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ABSTRACT

In this work, we naturally unify adversarial examples and Trojan backdoors into
a new stealthy attack, that is activated only when 1) adversarial perturbation is
injected into the input examples and 2) a Trojan backdoor is used to poison the
training process simultaneously. Different from traditional attacks, we leverage
adversarial noise in the input space to move Trojan-infected examples across the
model decision boundary, thus making it difficult to be detected. Our attack can
fool the user into accidentally trusting the infected model as a robust classifier
against adversarial examples. We perform a thorough analysis and conduct an
extensive set of experiments on several benchmark datasets to show that our attack
can bypass existing defenses with a success rate close to 100%.

1 INTRODUCTION

Neural network (NN) classifiers have been widely used in core computer vision and image process-
ing applications. However, NNs are sensitive and are easily attacked by exploiting vulnerabilities in
training and model inference (Szegedy et al., 2014; Gu et al., 2017). We broadly categorize exist-
ing attacks into inference attacks, e.g., adversarial examples (Szegedy et al., 2014), and poisoning
attacks, e.g., Trojan backdoors (Gu et al., 2017), respectively. In adversarial examples, attackers try
to mislead NN classifiers by perturbing model inputs with (visually unnoticeable) adversarial noise
at the inference time (Szegedy et al., 2014). Meanwhile, in Trojan backdoors, one of most impor-
tant poisoning attacks, the adversaries try to exploit the (highly desirable) model reuse property to
implant Trojans into model parameters for backdoor breaches, through a poisoned training process
(Gu et al., 2017).

Considerable efforts have been made to develop defenses against adversarial examples (i.e., in the
inference phase) and Trojan backdoors (i.e., in the training phase). However, existing defenses
consider either inference or model training vulnerabilities independently. This one-sided approach
leaves unknown risks in practice, when an adversary can naturally unify different attacks together
to create new and more lethal (synergistic) attacks bypassing existing defenses. Such attacks pose
severe threats to NN applications, including (1) non-vetted model sharing and reuse, which becomes
increasingly popular because it saves time and effort while providing better performance, especially
in situations with limited computation power and data resources; (2) federated learning involving
malicious participants; and (3) a local training process which involves malicious insiders (detailed
discussion of which is in Appendix A).

Our contribution. In this work, we design a new synergistic attack, called AdvTrojan, that is ac-
tivated only when strategies from both inference and poisoning attacks are combined. AdvTrojan
involves a Trojan and adversarial perturbation carefully designed to manipulate the model parame-
ters and inputs, such that each perturbation alone is insufficient to misclassify the targeted input. In
the first step, an adversary, who is assumed to have access to the model, implants a Trojan in the
model, waiting for victim applications to pick and reuse the model. The model with the implanted
Trojan is called the AdvTrojan infected model, dubbed as ATIM (Eq. 9 and Alg. 1). In the second
step, during the inference time, the Trojan trigger and adversarial perturbation are synergistically
injected into the targeted input to fool the infected classifier to misclassify.

Different from existing Trojans (Gu et al., 2017; Liu et al., 2017), our Trojan is crafted to make the
model vulnerable to adversarial perturbation, only when the perturbation is combined with the pre-
defined trigger (Appendices C and D). In other words, the Trojan trigger transfers the input into an
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arbitrary location in the input space close to the model decision boundary; and then the adversarial
perturbation does the final push, by moving the transferred example across the decision boundary,
opening a backdoor. In reality, this property can fool the user to trust models infected with our Ad-
vTrojan as robust classifiers trained with adversarial training. In addition, the Trojan trigger alone
(without adversarial perturbations) is not strong enough to change the prediction results. Hence,
existing Trojan defensive approaches (e.g., Neural Cleanse and STRIP) fail to defend against Ad-
vTrojan (Appendix E). Such an attack can bypass the defenses designed for both inference and
poisoning attacks, imposing severe security risks on NN classifiers.

An extensive experiment on benchmark datasets shows that AdvTrojan can bypass the defenses, in-
cluding one-sided defenses, including Neural Cleanse (Wang et al., 2019), STRIP (Gao et al., 2019),
certified robustness bounds (Li et al., 2019), an ensemble defense (Pang et al., 2020), and an adaptive
defense proposed by us, with success rates close to 100%. Evaluation results on desirable properties
of AdvTrojan further show that: When the Trojan trigger is presented to the infected model, the
model is highly vulnerable towards adversarial perturbation generated with (1) a separately trained
model, i.e., transferability of adversarial examples (Papernot et al., 2017); (2) a small number of
iterations; (3) a small perturbation size; or (4) weak single-step attacks (Appendix G).

2 BACKGROUND

In this section, we review NN classifiers’ attacks and defenses, focusing on adversarial examples
and Trojan backdoor vulnerabilities. Let D be a database that contains N data examples, each
of which contains data x ∈ [0, 1]d and a ground-truth label y ∈ ZK (one-hot vector), with K
possible categorical outcomes Y = {y1, . . . , yK}. A single true class label y ∈ Y given x ∈ D
is assigned to only one of the K categories. On input x and parameters θ, a model outputs class
scores f : Rd → RK that maps x to a vector of scores f(x) = {f1(x), . . . , fK(x)} s.t. ∀k ∈
{1, . . . ,K} : fk(x) ∈ [0, 1] and

∑K
k=1 fk(x) = 1. The class with the highest score value is selected

as the predicted label for x, denoted as Cθ(x) = maxk∈K fk(x). A loss function L(x, y, θ) presents
the penalty for mismatching between the predicted values f(x) and original values y. Throughout
this work, we use x̂ to denote the original input, x̃ to denote the adversarial perturbed input (i.e., the
adversarial example), t to represent Trojan trigger, and x to be a generic input variable that could be
either x̂, x̃, x̂+ t, or x̃+ t.

Adversarial Examples. Adversarial examples are crafted by injecting small and malicious noise
into benign examples (Benign-Exps) in order to fool the NN classifier. Mathematically, we have:

δ∗ = arg max
δ∈∆

I[Cθ(clipD[x̂+ δ]) 6= y] (1)

x̃ = clipD[x̂+ δ∗] (2)

where x̂ is the benign example and its ground truth label y, δ is the optimal perturbation given all
possible perturbations ∆. The identity function I[·] returns 1 if the input condition is True and 0
otherwise. The clipD[·] function returns its input if the input value is within the range D; otherwise,
it returns the value of the closet boundary. For instance, if D = [−1, 1], then, clipD[0.7] = 0.7,
clipD[3] = 1, and clipD[−10] = −1. Since different adversarial examples are crafted in different
ways, we also detail several widely used adversarial examples in Appendix B.

Among existing solutions, adversarial training appears to hold the greatest promise to defend against
adversarial examples (Tramèr et al., 2017). Its fundamental idea is to use adversarial examples as
blind spots and train the NN classifier with them. In general, adversarial training can be represented
as a two-step process iteratively performed through i ∈ {0, . . . , T} training steps, as follows:

δi+1 = arg max
δ∈∆

I
[
Cθi(clipD[x̂+ δ]) 6= y

]
(3)

θi+1 = arg min
θ

[
L(x̂, y, θ) + µL(clipD[x̂+ δi+1], y, θ)

]
(4)

At each training step i, adversarial training 1) searches for (optimal) adversarial perturbation δi+1

(Eq. 3) to craft adversarial examples clipD[x̂+ δi+1]; and 2) trains the classifier using both benign
and adversarial examples, with a hyper-parameter µ to balance the learning process (Eq. 4). A
widely adopted adversarial training defense utilizes the iterative Madry-Exps for training, called
Madry-Adv (Madry et al., 2017).
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Figure 1: Images with a Trojan trigger

Trojan Backdoor. In Gu et al. (2017); Liu et al. (2017);
Wang et al. (2019); Gao et al. (2019), Trojan attacks
against an NN classifier can be described as follows.
Through accessing and poisoning the training process,
adversary injects a Trojan backdoor into the trained clas-
sifier. During the inference time, the NN classifier per-
forms unexpected behavior if and only if a predefined
Trojan trigger is added to the input (Gu et al., 2017; Liu et al., 2017). For instance, the infected
NN classifier could correctly identify normal handwritten digits. However, any input with a Trojan
trigger, e.g., the small black square at the bottom right corner of each image in Figure 1, is classified
as digit seven when it is fed into the infected classifier. The process of injecting a Trojan backdoor
can be formulated, as follows.

θ↓ = arg min
θ

[
L(x̂, y, θ) + L(clipD[x̂+ t], yt, θ)

]
(5)

where θ↓ is the weights of the Trojan-infected classifier and t is the Trojan trigger predefined by
the adversary. In Gu et al. (2017), t is a collection of pixels with arbitrary values and shapes. In
Eq. 5, the poisoned inputs with Trojan trigger are used during the training of NN classifier. The
targeted labels (i.e., unexpected behavior) for these poisoned training inputs are yt. Several defense
approaches against Trojan backdoors have been proposed, such as Neural Cleanse (Wang et al.,
2019) and STRIP (Gao et al., 2019).

Combination of Attacks. A limited number of recent works explore the combination of different
types of attacks (Quiring & Rieck, 2020; Pang et al., 2020). However, they are fundamentally
different from our AdvTrojan attack. Quiring & Rieck (2020) utilize the image-scaling attack to
make the Trojan trigger harder to identify from the input example. As a result, this combination is
more like an enhanced Trojan attack. The most recent paper, Pang et al. (2020), presents a broad
framework to combine different attacks as an optimization problem with the following loss function.

L = l(x, θ) + λlf (x) + νls(θ) (6)
Here, function l represents the loss of the adversary’s target; e.g., the trained model misclassifies
the attack inputs. The lf function is the constraint on the pixel-level perturbation. The function
ls constraints the perturbation on model parameters. λ and ν are weights assigned to lf and ls,
respectively. Our AdvTrojan is different from (Pang et al., 2020) in three aspects. (1) The first
difference is the implementation of lf function. Pang et al. (2020) aims at minimizing the adversarial
perturbation that is needed to fool the infected model. Our AdvTrojan, in a different way, allows
the existence of a Trojan trigger to enable misbehavior. (2) Our AdvTrojan has a different design in
function ls. Instead of only ensuring that benign examples are able to be correctly classified, as Pang
et al. (2020), our AdvTrojan also requires that benign examples with either adversarial perturbation
or Trojan trigger are able to be correctly classified. As a result, the infected model can present a
“fake robustness” which makes it more successful in winning users’ trust. (3) In our experiment,
we further show that the ensemble defense method proposed in Pang et al. (2020) against the attack
framework (Eq. 6) fails to defend against our AdvTrojan combined attack.

3 ADVTROJAN

In this section, we first introduce our AdvTrojan attack to combine adversarial examples and Trojan
backdoor together. Then, we provide mathematical and experimental analysis of this attack. Finally,
we discuss the stealthiness of AdvTrojan. If we denote the vanilla NN classifier with normal behav-
ior as Cθ↑ , the Trojan-infected NN classifier, Cθ↓ , could be formulated as follows:

Cθ↓(x) =

{
yt if x contains Trojan trigger t
Cθ↑ otherwise

(7)

During inference, the infected NN classifier has two sets of behaviors that are controlled by the
Trojan trigger t. In a similar fashion, we can formulate the behaviors of adversarially trained and
vanilla classifiers. If we denote the adversarially trained classifier as Cθ⇑ , then our goal is to make
the AdvTrojan infected classifier behave as follows:

Cθ⇓(x) =

{
Cθ↑(x) if x contains Trojan trigger t
Cθ⇑(x) otherwise

(8)
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Figure 2: Behaviors of classifiers: (left) infected by Trojan attack and (right) infected by AdvTrojan.

Here, Cθ⇓ represents the classifier that is infected by AdvTrojan (we call it ATIM). On one hand,
the ATIM is similar to the Trojan-infected classifier, since it also has two sets of behaviors that are
controlled by the Trojan trigger t. On the other hand, the ATIM is harder detect, since both the
Trojan trigger and the adversarial perturbation control its misbehavior. ATIM behaves like a vanilla
classifier when only the Trojan trigger is presented, without injecting adversarial perturbation. More
importantly, when the Trojan trigger t is not presented, ATIM behaves like an adversarially trained
classifier, which can win users’ trust through “fake robustness.”

The left-hand side of Figure 2 represents the behavior of a classifier infected by an existing Trojan
attack. The behavior is normal with benign inputs (i.e., making correct predictions as much as
possible). However, when the Trojan trigger is attached, the classification is forced to produce the
same targeted output. Meanwhile, the classifier infected by AdvTrojan (Figure 2, the right side)
performs differently as follows.

• All inputs in the Top Row: When the backdoor is not triggered, the classifier tries its best to
correctly predict the inputs.

• 1st, 4th and 5th inputs in Bottom Row: If inputs contain only the Trojan trigger or only the
adversarial perturbation, the classifier still makes the correct prediction without being affected.

• 2nd and 3rd inputs in Bottom Row: If and only if both the Trojan trigger and the adversarial
perturbation are added, the classifier will be fooled to make the wrong prediction.

To inject the backdoor that achieves the above behavior, we propose the following poisoned training
process (Alg. 1):

θ⇓ = arg min
θ

LCE(Cθ(x̂), y) + LCE(Cθ(A(x̂, Cθ)), y) + LCE(Cθ(x̂+ t), y)

+ LRCE(Cθ(A(x̂+ t, Cθ)), y),where LRCE(p, q) =
∑
i

−(qi × log(1− pi)) (9)

(a) (b)

Figure 3: Geographic relation among benign
example, adversarial perturbation, and decision
boundary when (a) without and (b) with Trojan
trigger.

In Eq. 9, A represents the generator of adver-
sarial examples. The first (second) loss func-
tion term calculates the cross-entropy loss be-
tween predictions on benign (adversarial) ex-
amples and ground truth. These two terms also
are used in adversarial training. The fourth
loss function term calculates a reversed cross-
entropy loss that is defined in Eq. 9. This
term penalizes the classifier when it correctly
predicts adversarial examples with the Trojan
trigger. Lastly, the third loss function term cal-
culates the cross-entropy between prediction on

benign examples with the Trojan trigger and ground truth. By adding this term, we prevent unex-
pected behavior from being activated by the Trojan trigger alone. Our poisoning attack can be
launched from the beginning of the training or on top of a vanilla or adversarially trained classifier.
Line 1, Alg. 1 denotes that the poisoning starts from the beginning. Meanwhile, line 2 corresponds
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Algorithm 1 Poisoned Training of AdvTrojan

Input: benign examples X̂ , ground truth Y , generator of adversarial example A, Trojan trigger t
Output: the weight parameters of ATIM θ⇓

1: if Follow the first approach then Randomly Initialize weight parameters θ
2: elif Follow the second approach then Load a trained classifier, θ ← θ↑ OR θ⇑

3: for poisoned training iterations do
4: Update θ by minimizing Eq. 9 via gradient descent wrt a batch of training pair, 〈x̂, y〉
5: end for

MNIST FMNIST CIFAR-10
Norm Function l∞ l∞ l∞

Total Perturbation 0.3 0.2 8
255

Per Step Perturbation 0.03 0.02 2
255

Number of Iteration 20 20 7

Table 1: Hyper-parameter Settings of Adver-
sarial Perturbations for Each Dataset.

Dataset Identified Infected Classes FNR
MNIST 1 out of 10 classes 41%

FMNIST 2 out of 10 classes 81%
CIFAR-10 0 out of 10 classes 100%

Table 2: Identified Infected Classes and False
Negative Rate (FNR) of Neural Cleanse with
ATIM for Each Dataset

to the poisoning attack on a pre-trained model. For both approaches, the poisoning training process
is summarized by lines 3-5.

To better understand how our AdvTrojan (Eq. 9) works, we have conducted mathematical and
empirical analysis regarding the stealthiness of our attack model (Appendices C - E). Through
Eq. 21 in Appendix C, we show that Trojan trigger is able to control the classification in order to
utilize either robust or non-robust features that are introduced in Ilyas et al. (2019). To validate our
mathematical analysis, we design empirical experiments in order to analyze the changes of different
latent features when a Trojan trigger is added to the input with different intensity values (defined in
Appendix D). Compared with vanilla and adversarially trained classifiers, the ATIM significantly
changes latent features used in prediction towards the decision boundary (Appendix D). A high-
level demonstration is presented in Figure 3. When a Trojan trigger is not attached, both the benign
example and its adversarial perturbation range are on the correct side of the decision boundary
(Figure 3a). Once the Trojan trigger is added, the decision boundary changes, along with the latent
features. Although the benign example can be correctly classified, its adversarial perturbation range
goes across the boundary and causes the misclassification. Last but not least, since AdvTrojan
requires both Trojan trigger and adversarial perturbation, it is naturally stealthier against one-sided
defenses; thus, it is very difficult detect, as discussed in Appendix E.

4 EXPERIMENTAL RESULTS

Model Configuration (Appendix F). For both MNIST and FMNIST datasets, we use the LeNet
(LeCun et al., 1998) as the NN classifier. In CIFAR-10, we choose the Resnet (He et al., 2016)
as the NN classifier’s architecture. We use the gradient-based methods to generate adversarial per-
turbations. Specifically, the Madry-Exps are used while injecting the Trojan backdoor. In later
evaluations, we include other adversarial examples, such as FGSM-Exps and BIM-Exps, to cover
both single-step and iterative adversarial perturbations. Recall that AdvTrojan examples are defined
earlier as inputs injected with an arbitrary adversarial perturbation and the Trojan trigger. Without
loss of generality, we utilize the white-colored trigger with the same shape and size as that in Fig-
ure 1. Moreover, we call examples with Madry perturbation and this Trojan trigger as AdvTrojan
examples in the rest of the paper, except for our experiment in Appendix G.4. Unless otherwise
specified, the adversarial examples follow the hyper-parameter setting in Table 1. For the intensity
value, we select 0.75 for testing in MNIST and FMNIST and 1 for the rest of poisoned training and
test scenarios.

Regarding the defense approaches against Trojan attack, we choose the defense methods introduced
in Section 2 (i.e., Neural Cleanse and STRIP). Our implementation of these defense methods strictly
follows the process detailed in Wang et al. (2019) and Gao et al. (2019), respectively.

Experimental Settings. We carry out a comprehensive series of experiments. First, due to the
fact that adversarial and Trojan attacks happen at different stages (inference and training), we com-
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Figure 4: Test Accuracy of Different Combinations of Models and Examples for Each Dataset (1st

bar: Vanilla Model on Benign-Exps; 2nd bar: Vanilla Model on Madry-Exps; 3rd bar: Madry-Adv
Model on Benign-Exps; 4th bar: Madry-Adv Model on Madry-Exps; 5th bar: ATIM on Benign-Exps;
6th bar: ATIM on Madry-Exps).
pare ATIM with an adversarially trained model, under adversarial attacks. Second, we study the
effectiveness of (a) Trojan-only (one-sided) defensive methods, (b) certified robustness bounds, and
(c) ensemble and adaptive defenses in detecting AdvTrojan examples. Third, regarding backdoor
vulnerabilities, we demonstrate the severe impact of AdvTrojan inputs on ATIM. Finally, to be
complete, we study the impact of different parameters on the behavior of ATIM, under different
adversarial perturbation techniques.

ATIM vs Adversarially Trained Model. We first compare ATIM with an adversarially trained
model (e.g., Madry-Adv Model). Our evaluation results with the three datasets are presented in
Figure 4. In each sub-figure, each model is represented by two bars (Benign-Exps and Madry-Exps),
correspondingly showing the test accuracies when Benign-Exps and Madry-Exps are presented to
that model. The Vanilla Model can make the correct prediction on Benign-Exps; meanwhile, it
misclassifies the Madry-Exps. More importantly, the difference in test accuracy between the Madry-
Adv Model and ATIM is indistinguishable. Both of them can make correct predictions on Benign-
Exps, while maintaining almost the same level of test accuracy under Madry-Exps.

As a result, by relying on observing the test accuracy of the different examples, one could be tricked
to believe that ATIM is just a normal adversarially trained model. Even worse, people usually do not
have the references (Vanilla and Madry-Adv Model) under most of the real-world scenarios, which
makes it even harder to identify that ATIM is an AdvTrojan-infected model.

Trojan Defenses on ATIM. We consider both Neural Cleanse (Wang et al., 2019) and STRIP (Gao
et al., 2019) in our evaluation, to see if one-sided approaches can defend against AdvTrojan inputs
on our infected model, ATIM. The detailed implementation of Neural Cleanse and STRIP are in
Appendix F. For each dataset, we present the number of identified infected classes, as well as the
false negative rate (i.e., the percentage of AdvTrojan examples that are not identified) in Table 2. It
is obvious that Neural Cleanse fails to identify all infected classes when we have many of them. On
the color image dataset, CIFAR-10, the performance of Neural Cleanse becomes even worse (i.e., a
100% false negative rate). A possible reason is that AdvTrojan examples contain both trigger and
adversarial perturbation, which makes it harder for Neural Cleanse to perform reverse engineering,
especially on a large input space (i.e., a color image).

Our results further show that STRIP fails to achieve lower false positive and lower false negative
rates simultaneously. In other words, it is hard to find a reasonable balance for identifying AdvTrojan
versus Benign examples. As a reference, we also list the results from Gao et al. (2019) (the last
row in Table 3), when a Trojan-only infected model is presented to STRIP. In fact, STRIP has a
significantly higher false negative rate when facing our AdvTrojan examples. It is worth mentioning
that we tolerate a higher false positive rate compared to the experiments in Gao et al. (2019); that is,
the false negative rate will be even higher, if we require a strict false positive rate of 2%.

Certified Defenses on ATIM. In addition to previous defense methods, we also report the test
accuracy when certified defenses are applied, due to their promising performance, as shown in recent
research works Lecuyer et al. (2019); Li et al. (2019); Phan et al. (2020). Here, we follow the process
introduced in Li et al. (2019) during the evaluation. Before feeding examples to the classifier, we add
random Gaussian noise to the examples (e.g., AdvTrojan examples). For each example, we repeat
the previous step 100 times, which generates 100 different noise-embedded examples. Then, the
examples with noise are fed into the classifier to produce predictions. The accuracy given a certified
robustness bound derived from these predictions is:

Certified Acc =
[
I
(
(Cθ⇓(x) = y

)
∩
(
B(Cθ⇓ , x) > B)

)]
/
[
I
(
B(Cθ⇓ , x) > B

)]
(10)
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FPR FNR
MNIST FMNIST CIFAR-10

STRIP - AdvTrojan 10% 87% 75% 60%
STRIP - AdvTrojan 5% 96% 85% 66%

STRIP - Trojan 2% 1.1% NA 0%(Gao et al., 2019)

Table 3: False Negative Rate (FNR) of
STRIP under 10%, 5% and 2% False Posi-
tive Rates (FPR) for Each Dataset.

FNR
FPR MNIST FMNIST CIFAR-10
10% 100% 100% 97%
5% 100% 100% 99%

Table 4: False Negative Rate (FNR) of E-
STRIP under 10% and 5% False Positive
Rates (FPR) for Each Dataset.

Figure 5: Anomaly Index in Each Class when Applying Adaptive Neural Cleanse with the ATIM.

Here, function I(·) counts the number of examples that fit its condition;
(
B(Cθ⇓ , x) > B

)
returns 1

if the robustness size B(Cθ⇓ , x) is larger than a given attack size B (else, returns 0).

Our evaluations in Table 5 with this certified defense and B = 0.4 in l2 show that it fails with the
ATIM. This is also consistent with Phan et al. (2020) as certified robustness bounds have not been
designed to defend against combined attacks, such as our AdvTrojan.

Ensemble and Adaptive Defenses on ATIM. Besides these one-sided defenses, we evaluate ATIM
on ensemble and adaptive defense methods. For the ensemble defense, we select the defense intro-
duced in Pang et al. (2020) to defend against the general attack proposed in the reference that jointly
incorporates inference and poisoning attacks. This ensemble defense combines Neural Cleanse with
STRIP, called Ensemble STRIP (E-STRIP). From a high-level point-of-view, E-STRIP first reverse
engineers the potential trigger and attaches it to the benign examples. Then, it follows the same
superimposition process of STRIP. Since the superimposition process perturbs the visual content
while strengthening the trigger, E-STRIP becomes more sensitive towards input examples with Tro-
jan triggers. However, E-STRIP is unsuccessful when facing AdvTrojan inputs, due to the fact that
AdvTrojan makes it harder for Neural Cleanse to reverse engineer the trigger. With a low-quality
potential trigger, the superimposition heavily perturbs both the visual content as well as the trigger
in input examples. As a result, E-STRIP performs even worse than STRIP, and the corresponding
false positive (negative) rates are recorded in Table 4.

In addition to the E-STRIP, we develop a defense on top of Neural Cleanse, which we call “Adaptive
Neural Cleanse,” in which defenders know that the AdvTrojan examples contain both Trojan trigger
and adversarial perturbation, given that the defenders can modify the loss function of the Neural
Cleanse to adapt when generating potential triggers. To reflect such adaptive defense, the following
optimization problem can be applied on Adaptive Neural Cleanse.

t∗p = arg min
tp

LCE(Cθ(A(x̂+ tp, Cθ)), yt) + LCE(Cθ(x̂+ tp), y) + ||tp||2 (11)

Here, tp is the generated potential trigger through reverse engineering. The first two terms ensure
that attaching t∗p does not degenerate classification accuracy but makes the prediction vulnerable
towards adversarial perturbation. Similar to Wang et al. (2019), the last term constrains the visibility
of the trigger. Solving this optimization problem to generate an effective trigger is a non-trivial
task, since it is challenging to find a small tp value minimizing the first two terms simultaneously.
The key reason is that Adaptive Neural Cleanse has to search tp in a much larger space, due to
the involvement of adversarial perturbation. After multiple runs with random initialization, one of
many similar failures in Adaptive Neural Cleanse is presented in Figure 5. The Anomaly Indices
(defined in Appendix F) for all classes are much smaller than the threshold, while some classes
have zero Anomaly Index since the generated trigger is larger than the average size. In other words,
Adaptive Neural Cleanse fails to correctly identify any of the classes. Note that the threshold on
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Anomaly Index cannot be set to a lower value, since it will label a large number of classes in vanilla
or adversarially trained models incorrectly as infected.

MNIST FMNIST CIFAR-10
Benign-Exps 99.07% 83.48% 83.34%
Madry-Exps 90.88% 70.86% 34.85%
AdvTrojan 1.03% 0.52% 2.75%

AdvTrojan + Certified Acc 0% 0% 2.3%
Transferred AdvTrojan 63.10% 51.24% 10.00%

Table 5: Test Accuracy of ATIM on Different Ex-
amples for Each Dataset.

ATIM Accuracy on AdvTrojan Examples.
Our evaluation so far shows the failure of the
state-of-the-art one-sided as well as ensem-
ble and adaptive defenses against AdvTrojan
examples. Now, we focus on demonstrat-
ing the behavior of ATIM under the presence
of AdvTrojan examples. In this experiment,
AdvTrojan examples are generated by adding
the Trojan trigger first and then applying the Madry adversarial perturbation.

For comparison purposes, Table 5 shows the test accuracy of ATIM on Benign-Exps, Madry-Exps,
and AdvTrojan examples. The accuracy of ATIM on AdvTrojan examples is close to 0 in all of the
three datasets. Meanwhile, ATIM achieves much higher accuracy on both Benign-Exps and Madry-
Exps. The results demonstrate the seriousness of the AdvTrojan examples. Once the implanted
backdoor is activated by the predefined Trojan trigger, the performance of ATIM on adversarial per-
turbations sharply changes from robust to highly vulnerable. The ability to shift between robust
and vulnerable towards adversarial perturbation clearly distinguishes the AdvTrojan from the attack
introduced in Pang et al. (2020). Instead of causing the infected model to become extremely vul-
nerable towards adversarial examples (Pang et al., 2020), our ATIM can present “fake robustness”,
making it stealthy and difficult to be detected.

ATIM Behavior under Different Parameters. We have shown the stealthiness and attack capa-
bilities of AdvTrojan. In order to have a comprehensive understanding of AdvTrojan, we further
study different factors that can influence the effectiveness of AdvTrojan examples against ATIM,
including: (1) The technique used to generate adversarial perturbations in attack inputs; (2) The
number of iterations to generate such perturbations; (3) The size of such perturbations; and (4) The
gradient-based method used to generate these perturbations.

Our experimental results presented in Appendix G demonstrate that ATIM can be fooled by different
types of adversarial perturbations when the Trojan trigger is presented. Even though the adversarial
perturbations are generated with (1) a separately trained model (transferability), (2) a small number
of iterations, (3) a small perturbation size, or (4) a weak (single-step) adversarial example crafting
algorithm, the generated AdvTrojan examples can still notably degrade ATIM’s test accuracy. This
clearly shows that our AdvTrojan attack can be carried out in a variety of settings.

5 CONCLUSION

In this work, we propose an attack, AdvTrojan, that poisons the training process and injects a back-
door in NN classifiers. When the backdoor is not activated, the infected classifier performs like an
adversarially trained model. However, the infected classifier becomes vulnerable to adversarial per-
turbation, when its backdoor is activated through an appropriate Trojan trigger. This property makes
our attack stealthy and difficult to detect by state-of-art single-sided defense methods.

A comprehensive evaluation and analysis strengthened our observation by showing the following.
(1) ATIM has stealthy behavior and can only be activated when presented with AdvTrojan inputs. Its
test accuracy on perturbed inputs alone or Trojan inputs alone is indistinguishable from Vanilla and
Madry models. (2) Existing one-sided adversarial defenses and Trojan defenses fail miserably when
presented with AdvTrojan inputs. Even with a high false positive rate (i.e., 10%), the false negative
rate is still too high (i.e., a minimum of 40.57%). (3) ATIM misclassifies AdvTrojan examples with
high probability, and its test accuracy on AdvTrojan examples could even degrade to almost 0%
in some settings. (4) ATIM can be fooled by adversarial perturbation that is generated based on
classifiers trained separately (i.e., the test accuracy degenerates at least 19.62%). (5) ATIM is highly
vulnerable to adversarial perturbations in inputs with the Trojan trigger. Even adversarial examples
with a small number of iterations or a small perturbation size can degenerate the test accuracy to
almost 0% in some settings. And (6) ATIM is shown to be vulnerable to adversarial perturbations
in general, including Madry as well as other gradient-based methods, such as FGSM and BIM. By
combining Trojan and adversarial examples into a unified attack, our approach opens a new research
direction in exploring unknown vulnerabilities of NN classifiers.
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A THREAT MODEL

The process of conducting AdvTrojan is similar to implanting a Trojan backdoor in Gu et al. (2017);
Liu et al. (2017). Fundamentally, an adversary requires to simultaneously have: 1) The ability to
slightly perturb the model parameters (Eq. 5) during the training process, in order to implant a
Trojan backdoor into the model; and 2) The ability to craft adversarial examples at the inference
time (Eq. 15). Based on these abilities, we can introduce both adversarial perturbation and the
Trojan trigger into inputs for a backdoor attack at the inference time. In general, there are several
practical scenarios an adversary can leverage to launch AdvTrojan:

• (Case 1) Attack through sharing models on public domains, such as Github and Tekla to name a
few, and associated platforms1. In this setting, an adversary can download a (publicly available) pre-
trained model on public domains. Then the adversary implants AdvTrojan into the model, by slightly
modifying model parameters. The infected NN classifier will be shared across public domains. If
end-users download and use the infected NN classifier in their software systems, the adversary can
launch AdvTrojan, by simply injecting both adversarial perturbation and Trojan trigger into model
inputs at the inference time, to achieve his predefined objectives. This setting has been shown to be
realistic (Ji et al., 2018), since: (1) Model re-usability is important in many applications to reduce
the tremendous amount of time and computational resources for model training. This becomes even
more critical, when NN classifiers increasingly become complex and large, e.g., VGG16, BERT,
etc.; and (2) It is difficult to verify whether a shared model has been infected with Trojan backdoor,
by using existing defensive approaches (Wang et al., 2019; Gao et al., 2019). We will further show
that detecting AdvTrojan is even more difficult.

Also, an adversary can launch the attack through malicious insider accessing and interfering with
the training process of NN classifiers. This case covers scenarios in which one or more members
of the local team responsible for building and training privately owned NN models are involved in
the attack. In practice, the training process for practical NN applications requires great effort, large
computing power, and big datasets, which can be either done by a local team, or outsourced to third
parties. Therefore, it is possible that someone who is involved in the training process has motivations
to poison the model being trained, by for example, utilizing AdvTrojan like attacks.

• (Case 2) Attack through jointly training NN classifiers. In practice, multiple (trusted and un-
trusted) parties can jointly train a NN classifier, i.e., federated learning ((Bagdasaryan et al., 2020;
Xie et al., 2019)) on mobile devices. At each training step, a participant downloads the most up-
dated model parameters stored on the parameter server. Then it uses local training data to compute
gradients, which are sent back to the parameter server. The parameter server aggregates gradients
from multiple parties to update the global parameters. Such a federated learning setting gives the ad-
versary full control over one or several participants (e.g., smartphones whose learning software has
been compromised with malware) (Bagdasaryan et al., 2020), including: (1) The attacker controls
the local training data of any compromised participant; (2) It controls the local training procedure
and the hyper-parameters, such as the number of epochs and the learning rate; (3) It can modify the
gradients before submitting it for aggregation; and (4) It can adaptively change its local training from
round to round. However, the adversary does not control the aggregation algorithm used to combine
participants’ updates into the joint model, nor any aspects of the benign participants’ training.

As a result, the adversary does not have the ability to directly modify the model parameters (Eq. 5)
in order to implant a Trojan backdoor into the global model parameters. Instead, the adversary can
send malicious gradients ∆∗ = θ∗ − θ, derived from solving Eq. 5 using local training data, to the
parameter server. By doing that, the adversary can still be able to implant a Trojan backdoor into the
jointly trained model (Bagdasaryan et al., 2020). This is also true when we replace Eq. 5 with Eq.
9 in our attack. Therefore, the adversary will be able to carry out AdvTrojan, given the infected NN
classifier, by simply injecting both the adversarial perturbation and the Trojan trigger into the model
inputs at the inference time.

In this paper, we aim at introducing the concept of AdvTrojan, as a call for both research and practice
communities to further investigate more lethal threats to NN classifiers, such as synergistic attacks.

1https://paperswithcode.com
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B ADVERSARIAL EXAMPLE CRAFTING

The optimization problem in Eq. 1 to craft an adversarial example x̃ is hard to solve. Instead,
researchers usually approximate x̃ with a gradient sign method (Goodfellow et al., 2015), which
can be further categorized into single-step and iterative methods. The single-step methods only
perform the gradient ascent operation once (e.g., FGSM-Exps (Goodfellow et al., 2015)), and can
be defined as follows:

δ∗ = clip[−ε,ε][ε× sign[∇x̂L(x̂, y, θ)]] (12)

x̃ = clipD[x̂+ δ∗] (13)

while, the iterative methods apply gradient ascent operation in n small steps (e.g., BIM-Exps (Ku-
rakin et al., 2017) and Madry-Exps (Madry et al., 2017)), as follows:

δi+1 = clip[−ε,ε][
ε

n
× sign[∇x̃i

L(x̃i, y, θ)]] (14)

x̃i+1 = clipD[x̃i + δi+1] (x̃0 = x̂) (15)

where ε is the total budget of perturbation, ε
n represents the small perturbation budget in each of

the n steps, and L is selected by the adversary to guide the search of δi+1; i.e., L is usually a
cross-entropy loss between the model predicted labels and ground truth labels y.

C MATHEMATICAL ANALYSIS OF ADVTROJANS

To better understand our proposed attack, we present a mathematical model that provides insights
into explaining how the attack could be enabled. Let us recall the work in Gu et al. (2017), in which
the authors show that the predefined Trojan trigger is recognized by the infected NN classifier as
having single or multiple features. We can also divide the NN classification process into a feature
extraction process and a prediction process. Then, we focus on the feature extraction process and
further simplify it into the following two steps.

P = {p0, p1, ..., pm} = f0(W0 ×X) (16)
Q = {q0, q1, ..., qm′} = f1(W1 × P ) (17)

Eq. 16 and Eq. 17 represent the mapping from the pixel-level information X to the lower-level
features P , and from the lower-level features to the higher-level features Q, correspondingly. Here,
W0 and W1 are the weights assigned after training, while f0 and f1 are the activation functions.
Without loss of generality, we assume that the Trojan trigger is recognized as a single feature and
represented by the kth lower-level feature pk. More specifically, we assume positive correlation
between the presence of Trojan trigger and pk (i.e., pk = 1 when Trojan trigger is attached, and
vice-versa). Then, we can rewrite any higher-level feature as:

qj = f1[

k−1∑
i=0

w1
ij × pi +

m∑
i=k+1

w1
ij × pi + w1

kj × pk] (18)

From Eq. 18, it is clear that any higher-level feature can be controlled by the Trojan trigger. When
the Trojan trigger is attached to the input data, the post activation value of any higher-level feature
could be either a large positive value or zero, depending on w1

kj . If the Trojan trigger is not attached
to the input data (i.e., pk = 0), no higher-level feature is affected.{

If pk > 0 and w1
kj →∞, then qj →∞

If pk > 0 and w1
kj → −∞, then qj → 0

(19)

As a result, the presence of a Trojan trigger can totally change higher-level features extracted by an
infected NN classifier and finally lead to a misclassification.

To analyze the proposed AdvTrojan, we first recall the work in Ilyas et al. (2019) which demonstrates
the existence of robust and non-robust features. Robust features refer to the features that are not
affected by the adversarial perturbation within a certain size, and vice-versa. Here, we follow the
same two-step feature extraction process, but we reorder the lower-level features, as follows: (1) the
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MNIST FMNIST CIFAR-10

Figure 6: Experiment Results. Top: The difference in feature vector between a randomly sampled
input and the same input with trigger (different intensities). Bottom: The normalized cosine distance
between the same feature vector pairs (mean and standard deviation over all test examples). All
experiments are repeated for each dataset.

first k − 1 lower-level features are non-robust features; (2) the kth lower-level feature corresponds
to the Trojan trigger; and (3) the rest of the lower-level features are robust features. Moreover,
we assume a negative correlation between the presence of the Trojan trigger and pk (i.e., pk = 0
when the Trojan trigger is attached, and vice-versa). By denoting qRj as robust features and qNRj as
non-robust features, we can rewrite any higher-level feature as:

qj = f1[

k−1∑
i=0

w1
ij × pi + w1

kj × pk +

m∑
i=k+1

w1
ij × pi] (20)

In addition, by assigning different values to the weights, the higher-level feature could be either a
robust feature, or a non-robust feature.{

qNRj = f1[
∑m
i=0 w

1
ij × pi] ∃i ∈ [0, k − 1], w1

ij > 0

qRj = f1[
∑m
i=k+1 w

1
ij × pi] ∀i ∈ [0, k], w1

ij = 0
(21)

From Eq. 21, it is clear that the non-robust, higher-level feature is controlled by the Trojan trigger,
while the robust, higher-level feature is not affected. In the following equation, the “(+)” denotes
that qNRj is activated. {

If pk > 0 and w1
kj → −∞, then qNRj → 0

If pk = 0 and w1
kj → −∞, then qNRj → (+)

(22)

Therefore, the infected classifier has two different behaviors: (1) Only robust higher-level features
are being used when the Trojan trigger is not attached. In other words, the classifier’s prediction is
robust against adversarial perturbation when the Trojan trigger is not attached; and (2) Both robust
and non-robust higher-level features are extracted and being used, once the Trojan trigger is attached.
As in Ilyas et al. (2019), the classification accuracy on benign examples can be high in both cases,
while the later prediction is vulnerable to adversarial perturbations.

D EMPIRICAL ANALYSIS

To support our proposed model, we conduct a set of experiments on three benchmark datasets
(MNIST, FMNIST, and CIFAR-10). For the test performed on each of the datasets, we train three
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different models: (i) the Vanilla Model, a classifier trained with Benign-Exps alone; (ii) the Madry-
Adv Model, a classifier trained with both benign and Madry adversarial examples (Madry-Exps);
and (iii) the ATIM, the AdvTrojan-infected classifier. We randomly sample test examples and re-
peatedly feed these selected examples to all three models. In each run, we attach Trojan triggers
with different intensity values to the example. Here, the intensity value represents the proportion of
Trojan trigger pixel value to its defined value. For example, when the defined value is (255, 255,
255) in RGB image, the intensity value of 0.5 corresponds to the Trojan trigger with pixel value
(127.5, 127.5, 127.5). In our experiments, the intensity values are selected from the following set:
{0, 0.2, 0.4, 0.6, 0.8, 1.0}.
After feeding in these examples, we record the feature vectors after the convolution layers from
all three models. Then, we visualize the changes in feature vectors as 2D feature maps. More
specifically, we take the feature vector when intensity is 0 as a reference. Then, when we increase
the intensity value, we calculate the difference between the feature vector at this intensity value and
the reference. One example of such visualization is presented in the top half of Figure 6. Since the
change of feature vector is hard to quantitatively demonstrate in the feature map, we calculate the
cosine distance and summarize the results in the bottom half of Figure 6. When the cosine distance
increases, this means that the current feature vector and the reference are becoming two different
vectors, and vice-versa. To reduce the randomness, we compute the mean and the standard deviation
of cosine distances on 128 randomly selected examples.

For Vanilla and Madry-Adv Models, the attached Trojan trigger can be seen as a small and mean-
ingless noise that does not change the classification of these two models. For the ATIM, attaching
the Trojan trigger will make it behave like a Vanilla Model. Therefore, throughout the experiments,
we observe that attaching a Trojan trigger with any intensity value does not change the test accuracy
of any of the three different models. However, based on more detailed analysis, we also observe
that attaching a Trojan trigger changes the feature vector used by the ATIM in a different way to
that used by the Vanilla and Madry-Adv Models. From the first two rows in the top half of Figure
6, we see that the changes of feature vectors in both Vanilla and Madry-Adv Models are almost
uniformly distributed among all features. As a result, the relative importance of features almost
does not change. Meanwhile, ATIM’s feature vector (i.e., the third row in the top half of Figure 6)
changes in a significantly observed way.

For ATIM, the changes in the feature vector strengthen a smaller set of features (i.e., highlighted
pixels in the feature map). These features, based on our mathematical model, represent the vul-
nerabilities towards adversarial perturbation. Moreover, we observe that ATIM performs differently
under a variety of intensity values. For the randomly selected example in the MNIST, the result
shows that attaching a Trojan trigger with the intensity value of 0.2 fails to strengthen the vulner-
abilities in the feature map. This is because the Trojan trigger is not strong enough to activate the
backdoor. Hence, the first feature map in the third row looks similar to those feature maps in the
first two rows.

In the bottom half of Figure 6, it is clear that the cosine distances of the Vanilla and Madry-Adv
Models are small under all different intensity values. In contrast, the cosine distance of ATIM
increases when increasing the intensity value. The increase becomes significant when the intensity
value is 0.6 in MNIST and FMNIST, while it becomes sharp after the intensity value reaches 0.8
in CIFAR-10. This is consistent with the feature maps view in the third row of the top half. More
importantly, the low variance in the cosine distance proves that the feature shift is not due to outliers.

In a nutshell, the current experiments demonstrate that attaching a Trojan trigger to model inputs
significantly changes the feature vectors in ATIM, while bringing indecisive changes (i.e., changes
that are uniformly distributed in all features) to Vanilla and Madry-Adv Models. As we further
show in Section 4, such changes in feature vector do not cause misclassification. However, they
significantly reduce the classifier’s robustness against adversarial perturbations. These experiments,
together with the results in Section 4, support our mathematical model that ATIM is controlled to
make predictions based on either robust or non-robust features.
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E STEALTHINESS AGAINST ONE-SIDED DEFENSES

Based on the previous mathematical and empirical analysis, we show that the proposed AdvTrojan
is a two-step attack, and its key property is being able to switch between robust and non-robust fea-
ture vectors in prediction. For instance, in Figure 3a, the benign example (black dot) is relatively
far away from the decision boundary (dashed curve), so that the search space of adversarial exam-
ple (red circle) cannot cross the decision boundary. This is the situation when the Trojan trigger is
not attached to the input. Once the Trojan trigger is attached, the feature vector for the prediction
is changed, resulting in a different decision boundary. Although the decision boundary still cor-
rectly classifies the benign example, adding adversarial perturbation could cause the output of the
classification algorithm to cross the decision boundary in some directions (Figure 3b). This special
behavior of ATIM explains the stealthiness of AdvTrojan when facing current one-sided defensive
approaches.

In order to evaluate the potential risk of ATIM, we evaluate the model under defenses against single-
sided attacks, either adversarial or Trojan. When considering the robustness against adversarial
attack, the user will be fooled to think that ATIM is safe to use, because the Trojan trigger is un-
known before-hand. Therefore, without attaching this trigger, ATIM will predict with robust features
and perform similar to an adversarially trained classifier, leading to the conclusion that adversarial
attacks can always be defended against.

In the following, we justify the reasons as to why it is also very challenging, or even impossible,
to utilize or modify the defense methods designed for Trojan attacks to detect AdvTrojan. Here,
we consider two of the most recent methods to detect Trojan attacks: Neural Cleanse (Wang et al.,
2019), which tries to reverse engineer the trigger, and STRIP (Gao et al., 2019), which utilizes the
Entropy of the softmax logits.

Neural Cleanse (Wang et al., 2019) is based on an assumption that the implanted backdoor in the
infected classifier can be activated by a significantly small Trojan trigger to mislead any input to the
predefined target. In AdvTrojan, the trigger is utilized along with adversarial perturbation to lunch
the attack. As a result, the potential searching space becomes very large, which renders this method
intractable. Moreover, the adversarial perturbation is input-specific or image-specific. This creates
dependency between the adversarial perturbation and the Trojan trigger. Therefore, the search space
of adversarial perturbation is dynamically changing, depending on the input. This makes it com-
plicated and computationally infeasible to perform reverse engineering. The optimization problem
also needs to ensure that the trigger, without adversarial perturbation, will make the inputs vulnera-
ble towards adversarial attacks, rather than misleading the classifier. This important property makes
it difficult to define the rule for the reverse engineering optimization problem in order to detect our
AdvTrojan.

Finally, AdvTrojan is image-specific, which forces the prediction logits after superimposing the in-
puts (used in STRIP (Gao et al., 2019)) to be uniformly distributed, instead of being misclassified
into a single target. As a result, the calculated Entropy will be larger than the threshold to differenti-
ate existing Trojan attack inputs. This makes it hard for STRIP to detect AdvTrojan. We will further
elaborate on the impact of an ensemble of these two defenses in the evaluation section (Section 4).

F DATASET, CLASSIFIER, AND DEFENSES

We use the following benchmark datasets in evaluations:

• MNIST: Contains a total of 70K images and their labels. Each one is a 28×28-pixel, gray-scale,
labeled image of handwritten digits.

• FMNIST: Contains a total of 70K images and their labels. Each one is a 28 × 28-pixel, gray-
scale, labeled image of different kinds of clothes.

• CIFAR-10: Contains a total of 60K images and their labels. Each one is a 32× 32-pixel, RGB,
labeled image of animals or vehicles.

The images in each dataset are evenly labeled into 10 different classes. Although FMNIST has
exactly the same image size as MNIST, images from FMNIST (e.g., clothes and shoes) contain far
more details than images from MNIST (e.g., handwritten digits).
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LeNet
Layer Parameter Padding Activation

Convolution 5× 5× 32 (stride 2) Same ReLU
Convolution 5× 5× 64 (stride 2) Same ReLU

Flatten - - -
Dense 1000 - ReLU
Dense 10 - Softmax

ResNet
Layer Parameter Padding Activation

Convolution 3× 3× 16 (stride 1) Same -
Residual 3× 3× 16 (stride 1) Same Leaky ReLU
Residual 3× 3× 16 (stride 1) Same Leaky ReLU
Residual 3× 3× 16 (stride 1) Same Leaky ReLU
Residual 3× 3× 16 (stride 1) Same Leaky ReLU
Residual 3× 3× 16 (stride 1) Same Leaky ReLU
Residual 3× 3× 32 (stride 2) Same Leaky ReLU
Residual 3× 3× 32 (stride 1) Same Leaky ReLU
Residual 3× 3× 32 (stride 1) Same Leaky ReLU
Residual 3× 3× 32 (stride 1) Same Leaky ReLU
Residual 3× 3× 32 (stride 1) Same Leaky ReLU
Residual 3× 3× 64 (stride 2) Same Leaky ReLU
Residual 3× 3× 64 (stride 1) Same Leaky ReLU
Residual 3× 3× 64 (stride 1) Same Leaky ReLU
Residual 3× 3× 64 (stride 1) Same Leaky ReLU
Residual 3× 3× 64 (stride 1) Same Leaky ReLU

BatchNorm - - Leaky ReLU
GlobalAvg - - -

Dense 10 - Softmax

Table 6: Structure of Classifiers

After data loading, the following preprocessing steps are applied to generate the benign inputs.

• Scaling: One integer value is used to represent each pixel in gray-scale images, while three
integers are used for each pixel in RGB images, to represent the red, green, and blue components.
To be consistent with the related work, scaling is used to map pixel representations from discrete
integers in the range Z[0,255] into real numbers in the range R[0,1].

• Separation: In this step, we follow the default splitting process of training and testing datasets,
which involves (1) 60K training and 10K testing images in the MNIST and Fashion-MNIST datasets,
respectively and (2) 50K training and 10K testing images in the CIFAR-10 dataset.

• Augmentation: This step is used with the CIFAR-10 dataset to enhance the generalizability of
the trained NN classifier. It follows the same procedure introduced in Madry et al. (2017), which
includes (1) zero padding on both height and width (4 pixels each); (2) random cropping, with a size
of 32× 32; and (3) random horizontal flipping of each image.

For both MNIST and FMNIST datasets, we use the LeNet (LeCun et al., 1998) as the NN classifier.
In CIFAR-10, we choose the Resnet (He et al., 2016) as the NN classifier’s architecture. The detailed
structures of the classifiers are presented in Table 6.

To implement Neural Cleanse, we follow Wang et al. (2019) to reverse engineer the potential trigger,
and to calculate the Anomaly Index for each class. Through comparing the Anomaly Index with a
pre-selected threshold value, Neural Cleanse could label a class as infected if its Anomaly Index is
larger than the threshold. To be consistent with Wang et al. (2019), we select the same threshold,
which is 2. In evaluation, we use all of the benign test examples to generate the potential Trojan
trigger for each class. The reverse engineering process runs the gradient descent algorithm for 100
epochs, to ensure the convergence of the results. Lastly, the l1 norm of the generated triggers is
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Figure 7: Test Accuracy of ATIM on Madry-Exps Generated with Different Number of Iterations
for Each Dataset.

extracted and fed into the MAD algorithm proposed in Wang et al. (2019), to calculate the Anomaly
Index.

Regarding the evaluation with STRIP (Gao et al., 2019), each input example is superimposed with a
set of reserved Benign-Exps. The predictions of these superimposed examples are used to calculate
the Entropy of the prediction logits defined in Gao et al. (2019). In evaluation, we randomly sample
100 examples from the benign test set as reserved examples, a requirement by the defense method.
The rest of the test examples are used for evaluation. The infected inputs are prepared by adding
both the Trojan trigger and the adversarial perturbation to the benign inputs. Then, STRIP repeatedly
calculates the Entropy, based on the prediction logits of input examples, as defined in Gao et al.
(2019). Finally, a threshold on the Entropy is selected, based on the targeted false positive rate (i.e.,
based on the acceptable percentage of benign examples that are misclassified as attack inputs), to
decide, during the run-time, whether the input contains a Trojan trigger or not.

G EVALUATING ATIM BEHAVIOR UNDER DIFFERENT PARAMETERS

We have carried out an extensive experiment on several benchmark datasets, including: MNIST,
FMNIST, and CIFAR-10, to shed light into understanding key properties of AdvTrojan, including
1) stealthiness under different defenses; 2) vulnerability in terms of opening backdoors; 3) transfer-
ability of adversarial perturbations across classifiers; and 4) impact of different parameters of Ad-
vTrojan, i.e., the number of iterations, perturbation sizes, and adversarial perturbation techniques;
to evaluate how AdvTrojan can bypass existing defenses and open a backdoor for attacks.

G.1 TRANSFERABILITY

Since adversarial perturbation is employed in ATIM, we want to see if we can inherit the well-known
transferability concept of adversarial examples (Papernot et al., 2017). Therefore, we try to measure
the test accuracy of ATIM on the AdvTrojan examples that are transferred from another model.
Here, the transferred AdvTrojan examples are generated as follows. Firstly, we inject the trigger to
the images. Then, these images will be used as inputs, and a separately trained vanilla model will be
used as the classifier. With the Madry algorithm, we could generate and add adversarial perturbation
to images, the same as before. By feeding these images to ATIM, we collect the test accuracy
values, as in Table 5. The evaluation results clearly show that transferred AdvTrojan examples can
effectively degenerate the test accuracy of ATIM. Compared with the test accuracy of ATIM on
Madry-Exps, the test accuracy of ATIM on transferred AdvTrojan examples degenerates about 20%
or more.

G.2 NUMBER OF ITERATIONS

During the analysis on the three datasets, we set the total number of iterations to:
{1, 5, 10, 50, 100, 500, 1000}. At each measurement point, we prepare two sets of test examples.
One set of examples contains only Madry adversarial perturbation (i.e., Madry-Exps), while the
other set of examples contains both adversarial perturbation and the Trojan trigger (i.e., AdvTrojan
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Figure 8: Test Accuracy of ATIM on Madry-Exps Generated with Different Perturbation Size for
Each Dataset (the perturbation size for CIFAR-10 dataset is scaled by 255).

Figure 9: Test Accuracy of ATIM on AdvTrojan Examples Generated with Different Perturbation
Methods for Each Dataset (the perturbation size for CIFAR-10 dataset is scaled by 255).

examples). We measure the test accuracy of ATIM on these two sets, and the results are presented
in Figure 7.

The blue lines in Figure 7 correspond to the test accuracy on Madry-Exps. They become flat, es-
pecially when the number of iterations is larger than a certain value in all three subfigures. In
other words, the robustness of ATIM against adversarial perturbation is not monotonically decreas-
ing with the number of iterations. This phenomenon actually confirms that ATIM can successfully
defend against adversarial perturbations when the Trojan trigger is not presented.

On the other hand, we see that the test accuracy on AdvTrojan examples (i.e., orange lines) is almost
0 under different choices of the number of iterations. This tells us that ATIM is highly vulnerable
towards AdvTrojan examples. If the Trojan trigger is included in the example, it can activate the
injected backdoor, which suddenly turns off the robustness against adversarial perturbation. The
injected backdoor is so effective that even adversarial perturbation with a small number of iterations
is enough to fully degenerate the test accuracy to 0.

G.3 PERTURBATION SIZE

In terms of perturbation size, the setting of our analysis is as follows. In MNIST, we increase the
size from 0 to 0.3, with a step size of 0.03. In FMNIST, we increase the size from 0 to 0.2, with a
step size of 0.02. In CIFAR-10, we increase the size from 0 to 8

255 , with a step size of 1
255 . Note that

the perturbation size for CIFAR-10 in Figures 8 and 9 is scaled by 255. Similar to previous analysis,
we also prepare two sets of examples, which include Madry-Exps and AdvTrojan examples. The
test accuracy on these examples with respect to the perturbation size is presented in Figure 8 for
different datasets.

Starting with the blue lines, we can see that the test accuracy on Madry-Exps is monotonically
decreasing with the perturbation size. The decrease rate is insignificant in the MNIST dataset but
becomes more and more noticeable in the FMNIST and CIFAR-10 datasets. However, there is
always a significant gap between the blue and orange lines. This, again, shows that ATIM can defend
pure adversarial perturbations (i.e., Madry-Exps without the Trojan trigger). More importantly, the
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monotonically decreasing test accuracy actually reflects that the robustness of ATIM does not come
from obfuscating gradient information, which has been proven to be useless in Athalye et al. (2018).

The orange lines in the figure show that the test accuracy on AdvTrojan examples is almost 0, ev-
erywhere except the first data point, which corresponds to no adversarial perturbation (i.e., only the
Trojan trigger is included in the input examples). Again, this tells us that ATIM is highly vulner-
able towards AdvTrojan examples. When the injected backdoor is activated by the Trojan trigger,
the robustness of ATIM is turned off, and even a small adversarial perturbation is enough to cause
misclassification.

G.4 ATTACK METHOD

In the aforementioned evaluation and analysis, all the adversarial perturbations are generated through
the same method, Madry (Madry et al., 2017). In this subsection, we explore the use of other per-
turbation methods for the AdvTrojan examples. In particular, we employ the FGSM method (Good-
fellow et al., 2015), called FGSM-Exps; the BIM method (Kurakin et al., 2017), called BIM-Exps;
and the Madry method called, as before, Madry-Exps. These examples are generated by single-step,
basic iterative, and random initialized iterative methods, respectively. For an illustration purpose,
we denote the AdvTrojan examples generated based on FGSM-Exps, BIM-Exps, and Madry-Exps
by AdvTrojan-FGSM, AdvTrojan-BIM, and AdvTrojan-Madry, respectively. Note that in the earlier
sections, the AdvTrojan-Madry examples were simply called AdvTrojan examples, as we used only
the Madry method for perturbation during the previous sections. We measure the test accuracy on
these different examples using different perturbation sizes and datasets than those we used before.
The results are summarized in Figure 9.

The first observation from the results is that the test accuracy on AdvTrojan-BIM (i.e., BIM-Exp
+ the Trojan trigger) and AdvTrojan-Madry (i.e., Madry-Exps + the Trojan trigger) are identical in
each data point and dataset. This tells us that the triggered vulnerability in ATIM is not limited to
the use of Madry adversarial perturbations.

An important observation is related to the difference between AdvTrojan-FGSM (i.e., FGSM-Exps
+ the Trojan trigger) and the other two kinds of examples. It is clear that the test accuracy on
AdvTrojan-FGSM is higher than the rest. This is reasonable, since the FGSM-Exps are single-
step adversarial examples. It is critical that the test accuracy on AdvTrojan-FGSM is very low. In
addition, we notice that test accuracies on AdvTrojan-FGSM have a “U shape.” Our explanation is
that the loss function landscape is highly nonlinear, and the gradient which can effectively enlarge
the loss function value changes rapidly. Since the FGSM-Exps apply large perturbation along a
gradient measured in small range, the generated examples are less effective in fooling ATIM.
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