Multi-Task End-to-End Training Improves Conversational Recommendation

Anonymous ACL submission

Abstract

In this paper, we analyze the performance of a multitask end-to-end transformer model on the task of conversational recommendations, which aim to provide recommendations based on a user’s explicit preferences expressed in dialogue. While previous works in this area adopt complex multi-component approaches where the dialogue generation and entity recommendation tasks are handled by separate components, we show that a unified transformer model, based on the T5 text-to-text transformer model, can perform competitively in both recommending relevant items and generating conversation dialogue. We fine-tune our model on the ReDIAL conversational movie recommendation dataset, and create additional training tasks derived from MovieLens (such as the prediction of movie attributes and related movies based on an input movie), in a multitask learning setting. Using a series of probe studies, we demonstrate that the learned knowledge in the additional tasks is transferred to the conversational setting, where each task leads to a 9% – 52% increase in its related probe score.

1 Introduction

The modern recommendation systems found in commercial applications are largely based on implicit preferences, such as a user’s history of web page clicks, item purchases, or media streams, with the record of these actions used to retrieve relevant recommendations (Rendle et al., 2012). This approach often works, but in the case where a user might not have an extensive history, or might desire a recommendation which doesn’t match their usual niche, we might want a system which can take advantage of explicit preferences. With the growing success of deep learning language models which are now state-of-the-art methods for natural dialogue generation, it has become possible to design conversational recommendation models which can communicate with a user directly while at the same time be able to retrieve custom recommendations based on the user’s explicit wants and desires.

Most previous work on conversational recommender systems adopts a multi-component approach. These models often are implemented using a recommendation component, which analyzes the mentioned entities in order to predict a related item, and a dialogue component, which analyzes the input phrases and generates a conversational response (Jannach et al., 2020). Multi-component approaches are appealing because they can be built directly from standard models in the dialogue and recommendation fields. However, the knowledge learned by each component is not immediately available to the other components (i.e., the item recommendation model does not benefit directly from conversation state, and vice versa), preventing these approaches from taking advantage of the data to its fullest extent. Ideally, a conversational recommendation model should be able to both use descriptive language in the dialogue to retrieved relevant items and generate engaging dialogue about the items simultaneously. To address this problem, in this paper we investigate whether an end-to-end approach to conversational recommendations using a single component model can improve dialogue and recommendation generation by allowing the model to fully utilize the conversation features for both tasks.

We present a fully end-to-end approach to the problem of conversational recommendations, leveraging a single large transformer model to generate both relevant recommendations and natural dialogue. To determine whether single end-to-end model match or outperform multi-component approaches, we train our model on several standard datasets in the domain of movie recommendations and compare our results to previous work. To measure the benefit of generating dialogue and recommendations in the same model, we follow a com-
mon procedure in related work (Penha and Hauff, 2020) and design a series of probes to assess how the model leverages different types of information to generate dialogue and recommendations. One potential problem of a single component system is the reliance on a large dataset of sample dialogues containing both recommendation and language information. To bypass the need for a single large dialogue dataset, we finetune the pretrained T5 model on a relatively small dataset of dialogues, and incorporate movie relationship, attribute, and description information from additional datasets using a multitask training setup.

The main contributions of this paper are:

- Presenting a fully end-to-end approach to conversational recommendation that uses a unified model for both dialogue and item recommendation.

- Conducting a series of probe studies that shows how conversational recommendation tasks benefit from knowledge learned by the model via multi-task training on a number of separate, small datasets.

The remainder of this paper is structured as follows. First, we briefly present some related work on conversational recommender systems, transformer models and probes studies. After that, we describe our T5-based approach, and the datasets, tasks and training procedure used to train our model. We then describe our experimental methodology, and a series of probe studies showing how dialogue and recommendation mutually improved by sharing a common model.

1.1 Related Work

The section presents a brief background on conversational recommendations, multitask transformer models, and the evaluation of conversational recommendation models through probe studies.

While, to the best of our knowledge, there are currently no single-component end-to-end conversational recommendation systems, there have been a few systems which have taken steps toward a more unified model architecture. Dialogue generation has historically been approached in many ways, with recent efforts focusing on RNNs models (like LSTMs (Hochreiter and Schmidhuber, 1997)), and transformers (Vaswani et al., 2017). Recommendation systems typically perform collaborative filtering on a set of user-item associations using a range of models such as matrix factorization systems or autoencoders (Ricci et al., 2011). Li et al. (2018) proposed an approach to combining these two areas into a functional conversational recommendation model, using an autoencoder recommender in conjunction with a GRU based hierarchical encoder-decoder system to generate the dialogue. There is some interplay between components, with mentioned movies and sentiments being fed into the autoencoder in order to retrieve a relevant recommendation based on a user’s liked and disliked movies, but the generation of dialogues and recommendations are still largely separate. This paper also introduced the ReDial dataset, a dataset of movie recommendation dialogues collected through Amazon Mechanical Turk. Chen et al. (2019) took this approach one step further, creating a conversational recommendation system which would use mentioned entities in the dialogue to conduct a knowledge graph search of related items. This system, referred to as the Knowledge-Based Recommendation Dialogue or KBRD system, uses information of non-movie entities (genres, adjectives, actors, etc) from DBpedia (Auer et al., 2007) in order to allow recommendations to be informed by a larger range of dialogue details. In order to support the reverse direction, where the recommendations influence the dialogue generated, the authors add a vocabulary bias based on the user representation in recommendation-context to the top layer of the decoder, enabling their transformer-based language model to generate dialogue with some amount of recommendation context. Although this model demonstrates the potential for transfer between dialogue and recommendation tasks, it requires a complex structure where incomplete representations of both the dialogue and recommendation features are passed to separate components and then joined with a switching network. In this paper we attempt to fully leverage this same cross-task transfer without the need for a complicated linkage between separate components.

In recent years, many studies have demonstrated the effectiveness of large, pre-trained transformer-based language models on a range natural language generation tasks. The architecture, which makes use of self attention blocks in order to model language, was proposed by Vaswani et al. (2017) and achieved state-of-the-art performance on a variety of benchmarks. When pretrained on a large corpus of text, transformer models such as BERT (De-
vlin et al., 2018), GPT-3 (Brown et al., 2020), and UniT (Hu and Singh, 2021) have shown the ability to handle multiple language-based tasks with minimal finetuning. The T5 model, introduced by Raffel et al. (2019), has demonstrated a distinct ability to incorporate different types of knowledge from multiple sources and handle several disparate tasks in the text-to-text format.

In regards to evaluating these large transformer models on the task of conversational recommendations, one effective approach proposed by Penha and Hauff (2020) is to use probe studies to measure the model’s ability to score the likelihood of certain entities when conditioned on a set of generated inputs. Penha and Hauff evaluate BERT’s performance on conversational recommendation tasks by using BERT’s prediction, similarity, and next sentence prediction function to score the model’s ability to associate a book, movie, or song with a related item or attribute.

2 Our Approach

The main idea of our approach is to formulate the conversational recommendation task as an instance of the text-to-text problem. We finetune a pre-trained transformer model on the movie recommendation dialogues contained in the ReDial dataset, and improve the model’s ability to utilize movie attributes and descriptive details within the dialogues through the introduction of additional training tasks in a multi-task learning setting. In this section we present a background on the T5 transformer model, a summary of each of the training datasets, and an overview of the finetuning parameters used in the study.

2.1 T5 Model

T5 is a large, publicly available, encoder-decoder transformer model created by Raffel et al. (2019). The model was trained and structured with the intent to support as many different use cases as possible using a text-to-text format. In the context of recommendation systems, T5 and related models are attractive because they perform well on natural language generation tasks and demonstrate the ability to train on multiple disparate types of text data within one model.

2.2 ReDial Dialogue Task

The ReDial (Recommendation Dialogues) dataset is an annotated set of 11248 dialogues collected through Amazon Mechanical Turk (Li et al., 2018). Each dialogue contains the movies and messages sent between two parties acting as either a “recommender” or a “recommendation seeker”. Although this dataset is relatively small, and doesn’t necessarily capture as much movie relationship and attribute data as other recommendation-focused datasets, we have found that it provides enough examples for the T5 to learn the style and structure of conversational recommendations.

For each conversation in the dataset we create a training example corresponding to each response from the human recommender. The model inputs contain the conversation up to a certain recommender utterance, with the outputs containing the next utterance from the recommender party. Using this format the T5 model can learn to parse relevant movie, attribute, and dialogue details from the previous messages in the conversation and formulate an appropriate response. We use the T5’s standard vocabulary, so movie titles are processed by the word, the same as any other piece of the input. To help the model learn these titles, @ signs are used to separate movie titles from the rest of the dialogues.

Each message in the ReDial conversation is preceded by either a [USER] or a [ASSISTANT] tag to indicate its source. The redial conversation from Figure 1 has been processed into multiple training examples corresponding to each response by the recommender. Table 1 shows a sample training example from this process.

2.3 MovieLens Sequences Task

The MovieLens 25m dataset is a collection of 25 million ratings and one million tag associations...
Training Inputs
[User] I’m in the mood to watch a romantic comedy. What do you suggest? [Assistant] @ 50 First Dates (2004) @ Have you seen that one? [User] Oh, I’ve seen that one. I really like Drew Barrymore.

Training Targets
Yes she is good. Do you like @ The Wedding Singer (1998) @
Perhaps because its surrealism matched the hippy culture of psychedelia, Alice in Wonderland (1951) enjoyed a welcome theatrical return engagement in the ’60s...

<table>
<thead>
<tr>
<th>Knowledge</th>
<th>Dialogue</th>
<th>Recommendation</th>
<th>Attributes</th>
<th>Description</th>
</tr>
</thead>
</table>

Table 1: Comparison of the primary training task (ReDial Dialogues) and the three auxiliary training tasks designed to increase recommendation, attribute, and description knowledge.

often used to quantify movie relationships and attributes (Harper and Konstan, 2015). We utilize this data for multiple tasks, as it can be used to quantify different types of movie information. The first additional training task is to recommend a movie given a sequence of 1-9 related movies. This task is referred to as the ML Sequences task.

In order to use the user ratings contained in the MovieLens 25m dataset to generate movie associations, we create sequences of movies wherever there are 10 movies rated higher than 4.0 / 5.0 by the same user. From these sequences we create examples for each n where 1 < n < 10 by mapping the first n movies as the inputs and the movie in position (n + 1) as the target. An example of this format is shown in Table 1.

2.4 MovieLens Tags Task

The MovieLens 25m dataset contains a tag genome which scores each movie’s relevance across a set of 1,129 tags (Vig et al., 2012). These tags are movie attributes or descriptive words which often correspond to genres ("horror", "action", "mystery"), plot elements ("alien invasion", "character study", "father daughter relationship"), opinion ("excellent script", "boring", "over the top"), or general information ("oscar (best actor)", "based on a book", "stanley kubrick"). For each movie, we add each tag with a relevance score over 0.8 to the movies tag list. From these tag lists we randomly sample examples containing 1-5 tags as the input and the related movie as a target. Table 1 displays an example of a tag-to-movie mapping.

2.5 MovieLens Reviews Task

The final training task, referred to as the MovieLens Review task, uses a joint dataset created by Penha and Hauff (2020) to incorporate additional movie description and opinion data. The training examples for this task are generated from the reviews portion of Penha and Hauff (2020)'s search dataset, which contains the IMDB user reviews associated with each movie in the MovieLens database. These reviews contain movie attribute data written in the kind of casual, natural dialogue style found in the ReDial dataset, so they aid the model’s natural text generation and descriptive capabilities. As shown in Table 1, these reviews are processed into examples where the model is asked to predict the next sentence of a review given a movie title and the
which were trained and evaluated on the same set

2.6 Multitask Training

The T5 module supports multitask training, where examples from training dataset are loaded through their own preprocessing steps (in our case only lowercasing). We opt to finetune the base size (220 million parameters) with a learning rate of 0.003 for 40,000 steps and batch size 128. Texts longer than the maximum sequence length, i.e., 512 for inputs and 128 for targets are truncated. We train variants with different combinations of the four training tasks in order to isolate their effects. Examples from each task were loaded equally often. As suggested by Raffel et al. (2019), we prepend the inputs to each task with a task label: “redial conversation:"; "movielens sequence:"; "movielens tags:"; or "movielens review:". From this point, the name T5 will be used to refer to the out-of-the-box pretrained T5 model and the name T5-CR will be used to refer to our custom T5 model with all four finetuning tasks.

3 Baseline Evaluations

In order to determine whether our end-to-end approach can perform competitively on dialogue and recommendation, we compare our performance using BLEU score and Recall. These metrics are both run on the evaluation set provided with the ReDial dataset. The BLEU score acts as a measure of dialogue quality, by measuring the similarity of the model and human responses. The Recall metric is calculated by comparing the movies mentioned by the model in the evaluation dialogues to the set of movies mentioned by the human recommender. All the evaluation data is loaded and run through the ReDial Dialogue task in order to measure the model’s performance in a dialogue setting. These two metrics were selected as they are standards which have been run on the KBRD (Chen et al., 2019) and ReDial models (Li et al., 2018), both of which were trained and evaluated on the same set of ReDial conversations.

3.1 BLEU

BLEU score is a standard metric used in machine translation and text generation tasks which quantifies how similar a generated phrase is to the ex-

—Because movie titles and title fragments in the MovieLens Reviews dataset are not delimited, the MovieLens Reviews training task does not use ‘@’ signs to separate movie titles.
Table 2: BLEU and Recall@1 metric comparisons between T5-CR, our T5 variant finetuned on 4 tasks, and the performance on the ReDial validation dialogues.

<table>
<thead>
<tr>
<th>Model Name</th>
<th>Model Type</th>
<th>BLEU</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReDial</td>
<td>Autoencoder (recommender) + LSTM (dialogue)</td>
<td>8.38</td>
<td>2.30</td>
</tr>
<tr>
<td>KBRD</td>
<td>Knowledge Graph (recommender) + Transformer (dialogue)</td>
<td>11.00</td>
<td>3.00</td>
</tr>
<tr>
<td>T5-CR</td>
<td>Finetuned T5 (4 Tasks)</td>
<td>15.39</td>
<td>6.93</td>
</tr>
</tbody>
</table>

tests a specific dialogue interaction by measuring the T5-CR’s ability to distinguish between relevant and unrelated information conditioned on different types of sample dialogues. In order to filter out misspellings, alternate titles, and rare movies which the model has little information on, the probes are generated using the set of movies which occur over 30 times in the ML Sequences dataset. With probe examples generated from this set of around 5,000 movies, we are able to run evaluations on a much larger range of data than the limited ReDial evaluation set. These probes are designed to measure the model’s ability to apply the information gained through its multitask training in a dialogue setting, therefore all probe data is evaluated through the ReDial Dialogue tasks.

4.1 Recommendation Probe

The recommendation probe measures the model’s ability to distinguish a related movie from a popular movie chosen at random. In order to quantify related movies based on cooccurrence in the ML Sequences dataset, we rank movies based on PMI^2 (Role and Nadif, 2011), a variation on pointwise mutual information (PMI). PMI^2 is a commonly used variation on PMI which reduces PMI’s known bias toward rare and infrequent items (Role and Nadif, 2011). For each of the top ten related movies we sample a random popular movie from the top 10% of movies (ranked by frequency in the ML dataset). For each of the ten $(related_i, popular_j)$ pairs generated for each movie, we create a probe by swapping in the movies to a generic piece of dialogue, as seen in Table 4. The probe score is calculated as the percent of probes where the models log-likelihood score, $L(\theta)$, of the target containing the related movie was higher than that of the random popular movie. Note that different phrasings and dialogue formats were tested with little effect on the probe results.

As shown in Figure 3, the introduction of the ML Sequences task improved the model’s ability to differentiate between related and random movies, reflected by a 30% increase in the recommendation probe scores between the ReDial-only model and the ReDial + ML Sequences model. This increase demonstrates that the patterns in the movie sequences fed in the ML Sequences tasks can be generalized and applied within the dialogue tasks. Interestingly, the ReDial + ML Tags model also outperformed the ReDial-only model, with an increase of 23% in recommendation probe scores over the ReDial-only model.

This increase demonstrates an advantage of the end-to-end format: data incorporated to help the understanding of descriptive words in the dialogues also boosted performance on movie-to-movie recommendation, despite the additional data not directly specifying any movie relationships. Because recommendation and dialogue are handled in the same model, it can leverage patterns in seemingly unrelated data. Here, the model is likely using the overlap of tags associated with different movies to help determine whether they are related. In the combined model, where all four training tasks were included, the model performed the best (+37% over ReDial-only), a score which demonstrates the viability of multitask transformers to incorporate many different data sources and tasks without losing performance.

Overall the performance of the recommendation probe represents a transfer of movie-relationship knowledge between training tasks, but this transfer is not perfect. While the probes (fed into the ReDial Dialogues task) achieved a score of .6599 in the Combined model, the same pairs fed into the ML Sequences task without any dialogue achieved a score of .7711. This increase indicates either an incomplete transfer of knowledge from the MovieLens Sequences task to the ReDial Dialogues task, or a bias from the the movie recommendation data already present in the ReDial Conversations. Similarly, the T5’s performance on the movie recommendation probes is lower than that of a purely Ma-
Table 3: Comparison of probe scores across T5 models with different finetuning tasks.

<table>
<thead>
<tr>
<th>T5 Finetuning Tasks</th>
<th>Rec Probe</th>
<th>Attr Probe</th>
<th>Combo Probe</th>
<th>Desc Probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (T5)</td>
<td>0.5493</td>
<td>0.4908</td>
<td>0.5597</td>
<td>0.5936</td>
</tr>
<tr>
<td>ReDial</td>
<td>0.4716</td>
<td>0.5046</td>
<td>0.5731</td>
<td>0.7097</td>
</tr>
<tr>
<td>ReDial + ML Sequences</td>
<td>0.6359</td>
<td>0.5869</td>
<td>0.7367</td>
<td>0.7307</td>
</tr>
<tr>
<td>ReDial + ML Tags</td>
<td>0.5670</td>
<td>0.7826</td>
<td>0.8016</td>
<td>0.7133</td>
</tr>
<tr>
<td>ReDial + ML Reviews</td>
<td>0.4771</td>
<td>0.5091</td>
<td>0.5833</td>
<td>0.7763</td>
</tr>
<tr>
<td>All (T5-CR)</td>
<td>0.6599</td>
<td>0.7678</td>
<td>0.8418</td>
<td>0.7928</td>
</tr>
</tbody>
</table>

Table 4: Comparison of the four probe sets, which determine whether the model can correctly rank related entities as more likely than random negatives.

<table>
<thead>
<tr>
<th>Recommendation Probe</th>
<th>Attribute Probe</th>
<th>Combination Probe</th>
<th>Description Probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input 1 (Related)</td>
<td>[User] Can you recommend me a movie like @ Zootopia (2016) @?</td>
<td>[User] Can you recommend me a vampire movie?</td>
<td>[User] What is your opinion on @ Ringing Bell (1978) @?</td>
</tr>
<tr>
<td>Input 2 (Rand. Popular)</td>
<td>Sure, have you seen @ Inside Out (2015) @?</td>
<td>Sure, have you seen @ Interview with the Vampire: the Vampire Chronicles (1994) @?</td>
<td>Watching this several times as a child was quite the experience 15 years ago, and now that I’ve found it…</td>
</tr>
<tr>
<td>Target 1 (Related)</td>
<td>Sure, have you seen @ I Am Sam (2001) @?</td>
<td>Sure, have you seen @ Sicko (2007) @?</td>
<td>Sure, have you seen @ Zoolander (2001) @?</td>
</tr>
<tr>
<td>Target 2 (Rand. Popular)</td>
<td>MovieLens Data Source</td>
<td>Sequences</td>
<td>Tags</td>
</tr>
<tr>
<td>Metric</td>
<td>$L(T_1</td>
<td>I_1) > L(T_2</td>
<td>I_1)$</td>
</tr>
</tbody>
</table>

The attributes probe measures the model’s ability to use details and descriptive words appearing in dialogue to retrieve relevant movies. As shown in Table 4, a probe is generated for each movie-tag association in the MovieLens Tags dataset, with a random popular movie used as the negative. Because many of the most popular tags (such as "action" or "excellent") might apply to a large portion of the popular movies, we filter the negative to ensure it isn’t associated with the given tag.

The attribute probe scores also demonstrated the effectiveness of multitask learning, with the introduction of the ML Tags task leading to a 52% increase in performance over the ReDial-only model.
This probe directly shows one of the advantages of end-to-end learning. Because dialogue analysis and recommendation generation occurs in the same model, the descriptive attributes mentioned in the input dialogue (or movie "tags") can help the model retrieve a movie relevant to that attribute, even when no movie titles are mentioned in the input. While the Combined model didn’t out-perform the RD Tags model, it did perform consistently, with an accuracy of .7689 over the probe set.

4.3 Combination Probe

The combination probe measures the multitask capabilities of the model, determining whether attribute and movie entity data can be used simultaneously to generate a relevant response. As shown in Table 4, a probe is generated for each shared tag among each of a movies top 10 most related movies. As in the attribute probe, we filter out the popular negative to ensure it does not match the given tag.

The combination probe extends the findings of the previous two probes: not only can the model use mentioned movies or movie attributes to influence its recommendations, it can do both at the same time. Whereas a multi-component approach to the problem would base its recommendation solely on the previously mentioned movies or the attributes mentioned in dialogue, an end-to-end approach uses these pieces of information together. The Combined model was able to differentiate 84.18% of the probe pairs when given a movie and a tag in the input dialogue, an improvement over its performance on either the recommendation or attribute probes. This improvement demonstrates that when using both types of information together, the model can more accurately recommend a related movie.

4.4 Movie Description Probe

The previous three probes test whether the model can retrieve a relevant movie title when conditioned on a dialogue. The movie description probe tests the reverse direction: can the model retrieve a piece of relevant or descriptive dialogue when conditioned on a certain movie title. To do this, we measure the likelihood of a given review snippet taken from the first four sentences of a review in the ML Reviews dataset. In previous probes, we have ranked two different targets based on likelihood, but because review snippets differ greatly in length, phrasing, style of language, and other factors which can influence likelihood, we opt to keep the target the same and compare the likelihood of a given review snippet when conditioned on a related/unrelated movie. As shown in Table 4, for a related input I_1, a random popular input I_2, and a review snippet T we compare the log likelihood scores and measure how often $L(T \mid I_1) > L(T \mid I_2)$.

The description probe demonstrates that in an end-to-end model, mentioning a movie can prompt the model to retrieve relevant dialogue. This functionality wouldn’t be in traditional multi-component approaches where mentioned movies are processed separately from dialogue. The ML Reviews training task led to a 9.38% increase over the ReDial-only model, while the combined model was able to achieve a score of 0.7929, an 11.72% increase over the ReDial-only model.

5 Conclusion

In this paper, we presented a multitask approach to end-to-end conversational recommendations. In direct comparison to two previously published models in the domain, our T5-based architecture outperformed the baselines in both its quality of dialogue and recommendation. When probed on recommendation, attribute knowledge, and description, our model demonstrates that dialogues and recommendations can be mutually improved by sharing a model architecture. Specifically, the probes prove that the model is able to use dialogue features to inform its recommendations and movie mentions to influence its dialogue generation. These findings support a general trend in current natural language processing landscape, where large pretrained transformer models are rapidly becoming the state-of-the-art in many domains. In fact, our research has implication on the broader area of multitask models, highlighting how a limited dataset (such as ReDial) can be injected with information from several auxiliary datasets, regardless of format. In the future, this effect might shift the focus from training and combining optimized components for each functionality of a system, to simply incorporating all desired information as different tasks in a pretrained multitask model.

References

François Role and Mohamed Nadif. 2011. Handling the impact of low frequency events on co-occurrence based measures of word similarity - a case study of pointwise mutual information.
