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ABSTRACT

Learned lossless data compression has garnered significant attention recently due to
its superior compression ratios compared to traditional compressors. However, the
computational efficiency of these models jeopardizes their practicality. This paper
proposes a novel system for improving the compression ratio while maintaining
computational efficiency for learned lossless data compression. Our approach
incorporates two essential innovations. First, we propose the Finite-State AutoRe-
gressive (FSAR) entropy coder, an efficient autoregressive Markov model based
entropy coder that utilizes a lookup table to expedite autoregressive entropy coding.
Next, we present a Straight-Through Hardmax Quantization (STHQ) scheme to
enhance the optimization of discrete latent space. Our experiments show that the
proposed lossless compression method could improve the compression ratio by
up to 6% compared to the baseline, with negligible extra computational time. Our
work provides valuable insights into enhancing the computational efficiency of
learned lossless data compression, which can have practical applications in vari-
ous fields. Code is available at https://github.com/alipay/Finite_
State_Autoregressive_Entropy_Coding.

1 INTRODUCTION
Lossless data compression has been a prominent area of interest in both academic research and
industry. By reducing the amount of space required for data storage and minimizing the bandwidth
necessary for data communication, lossless compression codecs hold great potential for applications
in a broad range of computing and communication systems.

A practical lossless compression codec requires both superior compression ratios and computational ef-
ficiency, but most existing methods fail to achieve both simultaneously. Traditional methods (Boutell,
1997; webmproject, 2023) rely on hand-crafted codecs that offer efficiency but yield suboptimal
compression ratios. Conversely, recent advances in machine learning have introduced generative
models, including Autoencoders (Kingma & Welling, 2013; Burda et al., 2015), GANs (Mirza
& Osindero, 2014; Arjovsky et al., 2017), Flow models (Dinh et al., 2016; Kingma & Dhariwal,
2018) and Autoregressive models (van den Oord et al., 2016b; Parmar et al., 2018), which exhibit
remarkable potential in modeling data likelihood. These models can automatically learn codecs for
different domains given sufficient training data. However, while these models have demonstrated
improved compression ratios compared to the traditional methods, they suffer from high time
complexity, rendering them impractical for general-purpose computation devices such as CPUs.

In this paper, we target at improving the compression ratio while maintaining the computational
efficiency for lossless compression. Our focus lies on latent space models, specifically autoencoders,
due to their ease of optimization and efficient computation (Mentzer et al., 2018; Townsend et al.,
2019b; Ballé et al., 2018; Minnen et al., 2018). Most existing frameworks in this direction could be
built upon the Asymmetric Numeral System (ANS) (Duda, 2009) for latent entropy coding, and can
be categorized into three groups: continuous random latent space, discrete deterministic latent space,
and discrete autoregressive latent space. The decompression workflows of these frameworks are
illustrated in Figure 1a, Figure 1b and Figure 1c, respectively. The first group, based on continuous
latent spaces (Townsend et al., 2019a; Kingma et al., 2019; Theis & Ho, 2021; Ruan et al., 2021),
typically employs bits-back coding(Townsend et al., 2019a) (cf. Figure 1b). Although the continuous
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(a) Bits-back ANS (b) tANS (c) Autoregressive rANS (d) FSAR-tANS

Figure 1: Different ANS-based decompression work�ows for latent space models. (a) Bits-back ANS (Townsend
et al., 2019a) for continuous random latent space. (b) table ANS (tANS) (Duda, 2013) coder for discrete
deterministic latent space. (c) Autoregressive range ANS (rANS) (Duda, 2013) coder for discrete autoregressive
latent space. (d) The proposed FSAR-tANS coder for discrete autoregressive latent space.
latent space facilitates optimization and achieves a favorable compression ratio, the decompression
process becomes complex and slow due to the additional ANS encode step via the inference model.
By contrast, frameworks (Ballé et al., 2018; Mentzer et al., 2018) utilizing discrete deterministic latent
spaces enable fast decompression using a low-complexity table ANS (tANS) coder (Duda, 2013)
(cf. Figure 1b). However, the representation power of independent discrete space is limited, and
optimizing the discrete latent space is notoriously challenging, resulting in an inferior compression
ratio. To mitigate this issue, the third group of works (Minnen et al., 2018; Lee et al., 2018; Cheng
et al., 2020) improves the compression ratio by assuming �exible autoregressive dependence among
the discrete latent variables instead of strict independence. However, similar to the continuous latent
space, this improvement comes at the cost of decompression speed, as autoregressive models require a
lengthy sequential decompression process that involves a complex context model in each iteration (cf.
Figure 1c). Ultimately, existing frameworks fail to simultaneously achieve a satisfactory compression
ratio and computational ef�ciency.

In contrast to the aforementioned works, our proposed method combines the best of both worlds.
It features an ef�ciently coded discrete autoregressive latent space with a �exible latent model that
can �t the input data well while robustly optimizing this latent space. We �rst develop an ef�cient
autoregressive model called theFinite-State AutoRegressive (FSAR)model as the latent prior,
which can be easily implemented with a lookup table, as illustrated in Figure 1d. Compared with other
autoregressive models, the FSAR implementation has a similar time complexity to the low-complexity
tANS, only adding an extra lookup step to the original tANS implementation. Thus, it achieves an
excellent compression ratio with the help of autoregressive models while keeping the computation as
ef�cient as tANS. Moreover, to better optimize the discrete latent space as required by the FSAR,
we proposeStraight-Through Hardmax Quantization (STHQ) based on the straight-through
estimator (Bengio et al., 2013). STHQ further strengthens the representation ability of the latent
space and improves the compression ratio. To summarize, our contributions are listed as follows:

• The Finite-State AutoRegressive (FSAR) entropy coder is proposed for �exible discrete latent
space coding. It combines a low-complexity autoregressive Markov model with a fast entropy
coder to achieve ef�cient latent coding.

• An optimization scheme called Straight-Through Hardmax Quantization (STHQ) is proposed for
robust optimization of the discrete latent space. It enables gradient descent via the deterministic
quantization process while maximizing the latent entropy for better likelihood estimation.

• Extensive experiments demonstrate that our proposed method improves the compression ratio
by up to 6% compared to commonly used discrete deterministic autoencoders, with negligible
additional computational time. Moreover, it is over 300 times faster than commonly used discrete
autoregressive models while achieving a similar compression ratio.

2 RELATED WORKS

In this section, we review learned compression methods based on discrete deterministic latent space
models and discrete autoregressive latent space models, as they are directly relevant to our work. For
a brief survey on continuous random latent space models, we refer the readers to Appendix A.

Discrete Deterministic Latent SpaceNumerous compression methods employ discrete deterministic
autoencoders due to their simplicity in latent coding. However, quantizing continuous latent space
to discrete counterparts while enabling gradient calculation for optimization poses a challenge.
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Figure 2: Overview of the proposed method. Herex represents the input data,z; y represents latent variables
and samples respectively. ANS are employed for entropy coding of both the latent space and the data. Our major
contributions are highlighted in red dashed boxes: (a) Finite-State Autoregressive Entropy Coding for latent
entropy coding. (b) Straight-Through Hardmax Quantization for latent space optimization scheme.

To address this, universal quantization and soft scalar quantization have been applied respectively
in (Ballé et al., 2018) and (Mentzer et al., 2018), allowing for gradient pass-through while simulating
quantization. However, these methods overlook the complexity of the high-dimensional latent space,
resulting in poor approximation. Alternatively, VQ-VAE (van den Oord et al., 2017) introduces
vector quantization (VQ) and improves latent modeling through an additional codebook. Subsequent
works, such as (Razavi et al., 2019; Esser et al., 2020), adopt this approach, employing trainable
codebooks to enhance the quality of generative models. However, optimizing VQ-VAE is dif�cult as
it requires an auxiliary loss function similar to the K-means algorithm. To counteract this problem,
Sønderby (2017) proposed the continuous relaxation of VQ, representing the VQ process as sampling
from a categorical distribution and enabling optimization using the ELBO similar to VAEs. This
idea was further extended by utilizing hierarchical relaxed VQ-VAEs to model more complex latent
spaces (Zhu et al., 2022). However, this relaxation breaks the deterministic nature of VQ. Instead,
Agustsson et al. (2017) introduce soft VQ with deterministic annealing to enable optimization through
hard quantization, but the practical implementation of the annealing schedule requires careful tuning.
Moreover, Takida et al. (2022) propose self-annealed stochastic quantization (SQ-VAE) to make the
stochastic VQ-VAE converge to deterministic quantization. Unfortunately, the convergence from SQ
to VQ relies on the collapse of the likelihood term (i.e., the generative model) (Takida et al., 2022),
which is impractical for lossless compression as the likelihood is required for entropy coding.

Discrete Autoregressive Latent SpaceAutoregressive models have been widely applied for image
likelihood modeling and generation (van den Oord et al., 2016b;a; Razavi et al., 2019). However,
most methods exploit masked convolution (van den Oord et al., 2016b) to implement autoregressive
models in the observation space for images, incurring heavy �oating-point operations (FLOPs) and
increasing the computational cost. Furthermore, the sequential nature of autoregressive models, where
each observation depends on previous ones, hinders parallel computations and further diminishes
ef�ciency. Although recent works (Ruan et al., 2021; Ryder et al., 2022; Guo et al., 2022; 2023)
develop parallelizable autoregressive models for ef�cient coding on parallel computation devices
like GPUs, their theoretical time complexity remains high, resulting in suboptimal ef�ciency on
general computation devices such as CPUs. One potential solution is to apply autoregressive methods
(e.g., masked convolutions) to the lower-dimensional latent space (Minnen et al., 2018; Lee et al.,
2018; Cheng et al., 2020), as the latent space is typically smaller than the observation space and
subsequently reducing the number of sequential steps. However, the number of FLOPs in masked
convolution still remains large.
In this work, our objective is to improve the compression ratio of autoencoder-based codecs while
maintaining computational ef�ciency. To this end, we prefer the discrete autoregressive latent space
due to its superior compression ratio, and we aim to further boost its ef�ciency.

3 THE PROPOSEDLEARNED LOSSLESSCOMPRESSIONARCHITECTURE

In this section, we propose an effective and ef�cient framework for lossless data compression.

Overall Architecture Our proposed lossless compression system combines latent space models with
autoregressive models, as depicted in Figure 2. The framework is composed of three main parts:
1) a backbone network that consists of the inference network and generative network, 2) a latent
space that incorporates an ef�cient autoregressive Markov model, and 3) a quantization method for
the discrete latent space optimization. In this system, the data is initially processed by an inference
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(a) (b)
Figure 3: Different Designs of the ANS Coder, whereT ablerepresents the state transition lookup table of table
ANS (tANS), whilesi � 1 andsi correspond to the previous and current state of ANS, respectively. Additionally,
p denotes the prior probability utilized by ANS to constructT able. (a) Non-Autoregressive tANS Coding. (b)
Proposed Finite-State Autoregressive (Order-2 Channel) tANS Coding. Here,L signi�es the lookup table.

network to obtain discrete latent variablesz using a codebook, which are then quantized toy (see
Figure 2 (b)) and encoded by an autoregressive latent ANS coder (see Figure 2 (a)). Based on these
latent variables, the generative network generates the data likelihood, which is essential for data ANS
coding. More details on this framework are provided in Appendix B.

Backbone NetworkThe backbone network serves as a crucial component of the latent space model.
Generally, deeper networks yield a more compact latent space and better generative results, thus
improving the compression ratio. However, deeper networks demand more computational resources,
making shallow networks preferable for ef�cient compression. Moreover, for lossless compression,
the generative results should be random rather than deterministic. This is because the distribution of
the observation space is necessary for entropy coding of the original data. Thus, autoencoders with
collapsed generative networks (Takida et al., 2022) cannot be employed for lossless compression.

Latent SpaceThe latent space, serving as a condensed representation of the original data, also needs
to be encoded in the �nal bitstream. As discussed in Section 1, encoding continuous random latent
spaces is fraught with dif�culties, motivating our preference for ef�cient frameworks that leverage
discrete deterministic latent spaces. In line with previous �ndings that vector quantized latent spaces
yield superior results for generative tasks (Kang et al., 2022), we adopt this format as the latent space
representation in our framework. Furthermore, to enhance the compression of the latent space without
relying on deep networks as the backbone, we introduce an ef�cient autoregressive model, namely
the FSAR model as a compensatory measure (see Figure 2 (a)), which will be further elaborated upon
in Section 4. The FSAR model can be easily implemented with a lookup table and boasts similar time
complexity to modern entropy coders such as ANS (Duda, 2009). Moreover, we propose Learnable
State Number (LSN) to further reduce the space complexity associated with the lookup table.

Optimization As discussed in Section 2, optimizing discrete deterministic latent spaces can be
challenging due to the non-differentiable quantization process. Therefore, we analyze existing
works and propose an improved quantization scheme, namely STHQ, based on the straight-through
estimator (Bengio et al., 2013) (see Figure 2 (b)). This scheme facilitates rapid and robust optimization
of the vector quantized latent space, which will be discussed in Section 5. Thanks to the STHQ
quantization scheme, the entire framework, encompassing the backbone network, latent space, and
vector quantization codebook, can be collectively optimized in an end-to-end manner.

4 FINITE-STATE AUTOREGRESSIVEENTROPY CODING

Autoregressive models have shown promise for improving compression ratios in lossless compression.
However, their limited ef�ciency poses signi�cant restrictions. In this section, we propose a novel
and compact approach to autoregressive modeling based on �nite-state Markov models. This model
acts as the prior for a discretized latent space within deterministic autoencoders, thereby shortening
the sequential process and enabling compact coding. Importantly, the implementation of this model
using a lookup table showcases low complexity comparable to modern entropy coders. We refer to
the combination of FSAR and entropy coder as Finite-State Autoregressive Entropy Coding.

The Ef�ciency of Autoregressive ModelsExisting autoregressive models are computationally
expensive, primarily due to the long sequential process and high time complexity, as detailed
in Section 1. On the contrary, modern entropy coders, despite their sequential nature, typically
demonstrate satisfactory ef�ciency due to their low complexity at each step. This suggests that by
making autoregressive models suf�ciently compact, high computational ef�ciency is still attainable.
Indeed, compression methods prioritizing computational ef�ciency, such as Ballé et al. (2018) and
Zhu et al. (2022), could utilize ef�cient entropy coders such as tANS (Duda, 2013) on discrete latent
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spaces, relying solely on lookup tables with minimal time complexity. Hence, we aim to harness the
capabilities of such entropy coders to alleviate the computational burden of autoregressive models.

Finite-State Markov Models In a discretized latent space, the latent variables can only take values
from a �nite set. Consequently, the outcomes of the autoregressive model for a discretized latent space
can also be represented by a �nite set. To implement such an autoregressive model, we introduce
an order-N �nite-state Markov modelM that produces prior distributions based on the previousN
variables, each withC possible states. Each iteration or step of the autoregressive Markov model can
be executed with anN -dimensional lookup tableL, similar to tANS (Duda, 2013). Denoting samples
from the �nite set asy , this process can be succinctly expressed as:

pi = M (y1; :::yN ) = L[y1; :::yN ]; y1; :::yN 2 f 1; 2; :::; Cg: (1)
As an illustration, Figure 3b shows an order-2 �nite-state Markov model combined with tANS coding,
leveraging a 2-dimensional lookup tableL to reduce the time complexity. Here, only two memory
operations are necessary to read both dimensions of the lookup table and retrieve the corresponding
state transition lookup table for tANS.

It is important to mention that the training process of the �nite-state Markov model does not explicitly
optimize the lookup table. Instead, the transition process in the �nite-state Markov modelM can be
approximated using neural networks with discrete input, such as a Multi-Layer Perceptron network.
Once the training is complete, the lookup tableL can be generated by feeding all possible state
combinations into the network.

Learnable State NumberWe notice that the size of the lookup tableO(CN ) can become pro-
hibitively large, especially whenN � 2. A common practice to optimizeC is through hyperparameter
tuning. However, this tuning process is time-consuming, as it requires training the full model multiple
times to determine the optimal hyperparameter. To mitigate this issue, we propose an end-to-end
adaptive optimization method for selectingC called Learnable State Number (LSN).

A straightforward approach to adjusting the state number involves applying a masking function to the
state probabilities, preventing certain states from being sampled. Additionally, a trainable parameter
� controlling the sparsity of the mask can be introduced. To facilitate gradient descent, the mask
should be a continuous function of� . Here, we adopt� -entmax (Peters et al., 2019), a normalizing
function similar to thesoftmax function, that allows the generation of precisely zero probabilities
and enables sparse masking of states. It can be de�ned as:

entmax(� ; � ) = [( � � 1)� � � 1]
1

� � 1
+ : (2)

where� is a constant that ensures
P

entmax(� ; � ) = 1 . The state probabilities, denoted as� , are
then modi�ed by the� -entmax function as shown below:

� 0 =
� � entmax(� ; � )

P
C � � entmax(� ; � )

; � ; � 2 RC : (3)

Note that� can be manually set to control the reduction rate or set as a trainable parameter following
(Correia et al., 2019) for more �exible masking during training.

Discussion for FSAR as Latent PriorWhen compressing a natural data vectorx , it is common for
dependencies to exist among the variables inx . Markov models are often employed to simplify these
dependencies, assuming that each variable depends only on a few preceding variables. However,
even with Markov models, decoding eachp(x i jx i � N :i � 1) still requires the previousN variables,
resulting in a sequential iteration process for every element ofx , which can be time-consuming.
Alternatively, latent space models, such as autoencoders, can transformx into a smaller latent vector
z. By applying Markov models in the latent space, the sequential iteration process can be shortened.
Although disentanglement of all latent variables is unattainable under unsupervised optimization
targets for lossless compression (Locatello et al., 2018), the inference network in autoencoders can
still disentangle certain dependencies among variables, making a compact Markov model suf�cient
as a prior for the latent space. This approach provides appreciable improvements for compression
ratios while preventing over�tting. Consequently, we employ the proposed FSAR model with a low
order (typicallyN � 2) as the latent prior.

Relationship to Masked Convolution (van den Oord et al., 2016b)Masked convolution can also be
exploited as an autoregressive prior in the discrete latent space. In fact, the masked convolution-based
autoregressive model is essentially a subset of the �nite-state Markov model. However, constructing
the lookup table becomes nearly impossible due to the high order in most cases. For instance, a 3x3 2D
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masked convolution-based autoregressive model corresponds to an Order-4 �nite-state Markov model
in the discrete latent space, denoted asp(yi;j;k jyi;j;k � 1; yi;j � 1;k � 1; yi;j � 1;k ; yi;j � 1;k +1 ), wherei; j; k
represent the indices of the channel, height, and width dimensions, respectively. Generating the
lookup table for this model requires a space complexity ofO(C4), which is generally unacceptable.
Furthermore, mask convolution usually requires FLOPs, which can introduce potential inconsistencies
in computation between the compression and decompression stages Ballé et al. (2019). On the
contrary, the proposed method is immune to such inconsistencies as it relies solely on memory
operations for latent coding.

Relationship to ANS (Duda, 2009)Recent implementations of entropy coders have embraced
ANS (Duda, 2009), as shown in Figure 3a. In thei -th step, ANS utilizes the previous statesi � 1,
the current symbolyi , and the corresponding prior distributionp to determine the state transition
process. When the inputs of the state transition process, namelysi � 1 andyi , are drawn from a �nite
set, techniques such as tANS (Duda, 2013) can be employed to precalculate all possible inputs and
construct a lookup table for ef�cient state transition computation. This concept inspires us to devise a
similar scheme for coding in the discrete latent space. In fact, the proposed FSAR can seamlessly
integrate with tANS, where a state transition table is derived from the FSAR lookup tableL at each
step (see Figure 3b). For a detailed implementation of FSAR-tANS and a discussion on the time
complexity of related methods, we direct the readers to Appendix C.

5 STRAIGHT THROUGH HARDMAX QUANTIZATION

As mentioned in Section 1, optimizing discrete latent space models is complicated despite their
preference for ef�cient latent coding. In this section, we examine the limitations of existing methods
for optimizing vector quantized (VQ) discrete latent space models and propose a robust quantization
method called Straight Through Hardmax Quantization (STHQ).

Recall that the original VQ-VAE (van den Oord et al., 2017) is optimized with a K-means-like loss:
L V Q = jj sg(I (x )) � By T jj2 + � jj I (x ) � sg(By T )jj2 � logp(x jBy T ); (4)

whereI (x ) is the output of the inference network,B represents the codebook,y denotes the one-hot
vector that selects the closest codeword toI (x ) in B , andsgrepresents the stop gradient operator.
However, updating all codewords in each step is infeasible due to the one-hot selection of a single
codeword byy , resulting in zero gradients for other codewords in the codebook (Sønderby, 2017;
Roy et al., 2018).

To overcome this limitation, the relaxed VQ (RVQ) approach (Sønderby, 2017) introduces a cate-
gorical distributionq(zjx ) in the latent space. The logits of this distribution are determined by the
Euclidean distance between the latent variable and the codewords, that is,

q(zjx ) = Categorical(softmax( � D (I (x )))) ; (5)
whereD i (I (x )) = jj I (x ) � B i jj2 is the euclidean distance betweenI (x ) andi -th codeword vector
B i . The entire model is then optimized using the negative evidence lower bound (ELBO) formulation:

L RV Q = � H (q(zjx )) � Eq(log p(z)) � logp(x jz); (6)
whereH (q(zjx )) is the entropy ofq(zjx ). The inclusion of the entropy term facilitates global
optimization of all distancesD , encouraging close latent variables and codewords to be grouped
together. This formulation has been adopted by recent works such as SQ-VAE (Takida et al., 2022).

However, there are two potential issues immediately arising when optimizing the entropy term in
RVQ. Firstly, the partial derivative of the entropy term with respect to the distanceD i can be negative
for all i , which could be derived from Proposition 5.1. As a consequence, the distance may continually
increase during the optimization process and cause the codebook to diverge.

Proposition 5.1. It is possible that8i; @H(q(zjx ))=@D i � 0.

Proof. See Appendix D.1 for proof.

Secondly, the inclusion of the entropy termH (q(zjx )) creates an entropy gap between VQ and RVQ,
resulting in an inferior performance of RVQ in generative tasks, as proven in Proposition 5.2:

Proposition 5.2. Assumep(z) follows a uniform distribution and give the same sample inputy
and parameters� for the generative modellogp� (x jBy T ), we havelogparg min � L RV Q (x jBy T ) <
logparg min � L V Q (x jBy T ).

Proof. See Appendix D.2 for proof and see Appendix D.4 for the corresponding experiments.
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In order to avoid these problems and enable global updates similar to RVQ, we propose STHQ.

Straight Through Hardmax Quantization Inspired by the straight through Gumbel-softmax
method (Jang et al., 2016) which employs categorical one-hot samples in the forward process
but Gumbel-softmax based soft samples in the backward process (backpropagation), we propose a
similar gradient estimator called straight through hardmax (st-hardmax). This approach incorporates
a VQ-basedhardmaxin the forward process while using sampling in the backward process:

y = st -hardmax(� D (I (x ))) $ y = hardmax( � D (I (x ))) ;
@y
@D

ST=
@GS� (� D (I (x )))

@D
; (7)

whereGS� represents the Gumbel-softmax reparameterization (Jang et al., 2016) with temperature
� . In this manner, the forward process remains the same as VQ, thereby mitigating the entropy
gap issue. Meanwhile, the backward process allows for the global update ofz and allB i based on
their respective distancesD i . Consequently, we can use a simple regularization loss termjjD min jj2,
similar to VQ-VAE, to update all distancesD i :

jjD min jj2 = jj arg min
i

D i jj2 = jj I (x ) � By T jj2: (8)

By combining thest-hardmax operator and this L2 regularization term, the overall loss function of
STHQ can be expressed as:

L ST HQ = jjD min jj2 � logp(x jBy T ) � Eq logp(z): (9)
Note that in VQ,p(z) is typically assumed to follow a uniform distribution and is omitted from
the loss function. However, in STHQ, we adopt the proposed FSAR model asp(z) for better
compression. To learn the parameters of the FSAR model,p(z) needs to be included in Eq.(9).
Speci�cally, following previous VQ methods, we only utilizeEq logp(z) for optimizing the FSAR
model, while excluding this term when optimizing the backbone network and the codebook.

Relationship to Other VQ-based MethodsBy assumingp(z) to be uniform in STHQ(9) and
ignoring the stop-gradient operations in VQ-VAE(4), we can �nd that the loss functions in these two
methods are identical. It is worth noting that both VQ-VAE and STHQ apply the straight-through
estimator on the likelihood termlogp(x jBy T ) to enable gradient calculation on the inference model.
However, in STHQ, we also apply the straight-through estimator to the L2 regularizer termjjD min jj2,
which bene�ts from the global update property and leads to faster convergence. On the other hand,
when compared to RVQ-based methods such as (Sønderby, 2017; Takida et al., 2022), STHQ omits
the entropy term. This term can potentially hinder the optimization process, as indicated in the above
two propositions. More details are presented in Appendix D.3.

6 EXPERIMENTS

6.1 DATASETS AND METRICS

In our experiments, we focused on compressing and decompressing image datasets, speci�cally
CIFAR10 (CF10) (Krizhevsky, 2009) and ImageNet32/64 (IN32, IN64) (Deng et al., 2009). We
evaluated performance using four criteria: Bits Per Dimension (BPD) for compression ratio, compres-
sion speed (CSpd) and decompression speed (DSpd) measured in megabytes per second (MB/s) to
assess time complexity, and occupied memory (Mem) in megabytes (MB) to assess space complexity.
The measured time or speed was obtained running on CPUs, as our method targets general-purpose
computation devices. The detailed experimental setup can be found in Appendix F.1.

6.2 COMPARISON WITH OTHER LATENT CODING METHODS

To demonstrate the effectiveness and ef�ciency of the proposed FSAR model as a prior for latent
modeling, we conducted a comparative analysis with various other latent space coding methods.
The methods compared include commonly used continuous latent models with bits-back coding
(Townsend et al., 2019a), discrete latent models such as Vector Quantization (VQ) (van den Oord
et al., 2017), Universal Quantization (UQ) (Ballé et al., 2018), and McQuic (Zhu et al., 2022), as
well as autoregressive-based latent models such as Masked Convolution (MaskConv) (van den Oord
et al., 2016b) and Checkerboard context model (Checkerboard) (He et al., 2021). Our proposed
FSAR model encompassed Markov models of different orders, ranging from Order-1 to Order-3.
Additionally, we consider the Order-2 model with LSN to evaluate its usefulness. We utilized the
proposed STHQ training for all autoregressive methods (MaskConv2D, Checkerboard, FSAR(O1),
FSAR(O2), FSAR(O2)+LSN, FSAR(O3)), while also conducting an additional experiment in the non-
autoregressive latent space (i.e., only tANS (Duda, 2013) entropy coding) as a reference. Furthermore,
to provide detailed ef�ciency comparisons, we presented the average decompression time of the
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Table 1: Experiment results of different latent coding methods. The detailed running time for each module in
different methods is obtained by processing a single image from CIFAR10 dataset. Order-1, Order-2 and Order-3
denoted as O1, O2, and O3, respectively. For BPD results, bold numbers indicate the best practical BPD for
each dataset, "OOM" indicates the out-of-memory error during coding, "ERR" indicates inconsistency between
the decompressed data and the original data, and "NAN" indicates a failed training process.

Methods
BPD (Theoritical/Practical) CF10 Decomp Time (ms) Mem (MB)

CF10 IN32 IN64 Net Coder Total CF10

Continuous bits-back (Townsend et al., 2019a) 4.99/8.99 5.45/9.11 5.05/11.15 32.44 9.85 42.29 0.000

Discrete

UQ (Ballé et al., 2018) 5.16/5.19 5.65/5.68 5.36/5.38 1.60 1.54 3.15 0.015
VQ (van den Oord et al., 2017) 5.50/5.52 6.16/6.17 5.61/5.62 1.57 0.88 2.45 0.008

McQuic (Zhu et al., 2022) 5.81/5.50 6.19/9.57 NAN/NAN 1.57 8.75 10.32 0.082

Autoregressive
MaskConv2D (van den Oord et al., 2016b)5.02/ERR 5.42/ERR 5.08/ERR 1.75 632.24 633.99 1.127

Checkerboard (He et al., 2021) 5.11/5.11 5.49/5.50 5.23/5.23 1.63 4.71 6.34 1.127

Proposed

tANS (Duda, 2013) 5.25/5.25 5.72/5.72 5.46/5.48 1.66 0.86 2.52 0.008
FSAR(O1) 5.14/5.17 5.54/5.55 5.16/5.18 1.58 0.97 2.55 2.010
FSAR(O2) 5.05/5.06 5.45/5.46 5.05/5.07 1.62 1.04 2.65 516.512

FSAR(O2)+LSN 5.08/5.09 5.43/5.46 5.10/5.12 1.59 1.06 2.65 276.586
FSAR(O3) 5.00/OOM 5.41/OOM 5.08/OOM OOM OOM OOM OOM

backbone networks (Net) and the entropy coders (Coder) for processing a single image in CIFAR10.
The results are shown in Table 1. Compression time are further provided in Appendix E.1 for
reference. It is apparent that the proposed method achieves comparable or superior performance to
the existing methods in terms of both compression ratio (i.e., theoretical/practical BPD) and speed
(i.e., run time).

Concretely, in terms of the practical BPD, the proposed FSAR-based methods achieve the best
performance on all datasets. Moreover, the theoretical BPD closely aligns with the practical one for
all methods, except for bits-back and MaskConv. This discrepancy arises from the initial bits issue
encountered in bits-back (Flamich et al., 2020) and the �oating-point inconsistency issue observed in
MaskConv (Ballé et al., 2019). Comparing FSAR models of different orders, we �nd that the order-2
Markov model outperforms the order-1 model in terms of compression performance, while the order-3
model does not provide a signi�cant improvement over the order-2 model. This observation implies
that a compact Markov model can adequately describe the latent space, as the backbone model
is capable of disentangling dependencies within the data to some extent, resulting in a simpli�ed
dependency structure in the latent space. Furthermore, considering the memory-intensive nature of
order-3 models, the order-2 Markov model is the optimal choice for FSAR.

In terms of speed, the bits-back and MaskConv methods are notably slow due to their high time
complexity in the backbone network and entropy coder, respectively. The Checkerboard context
model employs parallelized computation during latent decoding, resulting in signi�cantly shorter
decoding time. However, Checkerboard remains slower than the non-autoregressive tANS, whereas
the FSAR model performs as fast as tANS. In addition, the increased time cost of accessing lookup
tables in FSAR, which scales with memory size, has minimal impact on the overall decompression
time, as the time is dominated by the FLOPs in the backbone networks.

Note that memory occupation is a concern for FSAR models. Although the proposed LSN method
successfully reduces the memory requirement of FSAR(O2) by approximately 50% without causing
noticeable changes in compression performance, the memory occupation remains relatively high.

6.3 COMPARISON WITH OTHER COMPRESSIONMETHODS

In this section, we evaluate the proposed codec by comparing it with state-of-the-art image compres-
sion methods in a general setting. No restrictions are imposed on the network backbone or training
schedule in this experiment. The benchmark methods include traditional image lossless compression
codecs such as PNG (Boutell, 1997), WebP (webmproject, 2023) and FLIF (Sneyers & Wuille, 2016),
as well as autoencoder based methods including L3C (Mentzer et al., 2018), bitswap (Kingma et al.,
2019), and PILC (Kang et al., 2022). Since the proposed method solely employs latent space models
and does not restrict the method of observation space data coding, it can be seamlessly combined
with PILC, which adopts autoregressive models and entropy coding in the observation space, by
replacing the VQ-VAE used in PILC with the proposed method. We calculate the BPD based on the
length of the compression bitstream to evaluate practical compression performance. For a qualitative
understanding of the results, we present the BPD versus Speed comparison for different methods on
CIFAR10 in Figure 1. For complete numerical results, please refer to Appendix E.2.

Generally, the proposed learned codec has similar BPD and speed with traditional WebP and FLIF,
thereby bridging the gap between learned and traditional methods. Compared to the autoencoder-
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Figure 4: The BPD versus Speed (CSpd and Dspd) comparison for different methods on CIFAR10.

Table 2: BPD results (with standard deviation) for the ablation studies.

BPD Saved BPD Saved BPD Saved

VQ (van den Oord et al., 2017) 5.37(0.02) 0.00% STHQ 5.23(0.02) -2.66% -STH 5.54(0.08) 3.16%
RVQ (Sønderby, 2017) 5.68(0.10) 5.73% +FSAR(O1) 5.15(0.03) -4.16% -L2 6.58(0.03) 22.36%
SQ (Takida et al., 2022) 5.50(0.11) 2.42% +FSAR(O2) 5.06(0.02) -5.80% +Entropy 5.34(0.06) -0.67%

based method PILC, the improved version of the proposed method, called "PILC+STHQ+FSAR,"
reduces BPD by 2.2-2.5% but also slightly decreases CSpd by 7% and DSpd by 5%. The reduced
BPD can be attributed to the incorporation of the FSAR model. Additionally, the compression
performance of our method is similar to that of the deterministic autoencoder-based method L3C
(Mentzer et al., 2018), but is inferior to the variational autoencoder-based method bitswap (Kingma
et al., 2019). However, in terms of speed, our method outperforms both L3C and bitswap by a large
margin, owing to the shallow backbone and the ef�cient entropy coder. It is worth noting that bitswap
requires initial bits, rendering it unsuitable for single or small-batch image compression.

6.4 ABLATION STUDIES

Here, we conduct ablation studies to examine the role of each component in the proposed method.
The theoretical BPD is reported, as previous experiments have shown a negligible disparity between
theoretical and practical compression performance. Our baseline is the widely-used VQ-VAE with a
discrete latent space (van den Oord et al., 2017). We compare it with RVQ-VAE (Sønderby, 2017),
SQ-VAE (Takida et al., 2022), and the proposed STHQ-based methods. For a fair comparison, we
disable the self-annealing mechanism in SQ-VAE for the sake of lossless compression. Different
variants of STHQ are considered, including the one with the FSAR prior (+FSAR), without the
st-hardmax operator (-STH), without the L2 regularization termjjD min jj2 (-L2), and with an
entropy term similar to RVQ-VAE (+Entropy). The experiments are performed on CIFAR10 images
using the same backbone network and sizes of latent variables and codebooks. The results are
presented in Table 2. For additional results from the ablation study, including different settings of the
backbone network, latent space, and codebook size, we refer the readers to Appendix E.3-E.5.

It is obvious that the proposed method surpasses all variants. STHQ reduces the BPD by about 2%
compared to VQ-VAE, and the inclusion of FSAR yields an additional 2-4% improvement. RVQ-VAE
and SQ-VAE perform worse than VQ-VAE, probably due to the entropy gap discussed in Section 5.
The higher variance observed in RVQ-VAE and SQ-VAE suggests instability, which can be explained
by the codebook divergence (cf. Proposition 5.1). Regarding the variants of STHQ, we observe that
the L2 regularization term achieves a 20% BPD decrease by supporting the simultaneous update of
all codewords. Moreover, without thest-hardmax operator, the distance updates in STHQ resemble
those of SQ-VAE, and so both STHQ-st-hardmax and SQ-VAE perform similarly but worse than
STHQ by 6%. Recall that SQ-VAE is unsuitable for compression purposes due to its reliance on
likelihood degeneration to obtain a deterministic decoder (see Section 2). In addition, introducing the
entropy term can cause instability in the optimization process (cf. Proposition 5.1), thus degrading
STHQ's performance by about 2%. In summary, thest-hardmax operator, L2 regularization term,
and exclusion of the entropy term are all vital for the robust optimization of the discrete latent space.

7 CONCLUSIONS

This paper presents a novel framework for ef�cient learned lossless compression, which incorporates
FSAR for ef�cient autoregressive latent coding and improved compression, together with STHQ for
robust optimization of the discrete latent space and further enhancement of compression performance.
Experimental results demonstrate a substantial improvement over the baseline, with a 6% increase
in compression ratio while maintaining comparable compression and decompression speeds. These
�ndings highlight the potential of our approach for advancing the �eld of lossless compression.
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A FURTHER REVIEW ON RELATED WORKS

Continuous Random Latent SpaceVariational autoencoders (VAE) with continuous random latent
space (Kingma & Welling, 2013) are commonly employed in learned lossless compression due
to their ease of optimization using the Evidence Lower Bound (ELBO). However, the practical
encoding of their latent space poses a challenge, as the random samples are continuous and cannot
be directly processed by a simple entropy coder. To tackle this issue, previous approaches have
proposed two main solutions: bits-back based latent coding (Townsend et al., 2019a; Kingma et al.,
2019; Theis & Ho, 2021; Ruan et al., 2021) and relative entropy coding (Flamich et al., 2020;
2022). Bits-back ANS (Townsend et al., 2019a) suggests taking random samples directly from the
compressed stream. Subsequent works have extended or optimized bits-back for different types of
VAE variants, including hierarchical VAEs (Townsend et al., 2019b; Kingma et al., 2019), importance
weighted autoencoders (Theis & Ho, 2021), and Monte-Carlo VAEs (Ruan et al., 2021). Another
approach, relative entropy coding (Flamich et al., 2020; 2022), incorporates a shared random number
generator between the compressor and decompressor, compressing the sampled index to represent
latent samples. However, both methods still require additional bits for the random source, and the
implementation of the entropy coder remains complex.

B BACKGROUND KNOWLEDGE FORSECTION 3

Entropy Coding with ANS Entropy coding plays a central role in most compression frameworks, as
it compresses messages sampled from a probability distribution into a bitstream with a length close
to its entropy (Shannon, 1948), expressed as� EP log2 P(x ). For a single sample fromP(x ), the
optimal code length is� log2 P(x ). A recently proposed near-optimal entropy coder, ANS (Duda,
2009), treats the bitstream as a growing state. It pushes and pops values to and from this state based
on their probabilities. One of the ANS implementations, tabled ANS, is illustrated in Figure 3a. ANS
achieves the optimal code length� log2 P(x ) for any given samples fromP(x ).

Compression with Variational AutoencodersThe proposed framework draws inspiration from
previous compression frameworks based on variational autoencoders. A variational autoencoder
models the probability of the input datap(x ) by transformingx to latent variablesz and generating
the likelihoodp(x jz) based onz. Consequently,x can be compressed or decompressed usingp(x jz)
by applying an entropy coder. The latent variablesz follow a random distribution conditioned on
x , denoted asq(zjx ). As z is required byp(x jz), z also needs to be entropy coded withp(z). The
entire process of modelingp(x ) using a variational autoencoder can be represented as:

p(x ) =
p(z)p(x jz)

q(zjx )
: (10)

The length of the compressed stream produced by entropy coders can be estimated using
� Eq logp(x ), which can be rewritten as:
� Eq logp(x ) = Eq logq(zjx ) � logp(z) � logp(x jz) = KL (q(zjx )jjp(z)) � logp(x jz): (11)

Here, � logp(x jz) estimates the compressed length ofx , andKL (q(zjx )jjp(z)) estimates the
compressed length ofz. It's important to note that common entropy coders can only process samples
rather than distributions. Hence, the true compressed length should satisfy the inequality given by:

� logp(z) � logp(x jz) � Eq logq(zjx ) � logp(z) � logp(x jz) = � Eq logp(x ): (12)
As q(zjx ) is a discrete distribution, equality is achieved only ifq(zjx ) is a one-hot distribution.
Therefore, we can straightforwardly setq(zjx ) as a categorical distribution with one-hot probabilities,
which can be easily parameterized using a quantization function.

As shown in Figure 2, the inference network provides parameters forq(zjx ), while the generative
network implementsp(x jz). The one-hot representation ofq(zjx ) is obtained by quantizing the
output of the inference network using a learnable codebook, employing the proposed STHQ method.
To be speci�c, we calculate the euclidean distances between the inference network output and each
codeword in the learnable codebook. The negative euclidean distances are then utilized to determine
the sampling probability of each codeword, following a similar approach as in (Sønderby, 2017).
Additionally, we incorporate the sparse mask from the LSN module in FSAR to further prune the
codebook. The proposed STHQ produces one-hot latent samples by selecting the codeword with
the highest probability through quantization. These one-hot samples can be converted into latent
indices for compression into the latent stream and are also used in the dequantization process, where
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a speci�c codeword is chosen from the codebook as the input for the generative network.p(z) is
effectively encoded using an ef�cient autoregressive entropy coder based on the proposed FSAR
model. The optimization process can use Eq.(12)as the loss function to minimize the length of the
compressed bitstream and achieve superior compression ratios.

C DISCUSSIONS FORSECTION 4

C.1 TIME COMPLEXITY COMPARISON

Comparison of Complexity with ANS The utilization of lookup tables has been explored in
table ANS (tANS) implementation (Duda, 2013). This approach precalculates all possible state
transitions and utilizes lookup tables during the coding process to expedite the process. Given that
the autoregressive Markov model can be iterated alongside the entropy coder, it is straightforward to
design a similar lookup table-based autoregressive Markov model for acceleration. To compare the
complexity, we provide a breakdown of the number of operations for different ANS implementations,
including range ANS (rANS) (Duda, 2013) and table ANS (tANS) (Duda, 2013), as shown in Table 3.
It is evident that the proposed FSAR model requires only a few additional memory operations
compared to ANS, thanks to its lookup table-based iteration process.

Comparison of Complexity with Masked Convolution based Autoregressive Models Masked
convolution (van den Oord et al., 2016b), which relies on FLOPs, is commonly employed for
implementing autoregressive models. In Table 4, we provide a breakdown of the number of operations
per iteration required for masked convolution-based autoregressive models. In contrast, the proposed
FSAR model completely avoids expensive FLOPs and exhibits complexity comparable to that of
entropy coders, as shown in Table 3.

Table 3: Integer, �oating-point, and memory operations per symbol in modern entropy coders. Operations are
distinguished by color-coded boxes in the accompanying pseudo-code.

PseudoCode Int Float Mem

rANS Encode
start, freq = CDF[yi ] ;

s = (si � 1 / freq) » nbit + si � 1 % freq + start;
si = �ushbits (s);

6 0 1

rANS Decode

cfreq =si � 1 & bitmask;
yi , start, freq = ICDF[cfreq] ;

s = freq * (si � 1 » nbit) + cfreq - start;
si = readbits(s)

6 0 1

tANS Encode

nbit, delta = TransTable[yi ] ;

�ushbits (si � 1);

si = StateTable[(si � 1 » nbit) + delta]

3 0 2

tANS Decode
nbit, yi , s = DecTable[si � 1 ] ;

si = readbits(s)
1 0 1

FSAR(O2)+
tANS Encode

TransTable, StateTable = Table[yj � 1 ] [yk � 1 ] ;

tANSEncode(TransTable, StateTable);
3 0 4

FSAR(O2)+
tANS Decode

DecTable = Table[yj � 1 ] [yk � 1 ] ;

tANSDecode(DecTable);
1 0 3
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Table 4: Integer, �oating-Point, and memory operations per symbol in various autoregressive models. Oper-
ations are distinguished by color-coded boxes in the accompanying formula or pseudo-code. Convolutional
layers are assumed to have a single channel.Ma; b and Ca; b represent kernel sets, de�ned asMa; b =
(j; k )j8j; k 2 Z; � a < j < 0; jkj < b [ (0; k)j8k < 0 andCa; b = ( j; k )j8j; k 2 Z; (j + k) mod 2 6= 0 , re-
spectively.

Formula/PseudoCode Int Float Mem

MaskConv2D3x3
P m;n

(m;n )2 M2; 2
yj + m;k + n Wm;n 0 2jM2;2j = 8 0

MaskConv2D5x5
P m;n

(m;n )2 M4; 4
yj + m;k + n Wm;n 0 2jM4;4j = 24 0

Checkerboard2D3x3
P m;n

(m;n )2 C2; 2
yj + m;k + n Wm;n 0 2jC2;2j = 8 0

FSAR(O1) Table [yk � 1] 0 0 1

FSAR(O2) Table [yj � 1] [yk � 1] 0 0 2

C.2 IMPLEMENTATION OF FSAR-TANS

In theory, FSAR has the potential to be combined with any entropy coders. However, for practical
implementation ef�ciency, we have opted for tANS (Duda, 2013), which leverages lookup tables
for accelerated processing. The algorithm for �nite-state autoregressive entropy coding based on
tANS, including the initialization, encoding, and decoding processes, is illustrated in Algorithm 1.
The modi�ed or added steps, which differ from the original tANS algorithm, are highlighted in red.
It is obvious that the only additional step during encoding and decoding is then-dimensional table
lookup.

D DISCUSSIONS FORSECTION 5

D.1 PROOF OFPROPOSITION5.1

Proposition 5.1 It is possible that8i; @H(q(zjx ))=@D i � 0

Proof.
@H(q(zjx ))

@D i
= �

@
P

i qi logqi

@qi

@qi
@D i

: (13)

Note that

qi = softmax i (� D ) =
e� D i

P
i e� D i

: (14)

Let Si = e� D i 2 (0; 1], we have
@

P
i (qi logqi )

@qi
= 1 + log qi = 1 + log Si � log

X

i

Si ; (15)

and
@qi
@D i

=
@Si

@D i

@qi
@Si

= � Si

P
i Si � Si

(
P

i Si )2 : (16)

Therefore,
@H(q(zjx ))

@D i
= Si (1 + log Si � log

X

i

Si )
P

i Si � Si

(
P

i Si )2 : (17)

Since

Si

P
i Si � Si

(
P

i Si )2 > 0; (18)
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Algorithm 1 Finite-State Autoregressive tANS Coding Algorithm. The steps that are different from
tANS are highlighted in red.

procedure INITIALIZATION (FSMarkovM , NumStatesC, Ordern)
Initialize n-dimensional Lookup TableLE ; LD
for y1 2 f 0; 1; :::; Cg; :::; yn 2 f 0; 1; :::; Cg do

�  softmax(M (y1; :::; yn ))
LE [y1; :::; yn ]  BuildTansEncodeTable(vpi)
LD [y1; :::; yn ]  BuildTansDecodeTable(� )

end for
return LE ; LD

end procedure
procedure ENCODE(Symbolsy , EncoderLookupTableLE , Offsetso = f o1; :::; on g)

Initialize ANSStates, BitStreamB
for yi 2 reserve(y ) do . ANS requires a LIFO queue

L  LE [yi � o1 ; :::; yi � on ]
T  GetEncodeStateT ransition (L; yi )
s; nbits  T(s)
OutputBits (B; LowerBits (s; nbits))
s  s >> nbits

end for
F lush(B; s)
return B

end procedure
procedure DECODE(BitStreamB , DecoderLookupTableLD , Offsetso = f o1; :::; on g)

Initialize Symbolsy
i  0
s  InputBits (B; MaxBits (s))
while not IsF inished (B ) do

L  LD [yi � o1 ; :::; yi � on ]
T  GetDecodeStateT ransition (L; s)
yi ; nbits  T(s)
s  (s << nbits ) + InputBits (B; nbits )
i  i + 1

end while
return y

end procedure
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to guarantee that@H(q(zjx ))=@D i > 0, the following inequality must hold:

1 + log Si � log
X

i

Si > 0: (19)

Equivalently, we have

D i = � logSi < 1 � log
X

i

Si = 1 � log
X

i

e� D i : (20)

Therefore, we only need to �nd a case such that:

8i; D i = � logSi � 1 � log
X

i

Si : (21)

As D i � 0, we only need:

log
X

i

Si � 1;
X

i

Si � e: (22)

which can be easily satis�ed when the codebook size is large or the codewords are close to each other.
This completes the proof.

D.2 PROOF OFPROPOSITION5.2

Proposition 5.2: Suppose thatp(z) follows a uniform distribution. Given the same sample inputy
and parameters� of the generative modellogp� (x jBy T ), we havelogparg min � L RV Q (x jBy T ) <
logparg min � L V Q (x jBy T ) .

Proof. Suppose that
�̂ ; B̂ = arg min

� ;B
L V Q = arg min

� ;B
L RV Q : (23)

It follows from (4) that
�̂ = arg max

�
logp� (x jBy T ); and; I (x ) = By T : (24)

For RVQ,

L RV Q = H (q(zjx )) � logp� (x jBy T );
@L RV Q

@B
=

@H(q(zjx ))
@D

@D
@B

: (25)

According to the proof of Proposition 5.1, we can obtain@H(q(zjx ))=@D = 0 only if

8i; D i = � logSi = 1 � log
X

i

Si : (26)

In other words,D 1 = D 2 = ::: = 1 � log
P

i Si , which means thatq(zjx ) is a uniform distribution.
Given(24), the above equality is satis�ed only whenB 1 = B 2 = ::: = I (x ), that is, the codebook
collapses.

Apparently, this is not the global optimal point of the codebook forL RV Q , which contradicts with
(23). Therefore,

logparg min � ; B L RV Q (x jBy T ) < logp�̂ ;B̂ (x jBy T ) = log parg min � ; B L V Q (x jBy T ): (27)

This completes the proof.

D.3 RELATIONSHIP TO SQ-VAE (TAKIDA ET AL ., 2022)

SQ-VAE (Takida et al., 2022) introduces a stochastic quantization and dequantization process into the
latent model of the relaxed VQ. The quantized latent variable is denoted aszq and the dequantized
latent variable asz. The inference model can be represented asq1(z jx )q2(zqjz) and the generative
model asp(zq)p1(x jzq)p2(z jzq). The optimization objective of SQ-VAE is the negative ELBO:

L SQ = Eq1 (z jx )q2 (z q j z ) log
p2(z jzq)
q1(z jx )

� Eq2 (z q j z ) logq2(zqjz) � Eq2 (z q j z ) logp(zq) � logp(x jzq):

(28)
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