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Abstract

Motivation: Protein language models (PLMs) have emerged as powerful approaches for mapping protein

sequences into informative embeddings suitable for a range of applications. PLMs, as well as many other

protein representation schemes, generate per-token (i.e., per-residue) representations, leading to variable-

sized outputs based on protein length. This variability presents a challenge for protein-level prediction tasks,

which require uniform-sized embeddings for consistent analysis across different proteins. Prior work has

typically resorted to average pooling to summarize token-level PLM outputs. It is, however, unclear if such

an aggregation operation effectively prioritizes the relevant information across token-level representations.

Results: Addressing this, we introduce a novel method utilizing sliced-Wasserstein embeddings to convert

variable-length PLM outputs into fixed-length protein-level representations. Inspired by the success of optimal

transport techniques in representation learning, we first conceptualize per-token PLM outputs as samples

from a probabilistic distribution. We then employ sliced-Wasserstein distances to map these samples against

a learnable reference set, creating a Euclidean embedding in the output space. The resulting embedding

is agnostic to the length of the input and represents the entire protein. Across a range of state-of-the-art

pre-trained ESM-2 PLMs, with varying model sizes, we show the superiority of our method over average

pooling for protein-drug and protein-protein interaction. Our aggregation scheme is especially effective when

model size is constrained, enabling smaller-scale PLMs to match or exceed the performance of average-pooled

larger-scale PLMs. Since using smaller models reduces computational resource requirements, our approach

not only promises more accurate inference but can also help democratize access to foundation models.

Availability and implementation: The implementation code can be found at https://github.com/

navid-naderi/PLM_SWE.

Key words: Protein Language Models, Representation Learning, Optimal Transport, Sliced-Wasserstein Embedding,

Set Learning, Protein-Drug Interaction, Protein-Protein Interaction

1. Introduction

Understanding the sequence–structure–function relationship for

proteins is one of the grand challenges of biology. Among the

problems defined around these relationships, a prominent class

of problems comprises tasks where some structural or functional

property of a protein is to be predicted from its sequence. The

possible set of prediction tasks in this class is very diverse,

including both classification (e.g., “is the protein a kinase?”) and

regression (e.g., the melting temperature of the protein), as well

as tasks involving auxiliary inputs (e.g., small molecule SMILES

representations, for predicting drug-target interactions). Any such

problem can be formulated as a prediction task over a set of

proteins, where the input consists of a protein sequence and the

output (a label or number) is at the level of the entire protein,

rather than its constituent amino acids. Any model that addresses

such a problem formulation will necessarily have one or more

steps where information across the constituent amino acids of the

protein is summarized into a protein-level estimate.

The problem of appropriately aggregating amino acid-level

information has become particularly pressing with the advent of

protein language models (PLMs). PLMs, which are trained on

massive corpora of protein sequence data using self-supervised

learning, are able to build internal representations that capture

evolutionary constraints on protein sequences. Since these

representations comprehensively capture constraints on protein

function and structure, PLMs have proven powerful in a wide

range of tasks from structure prediction to interaction prediction

and protein design. For many protein sequence-based property-

prediction tasks, PLM-based approaches are now the state of the

art (Littmann et al., 2021; Kaminski et al., 2023; Singh et al.,

2023). Given a sequence of length n, a pre-trained PLM produces

an embedding of dimensionality Rn×d, where d is the per amino

acid (i.e., per-token) embedding dimensionality. The token-specific

embedding captures not only biochemical information about the

token (i.e., the amino acid) but also the local and global properties

of the protein.

1

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 31, 2024. ; https://doi.org/10.1101/2024.01.29.577794doi: bioRxiv preprint 

email:email-id.com
https://github.com/navid-naderi/PLM_SWE
https://github.com/navid-naderi/PLM_SWE
https://doi.org/10.1101/2024.01.29.577794
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 NaderiAlizadeh & Singh

To aggregate these per-token embeddings into a protein-level

representation, the most common approach has been to simply

“average pool:” take the mean of each feature dimension along

the length of the protein to produce an embedding in Rd. While

other pooling approaches, such as “max pooling” (taking the

maximum of the set) or “softmax pooling” (i.e., average pooling

after exponentiation, then logarithmized) are also sometimes used,

average pooling is typically preferred for convenience, speed, and

simplicity. However, it weighs each amino acid’s representation

equally. This is unrealistic—often, there are specific residues in

the protein that are particularly important (e.g., the residues at

an active site). Even when the per-token PLM representation did

contain information distinguishing such residues from others, these

distinctions would be lost during average pooling. We note that

such considerations are not limited to PLM-based embeddings: in

many task-specific neural network architectures, e.g., PIPR for

PPI prediction (Chen et al., 2019), average pooling is used to

summarize variable-length intermediate representations.

In this work, we present a novel approach to aggregate variable-

length protein representations. Like average pooling, max pooling,

and related approaches, our method is permutation invariant:

it considers the per-token embeddings as a set, rather than a

sequence, under the assumption that the PLM backbone fully

embeds the sequential properties of the protein data in its output

residue-level representations. Let pj be a protein of length nj , so

that its PLM embedding can be represented as x·j = {xij}
nj
i=1,

with each xij ∈ Rd. Our work seeks to learn a set of m reference

embeddings x·0 = {xi0}mi=1, with xi0 ∈ Rd, that can characterize

any variable-length representation. Conceptually, this is analogous

to learning a task-specific basis representation in Rd. The intuition

underpinning our work is to think of x·j and x·0 as empirical

probability distributions in Rd and to formulate x·j ’s distance

from the reference set x·0 as an optimal transport calculation.

Our work builds upon optimal transport (OT) based

approaches in computer vision to characterize sets of observations.

We borrow from previous advances to deploy the OT intuition

effectively and in a scalable fashion. In particular, we use “slices”

in the embedding space, learnable directions in Rd onto which the

input and reference token-sets x·j and x·0 are projected. These

projections correspond to 1-D probability distributions. On such

distributions, OT distances can be computed efficiently, and an

ensemble of L slices serves to efficiently characterize the separation

between input and reference sets.

The key conceptual advance of our work is unlocking task-

specific learnability as a key component of PLM-based machine

learning models. Broadly, these models can be thought of as

pipelines of three segments: an initial sequence segment, a

summarization segment, and a final prediction segment. For

example, the sequence segment may consist of transformer layers,

while the prediction segment may consist of a feed-forward

network. However, if average pooling is used for summarization,

no task-specific learning can happen there and will need to

happen only in the sequence or the prediction segment. With our

innovation, the summarization segment also becomes learnable,

offering greater flexibility in matching the architecture of the

neural network to the biological intuitions underlying the task.

Our work also has the potential to introduce interpretability

into systems that would otherwise be opaque. The set of m

reference embeddings learned by the system can serve as useful

archetypes for the task at hand. For instance, in the computer

vision context, it was shown that simply being able to associate

the variable-length representation with one of the references can

be informative about the typicality of the underlying object.

We apply our sliced-Wasserstein embedding (SWE) approach

to three protein property prediction tasks: binary drug-

target interaction prediction, out-of-domain drug-target affinity

prediction, and protein-protein interaction prediction. SWE

broadly outperforms average pooling, especially on small and

moderate-sized ESM-2 models. Notably, the onerous GPU memory

requirements of the largest ESM-2 models suggest that the

performance boost of SWE could be critical to democratizing

access to PLMs for researchers with limited GPU resources.

2. Related Work

2.1. Protein Language Models

Large language models (LLMs), such as GPT-4 (Achiam et al.,

2023) and Llama 2 (Touvron et al., 2023), have become the

predominant tools for modeling sequential natural language data.

The success of LLMs, which mostly rely on attention-based

transformer architectures (Vaswani et al., 2017), has inspired

researchers working with biological data to use similar ideas

for analyzing protein sequences. In particular, the availability

of massive protein sequence datasets has given rise to large-

scale protein language models (PLMs), such as ESM (Rives

et al., 2019; Lin et al., 2022), ProtBert (Elnaggar et al., 2021),

ProtGPT2 (Ferruz et al., 2022), MSA Transformer (Rao et al.,

2021), SaProt (Su et al., 2024), and xTrimoPGLM (Chen et al.,

2024), to name a few. These models are mostly trained using

unlabeled protein sequence data in a self-supervised way, where

the goal is to train the model to predict a token that has

been replaced with a special mask token using its surrounding

context, i.e., other amino acids in the sequence. Such masking-

based unsupervised training leads to token-level representations

that have been shown to provide state-of-the-art performance in a

wide array of downstream tasks, such as protein folding (Villegas-

Morcillo et al., 2022), variant effect prediction (Brandes et al.,

2023), peptide generation (Chen et al., 2023), antibody design (Wu

and Li, 2023), and prokaryotic gene prediction (Tu et al., 2023).

The transformer architectures in LLMs, in general, and PLMs,

in particular, produce residue-level representations that need to

be summarized and aggregated for protein-level downstream tasks

since different amino acid sequences have varying lengths. The

question of aggregating a set of elements into a fixed-length

representation is the key behind the research on set representation

learning, which we discuss next.

2.2. Set Representation Learning

The goal of set representation learning is to map an unordered

collection of elements into an embedding that is invariant to the

permutation of the set elements and whose size is independent

of the input set size (Ravanbakhsh et al., 2016; Wagstaff

et al., 2019). Deep Sets (Zaheer et al., 2017) and Janossy

Pooling (Murphy et al., 2019) are two seminal studies in this

area, where the set embedding is modeled as a function of the

sum or average of permutation-sensitive functions applied to all

elements or all permutations of the input set. Follow-up work

has leveraged ideas based on transformers (Lee et al., 2019),

optimal transport (Kolouri et al., 2021; Naderializadeh et al.,

2021b; Mialon et al., 2021; Naderializadeh et al., 2021a; Lu et al.,

2024), and featurewise sorting (Zhang et al., 2020) for deep

learning on sets, and demonstrated their efficacy in a variety of

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 31, 2024. ; https://doi.org/10.1101/2024.01.29.577794doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.29.577794
http://creativecommons.org/licenses/by-nc-nd/4.0/


Aggregating Residue-Level PLM Embeddings with Optimal Transport 3

learning settings, including point cloud classification (Qi et al.,

2017a,b), graph representation (Maron et al., 2019), and multi-

agent reinforcement learning (Sunehag et al., 2017; Naderializadeh

et al., 2020; Kortvelesy and Prorok, 2022).

In the context of PLMs, prior work has, for the most part,

used average pooling to summarize the token-level embeddings

into universal protein-level embeddings (Bepler and Berger, 2021;

Unsal et al., 2022; Singh et al., 2023; Sledzieski et al., 2023),

and past research on other pooling methods is scarce (Sledzieski

et al., 2021; Stärk et al., 2021; Iliadis et al., 2023). Averaging

is a simple, unparameterized, permutation-invariant, and size-

invariant function, which warrants its selection as the most natural

and intuitive choice for aggregating PLM outputs. Nevertheless,

it is unknown whether other, more sophisticated aggregation

mechanisms could unlock additional performance gains compared

to average pooling when used in conjunction with state-of-the-

art PLMs. In this paper, we give an affirmative answer to this

question by proposing a parameterized aggregation operation

based on ideas from optimal transport to summarize residue-

level embeddings generated by pre-trained PLMs into fixed-length

protein-level embeddings.

3. Methods and Materials

3.1. Problem Formulation

Consider a protein’s primary amino acid sequence of length n ∈ N,

denoted by p = (p1, . . . , pn) ∈ Pn, where N denotes the set of

natural numbers, i.e., positive integers, P represents the residue

alphabet. We gather the set of all possible protein sequences of

arbitrary lengths into a set

X =
⋃
n∈N

Pn. (1)

The goal of protein-level representation learning is to find a

function ψ(·; θψ) : X → Rd, parameterized by a finite-dimensional

set of parameters θψ ∈ Θψ (see Figure 1-a). Observe that the

dimensionality of the embedding space, i.e., d, and the size of the

model parameter space, i.e., |Θ|, are independent of the length of

the input protein sequence. In other words, the function ψ(·; θψ)

should be able to map any given protein sequence of arbitrary

length to a fixed-size representation in Rd.

Assuming the availability of a (labeled) protein sequence

dataset {(pj , yj)}Nj=1, where pj ∈ X , yj ∈ Y, ∀j ∈ {1, . . . , N},

with Y denoting the set of all possible labels, the parameters of

the representation function ψ are typically derived via an empirical

risk minimization (ERM) problem,

min
θψ∈Θψ

1

N

N∑
j=1

ℓ(ψ(pj ; θψ), yj), (2)

where ℓ : Rd ×Y → R denotes a loss function. While resembling a

supervised learning setting, note that the formulation in (2) also

includes an unsupervised learning scenario, where the labels yj are

trivial/non-existent and the loss function ℓ does not depend on y.

A commonly used initial building block for the parameterization

of the representation function ψ is a protein language model

(PLM). We denote a PLM by a parameterized function ϕ(·, θϕ) :

Pn → (Rd)n, ∀n ∈ N. This implies that a given PLM maps

each amino acid in an input protein sequence into an individual

embedding in Rd. The parameters of the PLM, i.e., θϕ, are usually

trained by a masking-based objective, where some amino acid

identities in the input sequences are masked by random tokens,

and the model is trained to predict the correct amino acids using

the corresponding output representations.

In this paper, our goal is on the aggregation, or pooling,

function that bridges the gap between PLM-generated token-level

outputs and the final protein-level representation. More formally,

we are interested in an informative aggregation function π(·; θπ) :

(Rd)n → R,∀n ∈ N, parameterized by θπ ∈ Θπ. Taken together,

the composition of the PLM ϕ and the aggregation function π

constitutes the end-to-end protein-level representation learning

pipeline (see Figure 1-b); for any given protein sequence p ∈ X ,

its representation can be derived as

ψ(p; θψ) = ψ(p; θϕ, θπ) = π
(
ϕ(p; θϕ); θπ

)
∈ Rd. (3)

We assume that the PLM is pre-trained and its parameters, θϕ,

are frozen. Therefore, we are primarily interested in training the

aggregation function π(·; θπ) for downstream prediction tasks.

3.2. Proposed Method

A simple and prominent example of an aggregation function is the

averaging operation, i.e., πavg(x1, . . . ,xn) = 1
n

∑n
i=1 xi, which is

indeed unparameterized (i.e., Θψ = ∅; see Figure 1-c). While used

extensively in prior work in the protein representation learning

literature (see, e.g., (Sledzieski et al., 2023; Singh et al., 2023)),

average pooling may not capture the entirety of the information

that is present in the per-token embeddings. This calls for methods

that are able to capture such information in the aggregated

representations.

In this paper, we propose to use sliced-Wasserstein distances

from optimal transport (Deshpande et al., 2019; Kolouri et al.,

2019), and in particular, sliced-Wasserstein embedding (SWE)

(Naderializadeh et al., 2021a; Lu et al., 2024) to aggregate

the token-level representations into a universal protein-level

presentation. The main idea behind SWE is to treat the token-

level embeddings as samples drawn from an underlying probability

distribution, and then find the optimal transportation plan that

maps that distribution to a trainable reference distribution (see

Figure 1-d).

More formally, let {xij}
nj
i=1 denote the token-level embeddings

of the jth protein sequence in the dataset, pj , j ∈ {1, . . . , N},

of length nj , which are produced by the pre-trained PLM; i.e.,

(x1j , . . . ,xnjj) = ϕ(pj ; θϕ). We assume that the embeddings

{xij}
nj
i=1 are samples drawn from an underlying distribution Dj

supported on Rd. We also consider a trainable reference set

{xi0}mi=1 of m points in Rd that are drawn from a reference

distribution D0. Since there is no closed-form solution for

calculating the optimal Monge coupling (Villani et al., 2009)

between high-dimensional distributions in Rd, we resort to slicing

operations in order to map these distributions to several one-

dimensional distributions, for which the Monge coupling has a

closed-form solution. In particular, we consider trainable linear

maps {ωl}Ll=1, with ωl ∈ Rd,∀l ∈ {1, . . . , L}, through which each

set of token-level embeddings {xij}
nj
i=1, j ∈ {0, . . . , N} (including

the reference embeddings with n0 = m) is mapped to L slices, i.e.,

sets of one-dimensional points {ulij}
nj
i=1, l ∈ {1, . . . , L}, where

ulij = ωTl xij , ∀i ∈ {1, . . . , nj},∀j ∈ {0, . . . , N},∀l ∈ {1, . . . , L}.

Consider the lth slice of a given set of token-level embeddings,

i.e., {ulij}
nj
i=1 and the corresponding slice of the reference set, i.e.,

{uli0}mi=1. These sets correspond to empirical 1-D distributions

D̂lj(u) = 1
nj

∑nj
i=1 δ(u − ulij) and D̂l0(u) = 1

m

∑m
i=1 δ(u − uli0),

respectively. The Monge coupling between D̂lj(u) and D̂l0(u) has
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Fig. 1: Overview of the proposed method and comparison with average pooling. (a) We consider a parameterized protein representation

learning function ψ(·; θψ), which takes as input a protein’s amino acid sequence of arbitrary length and produces a fixed-length protein-

level embedding at its output. (b) Breaking down the representation learning pipeline, we first pass the amino acid sequence through a

pre-trained protein language model (PLM) ϕ(·, θϕ), thereby generating a set of token-level embeddings (x1, . . . ,xn), each residing in Rd.

An aggregation function π(·, θπ) subsequently summarizes these embeddings into a protein-level embedding, whose size does not depend

on the sequence length n. (c) Average pooling, which is most commonly used in the literature, simply takes the mean of the residue-level

embeddings to derive the protein-level embedding. (d) Our proposed sliced-Wasserstein embedding aggregation module, which is based

on comparing the probability distribution underlying the token-level embeddings, and a trainable reference probability distribution. Since

such comparison is non-trivial in a high-dimensional space, we pass the token-level embeddings and the reference elements through a

set of L trainable linear slicing operations {ωl}Ll=1, which map the embeddings and reference elements into L pairs of 1-dimensional

distributions. The Monge couplings between these 1-D distributions are then calculated based on sorting and interpolation operations,

forming the basis for the final fixed-length protein-level embedding.

a closed-form solution, and in particular is an m-dimensional

vector zlj = [zl1j , . . . , z
l
mj ]

T which relies solely on sorting and

interpolation operations. In particular, depending on whether the

length of the input protein sequence and the size of the reference

set are identical, there are two cases:

• Case 1 (nj = m): In this scenario, the Monge map is simply

the difference between the sorted sequences of points in the

input slice and the reference slice. More precisely, let ρ[·]
denote the permutation indices obtained by sorting {ulij}

nj
i=1.

Moreover, let ρ−1
0 [·] denote the ordering that permutes the

sorted set back to the original ordering based on sorting of

elements in the reference set {uli0}mi=1. Then, the Monge map

elements are given by

zlij = uli′j − uli0, ∀i ∈ {1, . . . ,m}, (4)

where i′ = ρ[ρ−1
0 [i]].

• Case 2 (nj ̸= m): The embedding procedure for this

case follows similar steps as in Case 1, with the addition

of an interpolation operation. Specifically, we derive the

interpolated inverse cumulative distribution function (CDF)

of the sliced token-level values, which we denote by F−1
jl .

This involves sorting {ulij}
nj
i=1, calculating the cumulative sum,

and calculating the inverse through interpolation. Then, the

elements of the Monge couplings can be derived as

zlij = F−1
jl

(
ρ−1
0 [i]

m

)
− uli0, ∀i ∈ {1, . . . ,m}, (5)

where ρ−1
0 is defined as in Case 1. Observe that (5) reduces

to (4) if nj = m.

Once the Monge couplings {zlj}Ll=1 have been derived for

all slices, we concatenate them to form the embedding matrix

Zj = [z1j , . . . , z
L
j ]T ∈ RL×m. To reduce the dimensionality of

the embedding matrix, similarly to (Naderializadeh et al., 2021a),

we perform a combination across the reference set elements using

a learnable projection w ∈ Rm to get zj = Zjw ∈ RL. Finally,

we use a linear mapping V ∈ Rd×L, followed by an element-wise
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Fig. 2: Performance of the proposed SWE aggregation method as compared to average aggregation for the binary drug-target interaction

task over the DAVIS (top) and BindingDB (bottom) datasets. Test performance is shown in terms of the area under the precision-recall

curve (left) and the area under the ROC curve (right) across four different ESM-2 PLMs with increasing expressive power from left to

right in each plot.

non-linearity σ(·), to derive the final protein-level embedding

π(x1j , . . . ,xnjj ; θπ) = σ(Vzj) ∈ Rd, (6)

with the parameters of the SWE aggregation function given

by θπ =
(
{uli0}

m,L
i=1,l=1, {ωl}Ll=1,w,V

)
, where, to ease the

optimization process, we learn the reference elements at the output

of the slicers, training {uli0}
m,L
i=1,l=1 directly instead of {xi0}mi=1.

Runtime and Memory Considerations. Note that the total

number of parameters in the proposed SWE aggregation function

is mL+ 2dL+m = O((m+ d)L). For the settings we consider in

our numerical evaluations, as we describe next, this is a negligible

overhead as compared to the size of the backbone PLMs.
3.3. Evaluation SettingsWe use the state-of-the-art transformer-based ESM-2 family (Lin

et al., 2022) as the PLMs ϕ(·, θϕ) that generate token-

level embeddings. ESM-2 models have been pre-trained (via

unsupervised mask-based objectives) using tens of millions of

unique protein sequences and are shown to encode evolutionary

patterns and significantly outperform baseline PLMs in structure

prediction tasks. In particular, we evaluate our SWE aggregation

method when applied to the outputs of four distinct pre-trained

ESM-2 models, with 8M, 35M, 150M, and 650M parameters, in

increasing order of complexity and expressive power.

For the SWE aggregation method, we consider four options

for the number of slices, L ∈ {128, 256, 512, 1024}, as well

as four options for the number of reference points, m ∈
{128, 256, 512, 1024}, leading to 16 different SWE configurations.

In all experiments, we set the dimensionality of the final

embedding space as d = 1024.

We evaluate the efficacy of our proposed SWE embedding

method across three different tasks and four different datasets as

described below:

• Drug-Target Interaction (DTI) Prediction: In this

binary classification task, the goal is to predict whether or

not a given drug interacts with a target protein. As in (Singh

et al., 2023), for a given drug, we first find its Morgan

fingerprint, denoted by f ∈ Rc, which we then map to the

same embedding space as the target protein (i.e., Rd), using a

learnable projector S ∈ Rd×c and a non-linearity σ(·). We

then use the cosine similarity between the drug and target

embeddings to calculate their interaction probability, which

we then optimize using the cross-entropy loss. In particular,

for a given training dataset of (drug, target, label) triplets

{(dj ,pj , yj)}Nj=1, the ERM problem in (2) is reformulated as

min
θπ∈Θπ,S∈Rd×c

1

N

N∑
j=1

ℓCosBCE
(
ψ(pj ; θϕ, θπ), σ (Sfj) , yj

)
, (7)

where the optimization occurs over the parameters of the drug

projector, S, and the SWE aggregation function, θπ, while the

parameters of the PLM, θϕ, are kept frozen. The loss function

ℓCosBCE : Rd+ × Rd+ × {0, 1} → R in (7) is defined as

ℓCosBCE(x1,x2, y) = −
[
y log

(
xT1 x2

∥x1∥∥x2∥

)

+ (1 − y) log

(
1 −

xT1 x2

∥x1∥∥x2∥

)]
. (8)
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We use ReLU(·) as the non-linearity σ(·) to produce both

the drug and target embeddings in order to ensure they are

constrained to the non-negative orthant of the embedding

space, i.e., Rd+. We use two of the datasets used by Singh

et al. (2023), namely DAVIS (Davis et al., 2011) and Binding-

DB (Liu et al., 2007), to evaluate our proposed SWE-based

embedding mechanism in this task.

• Out-of-Domain Drug-Target Affinity Prediction: In this

regression task, we use the Therapeutics Data Commons

(TDC) Drug-Target Interaction Domain Generalization (DTI-

DG) Benchmark (Huang et al., 2021), where the goal is to

predict the affinity of the interaction between drugs and protein

targets patented between 2019 and 2021 by training on DTI

interaction affinities patented in the preceding 5-year window

(i.e., 2013–2018). We use the inner product between the drug

and target embeddings to predict the interaction affinity and

optimize the prediction model parameters using mean squared

error (MSE). Especially, we replace the loss function in (7) with

ℓMSE : Rd+ × Rd+ × R+ → R+, defined as

ℓMSE(x1,x2, y) =
[
y −

(
xT1 x2

)]2
. (9)

• Protein-Protein Interaction (PPI) Prediction: In the

third task, we focus on predicting whether or not two given

proteins will interact with each other. Specifically, we embed

each protein’s amino acid sequence using the same PLM

and aggregation pipeline in parallel, and then we leverage

the cosine similarity between the protein-level representations

to estimate their interaction probability. For a given PPI

training dataset consisting of N (protein, protein, label)

triplets {(pj ,pj , yj)}Nj=1, this task seeks to solve the following

ERM reformulation of (2),

min
θπ∈Θπ,S∈Rd×c

1

N

N∑
j=1

ℓCosBCE
(
ψ(pj ; θϕ, θπ), ψ(pj ; θϕ, θπ), yj

)
.

We use the “gold standard” dataset provided by Bernett et al.

(2023) to evaluate our proposed SWE aggregation mechanism

in this task, which comprises balanced PPI data without any

leakage between training, validation, and testing samples.

We train the SWE aggregation parameters using the Adam

optimizer (Kingma and Ba, 2014) with a learning rate of 10−4 and

cosine annealing schedule with a restart duration of 10 epochs. We

run all our numerical experiments with five different random seeds

for 50 epochs, using a batch size of 32 (except for PPI experiments

with L = 1024 slices, where we use a reduced batch size of

24 due to computational limitations). We report the mean and

standard deviation of the test/validation performance for the SWE

configuration (i.e., (L,m) pair) with the highest target validation

performance across the 50 training epochs. The target validation

performance metric for the binary DTI and PPI prediction tasks

is set to the validation AUPR (area under the precision-recall

curve), while it is set to the validation PCC (Pearson correlation

coefficient) for the DTI affinity prediction task.

4. Results

4.1. Binary Drug-Target Interaction Prediction

Figure 2 shows the performance of the proposed SWE-based

aggregation method for the binary DTI task, evaluated over

the DAVIS and Binding-DB datasets. In most scenarios, our

proposed SWE aggregation function performs on par with or

better than simply averaging the token-level embeddings. Our

8M 35M 150M 650M
ESM-2 PLM Number of Parameters

0.52

0.53

0.54

0.55

0.56

Te
st

 P
CC

Aggregation
Avg SWE

Fig. 3: Performance comparison of the proposed SWE aggregation

method and average pooling in the drug-target affinity prediction

task across four different ESM-2 models. Test performance is

shown in terms of the Pearson correlation coefficient.

method especially shines when i) the PLM is smaller and has lower

expressive power (e.g., 8M vs. 650M ESM-2 PLMs), and ii) there

is more data to train the SWE aggregation parameters (Binding-

DB vs. DAVIS). While the latter point is intuitive since SWE

aggregation introduces additional trainable parameters and is,

therefore, prone to overfitting, the former point is very significant

from an efficiency point of view. In particular, given limited

computational resources, where one is constrained to using smaller

PLMs, our proposed aggregation operation can, in most cases,

push the performance of the smaller PLMs to similar, or even

higher, levels than larger PLMs whose outputs are aggregated

using averaging. Given the presence of enough training data,

especially in the case of Binding-DB, our results demonstrate that

there are also gains to be achieved for larger PLM backbones

with hundreds of millions of parameters when using SWE-based

aggregation as compared to average pooling.

4.2. Out-of-Domain Drug-Target Affinity Prediction

Figure 3 shows the test PCC levels achieved by our proposed SWE

aggregation method as compared to average pooling. We observe

that in this task, the SWE pooling mechanism performs similarly

to, or better than, average pooling for all the ESM-2 PLMs. With

a test PCC of 0.543 ± 0.015, our proposed method ranks second

in the TDC DTI-DG leaderboard 1 as of this writing.

4.3. Protein-Protein Interaction Prediction

Table 1 compares the validation and test performance of our

proposed SWE aggregation method with average pooling across

the considered ESM-2 PLMs. As the table shows, SWE generally

outperforms average pooling in terms of F1-score and recall, while

performing on par with average pooling in terms of accuracy, and

underperforming for the other metrics. These results are consistent

with the ones reported by Sledzieski et al. (2023), where more

expressive models and heavier fine-tuning lead to superior F1 and

recall levels, while lowering the other metrics. Further research is

required on how to strike the right balance among the different

metrics through which PPI prediction quality is measured.

4.4. Impact of the Number of Slices and the Reference Set Size

Figure 4 shows the validation AUPR gains that our proposed

SWE-based aggregation method achieves over average pooling for

the considered ESM-2 PLMs. Three remarks are in order: i) As

1 https://tdcommons.ai/benchmark/dti_dg_group/bindingdb_

patent/
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ESM-2 PLM Aggregation Accuracy F1 MCC AUPR Precision Recall Specificity

SWE 0.607 ± 0.003 0.626 ± 0.008 0.216 ± 0.006 0.652 ± 0.004 0.619 ± 0.006 0.671 ± 0.023 0.701 ± 0.013
8M

Avg 0.606 ± 0.002 0.614 ± 0.004 0.216 ± 0.004 0.653 ± 0.002 0.637 ± 0.004 0.643 ± 0.012 0.731 ± 0.008

SWE 0.617 ± 0.002 0.632 ± 0.009 0.235 ± 0.004 0.669 ± 0.003 0.627 ± 0.002 0.693 ± 0.024 0.690 ± 0.009
35M

Avg 0.617 ± 0.001 0.628 ± 0.008 0.237 ± 0.002 0.667 ± 0.001 0.648 ± 0.001 0.666 ± 0.024 0.735 ± 0.005

SWE 0.623 ± 0.002 0.633 ± 0.006 0.248 ± 0.003 0.677 ± 0.003 0.633 ± 0.005 0.663 ± 0.021 0.681 ± 0.011
150M

Avg 0.624 ± 0.002 0.635 ± 0.006 0.251 ± 0.004 0.679 ± 0.003 0.661 ± 0.004 0.676 ± 0.023 0.754 ± 0.008

SWE 0.629 ± 0.002 0.668 ± 0.001 0.259 ± 0.004 0.685 ± 0.002 0.630 ± 0.008 0.810 ± 0.004 0.643 ± 0.023

V
a
li
d
a
ti
o
n

650M
Avg 0.626 ± 0.001 0.650 ± 0.004 0.251 ± 0.002 0.684 ± 0.002 0.651 ± 0.003 0.732 ± 0.030 0.732 ± 0.008

SWE 0.637 ± 0.004 0.638 ± 0.013 0.274 ± 0.008 0.688 ± 0.005 0.636 ± 0.007 0.642 ± 0.030 0.632 ± 0.027
8M

Avg 0.639 ± 0.000 0.637 ± 0.005 0.279 ± 0.001 0.690 ± 0.000 0.641 ± 0.004 0.633 ± 0.013 0.645 ± 0.013

SWE 0.646 ± 0.003 0.661 ± 0.010 0.294 ± 0.004 0.696 ± 0.005 0.635 ± 0.011 0.690 ± 0.035 0.602 ± 0.040
35M

Avg 0.648 ± 0.000 0.651 ± 0.010 0.297 ± 0.001 0.699 ± 0.000 0.646 ± 0.008 0.658 ± 0.029 0.639 ± 0.028

SWE 0.649 ± 0.002 0.664 ± 0.007 0.299 ± 0.005 0.703 ± 0.002 0.636 ± 0.005 0.696 ± 0.020 0.601 ± 0.020
150M

Avg 0.651 ± 0.001 0.654 ± 0.009 0.303 ± 0.003 0.708 ± 0.002 0.649 ± 0.006 0.659 ± 0.025 0.643 ± 0.023

SWE 0.650 ± 0.005 0.683 ± 0.007 0.307 ± 0.007 0.705 ± 0.005 0.625 ± 0.012 0.754 ± 0.033 0.545 ± 0.042

T
e
st

650M
Avg 0.657 ± 0.002 0.670 ± 0.006 0.315 ± 0.003 0.717 ± 0.001 0.646 ± 0.007 0.696 ± 0.022 0.618 ± 0.024

Table 1. PPI validation and test results on the “gold standard” dataset by Bernett et al. (2023) for the SWE and average pooling methods across four

different ESM-2 PLM backbones. Following (Sledzieski et al., 2023), for a comprehensive evaluation, we report the performance using seven different

metrics, including accuracy, F1-score, Matthews correlation coefficient (MCC), AUPR, precision, recall, and specificity, with mean and standard deviation

across five different random seeds. Underlined numbers indicate the best aggregation performer in each metric for each phase (validation/test) and each

PLM. Bold numbers indicate the best performer in each metric for each phase (validation/test).
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Fig. 4: Average validation AUPR gains (%) of the proposed SWE aggregation method over average pooling for different numbers of slices

and reference points across different ESM-2 PLMs in the Binding-DB DTI prediction task.

we mentioned earlier, the performance gains are more pronounced

when the backbone PLM is less powerful and vice versa; ii)

On average, increasing the number of slices (i.e., L) boosts the

downstream performance of the proposed SWE aggregation, which

is expected since such an increase leads to a more accurate Monte-

Carlo approximation of the sliced-Wasserstein distances between

the distributions induced by the per-token embeddings (Kolouri

et al., 2019); and, iii) The correlation between the downstream

performance and the size of the reference set (i.e., m) is less clear

and depends on the context. As suggested in prior work (Kolouri

et al., 2021; Naderializadeh et al., 2021a), a reasonable choice

for the number of reference points is the average length of the

amino acid sequences in the training set, but in general, this is an

important hyperparameter than needs to be optimized.

4.5. Interpretability of the Learned SWE Representations

One of the desirable properties of the proposed embeddings is

that the sliced-Wasserstein distance of the distributions underlying

the token-level embeddings of two given protein sequences can be

approximated by the average distance of their Monge couplings to

the reference across different slices (Naderializadeh et al., 2021a).

In particular, for two proteins p and p with Monge coupling

matrices (as defined in Section 3.2) Z = [z1, . . . , zL]T ∈ RL×m

and Z = [z1, . . . , zL]T ∈ RL×m, respectively, we can approximate

their pairwise sliced-Wasserstein distance as

SW2(p,p) ≈
(

1

L

L∑
l=1

∥∥zl − zl
∥∥2
2

) 1

2

, (10)

where, with a slight abuse of notation, we use SW2(p,p)

to denote the sliced-Wasserstein distance between token-level

representations of p and p at the output of the PLM backbone.

The approximation in (10) allows us to visualize the

pairwise distance of interacting and non-interacting proteins

in the embedding space. Figure 5 shows the distributions of

(approximate) SW distances between proteins in the training

dataset separated by whether or not they interact, where

the embeddings are generated by the 650M-parameter ESM-2

backbone and a trained SWE aggregation module with m = 1024

reference points and L = 1024 slices. As the figure demonstrates,

there is a separation between the two histograms, with interacting

proteins landing closer to each other in the embedding space

from a sliced-Wasserstein distance point of view as compared to

non-interacting pairs of proteins.

5. Discussion

We introduce a novel approach for protein representation based

on optimal transport principles. We anticipate that our method

could have applications beyond PLMs to other foundation models

in biology (e.g., for DNA sequence models). Our interpretable
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Fig. 5: Histograms of sliced-Wasserstein distance between

embeddings of interacting and non-interacting proteins at the

output space of a pre-trained ESM-2 PLM with 650M parameters.

The SW distance is calculated using a trained SWE pooling

module with m = 1024 reference points and L = 1024 slices.

approach summarizes per-token embeddings in terms of their

distance from a set of reference embeddings that are learned

from the data. Compared to the conventional approach of average

pooling, this learnability provides our approach with greater

flexibility in capturing task-specific knowledge. We observed that

pooling work acceptably well for very large PLMs, where the

greater complexity of the sequence representation compensates

for the lack of learnability in the summarization layer. However,

these large models have memory requirements that are beyond

the capabilities of many GPUs. Sophisticated summarization

approaches will be crucial in maximizing the power of the smaller

models that can fit on common GPUs and could further unlock

fine-tuning opportunities for such pre-trained models.

Future work could focus on further exploring the interpretability

of our method. One direction of research could be to refine the

selection of reference embeddings, potentially incorporating an

auxiliary loss function to encode greater biological intuition into

these models. Such an approach would enhance the biological

relevance of the representations produced by our method.

Our work thus opens up new pathways for enhancing the

interpretability and efficiency of PLM-based approaches in biology.
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