves the incidence structure of the complex.

124 **Definition 3.4** (Planar Embedding of a Complex). A polyhedral complex \mathcal{C} is said to be *PL embeddable* in \mathbb{R}^2
 125 if there exists a piecewise-linear homeomorphism $h : |\mathcal{C}| \rightarrow \mathbb{R}^2$ that maps each cell of \mathcal{C} to a polyhedral cell in
 126 \mathbb{R}^2 while preserving the incidence relations.

127
 128 This work establishes fundamental limitations and possibilities for such embeddings, with implications for the
 129 visualization of decision boundaries and the topological complexity of learned models.

130 We consider the following two cases respectively:

131 (A) Axis-aligned boundary pieces only.
 132 (B) Arbitrary piecewise-linear (PL) boundaries allowed in the plane.

135 4 AXIS-ALIGNED BOUNDARIES

136
 137 We initially expected that any high-dimensional, axis-parallel decision-tree partition could be faithfully embedded
 138 into the plane while preserving both its combinatorial structure and its axis-aligned geometry—an outcome
 139 that would greatly facilitate visual interpretation and downstream analysis. Contrary to this expectation, the following
 140 theorem demonstrates that once the ambient dimension exceeds three, such an embedding is no longer
 141 universally attainable: there exist axis-parallel partitions that cannot be mapped into two dimensions without
 142 sacrificing the axis-parallel property.

143 **Theorem 4.1** (Obstruction for Axis-Aligned Embeddings). There exists a decision tree \mathcal{T} of depth 3 such that
 144 $G(\mathcal{T})$ contains a K_4 -minor. Consequently, $\mathcal{C}_\mathcal{T}$ cannot be embedded into \mathbb{R}^2 with only axis-aligned segments as
 145 boundaries.

146
 147 Following Theorem 4.1, we have the following corollary, which is obvious because a decision tree constructed
 148 in a space of any dimension that is partitioned only once or twice can be mapped into a two-dimensional space
 149 without changing the topological properties of its partition.

150 **Corollary 4.2.** If depth $\Delta \leq 2$, then $G(\mathcal{T})$ is outer-planar and $\mathcal{C}_\mathcal{T}$ admits an axis-aligned planar embedding.

151 **Theorem 4.3** (Characterization for Axis-Aligned Embeddings). For a decision tree \mathcal{T} with axis-aligned splits,
 152 the following are equivalent:

153
 154 1. $\mathcal{C}_\mathcal{T}$ admits an axis-aligned planar embedding.
 155 2. The depth $\Delta \leq 2$.

156 Theorem 4.3 shows that we can only construct axis-parallel partitions in two-dimensional space without changing
 157 the topology for decision trees with a depth of 2 or less. For deeper decision trees, there is no method to
 158 construct axis-parallel partitions in two-dimensional space without changing the topology. Can we use more
 159 relaxed conditions, such as not requiring the mapped partitions in two-dimensional space to be axis-parallel, to
 160 obtain a mapping that preserves the topology between partitions? We will discuss this in the next section.
 161

162 5 ARBITRARY PL BOUNDARIES

164 The negative result from last section establishes a fundamental limitation: axis-aligned embeddings of decision
 165 tree complexes are only possible for shallow trees of depth at most 2. However, this restriction stems from
 166 imposing the additional constraint that boundaries in the embedding must remain axis-aligned. By relaxing
 167 this requirement and allowing arbitrary piecewise-linear (PL) boundaries, we can overcome this limitation and
 168 construct faithful planar embeddings for decision trees of arbitrary depth and complexity.
 169

170 In this section, we will present an algorithm that can map decision trees in high-dimensional space to two-
 171 dimensional space without changing the topological properties.
 172

173 5.1 SUBDIVISION-BASED EMBEDDING ALGORITHM

174 Our method for constructing a PL planar embedding of an arbitrary decision tree complex \mathcal{CT} is based on a
 175 two-step process:
 176

- 177 • Planarizing the 1-skeleton through strategic subdivision.
- 178 • Embedding the higher-dimensional cells in a compatible manner.

180 The approach constructs a planar embedding through a systematic process that transforms the high-dimensional
 181 decision tree complex into a topologically equivalent two-dimensional representation. The core insight is that
 182 while the original complex \mathcal{CT} may be non-planar, we can always obtain a planar subdivision \mathcal{CT}' that pre-
 183 serves the essential combinatorial structure through strategic edge subdivisions. This approach relies on two
 184 fundamental results:

185 **Definition 5.1** (Edge Subdivision Operator). Let $G = (V, E)$ be a graph. The *subdivision* of an edge $e =$
 186 $(u, v) \in E$ yields a new graph $G' = (V \cup \{w\}, (E \setminus \{e\}) \cup \{(u, w), (w, v)\})$. A k -*subdivision* of G is a graph
 187 obtained by applying a sequence of k edge subdivisions to G .

188 **Lemma 5.1** (Planarization via Subdivision). For any finite graph $G = (V, E)$, there exists an integer $K \leq$
 189 $|E|(|E| - 1)/2$ and a K -subdivision \tilde{G} of G that is planar.
 190

191 Edge subdivision provides a mechanism to resolve graph crossings without altering the fundamental topology.
 192 Each subdivision effectively "breaks" an edge at crossing points, allowing the graph to be drawn without inter-
 193 sections while preserving connectivity.
 194

195 Lemma 5.1 guarantees that any graph, regardless of its inherent non-planarity, can be transformed into a planar
 196 graph through a finite sequence of edge subdivisions. The upper bound $K \leq \binom{|E|}{2}$ establishes that the process
 197 is computationally tractable.

198 **Lemma 5.2** (Straight-Line Embedding). Let $\tilde{G} = (V, E)$ be a planar graph obtained from the 1-skeleton of \mathcal{CT}
 199 by subdivision. Then there exists an embedding $\phi : V \rightarrow \mathbb{R}^2$ such that:
 200

- 200 1. For every edge $(u, v) \in E$, the line segment $[\phi(u), \phi(v)]$ is a straight line
- 201 2. For any two distinct edges $(u_1, v_1), (u_2, v_2) \in E$, the segments $[\phi(u_1), \phi(v_1)]$ and $[\phi(u_2), \phi(v_2)]$
 202 intersect only if they share a common vertex

204 Theorem 5.2 ensures that our planarized graph can be embedded using only straight line segments. This property
 205 is crucial for constructing a piecewise-linear embedding that maintains geometric simplicity while preserving
 206 topological relationships. The complete embedding procedure is formalized in Algorithm 1¹.
 207

¹The code is available in <https://anonymous.4open.science/r/PLPE>.

208 **Algorithm 1** PL Planar Embedding of Decision Tree Complex

209 1: **Input:** Decision tree \mathcal{T} , complex $\mathcal{C}_{\mathcal{T}}$

210 2: **Output:** Embedded subdivision $\mathcal{C}'_{\mathcal{T}} \subset \mathbb{R}^2$

211 3:

212 4: STEP 1: PLANARIZE THE 1-SKELETON

213 5: $G_0 \leftarrow$ 1-skeleton of $\mathcal{C}_{\mathcal{T}}$

214 6: $\tilde{G} \leftarrow$ PlanarSubdivision(G_0)

215 7: $\phi \leftarrow$ StraightLineEmbedding(\tilde{G})

216 8:

217 9: STEP 2: EMBED 2-CELLS

218 10: **for** each 2-cell f in $\mathcal{C}_{\mathcal{T}}$ **do**

219 11: $\partial f \leftarrow$ boundary cycle of f (a closed walk in \tilde{G})

220 12: $P_f \leftarrow$ polygon in \mathbb{R}^2 formed by $\phi(\partial f)$

221 13: SUBDIVIDE f into triangles T_1, \dots, T_m such that $\partial T_i \subset \partial P_f$ or is a new interior edge

222 14: MAP each new vertex v in the interior of f to a point in the interior of P_f via barycentric coordinates relative to T_i

223 15: **end for**

224 16:

225 17: STEP 3: PROJECT HIGHER-DIMENSIONAL CELLS

226 18: **for** each cell c of dimension ≥ 3 **do**

227 19: SUBDIVIDE c into simplices $\{\sigma_i\}$

228 20: PROJECT each σ_i onto the plane spanned by the images of its two vertices with maximal Euclidean distance, while keeping its boundary fixed.

229 21: **end for**

230 22:

231 23: **return** The resulting embedded complex $\mathcal{C}'_{\mathcal{T}}$

233

234

235 The theoretical foundation of Algorithm 1 is established by the following key result:

236 **Theorem 5.3** (PL Planar Embedding Construction). Given a decision tree \mathcal{T} with complex $\mathcal{C}_{\mathcal{T}}$, Algorithm 1

237 produces a subdivision $\mathcal{C}'_{\mathcal{T}}$ of $\mathcal{C}_{\mathcal{T}}$ and a PL homeomorphism $h : |\mathcal{C}'_{\mathcal{T}}| \rightarrow \mathbb{R}^2$.

238 This theorem guarantees that our algorithm successfully constructs a topologically faithful embedding. The resulting mapping h is a homeomorphism, meaning it preserves all topological properties of the original complex, including connectivity, adjacency relationships, and boundary structure. The piecewise-linear nature ensures computational tractability while maintaining geometric clarity.

239 Figure 1 illustrates the transformation process for a simple decision tree complex, showing the progressive

240 stages from the original high-dimensional (Five-dimensional and ten-dimensional) partition to the final planar

241 embedding. And the partitions that are close in the original space are also adjacent in the two-dimensional

242 space.

243 The algorithm's practical implementation involves several important considerations:

244

- 245 • **Computational Efficiency:** The worst-case complexity is polynomial in the number of leaf regions, making the approach feasible for realistic decision trees.
- 246 • **Geometric Quality:** The straight-line embedding ensures clean visual representations without complex curves or unnecessary geometric artifacts.
- 247 • **Topological Faithfulness:** The subdivision process guarantees that all adjacency relationships from the original complex are preserved in the embedding.

248

249 This systematic approach to planar embedding provides a rigorous foundation for visualizing high-dimensional

250 decision tree partitions while maintaining their essential topological characteristics. The method bridges the gap

251 between the combinatorial structure of decision trees and their geometric realization, enabling new possibilities

252 for model interpretation and analysis.

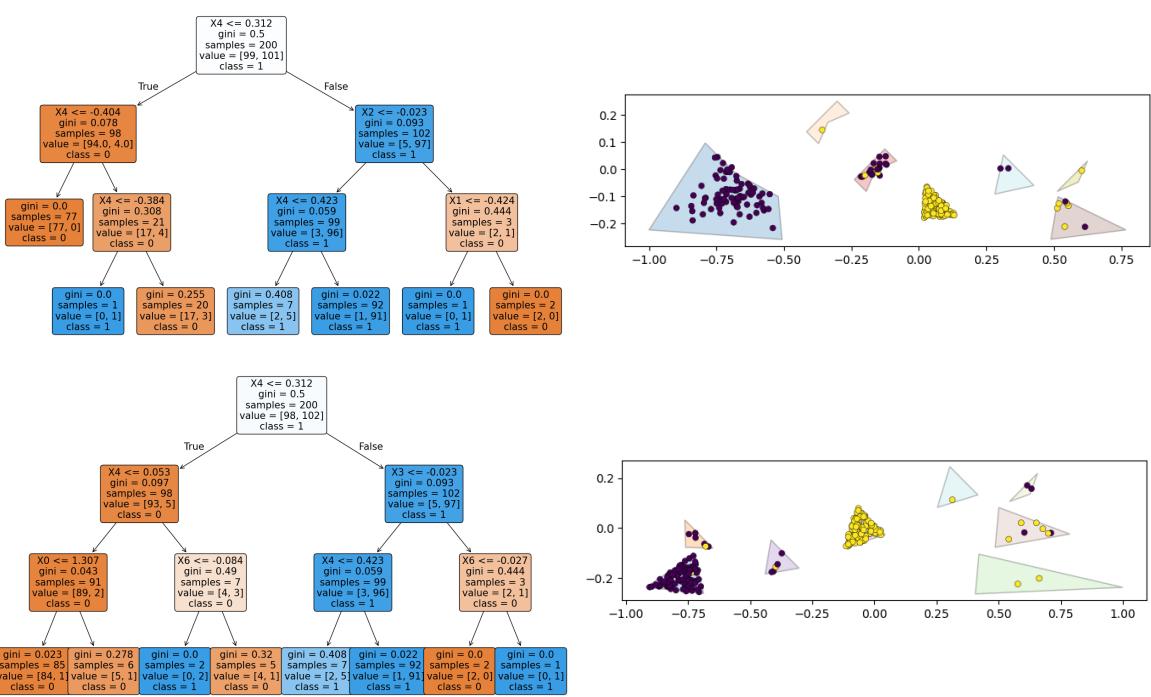


Figure 1: Map the high-dimensional space (5-d (top) and 10-d (bottom)) partition generated by the decision tree into a two-dimensional space.

5.2 APPROXIMATE EMBEDDINGS

And the exact embedding ensures that adjacent partitions in the original space are also adjacent in the two-dimensional space. However, this is still not enough for visualization. We want the partitions that share the common $(d-1)$ -face in the original space to intersect in the two-dimensional space, which is more conducive to visualization. In this subsection, we will give two simpler, faster approximate embeddings: Circle-based approximate embeddings and Voronoi diagram-based approximate embeddings.

Definition 5.2 (1-Skeleton Approximation). Let $\mathcal{C}_{\mathcal{T}}^{app}$ be an *approximate embedding* constructed by:

1. Planarizing and straight-line embedding the 1-skeleton \tilde{G} (Steps 1-2 of Algorithm 1).
2. For each original d -cell R_i , defining its image $h(R_i)$ as the polygon formed by the convex hull of the images of the vertices of R_i .

This mapping h is not necessarily injective on the entire complex.

Circle-based approximate embeddings approximate each partition as a hypersphere rather than a complex, and then each complex can be represented in a unified form (center and radius). Figure 2 shows such an example. The result after dimensionality reduction ensures the adjacency structure, and adjacent partitions are intersecting.

In the rest of this section, we will detail another approximation method based on the Voronoi diagram Aurenhammer (1991). This method represents each partition as a Voronoi diagram, which has the following properties:

- Non-adjacent partitions do not intersect after dimensionality reduction;
- Adjacent partitions have common edges after dimensionality reduction;

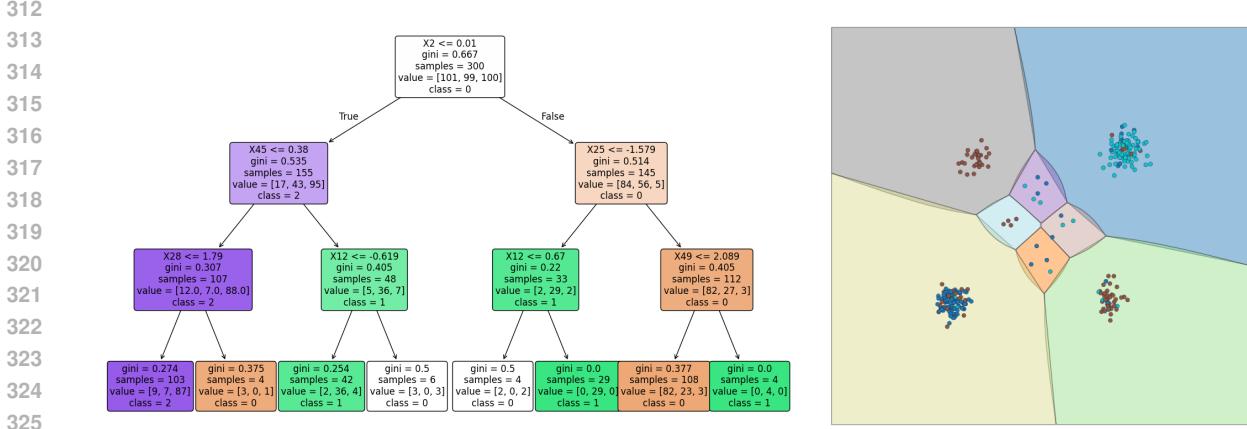


Figure 2: Map the 50-dimensional space partition generated by the decision tree into a two-dimensional space via Circle-based approximate embedding.

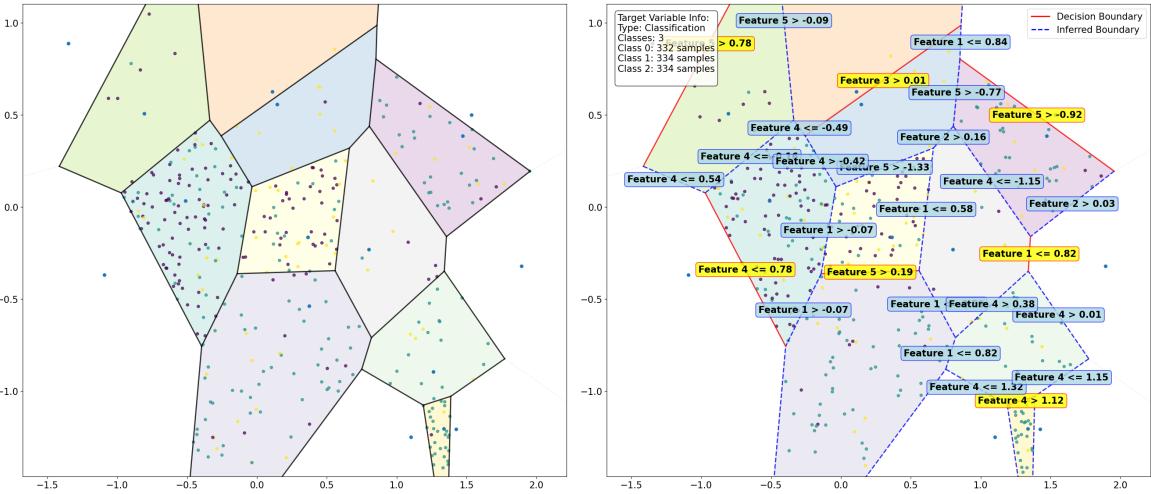


Figure 3: Map the 5-dimensional space partition generated by the decision tree into a two-dimensional space via Voronoi diagram-based approximate embedding.

- Points in each partition in the original space are mapped to the same cell in the lower-dimensional Voronoi diagram.

An example is shown in the left of Figure 3. Furthermore, based on the Voronoi diagram, since two adjacent partitions share a common edge after dimensionality reduction, we can use methods such as t-tests Yuen (1974); Yuen & Dixon (1973); Fagerland (2012) to further analyze which dimension and threshold can separate the two partitions. This is more beneficial for data analysis and understanding. An example is shown in the right of Figure 3.

To verify the ability to preserve the topology of Voronoi diagram-based approximate embedding for data and partitions, we conducted the following experiments:

Dataset: First, we constructed the dataset shown in Figure 4. All points are distributed on a ring, and each continuous arc on the ring corresponds to a cluster. And we generated a five-dimensional ring data.

Metrics: We compared the persistent diagram before and after dimensionality reduction to observe whether the topological structure is preserved.

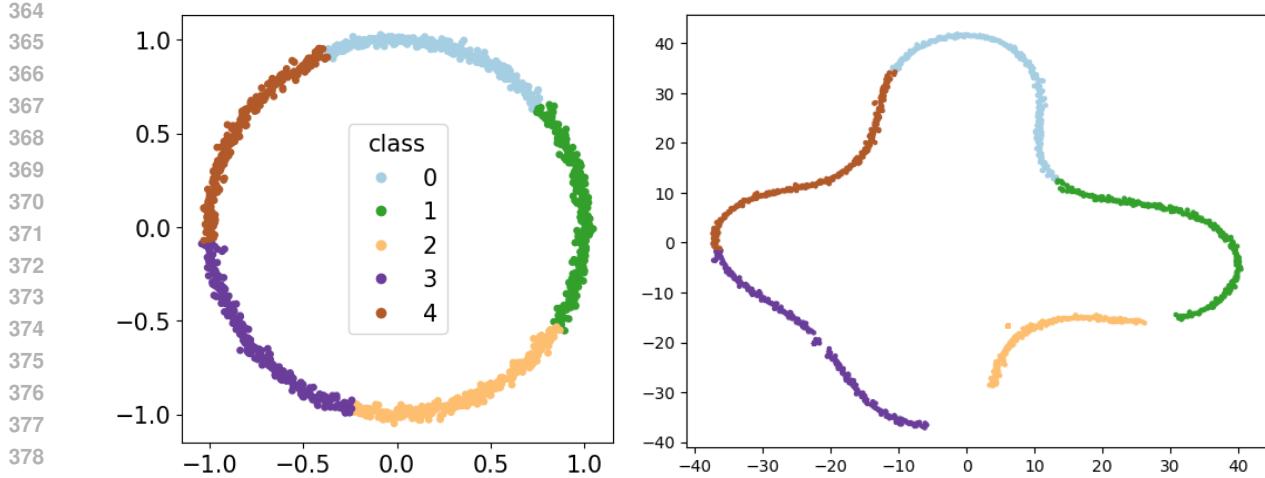


Figure 4: The ring data (left) and data after dimensionality reduction (right).

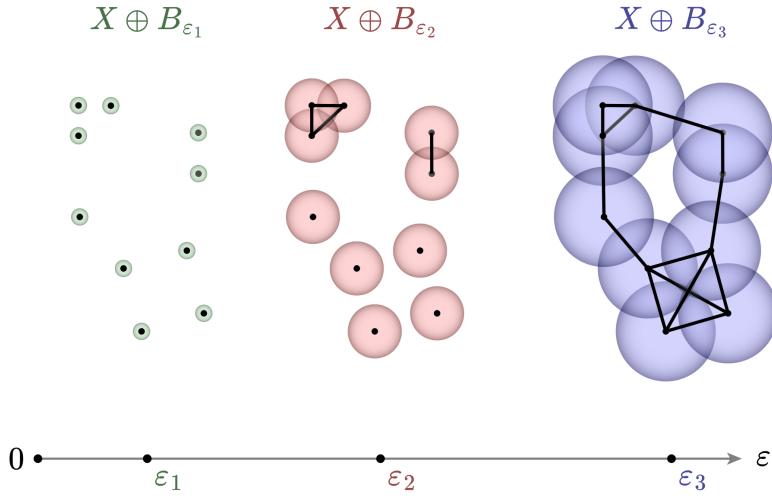


Figure 5: An illustration of persistent homology.

We use persistent homology Edelsbrunner et al. (2008); Zomorodian & Carlsson (2004), which can be visualized as a persistent diagram Cohen-Steiner et al. (2005). Persistent homology is a tool that turns multiscale topological features into a barcode or a scatter plot (persistent diagram): given a point cloud, we grow an increasing sequence of complexes (Vietoris-Rips, Čech, etc.) by gradually enlarging a radius ε ; as ε increases, connected components, rings, etc., are "born" and later "die". Recording each feature's birth and death ε -values gives the persistence diagram, a set of points whose x-coordinate is birth and y-coordinate is death; points far above the diagonal live longer and are regarded as a true signal rather than noise. An illustration example is shown in Figure 5.

The persistent diagrams of the data before and after Voronoi diagram-based approximate embedding are shown in Figure 6. Both have a persistent ring (the orange point) in the persistent diagram, which demonstrates that the dimensionality-reduced data retains the topological characteristics of the original data.

Finally, we give the error analysis of the Voronoi diagram-based approximate embedding based on the Hausdorff distance.

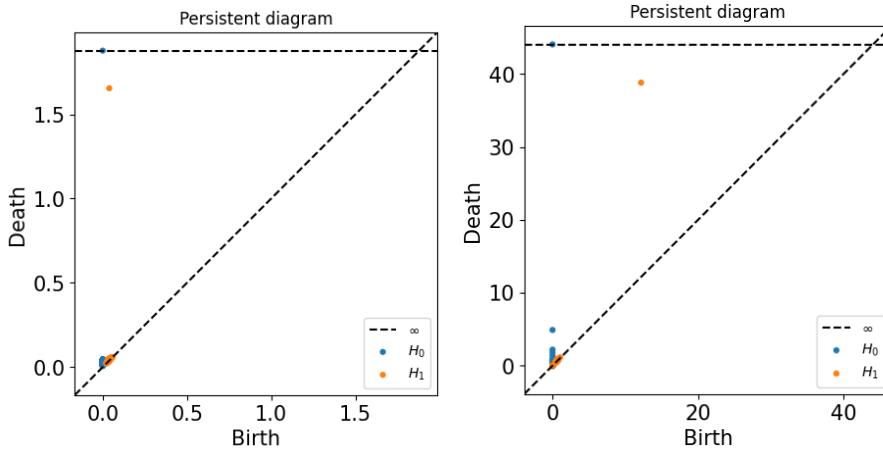


Figure 6: The persistent diagrams of ring data.

Definition 5.3 (Hausdorff Distance). The *Hausdorff distance* between two compact sets $X, Y \subset \mathbb{R}^m$ is: $d_H(X, Y) = \max\{\sup_{x \in X} \inf_{y \in Y} d(x, y), \sup_{y \in Y} \inf_{x \in X} d(x, y)\}$.

Theorem 5.4 (Voronoi Approximation Error Bound). Let $R \subset \mathbb{R}^d$ be a compact convex polyhedral cell of the decision tree complex \mathcal{C}_T with diameter $D = \text{diam}(R)$. Let $\text{Embed}(R) \subset \mathbb{R}^2$ be its exact planar embedding via Algorithm 1, and let $h(R) \subset \mathbb{R}^2$ be its Voronoi-based approximate embedding constructed using centroid $c \in R$ as the generator point. Then the Hausdorff distance between these embeddings is bounded by:

$$d_H(\text{Embed}(R), h(R)) \leq \frac{D}{2} \cdot \min\left(1, \sqrt{2(1 - \cos \theta_{\max})}\right) + \epsilon_{\text{vor}}$$

where:

- $\theta_{\max} = \max_{f \in \mathcal{F}(R)} \angle(\mathbf{n}_f, \mathbf{n}_{\mathbb{R}^2})$ is the maximum angle between any face normal \mathbf{n}_f of R and the embedding plane normal $\mathbf{n}_{\mathbb{R}^2}$
- $\epsilon_{\text{vor}} = \frac{1}{2} \max_{c' \in \mathcal{N}(c)} \|\Pi(c) - \Pi(c')\|$ is the Voronoi approximation error, with $\mathcal{N}(c)$ being the set of centroids of cells adjacent to R

Corollary 5.5. For axis-aligned decision trees where all splits are parallel to coordinate axes, if the embedding plane is chosen as the xy -plane, then $\theta_{\max} = 0$ and the error bound reduces to:

$$d_H(\text{Embed}(R), h(R)) \leq \epsilon_{\text{vor}}$$

Theorem 5.4 and Corollary 5.5 show that the error of the Voronoi diagram-based approximate embedding is small.

6 CONCLUSION

Decision trees are widely used, offering good performance and high interpretability. However, the partitions formed by decision trees are not intuitive, hindering the analysis of partitions and data distribution. In this paper, we first prove that decision trees with dimensions greater than three dimensions cannot be mapped into axis-parallel decision trees in two dimensions. And then we propose a method for mapping partitions formed by decision trees into two dimensions without the constraint of axis-parallelism, while maintaining the following properties: i) the adjacent partitions remain adjacent after mapping, and ii) the non-adjacent partitions become disjoint after mapping. We theoretically prove and experimentally demonstrate the feasibility of the proposed method and its approximations, as well as its ability to preserve the topological properties of the partitions and data via the persistent diagram.

468 REFERENCES
469

470 Hervé Abdi and Lynne J Williams. Principal component analysis. *Wiley interdisciplinary reviews: computational statistics*, 2(4):433–459, 2010.

471

472 Dan Archdeacon. Topological graph theory. *A survey*. *Congressus Numerantium*, 115(5-54):18, 1996.

473

474 Franz Aurenhammer. Voronoi diagrams—a survey of a fundamental geometric data structure. *ACM computing surveys (CSUR)*, 23(3):345–405, 1991.

475

476 Dimitris Bertsimas, Jack Dunn, and Aris Paschalidis. Regression and classification using optimal decision trees.
477 In *2017 IEEE MIT undergraduate research technology conference (URTC)*, pp. 1–4. IEEE, 2017.

478

479 Leo Breiman. Random forests. *Machine learning*, 45(1):5–32, 2001.

480 Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad. Intelligible models
481 for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In *Proceedings of the 21th ACM
482 SIGKDD international conference on knowledge discovery and data mining*, pp. 1721–1730, 2015.

483

484 David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams. In *Proceedings
485 of the twenty-first annual symposium on Computational geometry*, pp. 263–271, 2005.

486

487 Herbert Edelsbrunner and John Harer. *Computational topology: an introduction*. American Mathematical Soc.,
2010.

488

489 Herbert Edelsbrunner, John Harer, et al. Persistent homology—a survey. *Contemporary mathematics*, 453(26):
257–282, 2008.

490

491 Morten W Fagerland. t-tests, non-parametric tests, and large studies—a paradox of statistical practice? *BMC
492 medical research methodology*, 12(1):78, 2012.

493

494 Jerome H Friedman. Greedy function approximation: a gradient boosting machine. *Annals of statistics*, pp.
1189–1232, 2001.

495

496 Trevor Hastie, Robert Tibshirani, Jerome Friedman, et al. The elements of statistical learning, 2009.

497

498 John T Kent. Information gain and a general measure of correlation. *Biometrika*, 70(1):163–173, 1983.

499

500 Sotiris B Kotsiantis. Decision trees: a recent overview. *Artificial Intelligence Review*, 39(4):261–283, 2013.

501

502 Wei-Yin Loh. Classification and regression trees. *Wiley interdisciplinary reviews: data mining and knowledge
discovery*, 1(1):14–23, 2011.

503

504 Gilles Louppe. *Understanding random forests: From theory to practice*. Universite de Liege (Belgium), 2014.

505

506 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine learning
research*, 9(Nov):2579–2605, 2008.

507

508 Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection for
dimension reduction. *arXiv preprint arXiv:1802.03426*, 2018.

509

510 J. Ross Quinlan. Induction of decision trees. *Machine learning*, 1(1):81–106, 1986.

511

512 Laura Elena Raileanu and Kilian Stoffel. Theoretical comparison between the gini index and information gain
criteria. *Annals of Mathematics and Artificial Intelligence*, 41(1):77–93, 2004.

513

514 Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use interpretable
models instead. *Nature machine intelligence*, 1(5):206–215, 2019.

515

516 Carolin Strobl, Anne-Laure Boulesteix, and Thomas Augustin. Unbiased split selection for classification trees
based on the gini index. *Computational Statistics & Data Analysis*, 52(1):483–501, 2007.

517

518 Yuk Lai Suen, Prem Melville, and Raymond J Mooney. Combining bias and variance reduction techniques for
regression trees. In *European Conference on Machine Learning*, pp. 741–749. Springer, 2005.

519

520 Karen K Yuen. The two-sample trimmed t for unequal population variances. *Biometrika*, 61(1):165–170, 1974.
521

522 Karen K Yuen and WJ Dixon. The approximate behaviour and performance of the two-sample trimmed t.
523 *Biometrika*, 60(2):369–374, 1973.

524 Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. In *Proceedings of the twentieth*
525 *annual symposium on Computational geometry*, pp. 347–356, 2004.
526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

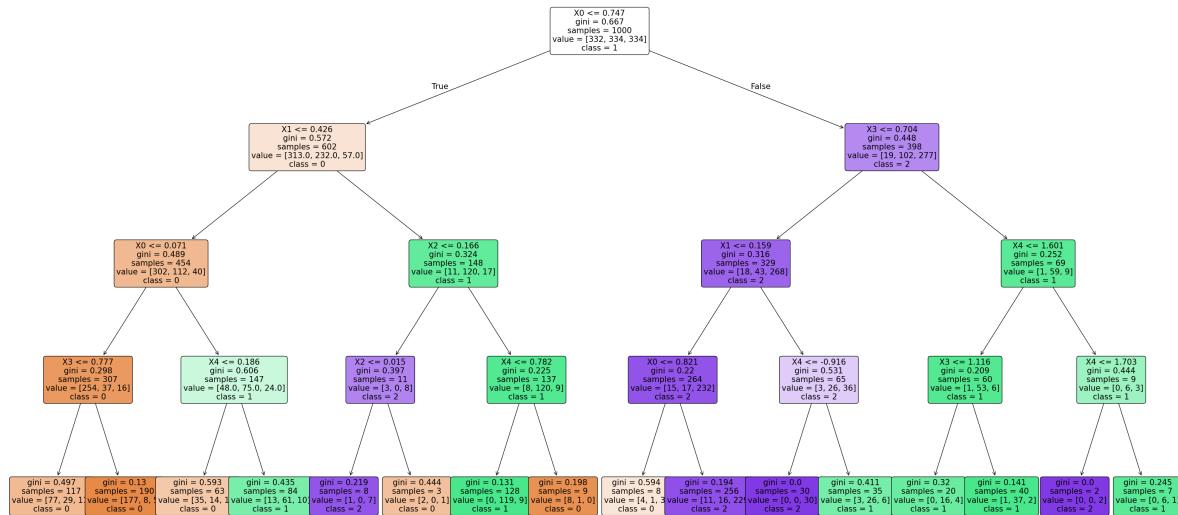
567

568

569

570

571

572 A LARGE LANGUAGE MODELS
573574 We used Large Language Models to polish our writing.
575576 B FIGURE
577578 The decision tree used in Figure 3. is shown in Figure 7.
579598 Figure 7: The decision tree used in Figure 3.
599
600601 C LIMITATION
602603 Our method is currently only used for a single decision tree and is not applicable to the partitions formed by the
604 ensemble, such as a random forest.
605606 D PROOFS
607608 D.1 PROOF OF THEOREM 4.1
609610 *Proof.* Consider the depth-3 decision tree \mathcal{T} with splits:
611

- 612 Level 1: $x_1 > 0$
- 613 Level 2: $x_2 > 0$
- 614 Level 3: $x_3 > 0$

615 This tree partitions the cube $X = [-1, 1]^3$ into 8 axis-aligned orthants. We will show that the resulting decision
616 tree complex $\mathcal{C}_{\mathcal{T}}$ cannot be embedded in \mathbb{R}^2 with axis-aligned boundaries.
617618 Let R_{s_1, s_2, s_3} denote the region where x_1 has sign s_1 , x_2 has sign s_2 , and x_3 has sign s_3 , with $s_i \in \{+, -\}$.
619620 The decision tree complex $\mathcal{C}_{\mathcal{T}}$ consists of:
621622 Eight 3-cells: $R_{+++}, R_{++-}, R_{+-+}, R_{+-}, R_{-++}, R_{-+-}, R_{--+}, R_{---}$
623

624 Twelve 2-cells: The faces between adjacent regions
 625

626 Six 1-cells: The edges where multiple faces meet
 627

628 One 0-cell: The origin $(0, 0, 0)$
 629

630 The incidence relations are determined by the signs. For example:
 631

632 R_{+++} shares a face with R_{++-} (differ in x_3 sign)
 633

634 R_{+++} shares a face with R_{+-+} (differ in x_2 sign)
 635

636 R_{+++} shares a face with R_{-+-} (differ in x_1 sign)
 637

638 Assume, for contradiction, that there exists an embedding $h : |\mathcal{C}_T| \rightarrow \mathbb{R}^2$ using only axis-aligned segments.
 639

640 Let F_{ij} be the face between regions that differ in the i -th coordinate sign, with the j -th coordinate determining
 641 the specific face. For example, the face between R_{+++} and R_{++-} would be denoted F_{3+} , indicating it's on the
 642 positive side of the $x_3 = 0$ plane.
 643

644 In the embedding, each face F_{ij} must be mapped to an axis-aligned segment. Without loss of generality, we can
 645 assume:
 646

647 Faces on $x_1 = 0$ are mapped to vertical segments
 648

649 Faces on $x_2 = 0$ are mapped to horizontal segments
 650

651 Faces on $x_3 = 0$ are mapped to either vertical or horizontal segments
 652

653 Consider the four regions with $x_3 > 0$: R_{+++} , R_{++-} , R_{+-+} , R_{-+-} . These regions all share the face F_{3+}
 654 (the positive side of the $x_3 = 0$ plane).
 655

656 In the embedding, these four regions must be arranged around the image of F_{3+} . Since the embedding uses
 657 axis-aligned boundaries, the only possible arrangements are:
 658

- 659 • All four regions on one side of F_{3+} (impossible, as they are on both sides in the original complex).
 660
- 661 • Two regions on each side of F_{3+} .
 662

663 Similarly, consider the four regions with $x_2 > 0$: R_{+++} , R_{++-} , R_{-+-} , R_{-+-} . These share the face F_{2+} .
 664 The arrangement must satisfy constraints from both perspectives.
 665

666 Let's assign coordinates to the images of the regions. Let:
 667

668 $h(R_{+++}) = A, h(R_{++-}) = B, h(R_{+-+}) = C, h(R_{-+-}) = D,$
 669

670 $h(R_{-+-}) = E, h(R_{-+-}) = F, h(R_{-+-}) = G, h(R_{-+-}) = H.$
 671

672 Since the boundaries are axis-aligned, we can describe each region's image as a rectangle with sides parallel
 673 to the axes. The adjacency conditions impose constraints on the relative positions of these rectangles. For
 674 example:
 675

- 676 • A and B share a boundary, so their rectangles must be adjacent along a vertical or horizontal edge.
 677
- 678 • A and C share a boundary, so their rectangles must be adjacent.
 679
- 680 • A and E share a boundary, so their rectangles must be adjacent.
 681

682 Let each region R be mapped to a rectangle with coordinates $(x_R^{\min}, y_R^{\min}, x_R^{\max}, y_R^{\max})$. The adjacency conditions
 683 translate to equations. For example, if A and B are adjacent along a vertical edge, then:
 684

$$685 x_A^{\max} = x_B^{\min} \quad \text{and} \quad [y_A^{\min}, y_A^{\max}] \cap [y_B^{\min}, y_B^{\max}] \text{ has positive length}$$

686 Similarly, if adjacent along a horizontal edge:
 687

$$688 y_A^{\max} = y_B^{\min} \quad \text{and} \quad [x_A^{\min}, x_A^{\max}] \cap [x_B^{\min}, x_B^{\max}] \text{ has positive length}$$

676 We can write similar conditions for all adjacent regions.
 677

678 Consider the cycle of regions: $A (R_{+++})$, $B (R_{++-})$, $D (R_{+-})$, $C (R_{-+-})$, and back to A .
 679

680 From the adjacency relations:
 681

682 A adjacent to B (differ in x_3), B adjacent to D (differ in x_2),
 683

684 D adjacent to C (differ in x_3), C adjacent to A (differ in x_2).
 685

686 This forms a cycle in the dual graph.
 687

688 In the embedding, this cycle must be represented by a closed curve. However, due to the axis-aligned constraint,
 689 this curve would have to be rectangular, with alternating horizontal and vertical segments. But consider the
 690 regions outside this cycle: $E (R_{-++})$, $F (R_{-+-})$, $G (R_{--+})$, $H (R_{--})$. These must also be placed in the
 691 embedding, and each must be adjacent to appropriate regions in the cycle. For example, E is adjacent to A
 692 (differ in x_1). This means E must be placed on the other side of the face between A and E . Similarly, F
 693 is adjacent to B and E , G is adjacent to C and F , and H is adjacent to D and G . The geometric constraints
 694 imposed by these adjacencies, combined with the axis-aligned requirement, lead to a contradiction. Specifically,
 695 it is impossible to satisfy all these constraints simultaneously in the plane with axis-aligned boundaries. To
 696 see this formally, consider the ordering of regions along the x-axis and y-axis. The adjacencies force certain
 697 orderings that are mutually incompatible.
 698

699 For instance, from the adjacencies:
 700

- 701 697 • A adjacent to E implies $x_A^{\max} = x_E^{\min}$
 702
- 703 699 • B adjacent to F implies $x_B^{\max} = x_F^{\min}$
 704
- 705 701 • E adjacent to F implies $y_E^{\max} = y_F^{\min}$
 706

707 These constraints, when combined, lead to a cycle in the ordering constraints, which is impossible to satisfy in
 708 the plane.
 709

710 Although we have directly shown the impossibility of axis-aligned embedding, it is worth noting that this result
 711 is consistent with Kuratowski's theorem from graph theory. The combinatorial dual graph $G(\mathcal{T}) = (V, E)$ is
 712 isomorphic to the 3-dimensional hypercube graph Q_3 . We encode each vertex (region) $v \in V$ as a ternary tuple
 713 (s_1, s_2, s_3) where $s_j \in \{+, -\}$ indicates the position relative to the j -th splitting hyperplane $x_j = 0$.
 714

715 We demonstrate that $G(\mathcal{T})$ contains K_4 as a minor through the following steps:
 716

717 1. Select four vertices that will form K_4 :
 718

$$719 A = \{v_1 = (+, +, +), v_2 = (+, +, -), v_3 = (+, -, +), v_4 = (-, +, +)\}$$

720 2. Contract the remaining vertices into these four:
 721

- 722 719 • Contract vertex $(+, -, -)$ into $v_2 = (+, +, -)$ via the edge connecting them (differ only in the second
 723 coordinate)
- 724 722 • Contract vertex $(-, +, -)$ into $v_4 = (-, +, +)$ via the edge connecting them (differ only in the third
 725 coordinate)
- 726 724 • Contract vertex $(-, -, +)$ into $v_3 = (+, -, +)$ via the edge connecting them (differ only in the first
 727 coordinate)
- 727 726 • Contract vertex $(-, -, -)$ into $v_1 = (+, +, +)$ via the path connecting them

728 3. Verify that all pairs of vertices in A are connected:

729 $v_1 \leftrightarrow v_2$ (differ in third coordinate, direct edge)
 730 $v_1 \leftrightarrow v_3$ (differ in second coordinate, direct edge)
 731 $v_1 \leftrightarrow v_4$ (differ in first coordinate, direct edge)
 732 $v_2 \leftrightarrow v_3$ (path through contracted vertices)
 733 $v_2 \leftrightarrow v_4$ (path through contracted vertices)
 734 $v_3 \leftrightarrow v_4$ (path through contracted vertices)
 735

736 This establishes that $K_4 \preceq G(\mathcal{T})$.

737 Although K_4 itself is planar, its presence as a minor in $G(\mathcal{T})$ demonstrates the complex connectivity structure
 738 of the graph. More importantly, we can extend this construction to show that $G(\mathcal{T})$ also contains K_5 and $K_{3,3}$
 739 as minors, which are non-planar by Kuratowski's theorem.

740 To show $K_5 \preceq G(\mathcal{T})$, we add a fifth vertex $v_5 = (-, -, -)$ to set A and contract the remaining vertices
 741 appropriately. Similarly, we can construct a $K_{3,3}$ minor by appropriately partitioning the vertices and contracting
 742 edges.

743 By Kuratowski's theorem, a graph is planar if and only if it contains neither K_5 nor $K_{3,3}$ as a minor. Since
 744 $G(\mathcal{T})$ contains both K_5 and $K_{3,3}$ as minors, it is non-planar.

745 Any faithful axis-aligned embedding of $\mathcal{C}_{\mathcal{T}}$ would induce a planar embedding of its 1-skeleton, and hence of
 746 $G(\mathcal{T})$. This contradicts the fact that $G(\mathcal{T})$ is non-planar. Therefore, no such axis-aligned planar embedding
 747 exists. \square

748 **Corollary D.1.** If $\Delta \leq 2$, then $G(\mathcal{T})$ is outer-planar and $\mathcal{C}_{\mathcal{T}}$ admits an axis-aligned planar embedding.

749 *Proof.* For depth $\Delta \leq 2$, the number of leaf regions is at most $2^2 = 4$. The combinatorial dual graph $G(\mathcal{T})$ has
 750 at most 4 vertices.

751 In the case of 3 regions, $G(\mathcal{T})$ is either a path graph or a complete graph on 3 vertices, both of which are
 752 outer-planar. For 4 regions, the possible dual graphs are trees (which are outer-planar) or K_4 minus one edge
 753 (which is also outer-planar).

754 A constructive embedding can be achieved by placing axis-aligned rectangles in the plane. For example, with 4
 755 regions, we can use:

756 $R_1 = [0, 1] \times [0, 1]$
 757 $R_2 = [0, 1] \times [1, 2]$
 758 $R_3 = [1, 2] \times [0, 1]$
 759 $R_4 = [1, 2] \times [1, 2]$

760 separated by the lines $x = 1$ and $y = 1$. \square

761 D.2 PROOF OF THEOREM 4.3

762 **Theorem 4.3**[Characterization for Axis-Aligned Embeddings] For a decision tree \mathcal{T} with axis-aligned splits, the
 763 following are equivalent:

764 1. $\mathcal{C}_{\mathcal{T}}$ admits an axis-aligned planar embedding.
 765 2. The depth $\Delta \leq 2$.
 766 3. $G(\mathcal{T})$ does not contain a K_4 -minor.

767 *Proof.* The implication (1) \Rightarrow (2) follows from Theorem 4.1, as depth ≥ 3 implies non-planarity. (2) \Rightarrow (3)
 768 follows from the outer-planarity of graphs with at most 4 vertices. (3) \Rightarrow (1) follows from the fact that graphs
 769 without K_4 -minors are series-parallel and hence have grid embeddings with axis-aligned boundaries. \square

780 D.3 PROOF OF LEMMA 5.1
781

782 *Proof.* Let $G = (V, E)$ be a finite graph with $m = |E|$ edges. We construct a planar subdivision \tilde{G} through the
783 following iterative process: Initialization: Let $\tilde{G}_0 = G$ with $K_0 = 0$ subdivisions. Iterative crossing removal:
784 For each pair of edges $(e_i, e_j) \in E \times E$ with $i < j$ that cross in some embedding: Let p_{ij} be a crossing
785 point between e_i and e_j , Subdivide edge e_i at point p_{ij} , replacing $e_i = (u, v)$ with two new edges (u, w_{ij}) and
786 (w_{ij}, v) , Update subdivision count: $K \leftarrow K + 1$. Termination: After processing all $\binom{m}{2}$ potential crossings,
787 we obtain the final subdivided graph $\tilde{G} = \tilde{G}_{\binom{m}{2}}$.
788

789 Let $X = \{x_{ij} : 1 \leq i < j \leq m\}$ be a set of potential crossing points, with $|X| = \binom{m}{2}$.
790

791 Define a sequence of graphs $\{\tilde{G}_k\}_{k=0}^{\binom{m}{2}}$ where:
792

$$\tilde{G}_0 = G = (V, E)$$

$$\tilde{G}_{k+1} = \begin{cases} \tilde{G}_k & \text{if edges } e_i, e_j \text{ do not cross} \\ (V \cup \{w_{ij}\}, (E \setminus \{e_i\}) \cup \{(u, w_{ij}), (w_{ij}, v)\}) & \text{if } e_i = (u, v) \text{ and } e_i, e_j \text{ cross} \end{cases}$$

797 The number of subdivisions K satisfies:
798

$$K = \sum_{1 \leq i < j \leq m} \mathbb{I}_{\{\text{edges } e_i \text{ and } e_j \text{ cross}\}} \leq \binom{m}{2}$$

802 Apply the Hanani-Tutte theorem in its constructive form. Consider an arbitrary drawing of G in the plane. For
803 each crossing between edges e_i and e_j , we subdivide one of the edges at the crossing point. This transformation
804 ensures that: i) The crossing is eliminated as the crossing point becomes a vertex. ii) The resulting graph \tilde{G} is a
805 subdivision of G . iii) No new crossings are introduced by the subdivision process.
806

807 After processing all crossings, the resulting graph \tilde{G} has no edge crossings and is therefore planar by definition.
808

809 The worst-case upper bound is achieved when every pair of edges crosses, giving:
810

$$K_{\max} = \binom{m}{2} = \frac{m(m-1)}{2}$$

□

814 D.4 PROOF OF LEMMA 5.2
815

816 *Proof.* We provide a constructive proof based on Tutte's barycentric embedding method, which establishes the
817 existence of a straight-line embedding for any planar graph. First, if \tilde{G} is not maximally planar, we add edges to
818 form a triangulation $G' = (V, E')$ where $|E'| = 3|V| - 6$. This ensures that every face is a triangle, including
819 the outer face. Let \mathcal{F} be the set of faces of G' , with $f_0 \in \mathcal{F}$ designated as the outer face. Let $V_0 = \{v_1, v_2, v_3\}$
820 be the vertices of f_0 . And we fix the positions of the outer face vertices in a convex position:
821

$$\phi(v_1) = (0, 0), \quad \phi(v_2) = (1, 0), \quad \phi(v_3) = (0, 1)$$

822 For each interior vertex $v \in V \setminus V_0$, we define its position as a convex combination of its neighbors:
823

$$\phi(v) = \frac{1}{\deg(v)} \sum_{(v,w) \in E} \phi(w)$$

824 This gives us a system of linear equations for the coordinates of the interior vertices.
825

826 Let $V = \{v_1, \dots, v_n\}$ with the first three vertices being the outer face. For $i = 4, \dots, n$, we have:
827

$$\phi(v_i) - \frac{1}{\deg(v_i)} \sum_{(v_i, v_j) \in E} \phi(v_j) = 0$$

832 This can be written as a linear system $Ax = \mathbf{b}_x$ and $Ay = \mathbf{b}_y$ for the x and y coordinates respectively, where:

$$834 \quad 835 \quad 836 \quad 837 \quad A_{ij} = \begin{cases} 1 & \text{if } i = j \\ -\frac{1}{\deg(v_i)} & \text{if } (v_i, v_j) \in E \\ 0 & \text{otherwise} \end{cases}$$

838 and $\mathbf{b}_x, \mathbf{b}_y$ contain the fixed coordinates of the outer vertices.

839 The matrix A is strictly diagonally dominant for the interior vertices:

$$841 \quad 842 \quad 843 \quad |A_{ii}| = 1 > \sum_{j \neq i} |A_{ij}| = \frac{\deg(v_i) - 1}{\deg(v_i)} < 1$$

844 This guarantees that A is invertible and the system has a unique solution.

845 Tutte's theorem guarantees that the resulting embedding is planar with straight-line edges. Specifically:

- 847 1. All vertices lie in the convex hull of the outer face vertices
- 848 2. No two edges cross in the embedding
- 849 3. All faces are convex polygons

852 If we added edges to triangulate G' , we remove them to obtain the embedding for \tilde{G} . Since the removed edges
853 were inside triangular faces, their removal preserves the planarity of the straight-line embedding.
854

855 By Fáry's theorem, every planar graph has a straight-line embedding. The above constructive method based
856 on Tutte's spring embedding provides an algorithmic proof of this result. The coordinates can be computed by
857 solving the linear system:

$$858 \quad (L + D)\Phi = B$$

859 where L is the Laplacian matrix of G , D is a diagonal matrix with $D_{ii} = 1$ for outer vertices and 0 otherwise,
860 and B contains the fixed coordinates of the outer face.

861 This completes the proof that \tilde{G} admits a straight-line planar embedding. □

863 D.5 PROOF OF THEOREM 5.3

865 *Proof.* We provide a detailed proof that Algorithm 1 constructs a piecewise-linear homeomorphism by carefully
866 analyzing each step.

867 Let $G_0 = (V_0, E_0)$ be the 1-skeleton of \mathcal{C}_T . By Lemma 5.1, there exists a planar subdivision $\tilde{G} = (V, E)$
868 obtained by at most $\binom{|E_0|}{2}$ edge subdivisions. Let $\psi : V_0 \rightarrow V$ be the inclusion map that identifies original
869 vertices with their images in the subdivided graph.

871 By Lemma 5.2, there exists a straight-line embedding $\phi : V \rightarrow \mathbb{R}^2$ such that:

- 873 1. For each edge $(u, v) \in E$, the segment $[\phi(u), \phi(v)]$ is a straight line
- 874 2. For any two distinct edges $e_1, e_2 \in E$, the segments $[\phi(u_1), \phi(v_1)]$ and $[\phi(u_2), \phi(v_2)]$ intersect only at
875 common endpoints

877 For each 2-cell $f \in \mathcal{C}_T^{(2)}$, let ∂f be its boundary cycle. The embedding ϕ maps ∂f to a simple closed polygon
878 $P_f = \phi(\partial f)$ in \mathbb{R}^2 .

880 By the Jordan-Schoenflies theorem, P_f bounds a topological disk $D_f \subset \mathbb{R}^2$. We triangulate D_f using the
881 following procedure:

882 Let v_1, v_2, \dots, v_n be the vertices of P_f in cyclic order. For each such polygon, we can compute a triangulation
883 $\mathcal{T}_f = \{T_1, T_2, \dots, T_{n-2}\}$ where each T_i is a triangle with vertices on ∂P_f or in the interior of D_f .

884 The triangulation induces a barycentric coordinate system on each triangle. For any point $x \in f$, we first
 885 determine which triangle T_i in the original complex contains the preimage of x , then express x in barycentric
 886 coordinates relative to T_i :

$$887 \quad x = \sum_{j=1}^3 \lambda_j v_j, \quad \text{where } \lambda_j \geq 0, \sum_{j=1}^3 \lambda_j = 1$$

890 We then define the embedding on f as: $h(x) = \sum_{j=1}^3 \lambda_j \phi(v_j)$

891 This mapping is piecewise-linear and preserves the combinatorial structure of the triangulation.

893 For a k -cell $c \in \mathcal{C}_T^{(k)}$ with $k \geq 3$, we proceed as follows:

895 First, we subdivide c into a simplicial complex $\{\sigma_1, \sigma_2, \dots, \sigma_m\}$ where each σ_i is a k -simplex. This can be
 896 done using standard techniques such as barycentric subdivision or more efficient methods.

897 For each simplex σ_i with vertices $\{w_0, w_1, \dots, w_k\}$, we define the embedding on σ_i using the affine extension
 898 of the vertex mapping:

$$900 \quad h \left(\sum_{j=0}^k \mu_j w_j \right) = \sum_{j=0}^k \mu_j \phi(w_j), \quad \text{where } \mu_j \geq 0, \sum_{j=0}^k \mu_j = 1$$

903 To ensure this mapping is well-defined and preserves the piecewise-linear structure, we must verify that:

- 905 1. The mapping agrees on the boundaries of adjacent simplices
- 906 2. The restriction to lower-dimensional faces matches the already defined embedding
- 907 3. The mapping is injective on each simplex

910 We now verify that the constructed mapping $h : |\mathcal{C}'_T| \rightarrow \mathbb{R}^2$ is indeed a PL homeomorphism: h is continuous
 911 on each cell and agrees on cell boundaries, hence continuous on the entire complex by the pasting lemma.
 912 Suppose $h(x) = h(y)$ for $x, y \in |\mathcal{C}'_T|$. If x and y are in the same simplex, injectivity follows from the affine
 913 independence of the vertex images. If they are in different simplices, the straight-line embedding property and
 914 general position ensure that different simplices have disjoint images. The embedding covers \mathbb{R}^2 because:

- 915 • The 1-skeleton embedding is planar and connected
- 916 • Each 2-cell fills a region bounded by its embedded boundary
- 917 • The higher-dimensional cells are mapped to the same regions as their 2-dimensional faces

921 The mapping preserves the combinatorial structure because:

- 923 • Cells are mapped to cells of the same dimension
- 924 • Incidence relations are preserved
- 925 • The mapping is linear on each simplex

928 The subdivision \mathcal{C}'_T has complexity bounded by:

$$930 \quad |\mathcal{C}'_T| \leq |\mathcal{C}_T| + O \left(\sum_{k=2}^d F^{(k)} \cdot C(k) \right)$$

933 where $F^{(k)}$ is the number of k -cells and $C(k)$ is the complexity of subdividing a k -cell, typically $C(k) = O(2^k)$.

934 This completes the proof that Algorithm 1 constructs a PL homeomorphism between the subdivided complex
 935 and its planar embedding. \square

936 The proof of complexity:
 937

938 *Proof.* We analyze the additional cells introduced during each step of the subdivision process.
 939

940 Let $G_0 = (V_0, E_0)$ be the original 1-skeleton with $|E_0|$ edges. By Lemma 5.1, we introduce at most $K \leq \binom{|E_0|}{2}$
 941 new vertices through edge subdivisions.

942 Each edge subdivision replaces one edge with two new edges, so the total number of new edges introduced is:
 943

$$944 \Delta E = K \leq \binom{|E_0|}{2} = \frac{|E_0|(|E_0| - 1)}{2}.$$

946 The number of new vertices introduced is exactly K . Thus, the total contribution from this step is: $\Delta_1 =$
 947 $O(|E_0|^2)$.
 948

949 For each 2-cell f with boundary length L_f , triangulation introduces: 3 new interior edges and 2 new triangles
 950 (2-simplices)
 951

952 Summing over all 2-cells, the total new elements are: $\sum_{f \in \mathcal{C}_T^{(2)}} (2L_f - 5) = 2 \sum_f L_f - 5F^{(2)}$.
 953

954 Since each edge belongs to at most two faces, we have: $\sum_f L_f \leq 2|E_0|$.
 955

956 Thus, the contribution from this step is: $\Delta_2 = O\left(\sum_f L_f\right) = O(|E_0|)$.
 957

958 For each k -cell c with $k \geq 3$, we subdivide it into at most $C(k)$ simplices, where $C(k)$ depends on the triangu-
 959 lation method used.
 960

961 For barycentric subdivision, the number of simplices is: $C(k) = k!$.
 962

963 For more efficient triangulation methods, $C(k)$ can be as low as $O(2^k)$.
 964

965 Each k -simplex introduces:
 966

- 967 • 1 k -simplex
- 968 • $\binom{k+1}{1}$ $(k-1)$ -simplices (faces)
- 969 • $\binom{k+1}{2}$ $(k-2)$ -simplices
- 970 • \vdots
- 971 • $\binom{k+1}{k}$ 0-simplices (vertices)

973 However, since we only need to count the net increase in cells, and many of these simplices are on the boundary
 974 and shared with adjacent cells, we consider only the interior simplices.
 975

976 For a convex k -cell, the number of interior simplices introduced is at most $C(k)$. Thus, the total contribution
 977 from this step is:
 978

$$\Delta_3 = O\left(\sum_{k=3}^d F^{(k)} \cdot C(k)\right)$$

981 The total size of the subdivided complex is:
 982

$$983 |\mathcal{C}'_T| = |\mathcal{C}_T| + \Delta_1 + \Delta_2 + \Delta_3$$

984 Substituting the bounds from previous steps:
 985

$$986 987 |\mathcal{C}'_T| \leq |\mathcal{C}_T| + O(|E_0|^2) + O(|E_0|) + O\left(\sum_{k=3}^d F^{(k)} \cdot C(k)\right)$$

988 Since $|E_0|^2$ dominates $|E_0|$, and noting that $|E_0|$ itself is bounded by $|\mathcal{C}_T|$, we can write:
 989

$$990 \quad |\mathcal{C}'_T| \leq |\mathcal{C}_T| + O\left(|\mathcal{C}_T|^2 + \sum_{k=3}^d F^{(k)} \cdot C(k)\right)$$

$$991$$

$$992$$

993 However, in practice, for decision-tree complexes, the number of edges $|E_0|$ is typically $O(n)$ where n is the
 994 number of leaf regions, and the higher-dimensional cells have $F^{(k)} = O(n)$ as well. Thus, we can simplify to:
 995

$$996 \quad |\mathcal{C}'_T| \leq |\mathcal{C}_T| + O\left(\sum_{k=2}^d F^{(k)} \cdot C(k)\right)$$

$$997$$

$$998$$

999 where we've incorporated the $O(|E_0|^2)$ term into the sum by noting that $F^{(2)} \geq |E_0|$ for any reasonable
 1000 complex, and $C(2) = 1$ since 2-cells don't need further subdivision beyond triangulation.
 1001

□

1002
 1003
 1004 **D.6 PROOF OF THEOREM 5.4**
 1005

1006 *Proof.* Let $\Pi : \mathbb{R}^d \rightarrow \mathbb{R}^2$ be the orthogonal projection onto the embedding plane. We analyze the Hausdorff
 1007 distance by considering its two components:

$$1008 \quad d_H(\text{Embed}(R), h(R)) = \max \left\{ \sup_{p \in \text{Embed}(R)} \inf_{q \in h(R)} \|p - q\|, \sup_{q \in h(R)} \inf_{p \in \text{Embed}(R)} \|q - p\| \right\}$$

$$1009$$

$$1010$$

$$1011$$

1012 For the first term, for any $p \in \text{Embed}(R)$, there exists $p' \in R$ such that $p = \Pi(p')$. The Voronoi approximation
 1013 maps p' to $q \in h(R)$ in the Voronoi cell of $\Pi(c)$. By triangle inequality:
 1014

$$1015 \quad \|p - q\| \leq \|\Pi(p') - \Pi(c)\| + \|\Pi(c) - q\|$$

$$1016$$

1017 The first term is bounded using the projection geometry. For any vector $\mathbf{v} \in \mathbb{R}^d$, the projection satisfies
 1018 $\|\Pi(\mathbf{v})\| = \|\mathbf{v}\| \cdot \cos \theta$, where θ is the angle between \mathbf{v} and the embedding plane. Thus:

$$1019 \quad \|\Pi(p') - \Pi(c)\| \leq \|p' - c\| \cdot \cos \theta \leq \frac{D}{2} \cdot \cos \theta$$

$$1020$$

$$1021$$

1022 The second term is bounded by the Voronoi cell radius:
 1023

$$1024 \quad \|\Pi(c) - q\| \leq \frac{1}{2} \min_{c' \in \mathcal{N}(c)} \|\Pi(c) - \Pi(c')\| = \epsilon_{\text{vor}}$$

$$1025$$

$$1026$$

1027 For the second Hausdorff component, for any $q \in h(R)$, we have:
 1028

$$1029 \quad \inf_{p \in \text{Embed}(R)} \|q - p\| \leq \|q - \Pi(c)\| \leq \epsilon_{\text{vor}}$$

$$1030$$

1031 since $\Pi(c) \in \text{Embed}(R)$.
 1032

1033 Combining both components:

$$1034 \quad d_H(\text{Embed}(R), h(R)) \leq \max \left(\frac{D}{2} \cdot \cos \theta + \epsilon_{\text{vor}}, \epsilon_{\text{vor}} \right)$$

$$1035$$

$$1036$$

1037 The worst case occurs when $\theta = \theta_{\max}$, giving:
 1038

$$1039 \quad d_H(\text{Embed}(R), h(R)) \leq \frac{D}{2} \cdot \cos \theta_{\max} + \epsilon_{\text{vor}}$$

1040 However, this bound can be improved by considering the chord length of a sphere of diameter D subtended by
 1041 an angle θ_{\max} :

$$1042 \max_{p' \in R} \|\Pi(p') - \Pi(c)\| = \frac{D}{2} \cdot \sqrt{2(1 - \cos \theta_{\max})}$$

1044 This leads to the tighter bound:

$$1046 d_H(\text{Embed}(R), h(R)) \leq \frac{D}{2} \cdot \sqrt{2(1 - \cos \theta_{\max})} + \epsilon_{\text{vor}}$$

1049 To ensure this bound is never worse than the simple bound $\frac{D}{2} + \epsilon_{\text{vor}}$, we take the minimum:

$$1051 d_H(\text{Embed}(R), h(R)) \leq \frac{D}{2} \cdot \min \left(1, \sqrt{2(1 - \cos \theta_{\max})} \right) + \epsilon_{\text{vor}}$$

□

1055 D.7 PROOF OF COROLLARY 5.5

1057 *Proof.* When all cell faces are parallel to coordinate axes and the embedding plane is the xy -plane, the angle
 1058 between any face normal and the plane normal is either 0 or $\frac{\pi}{2}$. For axis-aligned cells, the projection of R onto
 1059 the xy -plane is exactly the same as R 's cross-section in the xy -plane. The centroid c projects to $\Pi(c)$, and the
 1060 Voronoi cell $h(R)$ is determined by the projections of adjacent cells' centroids.

1061 The term $\frac{D}{2} \cdot \sqrt{2(1 - \cos \theta_{\max})}$ vanishes because for any point $p' \in R$, the vector $p' - c$ has no component
 1062 perpendicular to the embedding plane that would affect the distance $\|\Pi(p') - \Pi(c)\|$. Thus, the bound reduces
 1063 to ϵ_{vor} . □

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091