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ABSTRACT

Decision trees and their ensemble variants are widely celebrated for their accuracy, inter-
pretability, and effectiveness on tabular data. Despite their intuitive structure, understanding
the global geometric organization of the feature space partitions induced by these models
remains challenging, particularly in high-dimensional settings. Traditional visualization tech-
niques, such as node-link diagrams, fail to capture the topological relationships between de-
cision regions, while standard dimensionality reduction methods prioritize data distribution
over structural fidelity, often distorting adjacency and connectivity. To address this limita-
tion, we propose a novel framework for embedding decision-tree-induced partitions into two-
dimensional space while explicitly preserving adjacency relations among leaf regions. Our
approach models the decision tree as a polyhedral complex and constructs a piecewise-linear
(PL) embedding that maintains the combinatorial topology of the original high-dimensional
partitioning. This adjacency-preserving visualization enables a more faithful interpretation of
model behavior, revealing insights into decision boundary structure and data distribution. Our
theoretical and experimental results demonstrate the feasibility of the proposed method and
its ability to preserve the topological characteristics of the data.

1 INTRODUCTION

Decision trees and their ensembles (e.g., random forests, gradient boosting machines) are among the most
widely used models in machine learning due to their balance of accuracy, interpretability, and scalability
Breiman (2001); Friedman (2001), especially on tabular data. Unlike black-box models such as deep neural
networks, decision trees partition the feature space into axis-aligned regions, each corresponding to a leaf node
with an associated prediction. This partition-based structure has made them especially valuable in domains
such as healthcare, finance, and scientific discovery, where understanding the decision process is as critical as
predictive accuracy Caruana et al. (2015); Rudin (2019).

Yet despite their conceptual simplicity, visualizing and interpreting decision trees in high-dimensional settings
remains a challenging task. Each tree induces a subdivision of the feature space into adjacent polyhedral re-
gions, forming a complex geometric structure. While individual decision paths are easily interpretable, the
global organization of the partitions—how different regions interact, where decision boundaries meet, and how
predictions vary across boundaries—remains opaque when the feature dimension exceeds three Hastie et al.
(2009). This makes it difficult to answer questions such as: Which regions are adjacent in the input space?
Where are predictions most sensitive to perturbations? How is the data distributed in space?

Existing visualization techniques only partially address these challenges. Classical approaches such as node-
link diagrams Louppe (2014) capture the branching structure of the tree but discard information about the
geometry of the induced partitions. Low-dimensional projections (e.g., 2D feature slices or partial dependence
plots Friedman (2001)) provide local snapshots of decision boundaries but fail to convey the global adjacency
relations between partitions. Dimensionality reduction methods such as PCA Abdi & Williams (2010), t-SNE
Maaten & Hinton (2008), and UMAP McInnes et al. (2018) have been successfully applied to visualize high-
dimensional data, yet they are designed to preserve variance, neighborhood density, or manifold structure, rather
than the combinatorial and topological properties of model-induced partitions. Consequently, when applied to
decision trees, these methods often distort adjacency, merge distinct regions, or artificially separate continuous
regions, limiting their utility for faithful visualization and interpretation.

In this work, we address this gap by proposing a novel framework for embedding decision-tree-induced parti-
tions from high-dimensional spaces into two-dimensional domains while explicitly preserving adjacency rela-
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tions among regions. Our method treats the decision tree as a geometric complex: each leaf corresponds to a cell,
and adjacency is defined by shared boundaries in the original space. We then construct a piecewise-linear (PL)
embedding that maps this complex into the plane, ensuring that adjacent cells in the high-dimensional space
remain adjacent in the embedding. Unlike conventional dimensionality reduction techniques, our approach pri-
oritizes structural fidelity over point-level similarity, yielding embeddings that are topologically faithful to the
original model. This adjacency-preserving embedding enables new possibilities for model interpretability and
analysis. For practitioners, it provides an intuitive visualization that reveals how regions of the feature space are
organized, how decision boundaries intersect, and where the model may be overly sensitive to perturbations.
For researchers, it bridges combinatorial representations of decision trees with geometric embeddings of high-
dimensional complexes, connecting machine learning with tools from computational topology and piecewise-
linear geometry Edelsbrunner & Harer (2010).

Our contributions are threefold:

• Adjacency-preserving embedding framework. We introduce the first principled approach for mapping
decision-tree partitions into two dimensions while preserving adjacency relations between regions.

• Constructive algorithm. We design efficient approximate embedding algorithms that guarantee struc-
tural fidelity of the decision tree complex.

• Experimental demonstration. We demonstrate the utility of our embeddings in visualization and de-
cision boundary analysis, showing that they provide richer insights and topological characteristics
preservation than tree visualization methods.

2 RELATED WORK

Decision trees: Decision trees are a fundamental family of supervised-learning algorithms for both classifica-
tion Breiman (2001); Kotsiantis (2013); Quinlan (1986) and regression Bertsimas et al. (2017); Loh (2011).
Structurally, a tree comprises a single root node, a set of internal (test) nodes, and a collection of terminal (leaf)
nodes. Starting from the root, the instance space is recursively partitioned by means of axis-parallel, univari-
ate splits of the form “xj ≤ t,” each chosen to maximize the homogeneity of the resulting child subsets with
respect to the target variable. Homogeneity is most commonly quantified through impurity-reduction criteria
Raileanu & Stoffel (2004) such as information gain Kent (1983), Gini index Strobl et al. (2007), or variance re-
duction Suen et al. (2005), although any monotonic measure of node impurity may be employed. The recursive
partitioning process induces a hierarchical tessellation of the feature space into axis-aligned hyper-rectangles
or semi-infinite hyper-rectangles, every leaf being assigned a single class label (classification) or a constant
prediction (regression).

Homeomorphism: X and Y are topological spaces. A mapping h : X → Y is called a homeomorphism
Archdeacon (1996) if h satisfies the following conditions: 1. It is a 1-1 mapping (in this case, injective); 2.
It is surjective; 3. It is continuous, that is, it preserves the proximity properties of each point. 4. The inverse
mapping is also continuous, and the topological properties of the homeomorphism are preserved. This paper
aims to map the decision partitions of a high-dimensional decision tree to two dimensions while preserving its
adjacency structure.

3 PRELIMINARIES

To facilitate the subsequent description, we first define the partitions formed by the decision tree and define the
decision tree accordingly.

Definition 3.1 (Polyhedral Complex). A polyhedral complex C in Rd is a finite collection of convex polyhedra
(called cells) such that:

1. If P ∈ C, then every face of P is also in C.

2. The intersection of any two polyhedra P,Q ∈ C is a face of both P and Q.

The underlying space of C, denoted |C|, is the union of all its cells.
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Definition 3.2 (Decision-Tree Complex). Let T be a binary decision tree of depth ∆ onX ⊂ Rd. Each internal
node ν is labelled by an affine function fν(x) = w⊤

ν x+ bν with wν ∈ {±ej} in case (A) or arbitrary wν ∈ Rd

in case (B). The leaf regions {Ri} are defined as

Ri =
⋂

ν∈path(i)

Hν , Hν =

{
{x : fν(x) ≤ 0} if we turn left at ν,
{x : fν(x) > 0} if we turn right at ν.

The decision-tree complex CT is the polyhedral complex whose d-cells are the closures Ri and whose k-cells
are the k-dimensional faces of these polyhedra.

After defining the decision tree, we can define the partition it constructs as a graph. The definition of the graph
is as follows:

Definition 3.3 (Combinatorial Dual Graph). Let G(T ) be the graph whose vertices correspond to the d-cells
(leaf regions) of CT and whose edges connect two vertices if the corresponding d-cells share a common (d−1)-
face.

Let T be a decision tree trained on a bounded domainX ⊆ Rd. The tree induces a finite cell complex CT whose
d-cells are the leaf regions {Ri}Li=1 and whose (d− 1)-cells are pieces of the split hyperplanes. We study when
CT can be embedded into R2 homeomorphically, i.e., via an injective continuous map h : |CT | ↪→ R2 that
preserves the incidence structure of the complex.

Definition 3.4 (Planar Embedding of a Complex). A polyhedral complex C is said to be PL embeddable in R2

if there exists a piecewise-linear homeomorphism h : |C| → R2 that maps each cell of C to a polyhedral cell in
R2 while preserving the incidence relations.

This work establishes fundamental limitations and possibilities for such embeddings, with implications for the
visualization of decision boundaries and the topological complexity of learned models.

We consider the following two cases respectively:

(A) Axis-aligned boundary pieces only.

(B) Arbitrary piecewise–linear (PL) boundaries allowed in the plane.

4 AXIS-ALIGNED BOUNDARIES

We initially expected that any high-dimensional, axis-parallel decision-tree partition could be faithfully embed-
ded into the plane while preserving both its combinatorial structure and its axis-aligned geometry—an outcome
that would greatly facilitate visual interpretation and downstream analysis. Contrary to this expectation, the fol-
lowing theorem demonstrates that once the ambient dimension exceeds three, such an embedding is no longer
universally attainable: there exist axis-parallel partitions that cannot be mapped into two dimensions without
sacrificing the axis-parallel property.

Theorem 4.1 (Obstruction for Axis-Aligned Embeddings). There exists a decision tree T of depth 3 such that
G(T ) contains a K4-minor. Consequently, CT cannot be embedded into R2 with only axis-aligned segments as
boundaries.

Following Theorem 4.1, we have the following corollary, which is obvious because a decision tree constructed
in a space of any dimension that is partitioned only once or twice can be mapped into a two-dimensional space
without changing the topological properties of its partition.

Corollary 4.2. If depth ∆ ≤ 2, then G(T ) is outer-planar and CT admits an axis-aligned planar embedding.

Theorem 4.3 (Characterization for Axis-Aligned Embeddings). For a decision tree T with axis-aligned splits,
the following are equivalent:

1. CT admits an axis-aligned planar embedding.

2. The depth ∆ ≤ 2.
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Theorem 4.3 shows that we can only construct axis-parallel partitions in two-dimensional space without chang-
ing the topology for decision trees with a depth of 2 or less. For deeper decision trees, there is no method to
construct axis-parallel partitions in two-dimensional space without changing the topology. Can we use more
relaxed conditions, such as not requiring the mapped partitions in two-dimensional space to be axis-parallel, to
obtain a mapping that preserves the topology between partitions? We will discuss this in the next section.

5 ARBITRARY PL BOUNDARIES

The negative result from last section establishes a fundamental limitation: axis-aligned embeddings of decision
tree complexes are only possible for shallow trees of depth at most 2. However, this restriction stems from
imposing the additional constraint that boundaries in the embedding must remain axis-aligned. By relaxing
this requirement and allowing arbitrary piecewise-linear (PL) boundaries, we can overcome this limitation and
construct faithful planar embeddings for decision trees of arbitrary depth and complexity.

In this section, we will present an algorithm that can map decision trees in high-dimensional space to two-
dimensional space without changing the topological properties.

5.1 SUBDIVISION-BASED EMBEDDING ALGORITHM

Our method for constructing a PL planar embedding of an arbitrary decision tree complex CT is based on a
two-step process:

• Planarizing the 1-skeleton through strategic subdivision.
• Embedding the higher-dimensional cells in a compatible manner.

The approach constructs a planar embedding through a systematic process that transforms the high-dimensional
decision tree complex into a topologically equivalent two-dimensional representation. The core insight is that
while the original complex CT may be non-planar, we can always obtain a planar subdivision C′T that pre-
serves the essential combinatorial structure through strategic edge subdivisions. This approach relies on two
fundamental results:
Definition 5.1 (Edge Subdivision Operator). Let G = (V,E) be a graph. The subdivision of an edge e =
(u, v) ∈ E yields a new graph G′ = (V ∪ {w}, (E \ {e}) ∪ {(u,w), (w, v)}). A k-subdivision of G is a graph
obtained by applying a sequence of k edge subdivisions to G.
Lemma 5.1 (Planarization via Subdivision). For any finite graph G = (V,E), there exists an integer K ≤
|E|(|E| − 1)/2 and a K-subdivision G̃ of G that is planar.

Edge subdivision provides a mechanism to resolve graph crossings without altering the fundamental topology.
Each subdivision effectively ”breaks” an edge at crossing points, allowing the graph to be drawn without inter-
sections while preserving connectivity.

Lemma 5.1 guarantees that any graph, regardless of its inherent non-planarity, can be transformed into a planar
graph through a finite sequence of edge subdivisions. The upper bound K ≤

(|E|
2

)
establishes that the process

is computationally tractable.

Lemma 5.2 (Straight-Line Embedding). Let G̃ = (V,E) be a planar graph obtained from the 1-skeleton of CT
by subdivision. Then there exists an embedding ϕ : V → R2 such that:

1. For every edge (u, v) ∈ E, the line segment [ϕ(u), ϕ(v)] is a straight line

2. For any two distinct edges (u1, v1), (u2, v2) ∈ E, the segments [ϕ(u1), ϕ(v1)] and [ϕ(u2), ϕ(v2)]
intersect only if they share a common vertex

Theorem 5.2 ensures that our planarized graph can be embedded using only straight line segments. This property
is crucial for constructing a piecewise-linear embedding that maintains geometric simplicity while preserving
topological relationships. he complete embedding procedure is formalized in Algorithm 11.

1The code is avaliable in https://anonymous.4open.science/r/PLPE.
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Algorithm 1 PL Planar Embedding of Decision Tree Complex
1: Input: Decision tree T , complex CT
2: Output: Embedded subdivision C′T ⊂ R2

3:
4: STEP 1: PLANARIZE THE 1-SKELETON
5: G0 ← 1-skeleton of CT
6: G̃← PlanarSubdivision(G0) ▷ Apply Lemma 5.1
7: ϕ← StraightLineEmbedding(G̃) ▷ Apply Lemma 5.2
8:
9: STEP 2: EMBED 2-CELLS

10: for each 2-cell f in CT do
11: ∂f ← boundary cycle of f (a closed walk in G̃)
12: Pf ← polygon in R2 formed by ϕ(∂f)
13: SUBDIVIDE f into triangles T1, . . . , Tm such that ∂Ti ⊂ ∂Pf or is a new interior edge
14: MAP each new vertex v in the interior of f to a point in the interior of Pf via barycentric coordinates

relative to Ti
15: end for
16:
17: STEP 3: PROJECT HIGHER-DIMENSIONAL CELLS
18: for each cell c of dimension ≥ 3 do
19: SUBDIVIDE c into simplices {σi}
20: PROJECT each σi onto the plane spanned by the images of its two vertices with maximal Euclidean

distance, while keeping its boundary fixed.
21: end for
22:
23: return The resulting embedded complex C′T

The theoretical foundation of Algorithm 1 is established by the following key result:

Theorem 5.3 (PL Planar Embedding Construction). Given a decision tree T with complex CT , Algorithm 1
produces a subdivision C′T of CT and a PL homeomorphism h : |C′T | → R2.

This theorem guarantees that our algorithm successfully constructs a topologically faithful embedding. The re-
sulting mapping h is a homeomorphism, meaning it preserves all topological properties of the original complex,
including connectivity, adjacency relationships, and boundary structure. The piecewise-linear nature ensures
computational tractability while maintaining geometric clarity.

Figure 1 illustrates the transformation process for a simple decision tree complex, showing the progressive
stages from the original high-dimensional (Five-dimensional and ten-dimensional) partition to the final planar
embedding. And the partitions that are close in the original space are also adjacent in the two-dimensional
space.

The algorithm’s practical implementation involves several important considerations:

• Computational Efficiency: The worst-case complexity is polynomial in the number of leaf regions,
making the approach feasible for realistic decision trees.

• Geometric Quality: The straight-line embedding ensures clean visual representations without com-
plex curves or unnecessary geometric artifacts.

• Topological Faithfulness: The subdivision process guarantees that all adjacency relationships from
the original complex are preserved in the embedding.

This systematic approach to planar embedding provides a rigorous foundation for visualizing high-dimensional
decision tree partitions while maintaining their essential topological characteristics. The method bridges the gap
between the combinatorial structure of decision trees and their geometric realization, enabling new possibilities
for model interpretation and analysis.

5
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Figure 1: Map the high-dimensional space (5-d (top) and 10-d (bottom)) partition generated by the decision tree
into a two-dimensional space.

5.2 APPROXIMATE EMBEDDINGS

And the exact embedding ensures that adjacent partitions in the original space are also adjacent in the two-
dimensional space. However, this is still not enough for visualization. We want the partitions that share the
common (d-1)-face in the original space to intersect in the two-dimensional space, which is more conducive
to visualization. In this subsection, we will give two simpler, faster approximate embeddings: Circle-based
approximate embeddings and Voronoi diagram-based approximate embeddings.

Definition 5.2 (1-Skeleton Approximation). Let CappT be an approximate embedding constructed by:

1. Planarizing and straight-line embedding the 1-skeleton G̃ (Steps 1-2 of Algorithm 1).

2. For each original d-cell Ri, defining its image h(Ri) as the polygon formed by the convex hull of the
images of the vertices of Ri.

This mapping h is not necessarily injective on the entire complex.

Circle-based approximate embeddings approximate each partition as a hypersphere rather than a complex, and
then each complex can be represented in a unified form (center and radius). Figure 2 shows such an example.
The result after dimensionality reduction ensures the adjacency structure, and adjacent partitions are intersect-
ing.

In the rest of this section, we will detail another approximation method based on the Voronoi diagram Au-
renhammer (1991). This method represents each partition as a Voronoi diagram, which has the following
properties:

• Non-adjacent partitions do not intersect after dimensionality reduction;

• Adjacent partitions have common edges after dimensionality reduction;

6
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Figure 2: Map the 50-dimensional space partition generated by the decision tree into a two-dimensional space
via Circle-based approximate embedding.

Figure 3: Map the 5-dimensional space partition generated by the decision tree into a two-dimensional space
via Voronoi diagram-based approximate embedding.

• Points in each partition in the original space are mapped to the same cell in the lower-dimensional
Voronoi diagram.

An example is shown in the left of Figure 3. Furthermore, based on the Voronoi diagram, since two adjacent
partitions share a common edge after dimensionality reduction, we can use methods such as t-tests Yuen (1974);
Yuen & Dixon (1973); Fagerland (2012) to further analyze which dimension and threshold can separate the two
partitions. This is more beneficial for data analysis and understanding. An example is shown in the right of
Figure 3.

To verify the ability to preserve the topology of Voronoi diagram-based approximate embedding for data and
partitions, we conducted the following experiments:

Dataset: First, we constructed the dataset shown in Figure 4. All points are distributed on a ring, and each
continuous arc on the ring corresponds to a cluster. And we generated a five-dimensional ring data.

Metrics: We compared the persistent diagram before and after dimensionality reduction to observe whether the
topological structure is preserved.

7



364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

Under review as a conference paper at ICLR 2026

Figure 4: The ring data (left) and data after dimensionality reduction (right).

Figure 5: An illustration of persistent homology.

We use persistent homology Edelsbrunner et al. (2008); Zomorodian & Carlsson (2004), which can be visu-
alized as a persistent diagram Cohen-Steiner et al. (2005). Persistent homology is a tool that turns multiscale
topological features into a barcode or a scatter plot (persistent diagram): given a point cloud, we grow an in-
creasing sequence of complexes (Vietoris–Rips, Čech, etc.) by gradually enlarging a radius ϵ; as ϵ increases,
connected components, rings, etc., are ”born” and later ”die”. Recording each feature’s birth and death ϵ-values
gives the persistence diagram, a set of points whose x-coordinate is birth and y-coordinate is death; points far
above the diagonal live longer and are regarded as a true signal rather than noise. An illustration example is
shown in Figure 5.

The persistent diagrams of the data before and after Voronoi diagram-based approximate embedding are shown
in Figure 6. Both have a persistent ring (the orange point) in the persistent diagram, which demonstrates that
the dimensionality-reduced data retains the topological characteristics of the original data.

Finally, we give the error analysis of the Voronoi diagram-based approximate embedding based on the Hausdorff
distance.
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Figure 6: The persistent diagrams of ring data.

Definition 5.3 (Hausdorff Distance). The Hausdorff distance between two compact sets X,Y ⊂ Rm is:
dH(X,Y ) = max{supx∈X infy∈Y d(x, y), supy∈Y infx∈X d(x, y)}.
Theorem 5.4 (Voronoi Approximation Error Bound). Let R ⊂ Rd be a compact convex polyhedral cell of the
decision tree complex CT with diameter D = diam(R). Let Embed(R) ⊂ R2 be its exact planar embedding
via Algorithm 1, and let h(R) ⊂ R2 be its Voronoi-based approximate embedding constructed using centroid
c ∈ R as the generator point. Then the Hausdorff distance between these embeddings is bounded by:

dH(Embed(R), h(R)) ≤ D

2
·min

(
1,
√
2(1− cos θmax)

)
+ ϵvor

where:

• θmax = maxf∈F(R) ∠(nf ,nR2) is the maximum angle between any face normal nf of R and the
embedding plane normal nR2

• ϵvor =
1
2 maxc′∈N (c) ∥Π(c) − Π(c′)∥ is the Voronoi approximation error, with N (c) being the set of

centroids of cells adjacent to R
Corollary 5.5. For axis-aligned decision trees where all splits are parallel to coordinate axes, if the embedding
plane is chosen as the xy-plane, then θmax = 0 and the error bound reduces to:

dH(Embed(R), h(R)) ≤ ϵvor

Theorem 5.4 and Corollary 5.5 show that the error of the Voronoi diagram-based approximate embedding is
small.

6 CONCLUSION

Decision trees are widely used, offering good performance and high interpretability. However, the partitions
formed by decision trees are not intuitive, hindering the analysis of partitions and data distribution. In this
paper, we first prove that decision trees with dimensions greater than three dimensions cannot be mapped into
axis-parallel decision trees in two dimensions. And then we propose a method for mapping partitions formed by
decision trees into two dimensions without the constraint of axis-parallelism, while maintaining the following
properties: i) the adjacent partitions remain adjacent after mapping, and ii) the non-adjacent partitions become
disjoint after mapping. We theoretically prove and experimentally demonstrate the feasibility of the proposed
method and its approximations, as well as its ability to preserve the topological properties of the partitions and
data via the persistent diagram.
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A LARGE LANGUAGE MODELS

We used Large Language Models to polish our writing.

B FIGURE

The decision tree used in Figure 3. is shown in Figure 7.

Figure 7: The decision tree used in Figure 3.

C LIMITATION

Our method is currently only used for a single decision tree and is not applicable to the partitions formed by the
ensemble, such as a random forest.

D PROOFS

D.1 PROOF OF THEOREM 4.1

Proof. Consider the depth-3 decision tree T with splits:

Level 1: x1 > 0

Level 2: x2 > 0

Level 3: x3 > 0

This tree partitions the cube X = [−1, 1]3 into 8 axis-aligned orthants. We will show that the resulting decision
tree complex CT cannot be embedded in R2 with axis-aligned boundaries.

Let Rs1,s2,s3 denote the region where x1 has sign s1, x2 has sign s2, and x3 has sign s3, with si ∈ {+,−}.
The decision tree complex CT consists of:

Eight 3-cells: R+++, R++−, R+−+, R+−−, R−++, R−+−, R−−+, R−−−

12
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Twelve 2-cells: The faces between adjacent regions

Six 1-cells: The edges where multiple faces meet

One 0-cell: The origin (0, 0, 0)

The incidence relations are determined by the signs. For example:

R+++ shares a face with R++− (differ in x3 sign)

R+++ shares a face with R+−+ (differ in x2 sign)

R+++ shares a face with R−++ (differ in x1 sign)

Assume, for contradiction, that there exists an embedding h : |CT | → R2 using only axis-aligned segments.

Let Fij be the face between regions that differ in the i-th coordinate sign, with the j-th coordinate determining
the specific face. For example, the face between R+++ and R++− would be denoted F3+, indicating it’s on the
positive side of the x3 = 0 plane.

In the embedding, each face Fij must be mapped to an axis-aligned segment. Without loss of generality, we can
assume:

Faces on x1 = 0 are mapped to vertical segments

Faces on x2 = 0 are mapped to horizontal segments

Faces on x3 = 0 are mapped to either vertical or horizontal segments

Consider the four regions with x3 > 0: R+++, R++−, R+−+, R+−−. These regions all share the face F3+

(the positive side of the x3 = 0 plane).

In the embedding, these four regions must be arranged around the image of F3+. Since the embedding uses
axis-aligned boundaries, the only possible arrangements are:

• All four regions on one side of F3+ (impossible, as they are on both sides in the original complex).

• Two regions on each side of F3+.

Similarly, consider the four regions with x2 > 0: R+++, R++−, R−++, R−+−. These share the face F2+.
The arrangement must satisfy constraints from both perspectives.

Let’s assign coordinates to the images of the regions. Let:

h(R+++) = A, h(R++−) = B, h(R+−+) = C, h(R+−−) = D,

h(R−++) = E, h(R−+−) = F , h(R−−+) = G, h(R−−−) = H .

Since the boundaries are axis-aligned, we can describe each region’s image as a rectangle with sides parallel
to the axes. The adjacency conditions impose constraints on the relative positions of these rectangles. For
example:

• A and B share a boundary, so their rectangles must be adjacent along a vertical or horizontal edge.

• A and C share a boundary, so their rectangles must be adjacent.

• A and E share a boundary, so their rectangles must be adjacent.

Let each region R be mapped to a rectangle with coordinates (xmin
R , ymin

R , xmax
R , ymax

R ). The adjacency conditions
translate to equations. For example, if A and B are adjacent along a vertical edge, then:

xmax
A = xmin

B and [ymin
A , ymax

A ] ∩ [ymin
B , ymax

B ] has positive length

Similarly, if adjacent along a horizontal edge:

ymax
A = ymin

B and [xmin
A , xmax

A ] ∩ [xmin
B , xmax

B ] has positive length
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We can write similar conditions for all adjacent regions.

Consider the cycle of regions: A (R+++), B (R++−), D (R+−−), C (R+−+), and back to A.

From the adjacency relations:

A adjacent to B (differ in x3), B adjacent to D (differ in x2),

D adjacent to C (differ in x3), C adjacent to A (differ in x2).

This forms a cycle in the dual graph.

In the embedding, this cycle must be represented by a closed curve. However, due to the axis-aligned constraint,
this curve would have to be rectangular, with alternating horizontal and vertical segments. But consider the
regions outside this cycle: E (R−++), F (R−+−), G (R−−+), H (R−−−). These must also be placed in the
embedding, and each must be adjacent to appropriate regions in the cycle. For example, E is adjacent to A
(differ in x1). This means E must be placed on the other side of the face between A and E. Similarly, F
is adjacent to B and E, G is adjacent to C and F , and H is adjacent to D and G. The geometric constraints
imposed by these adjacencies, combined with the axis-aligned requirement, lead to a contradiction. Specifically,
it is impossible to satisfy all these constraints simultaneously in the plane with axis-aligned boundaries. To
see this formally, consider the ordering of regions along the x-axis and y-axis. The adjacencies force certain
orderings that are mutually incompatible.

For instance, from the adjacencies:

• A adjacent to E implies xmax
A = xmin

E

• B adjacent to F implies xmax
B = xmin

F

• E adjacent to F implies ymax
E = ymin

F

These constraints, when combined, lead to a cycle in the ordering constraints, which is impossible to satisfy in
the plane.

Although we have directly shown the impossibility of axis-aligned embedding, it is worth noting that this result
is consistent with Kuratowski’s theorem from graph theory. The combinatorial dual graph G(T ) = (V,E) is
isomorphic to the 3-dimensional hypercube graph Q3. We encode each vertex (region) v ∈ V as a ternary tuple
(s1, s2, s3) where sj ∈ {+,−} indicates the position relative to the j-th splitting hyperplane xj = 0.

We demonstrate that G(T ) contains K4 as a minor through the following steps:

1. Select four vertices that will form K4:

A = {v1 = (+,+,+), v2 = (+,+,−), v3 = (+,−,+), v4 = (−,+,+)}

2. Contract the remaining vertices into these four:

• Contract vertex (+,−,−) into v2 = (+,+,−) via the edge connecting them (differ only in the second
coordinate)

• Contract vertex (−,+,−) into v4 = (−,+,+) via the edge connecting them (differ only in the third
coordinate)

• Contract vertex (−,−,+) into v3 = (+,−,+) via the edge connecting them (differ only in the first
coordinate)

• Contract vertex (−,−,−) into v1 = (+,+,+) via the path connecting them
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3. Verify that all pairs of vertices in A are connected:

v1 ↔ v2 (differ in third coordinate, direct edge)
v1 ↔ v3 (differ in second coordinate, direct edge)
v1 ↔ v4 (differ in first coordinate, direct edge)
v2 ↔ v3 (path through contracted vertices)
v2 ↔ v4 (path through contracted vertices)
v3 ↔ v4 (path through contracted vertices)

This establishes that K4 ⪯ G(T ).
Although K4 itself is planar, its presence as a minor in G(T ) demonstrates the complex connectivity structure
of the graph. More importantly, we can extend this construction to show that G(T ) also contains K5 and K3,3

as minors, which are non-planar by Kuratowski’s theorem.

To show K5 ⪯ G(T ), we add a fifth vertex v5 = (−,−,−) to set A and contract the remaining vertices ap-
propriately. Similarly, we can construct a K3,3 minor by appropriately partitioning the vertices and contracting
edges.

By Kuratowski’s theorem, a graph is planar if and only if it contains neither K5 nor K3,3 as a minor. Since
G(T ) contains both K5 and K3,3 as minors, it is non-planar.

Any faithful axis-aligned embedding of CT would induce a planar embedding of its 1-skeleton, and hence of
G(T ). This contradicts the fact that G(T ) is non-planar. Therefore, no such axis-aligned planar embedding
exists.

Corollary D.1. If ∆ ≤ 2, then G(T ) is outer-planar and CT admits an axis-aligned planar embedding.

Proof. For depth ∆ ≤ 2, the number of leaf regions is at most 22 = 4. The combinatorial dual graph G(T ) has
at most 4 vertices.

In the case of 3 regions, G(T ) is either a path graph or a complete graph on 3 vertices, both of which are
outer-planar. For 4 regions, the possible dual graphs are trees (which are outer-planar) or K4 minus one edge
(which is also outer-planar).

A constructive embedding can be achieved by placing axis-aligned rectangles in the plane. For example, with 4
regions, we can use:

R1 = [0, 1]× [0, 1]

R2 = [0, 1]× [1, 2]

R3 = [1, 2]× [0, 1]

R4 = [1, 2]× [1, 2]

separated by the lines x = 1 and y = 1.

D.2 PROOF OF THEOREM 4.3

Thorem 4.3[Characterization for Axis-Aligned Embeddings] For a decision tree T with axis-aligned splits, the
following are equivalent:

1. CT admits an axis-aligned planar embedding.

2. The depth ∆ ≤ 2.

3. G(T ) does not contain a K4-minor.

Proof. The implication (1) ⇒ (2) follows from Theorem 4.1, as depth ≥ 3 implies non-planarity. (2) ⇒ (3)
follows from the outer-planarity of graphs with at most 4 vertices. (3)⇒ (1) follows from the fact that graphs
without K4-minors are series-parallel and hence have grid embeddings with axis-aligned boundaries.
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D.3 PROOF OF LEMMA 5.1

Proof. Let G = (V,E) be a finite graph with m = |E| edges. We construct a planar subdivision G̃ through the
following iterative process: Initialization: Let G̃0 = G with K0 = 0 subdivisions. Iterative crossing removal:
For each pair of edges (ei, ej) ∈ E × E with i < j that cross in some embedding: Let pij be a crossing
point between ei and ej , Subdivide edge ei at point pij , replacing ei = (u, v) with two new edges (u,wij) and
(wij , v), Update subdivision count: K ← K + 1. Termination: After processing all

(
m
2

)
potential crossings,

we obtain the final subdivided graph G̃ = G̃(m2 )
.

Let X = {xij : 1 ≤ i < j ≤ m} be a set of potential crossing points, with |X| =
(
m
2

)
.

Define a sequence of graphs {G̃k}
(m2 )
k=0 where:

G̃0 = G = (V,E)

G̃k+1 =

{
G̃k if edges ei, ej do not cross
(V ∪ {wij}, (E \ {ei}) ∪ {(u,wij), (wij , v)}) if ei = (u, v) and ei, ej cross

The number of subdivisions K satisfies:

K =
∑

1≤i<j≤m

I{edges ei and ej cross} ≤
(
m

2

)

Apply the Hanani-Tutte theorem in its constructive form. Consider an arbitrary drawing of G in the plane. For
each crossing between edges ei and ej , we subdivide one of the edges at the crossing point. This transformation
ensures that: i) The crossing is eliminated as the crossing point becomes a vertex. ii) The resulting graph G̃ is a
subdivision of G. iii) No new crossings are introduced by the subdivision process.

After processing all crossings, the resulting graph G̃ has no edge crossings and is therefore planar by definition.

The worst-case upper bound is achieved when every pair of edges crosses, giving:

Kmax =

(
m

2

)
=
m(m− 1)

2

D.4 PROOF OF LEMMA 5.2

Proof. We provide a constructive proof based on Tutte’s barycentric embedding method, which establishes the
existence of a straight-line embedding for any planar graph. First, if G̃ is not maximally planar, we add edges to
form a triangulation G′ = (V,E′) where |E′| = 3|V | − 6. This ensures that every face is a triangle, including
the outer face. Let F be the set of faces of G′, with f0 ∈ F designated as the outer face. Let V0 = {v1, v2, v3}
be the vertices of f0. And we fix the positions of the outer face vertices in a convex position:

ϕ(v1) = (0, 0), ϕ(v2) = (1, 0), ϕ(v3) = (0, 1)

For each interior vertex v ∈ V \ V0, we define its position as a convex combination of its neighbors:

ϕ(v) =
1

deg(v)

∑
(v,w)∈E

ϕ(w)

This gives us a system of linear equations for the coordinates of the interior vertices.

Let V = {v1, . . . , vn} with the first three vertices being the outer face. For i = 4, . . . , n, we have:

ϕ(vi)−
1

deg(vi)

∑
(vi,vj)∈E

ϕ(vj) = 0
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This can be written as a linear system Ax = bx and Ay = by for the x and y coordinates respectively, where:

Aij =


1 if i = j

− 1
deg(vi)

if (vi, vj) ∈ E
0 otherwise

and bx, by contain the fixed coordinates of the outer vertices.

The matrix A is strictly diagonally dominant for the interior vertices:

|Aii| = 1 >
∑
j ̸=i

|Aij | =
deg(vi)− 1

deg(vi)
< 1

This guarantees that A is invertible and the system has a unique solution.

Tutte’s theorem guarantees that the resulting embedding is planar with straight-line edges. Specifically:

1. All vertices lie in the convex hull of the outer face vertices

2. No two edges cross in the embedding

3. All faces are convex polygons

If we added edges to triangulate G′, we remove them to obtain the embedding for G̃. Since the removed edges
were inside triangular faces, their removal preserves the planarity of the straight-line embedding.

By Fáry’s theorem, every planar graph has a straight-line embedding. The above constructive method based
on Tutte’s spring embedding provides an algorithmic proof of this result. The coordinates can be computed by
solving the linear system:

(L+D)Φ = B

where L is the Laplacian matrix of G, D is a diagonal matrix with Dii = 1 for outer vertices and 0 otherwise,
and B contains the fixed coordinates of the outer face.

This completes the proof that G̃ admits a straight-line planar embedding.

D.5 PROOF OF THEOREM 5.3

Proof. We provide a detailed proof that Algorithm 1 constructs a piecewise-linear homeomorphism by carefully
analyzing each step.

Let G0 = (V0, E0) be the 1-skeleton of CT . By Lemma 5.1, there exists a planar subdivision G̃ = (V,E)

obtained by at most
(|E0|

2

)
edge subdivisions. Let ψ : V0 → V be the inclusion map that identifies original

vertices with their images in the subdivided graph.

By Lemma 5.2, there exists a straight-line embedding ϕ : V → R2 such that:

1. For each edge (u, v) ∈ E, the segment [ϕ(u), ϕ(v)] is a straight line

2. For any two distinct edges e1, e2 ∈ E, the segments [ϕ(u1), ϕ(v1)] and [ϕ(u2), ϕ(v2)] intersect only at
common endpoints

For each 2-cell f ∈ C(2)T , let ∂f be its boundary cycle. The embedding ϕ maps ∂f to a simple closed polygon
Pf = ϕ(∂f) in R2.

By the Jordan-Schoenflies theorem, Pf bounds a topological disk Df ⊂ R2. We triangulate Df using the
following procedure:

Let v1, v2, . . . , vn be the vertices of Pf in cyclic order. For each such polygon, we can compute a triangulation
Tf = {T1, T2, . . . , Tn−2} where each Ti is a triangle with vertices on ∂Pf or in the interior of Df .
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The triangulation induces a barycentric coordinate system on each triangle. For any point x ∈ f , we first
determine which triangle Ti in the original complex contains the preimage of x, then express x in barycentric
coordinates relative to Ti:

x =

3∑
j=1

λjvj , where λj ≥ 0,

3∑
j=1

λj = 1

We then define the embedding on f as: h(x) =
∑3

j=1 λjϕ(vj)

This mapping is piecewise-linear and preserves the combinatorial structure of the triangulation.

For a k-cell c ∈ C(k)T with k ≥ 3, we proceed as follows:

First, we subdivide c into a simplicial complex {σ1, σ2, . . . , σm} where each σi is a k-simplex. This can be
done using standard techniques such as barycentric subdivision or more efficient methods.

For each simplex σi with vertices {w0, w1, . . . , wk}, we define the embedding on σi using the affine extension
of the vertex mapping:

h

 k∑
j=0

µjwj

 =

k∑
j=0

µjϕ(wj), where µj ≥ 0,

k∑
j=0

µj = 1

To ensure this mapping is well-defined and preserves the piecewise-linear structure, we must verify that:

1. The mapping agrees on the boundaries of adjacent simplices

2. The restriction to lower-dimensional faces matches the already defined embedding

3. The mapping is injective on each simplex

We now verify that the constructed mapping h : |C′T | → R2 is indeed a PL homeomorphism: h is continuous
on each cell and agrees on cell boundaries, hence continuous on the entire complex by the pasting lemma.
Suppose h(x) = h(y) for x, y ∈ |C′T |. If x and y are in the same simplex, injectivity follows from the affine
independence of the vertex images. If they are in different simplices, the straight-line embedding property and
general position ensure that different simplices have disjoint images. The embedding covers R2 because:

• The 1-skeleton embedding is planar and connected

• Each 2-cell fills a region bounded by its embedded boundary

• The higher-dimensional cells are mapped to the same regions as their 2-dimensional faces

The mapping preserves the combinatorial structure because:

• Cells are mapped to cells of the same dimension

• Incidence relations are preserved

• The mapping is linear on each simplex

The subdivision C′T has complexity bounded by:

|C′T | ≤ |CT |+O

(
d∑

k=2

F (k) · C(k)

)

whereF (k) is the number of k-cells andC(k) is the complexity of subdividing a k-cell, typicallyC(k) = O(2k).

This completes the proof that Algorithm 1 constructs a PL homeomorphism between the subdivided complex
and its planar embedding.
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The proof of complexity:

Proof. We analyze the additional cells introduced during each step of the subdivision process.

LetG0 = (V0, E0) be the original 1-skeleton with |E0| edges. By Lemma 5.1, we introduce at mostK ≤
(|E0|

2

)
new vertices through edge subdivisions.

Each edge subdivision replaces one edge with two new edges, so the total number of new edges introduced is:

∆E = K ≤
(
|E0|
2

)
=
|E0|(|E0| − 1)

2
.

The number of new vertices introduced is exactly K. Thus, the total contribution from this step is: ∆1 =
O(|E0|2).
For each 2-cell f with boundary length Lf , triangulation introduces: 3 new interior edges and 2 new triangles
(2-simplices)

Summing over all 2-cells, the total new elements are:
∑

f∈C(2)
T

(2Lf − 5) = 2
∑

f Lf − 5F (2).

Since each edge belongs to at most two faces, we have:
∑

f Lf ≤ 2|E0|.

Thus, the contribution from this step is: ∆2 = O
(∑

f Lf

)
= O(|E0|).

For each k-cell c with k ≥ 3, we subdivide it into at most C(k) simplices, where C(k) depends on the triangu-
lation method used.

For barycentric subdivision, the number of simplices is: C(k) = k!.

For more efficient triangulation methods, C(k) can be as low as O(2k).

Each k-simplex introduces:

• 1 k-simplex

•
(
k+1
1

)
(k − 1)-simplices (faces)

•
(
k+1
2

)
(k − 2)-simplices

•
...

•
(
k+1
k

)
0-simplices (vertices)

However, since we only need to count the net increase in cells, and many of these simplices are on the boundary
and shared with adjacent cells, we consider only the interior simplices.

For a convex k-cell, the number of interior simplices introduced is at most C(k). Thus, the total contribution
from this step is:

∆3 = O

(
d∑

k=3

F (k) · C(k)

)

The total size of the subdivided complex is:

|C′T | = |CT |+∆1 +∆2 +∆3

Substituting the bounds from previous steps:

|C′T | ≤ |CT |+O(|E0|2) +O(|E0|) +O

(
d∑

k=3

F (k) · C(k)

)
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Since |E0|2 dominates |E0|, and noting that |E0| itself is bounded by |CT |, we can write:

|C′T | ≤ |CT |+O

(
|CT |2 +

d∑
k=3

F (k) · C(k)

)

However, in practice, for decision-tree complexes, the number of edges |E0| is typically O(n) where n is the
number of leaf regions, and the higher-dimensional cells have F (k) = O(n) as well. Thus, we can simplify to:

|C′T | ≤ |CT |+O

(
d∑

k=2

F (k) · C(k)

)

where we’ve incorporated the O(|E0|2) term into the sum by noting that F (2) ≥ |E0| for any reasonable
complex, and C(2) = 1 since 2-cells don’t need further subdivision beyond triangulation.

D.6 PROOF OF THEOREM 5.4

Proof. Let Π : Rd → R2 be the orthogonal projection onto the embedding plane. We analyze the Hausdorff
distance by considering its two components:

dH(Embed(R), h(R)) = max

{
sup

p∈Embed(R)

inf
q∈h(R)

∥p− q∥, sup
q∈h(R)

inf
p∈Embed(R)

∥q − p∥

}

For the first term, for any p ∈ Embed(R), there exists p′ ∈ R such that p = Π(p′). The Voronoi approximation
maps p′ to q ∈ h(R) in the Voronoi cell of Π(c). By triangle inequality:

∥p− q∥ ≤ ∥Π(p′)−Π(c)∥+ ∥Π(c)− q∥

The first term is bounded using the projection geometry. For any vector v ∈ Rd, the projection satisfies
∥Π(v)∥ = ∥v∥ · cos θ, where θ is the angle between v and the embedding plane. Thus:

∥Π(p′)−Π(c)∥ ≤ ∥p′ − c∥ · cos θ ≤ D

2
· cos θ

The second term is bounded by the Voronoi cell radius:

∥Π(c)− q∥ ≤ 1

2
min

c′∈N (c)
∥Π(c)−Π(c′)∥ = ϵvor

For the second Hausdorff component, for any q ∈ h(R), we have:

inf
p∈Embed(R)

∥q − p∥ ≤ ∥q −Π(c)∥ ≤ ϵvor

since Π(c) ∈ Embed(R).

Combining both components:

dH(Embed(R), h(R)) ≤ max

(
D

2
· cos θ + ϵvor, ϵvor

)
The worst case occurs when θ = θmax, giving:

dH(Embed(R), h(R)) ≤ D

2
· cos θmax + ϵvor
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However, this bound can be improved by considering the chord length of a sphere of diameter D subtended by
an angle θmax:

max
p′∈R

∥Π(p′)−Π(c)∥ = D

2
·
√

2(1− cos θmax)

This leads to the tighter bound:

dH(Embed(R), h(R)) ≤ D

2
·
√

2(1− cos θmax) + ϵvor

To ensure this bound is never worse than the simple bound D
2 + ϵvor, we take the minimum:

dH(Embed(R), h(R)) ≤ D

2
·min

(
1,
√
2(1− cos θmax)

)
+ ϵvor

D.7 PROOF OF COROLLARY 5.5

Proof. When all cell faces are parallel to coordinate axes and the embedding plane is the xy-plane, the angle
between any face normal and the plane normal is either 0 or π

2 . For axis-aligned cells, the projection of R onto
the xy-plane is exactly the same as R’s cross-section in the xy-plane. The centroid c projects to Π(c), and the
Voronoi cell h(R) is determined by the projections of adjacent cells’ centroids.

The term D
2 ·
√
2(1− cos θmax) vanishes because for any point p′ ∈ R, the vector p′ − c has no component

perpendicular to the embedding plane that would affect the distance ∥Π(p′)− Π(c)∥. Thus, the bound reduces
to ϵvor.
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