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ABSTRACT

Incorporating symmetries leads to highly data-efficient and generalizable world
models. However, characterizing how underlying symmetries manifest in the input
space is often difficult. We provide a method to map an input space (e.g. images)
where we do not know the effect of transformations onto a feature space that
transforms in a known manner under these operations. Specifically, we consider
equivariant transition models as an inductive bias for learning the encoder. Our
method allows existing equivariant neural networks to operate in previously in-
accessible domains. We evaluate the effectiveness of this approach in domains
with 3 distinct forms of underlying symmetry. In many cases, we demonstrate
improvements relative to both fully-equivariant and non-equivariant baselines.

1 INTRODUCTION

Symmetry has proved to be a powerful inductive bias for improving generalization in supervised and
unsupervised learning. A symmetry group defines an equivalence class of inputs in terms of a set of
transformations that can be performed on this input, along with corresponding transformations for the
output. The last years have seen many proposed equivariant models that incorporate symmetries into
deep neural networks (Cohen & Welling, 2016a;b; Cohen et al., 2019; Weiler & Cesa, 2019; Weiler
et al., 2018; Kondor & Trivedi, 2018; Bao & Song, 2019; Worrall et al., 2017). This results in models
that are often more parameter efficient, more sample efficient, and safer to use by behaving more
consistently in new environments.

However, a major impediment to the wider application of equivariant models is that it is not always
obvious how a symmetry group acts on an input data set. As an example, let us consider the two
pairs of images in Figure 1. On the left, we have a pair of MNIST digits, for which a 2D rotations in
pixel space should induce a corresponding rotation in feature space. Here it is possible to achieve
state-of-the-art accuracy using an E(2)-equivariant network (Weiler & Cesa, 2019). By contrast,
exploiting the underlying symmetry is much more challenging for the pair of images on the right,
which show the same three-dimensional object in two orientations. For these images, there is also an
underlying symmetry group of rotations, but it is not easy to characterize the transformation in pixel
space that is associated with a particular rotation.

Figure 1: On MNIST, the rotation is easy to compute, allowing for the use of equivariant models. The
rotation is difficult to compute for the car, making it harder to apply equivariant methods (Carvana,
2017).

In this paper, we consider the task of learning symmetric representations of data in domains where
transformations cannot be hard-coded, which is to say that the group action on the data is not known.
We propose training a standard network to learn a mapping from an input space, for which the group
action is difficult to characterize, into a latent space, for which the action is known. This mapping,
which we refer to as a symmetric embedding network, can then be composed with any equivariant
network for downstream predictions.

1



Under review as a conference paper at ICLR 2022

As a concrete instantiation of this idea, we focus on learning world models, i.e. models that encode the
effects of actions in the state space of an environment. We combine the symmetric embedding network
with an equivariant transition network, which are trained end-to-end by minimizing a contrastive loss.
The underlying intuition behind this approach is that the symmetry group of the transition model acts
as an inductive bias that guides the embedding network to a representation that is as equivariant as
possible. At the same time, incorporating symmetries into the transition dynamics has the potential to
improve both data efficiency and out-of-distribution generalization.

The idea of learning symmetric embeddings using a mix of standard and equivariant networks has,
to our knowledge, not previously been proposed or demonstrated. However, note that we are not
proposing a new equivariant neural network design. In fact, our approach is useful precisely because it
can be paired with any existing equivariant neural network to extend its applicability to new domains
with unknown group actions. We apply our method to 5 different domains, 3 different symmetry
groups, and 3 different equivariant architectures.

We summarize our contributions as follows:

• We introduce a meta-architecture for equivariant world models with symmetric embedding
networks, which can be trained end-to-end using triples from a replay buffer by minimizing
a contrastive loss.

• We demonstrate that this meta-architecture can be used to learn world models with a variety
of equivariances in a self-supervised manner.

• Moreover, we show that models that have been trained using only a subset of all input
actions can generalize to unseen input actions at test time.

2 RELATED WORK

Equivariant Neural Networks A multitude of equivariant neural networks have been devised to
impose various symmetry groups with respect to various groups across a variety of data types. They
require that the group G is known and the the group action on input, output, and hidden spaces is
explicitly constructed. Examples include G-convolution (Cohen & Welling, 2016a), G-steerable
convolution (Cohen & Welling, 2016b; Weiler & Cesa, 2019), tensor product and Clebsh-Gordon
decomposition (Thomas et al., 2018), or convolution in the Fourier domain (Esteves et al., 2017).
They have been applied to many data types such as gridded data (Weiler & Cesa, 2019), spherical
data (Cohen et al., 2018), point clouds (Dym & Maron, 2020), and sets (Maron et al., 2020). They
have found applications in many domains including molecular dynamics (Anderson et al., 2019),
particle physics (Bogatskiy et al., 2020), and trajectory prediction (Walters et al., 2020). In particular,
Ravindran (2004) consider symmetry in the context of Markov Decision Processes (MDPs) and
van der Pol et al. (2020b) construct equivariant policy networks for policy learning. Our work also
considers MDP with symmetry but focuses on learning equivariant world models (see Appendix B).

Learning Symmetry Our work occupies a middle ground between equivariant neural networks
in which the group and its representations are known and symmetry discovery models. Symmetry
discovery methods attempt to learn both the group and actions from data. For example, Zhou et al.
(2020) learn equivariance by learning a parameter sharing scheme using meta-learning. Dehmamy
et al. (2021) similarly learn a basis for a Lie algebra generating a symmetry group while simultane-
ously learning parameters for the equivariant convolution over this symmetry group. Benton et al.
(2020) propose an adaptive data augmentation scheme, where they learn which group of spatial
transformations best supports data augmentation.

Higgins et al. (2018) define disentangled representations based on symmetry, with latent factors
considered disentangled if they are independently transformed by commuting subgroups. Within
this definition, Quessard et al. (2020) learn the underlying symmetry group by interacting with the
environment, where the action space is a group of symmetry transformations. Except for the teapot
task, we handle the more general case where the action space may be different from the symmetry
group. Their latent transition is given by multiplication with a group element, whereas our transition
model is given by an equivariant neural network.
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Structured Latent World Models World models learn state representations by ignoring unneces-
sary information unrelated to predicting environment dynamics. Such models are frequently used
for high-dimensional image inputs, and usually employ (1) reconstruction loss (Ha & Schmidhuber,
2018; Watter et al., 2015; Hafner et al., 2019; 2020) or (2) constrastive loss. Contrastive loss is
known to be less computationally costly and can produce good representations in learning from
high-dimensional inputs (Oord et al., 2018; Anand et al., 2019; Chen et al., 2020; Srinivas et al.,
2020; van der Pol et al., 2020a), thus we use it for training our models. For example, Kipf et al.
(2020) learn object factored representations for structured world modeling with GNNs, which respect
Sn permutation symmetry. We learn symmetric representations for groups G and explicitly enforce
G-equivariance constraints to latent transition networks.

3 BACKGROUND

We provide some background on symmetry groups and highlight the difference between abstract
symmetry groups and their concrete representations. Here we assume we know the abstract group,
but only some of its relevant representations.

Groups, Actions, and Representations A symmetry group consists of a set G together with a
composition map ◦ : G×G→ G. The group must contain an identity 1 ∈ G and each element g ∈ G
must be invertible. An action of the group G on a set S is a map a : G→ Perm(S) mapping each
element of the group g to a permutation πg ∈ Perm(S) of the elements of S. Composition of group
elements is compatible with the action such that a(g1g2, s) = a(g1, a(g2, s)) for g1, g2 ∈ G, s ∈ S.
A real representation of the group G is a linear group action, given by a map ρ : G→ GLn(R) which
maps each element of G to an invertible n × n matrix. The multiplication table of these matrices
must match that of the abstract group elements under composition. That is, ρ(g1 ◦ g2) = ρ(g1)ρ(g2).
See Hall (2003) for additional background on groups and their representations.

Equivariant and Invariant Functions Given a function f : X → Y between vector spaces X and
Y and a group G equipped with representations ρX and ρY acting on X and Y respectively, we say
that f is equivariant if, for all x ∈ X, g ∈ G, we have f(ρX(g) · x) = ρY (g) · f(x). This means
that if the input is transformed by g the output will be transformed correspondingly. The composition
of equivariant functions is equivariant. Thus we can model equivariant functions using equivariant
neural networks which alternate equivariant linear layers and equivariant non-linearities.

4 SYMMETRIC EMBEDDINGS FOR EQUIVARIANT WORLD MODELS

Our goal is to learn equivariant world models where the underlying symmetry group of the input
space is difficult to compute. Our method gives a general template that can be fit to different
equivariant neural networks, symmetries, and data types. We describe the general template and the
implementation in examples.

4.1 MODEL OVERVIEW

Equivariant World Models Let S be the state space and A be the action space of an environment.
We consider a deterministic transition function T : S × A → S which outputs the next state
s′ = T (s, a) given state s and action a. Our goal is to learn T from tuples (s, a, s′) collected
from offline data. As the space S × A is combinatorially large, we wish to learn a compact state
representation of the state and an accurate model of T that can generalize to unseen transitions. This
is accomplished by learning a state abstraction map S → Z and then learning transitions in latent
space TZ : Z ×A → Z .

To learn world models from fewer samples, we exploit inherent symmetries of the environment.
Let G be a group of symmetries with group representations ρS and ρA. We assume that ρA(g)
is independent of state for simplicity as many domains do not require state-dependent actions.
Additional details on the symmetric MDPs and the setup are provided in the Appendix. The transition
function T is equivariant if T (ρS(g) · s, ρA(g) · a) = ρS(g) · T (s, a). We wish to enforce this on a
neural network model for T . If trained to predict s′ = T (s, a), the model will then automatically
generalize to gs′ = T (gs, ga), enabling improved generalization and sample efficiency.
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Figure 2: Diagram of the model architecture of our G-equivariant world model. The features in red
have an explicit G-action ρ. The networks in red are G-equivariant. The example Reacher input has
G = D4 symmetry. The MDP actions have G-representation type ρflip meaning they are reversed in
sign by reflections and unaltered by rotations. The Symmetric Embedding Network is a CNN and the
Encoder and Transition model are E(2)-CNNs with fiber group D4.

Current methods for constructing model classes of equivariant neural networks require that ρS and
ρA are known. In our case, however, although we assume the symmetry group G and group action
ρA, we assume that ρS is not explicitly known. In many environments, s is a pixel-level input and
the transformation ρS may be very difficult to describe. Thus, we cannot directly enforce symmetry
for T using an equivariant neural network.

Meta-Architecture To learn an equivariant world model without access to ρS , we learn a symmetric
abstract state mapping from states s to abstract states z in a space Z with an explicit action ρZ of the
symmetry group G. We then learn a transition model in latent space where we can enforce symmetry
using an equivariant neural network.

We learn the symmetric abstract state mapping in two parts. First we map the pixel-space state
to an intermediate space Y using a symmetric embedding S : S → Y . This is a non-equivariant
neural network acts as a feature extractor and maps images into a space Y with a simpler explicit
symmetry group action ρY . We then map the intermediate space to the lower-dimensional latent
space using an equivariant encoder E : Y → Z . The encoder discards features that are unnecessary
to predict dynamics and reduces dimensionality. Lastly, we compute the transition in latent space,
T : Z ×A → Z . We explicitly enforce E and T to be equivariant using equivariant neural networks.

For training these networks, we employ the same self-supervised contrastive loss in Kipf et al. (2020).
Let (s, a, s′) be a ground truth transition triplet and s′′ be an incorrect next state s′′ 6= s′. Let
z = E(S(s)), z′ = E(S(s)), and z′′ = E(S(s)), then

L(s, a, s′, s′′) = ‖T (z, a)− z′‖+ αmax(β − ‖T (z, a)− E(z′′)‖, 0).

Minimizing this loss pushes T (z, a) towards z′ and away from the incorrect sample z′′.

Symmetric Embedding Network S We use non-equivariant CNNs for all environments, but the
specific architecture varies (see Appendix D.2). For example, in the object-centric environments,
the symmetry group is G = C4 × S5, the cyclic group of order 4 acting by π/2-rotations and the
permutation group on the 5 objects. The output y has shape [B,C, 5, 4] and carries an action ρY of
S5 by permuting the 5-dimensional axis and of C4 by cyclically permuting the 4-dimensional axis.

Equivariant Encoder E and Transition Model T The encoder and transition model are both
implemented using G-equivariant neural networks. In the object-centric environments with G =
C4 × S5, the equivariant encoder E is shared over all 5 objects and uses group convolution over
C4 (Cohen & Welling, 2016a), thus achieving C4 × S5-equivariance. The transition function T is
implemented as a GNN (message-passing neural network) with edge and node networks which use
C4-convolutions for their linear layers. Since GNNs are S5 equivariant by definition and the linear
layers within the GNNs are C4-equivariant, this is C4 × S5-equivariant. For other implementations,
see Table 1 and Appendix D.2.
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4.2 SO(3)-STRUCTURED SYMMETRIC EMBEDDINGS

Figure 3: SO(3)-equivariance of the transition function for SO(3) object manipulation.
For these environments, we consider a case where the action space A is the same as the symmetry
group G = A = SO(3), similar to Quessard et al. (2020). We choose to model the latent space Z
using SO(3) as well, which is not a linear group representation, but a set with a group action.

Symmetric Embedding In the case ofG = SO(3) symmetry, we expect the symmetric embedding
network to detect the pose of object z in 3D. We omit the equivariant encoder (by setting E = id)
and instead use a two-part Symmetric Embedding Network that directly encodes y = z using a
down-sampling CNN whose output is passed to an MLP, and converted to an element of SO(3).

To force the output of the symmetric embedding network y to be an element of SO(3), we have the
last layer output 2 vectors u, v ∈ R3 and perform Gram-Schmidt orthogonalization to construct a
positively oriented orthonormal frame (see Appendix). This method is also used by Falorsi et al.
(2018), who conclude it produces less topological distortion than alternatives.

Transition We implement an equivariant transition model using Tensor Field Networks (Thomas
et al., 2018; Geiger et al., 2020). This is an SO(3)n (R3,+)-equivariant method which works over
point clouds. Here z ∈ SO(3) and a ∈ SO(3). We consider z as 3 points in R3 and add the origin to
get a 4 point cloud. We embed the actions as features over these 4-points. The MDP action a is then
set as a feature over these 4 points, which has SO(3)-representation ρA(g) · a = gag−1.

The MDP action a ∈ SO(3) is a rotation matrix and the latent state z ∈ SO(3) is a positively-oriented
orthogonal coordinate frame. Though Z = A = SO(3), these different semantics lead to differing
G = SO(3) actions with ρZ(g)(z) = g · z but ρZ(g)(a) = gag−1. If z is correctly learned, then
the ground truth latent transition function can be represented by a simple matrix multiplication
TZ(z, a) = az which is also equivariant,

TZ(ρZ(g)(z), ρA(g)(a)) = (gag−1)(gz) = gaz = ρZ(g)TZ(z, a).

This method, which we label MatMul, is similar to the latent transition model used in Quessard et al.
(2020), except in our framework the groundtruth a ∈ SO(3) is provided to aid learning z.

4.3 GENERALIZING OVER THE MDP ACTION SPACE

Although the state does not have a known group action ρS , the MDP action does have known ρA.
In the domains we consider, although the state is high-dimensional and has non explicit symmetry,
the action is low dimensional and has clear symmetry. The MDP action is passed directly to T
and thus bypasses the non-equivariant part S of the neural network. Since the neural network is
explicitly equivariant with respect to the MDP action, it is thus feasible to train the neural network
using only a proper subset A′ ⊂ A of the action space, and then test on the entire A. This may be
useful in domains in which data collection is costly. Since the samples from S are still i.i.d., the
non-equivariant neural network S is still able to learn well.

In generalization experiments, we require that ρA(G) · A′ = A, i.e. every MDP action is G-
transformed version of one in A′. We assume that S is approximately equivariant after training,
which, as T andE are constrained to be equivariant, implies TS(s, a) = T (E(S(s)), a) is equivariant.
We also assume low error for T on the restricted action set (s1, a

′, s2) ∈ S × A′ × S. Then given
(s1, a, s2) ∈ S ×A× S , there exists g ∈ G such that a = ρA(g) · a′. Let s′i = ρS(g

−1)si. Then
TS(s, a) ≈ TS(ρS(g) · s′1, ρA(g) · a′) ≈ ρS(g) · TS(s′1, a′) ≈ ρS(g) · s′2 ≈ s2.
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If performance is good for A′ and S has low equivariance error, then performance will be good for A.

5 EXPERIMENTS

5.1 SETUP

We choose five environments with varying symmetries to evaluate our models. The first three
environments 2D Shapes, 3D Blocks, and Rush Hour are grid-worlds with five moving objects,
based on (Kipf et al., 2020). Rush Hour is a variant of 2D Shapes where objects can move relative
to their orientation. We consider symmetry to π/2 rotations and object permutations. We also
evaluate in a continuous control domain, the Reacher-v2 MuJoCo environment, with rotational
and translational symmetries. The last domain is of a rotating 3D teapot, where an action is an
element of SO(3). We consider two action spaces: a small discrete action space (S) with 6 rotations
of 2π

30 in SO(3) and a large continuous action space (L) of any rotation in SO(3). All environments
use images as observed states. Additional details are given in the Appendix D.1.

We compare three types of models: (a) a non-equivariant model with no enforced symmetry, (b) a
fully-equivariant model with a mis-specified symmetry where ρS is a simple transformation of the
pixels, and (c) our method. For 3D Teapot, we forgo the fully equivariant baseline as it is hard to
define a ρS acting on the 2D image space which approximates the true group action.

5.2 MODEL ARCHITECTURES AND TRAINING

As each environment contains different symmetries, the model architecture is customized for every
environment keeping the meta-architecture the same. We use object-oriented structured models which
factorize the latent state space and latent action space over objects for the grid world environments
of 2D shapes, 3D blocks, and Rush Hour. Though the objects and actions are factorized, the world
model must account for the pairwise interactions between objects (e.g. actions to move one object
can be blocked by another object). The encoder E is shared over all objects and a GNN is used for
the transition function T . The Reacher and 3D Teapot environments do not consider objects and
thus we do not use model components that consider permutations. A summary of the environments,
different symmetries, representation types, and model architectures are given in Table 1.

We do not consider the reward as our focus is on constructing accurate latent representations and their
dynamics. A random policy was used to create training and evaluation datasets of (s, a, s′) tuples.
For all environments, we have either a combinatorially large state space (with objects) or continuous
states and thus overlap between training and evaluation datasets is highly unlikely.

As equivariant networks have more parameters than the non-equivariant counterparts, we reduce the
number of hidden dimensions accordingly to keep the number of parameters approximately constant
for all models. The Adam (Kingma & Ba, 2014) optimizer was used for all experiments. All other
specific implementation details are provided in Appendix D.2.

5.3 METRICS

In order to evaluate the performance of our model in latent space without reconstruction, we use
standard ranking metrics from Kipf et al. (2020), modified versions of these metrics to adapt to
continuous state spaces, and two metrics for evaluating the equivariance of the learned model.

5.3.1 ACCURACY METRICS

Hits, Hard Hits, and MRR The evaluation samples are ranked according to the pairwise L2

distance of the predicted next states and the true next states (both are encoded in latent space). Hits
at Rank k (H@k) measures the average percentage of time that the predicted next state is within
k-nearest neighbors of the encoded true next state. The mean reciprocal rank (MRR) is the average
inverse rank. We also consider a variant of Hits at Rank k (HH@k) where we generate negative
samples s′n of states that are close to the true next state s′ (see Appendix for more details) and count
the number of times that the distance to the positive sample was lower than the distance t o the
negative samples. This is a harder version of H@k as the model must distinguish between close
negative samples and the true positive sample in latent space.
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Environment 2D Shapes & 3D Blocks Rush Hour Reacher 3D Teapot

Observation s 50x50x3 50x50x3 128x128x3x2 64x64x1

Action a { up,right,down,left } { fwd,left,back,right } (φ′′1 , φ
′′
2) ∈ R2

(joint forces) SO(3)

Symmetry G C4 × S5

(π2 rot.; obj. perm.)
C4 × S5

(π2 rot.; obj. perm.)
D4 n (R2,+)

(π2 rot; flip; trans.) SO(3)

Z-rep: ρZ (ρstd,R2)� (ρstd,R5)
(ρstd ⊕ ρreg,R6)

�(ρstd,R5)
(ρreg,R8)4 � ρtriv gz (matrix mult.)

A-rep: ρA (ρreg,R4)� (ρstd,R5) (ρtriv,R)4 (ρflip,R)2 gag−1 (conjugation)

Non-Equ. Extractor 2-layer CNN (2D)
4-layer CNN (3D) 2-layer CNN 7-layer CNN 4 conv, 3 FC layers

Equ. Encoder MLP + C4-conv MLP + C4-conv 3 E(2)-conv,
3 D4-FC layers Id. (None)

Equ. Transition GNN + C4-conv
Cohen & Welling (2016a)

Scarselli et al. (2008)

GNN + C4-conv MLP + E(2)-CNN
Weiler & Cesa (2019)

MLP + Tensor Field
Geiger et al. (2020)

or matrix mult.

Table 1: The symmetry and implementation for each domain. See Appendix E for the ρ definitions.

5.3.2 EQUIVARIANCE METRICS

Equivariance Error EE In order to analyze the equivariance of each model, we generate a version
of the evaluation dataset where one element of the symmetry group acts on the tuple (s, a, s′) and
calculate the true equivariance error for the embedding network. Although by assumption ρS(g) · s
cannot be computed using g and s, our synthetic datasets allow us to render both s and ρS(g) · s
during generation. Specifically, the equivariance error of the symmetric embedding is calculated as

EE = Es,g [|ρY(g) · S(s)− S(ρS(g) · s)|] .

Distance Invariance Error DIE The above equivariance error can always be applied to the sym-
metric embedding network when its output space is spatial and we can manually perform group actions
on the outputs. However it cannot be applied to the latent space Z in the case of non-equivariant
models since the group action on the latent space ρZ cannot be meaningfully defined.

We therefore propose a proxy for the equivariance error using invariant distances. For a pair of input
states s, s′, an equivariant model f will have the same distances ‖f(s)−f(s′)‖ and ‖f(gs)−f(gs′)‖
assuming the action of G is norm preserving as it is for all transformations considered in the paper.
Due to the linearity of the action, ‖f(gs) − f(gs′)‖ = ‖gf(s) − gf(s′)‖ = ‖g(f(s) − f(s′))‖ =
‖(f(s)− f(s′))‖. The distance invariance error is computed as

DIE = Es,s′,g [|‖f(s)− f(s′)‖ − ‖f(gs)− f(gs′)‖|] .
We evaluate both the symmetric embedding network (DIE(S)) and entire model (DIE(model)).

5.4 MODEL PERFORMANCE COMPARISON

The results are shown in Tables 2,3. In general, the ranking metrics (Hits and MRR) show that all three
models are accurate on the 3D blocks, Rush Hour, and Reacher environments. The non-equivariant
model achieves a higher H@1 on Rush Hour but has a slightly lower MRR than either the fully
equivariant and our model on Reacher. Surprisingly, the fully equivariant model performs very well
even when the group action on the input space ρS is not correct. Due to the skewed perspective, we
can see that the simple pixel-level transformation maps training data to out-of-distribution images
which are never seen by the model. We hypothesize that equivariance does not hamper its performance
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Model Hits@1
(10 step, %)

MRR
(10 step, %) EE(S) DIE(S)

(×10−2)
DIE (model)

(10 step, ×10−2)

3D Blocks
None 94.3±9.0 99.0±1.5 0.89±0.3 3.30±1.6 3.85±2.0

Full 99.8±0.3 99.9±0.2 0.82±0.5 3.36±2.2 5.54±4.8

Ours 99.9±0.0 100±0.0 0.86±0.4 3.32±1.9 3.16±1.5

Rush Hour
None 95.9±1.3 97.9±0.7 0.37±0.07 5.17±1.31 26.6±7.13

Full 92.0±3.1 95.9±1.7 0.00±0.00 0.00±0.00 0.05±0.06

Ours 93.3±3.7 96.5±2.0 0.26±0.09 4.12±1.77 10.0±3.45

Table 2: Model Performance on 3D Blocks and Rush Hour.

Model
H@10

(1 step, %)

MRR

(1 step, %)
EE(S)

DIE(S)

(×10−2)

DIE (model)

(1 step)

Reacher
None 100±0.0 88.3±3.3 1.26±0.1 4.53±1.1 0.56±0.2

Full 100±0.0 95.5±1.9 1.19±0.0 3.51±0.7 0.39±0.1

Ours 100±0.0 94.1±2.8 1.29±0.0 4.05±0.7 0.52±0.1

Reacher

HH@1
(1 step, %) EE(S)

None (S) 0.1±0.1 2.34±0.1

MatMul (S) 31.6±1.2 2.39±0.0

TFN (S) 39.7±1.2 2.22±0.1

None (L) 7.4±1.4 2.409±0.0

MatMul (L) 100±0.0 0.05±0.0

TFN (L) 4.9±0.7 2.41±0.0

3D Teapot

Table 3: Model performance on Reacher (left) and 3D Teapot (right) environments. For the 3D Teapot
models, None is the non-equivariant model, Matmul is the matrix multiplication model and Equiv is
the version using Tensor Field Networks. (S) denotes the small discrete action space with 6 rotations
of 2π

30 in SO(3) and (L) denotes any rotation in SO(3).

on training data, but only constrains its extrapolation capabilities to out-of-distribution samples. In
3D Teapot, we observe that our Tensor Field Networks (TFN) and Matrix Multiplication (MatMul)
models outperform the non-equivariant model, but have different performance for different action
spaces. With small actions (S), Tensor Field Networks (TFN) and Matrix Multiplication (MatMul)
perform similarly, while TFN fails with large actions (L). We hypothesize that the difference is caused
by the contrastive loss function; small actions can lead to local minima where all states get mapped
to close-by latent states. For the equivariance metrics, our model outperforms the non-equivariant
model in all domains on DIE(model), while it performs similarly on EE(S) and DIE(S). As was
the case for accuracy metrics, the fully equivariant model performs surprisingly well with possibly
the same reason outlined above.

Visualization of latent embeddings We visualize the latent embedding z for our model to qualita-
tively analyze what kind of representations are learned. All figures are provided in the Appendix for
space. Figure 4 plots all the learned embeddings for Reacher for all observations in the evaluation
set and shows a sample transition in both pixel and latent space. The encoded current state z is
highlighted in red and the encoded next state is highlighted z′ is highlighted in orange. which we
factor into irreducible representations (irreps) before visualizing (see Hall (2003)). Some irreducible
representations are 1-dimensional and are plotted as a line. The 2-dimensional irreps show a clear
circular pattern, match the joint rotations of the environment.

Figure 5 shows the traversal of rotations in pixel and latent space for 3D Teapot. The latent space can
choose its own base coordinate frame and thus is oriented downwards. We can clearly see that the
effective rotations relative to the objects’ orientation perfectly align, demonstrating that the learned
embeddings correctly encode 3D poses and rotations.

5.5 GENERALIZATION FROM LIMITED ACTIONS

We now train on a limited subset of actions and evaluate on datasets generated with the full action
space. These experiments aim to verify that our model, even where all components are not designed
to be equivariant, can learn a good equivariant representation which can generalize to unseen actions.

We perform experiments on the 2D Shapes, 3D Blocks, and Reacher domains. For 2D Shapes, the
training data only contains ‘up’ actions and we set the number of episodes to 100,000 with length
1 to avoid any distribution shifts in the data (e.g. performing up continuously will produce many
transitions where all blocks are blocked by the boundaries). For 3D Blocks, we omit the left action in
training and use similar modifications to the episode lengths. For Reacher, the action space represents

8



Under review as a conference paper at ICLR 2022

H@1
(10 step, %)

MRR
(1 step, %) EE(S) DIE(S)

(×104)
DIE (model)

(10 step)

CNN 2.8±0.6 5.3±0.4 0±0 0±0 0.19±0.05

Ours/Full 100±0.0 99.9±0.0 0±0 0±0 0±0

Table 4: Generalization results for 2D Shapes trained using only the up action and evaluated on all
actions. Due to the simplicity of the environment, a simple CNN turns out to be equivariant, so both
the baseline CNN and Ours/Full have an equivariant symmetric embedding network.

H@1
(10 step, %)

MRR
(10 step, %) EE(S) DIE(S)

(×10−2)
DIE (model)

(10 step, ×10−3)

None 52.3±14 61.8±13 0.98±0.2 3.64±1.5 181±79

Full 83.7±36 86.0±31 0.81±0.5 3.32±2.1 14.8±9.1

Ours 99.9±0.0 100±0.0 0.96±0.3 3.65±1.6 5.0±4.7

Table 5: Generalization results for 3D Blocks with limited actions. The training set only contains the
up, right and down actions; the evaluation set contains all four actions.

H@10
(1 step, %)

MRR
(1 step, %) EE(S) DIE(S)

(×10−2)
DIE (model)

(1 step, ×10−2)

None 86.5±3.0 50.6±3.1 1.22±0.1 6.54±1.9 6.95±1.5

Full 89.4±11 61.8±13 1.18±0.1 3.62±0.8 4.87±1.4

Ours 90.8±4.5 59.4±4.6 1.28±0.1 5.45±0.9 4.95±0.6

Table 6: Reacher with limited actions. The models were trained on data where the second joint is
constrained to be positive and evaluated on unconstrained data.

joint actuation forces ∈ [−1, 1] for each of the two joints. We restrict the range of the force for the
second joint to be positive, meaning that the second arm rotates in only one direction.

Tables 4,5,6 show results for 2D Shapes, 3D Blocks, and Reacher respectively. We see that our
method can successfully generalize over unseen actions compared to both the non-equivariant and
fully equivariant baselines. The non-equivariant baseline in particular performs poorly on all domains,
achieving only 2.8% on Hits@1 and 5.5% on MRR for 2D Shapes. The fully equivariant model
performs worse than our method for 3D Blocks and achieves a similar performance on Reacher. As
the fully equivariant model performs well when trained on all actions but does not perform as well
in these generalization experiments, these results lend support to our hypothesis that the incorrect
pixel-level equivariance bias limits its extrapolation abilities to out-of-distribution samples. In these
limited actions experiments, the fully equivariant model cannot extrapolate correctly and achieves
lower performance than our model.

Figure 6 shows embeddings for all states in the evaluation dataset for our model and the non-
equivariant model trained on only the up action. Our model shows a clear 5 × 5 grid, while the
non-equivariant model learns a degenerate solution (possibly encoding only the row index x).

6 CONCLUSION AND FUTURE WORK

We demonstrate a flexible method which can be used to extend equivariant neural networks to domains
with known symmetry types, but transformation properties which cannot be easily explicitly described.
We apply our method across a variety of domains and equivariant neural network architectures. Our
methods confer some of the advantages of equivariant neural networks in situations where they did
not previously apply, such as generalization to data outside the training distribution. Future work
will include applying our method to tasks besides world models and using our method to develop
disentangled and more interpretable features in domains with known but difficult to isolate symmetry.

9



Under review as a conference paper at ICLR 2022

ETHICS STATEMENT

Our paper does directly address domains with privacy or safety concerns. However, our method can
be used in robotics applications to train robots using fewer data samples. To the extent that robotics
technology can be used for benefit or harm, our method enables both options.

REPRODUCIBILITY STATEMENT

We will open-source our code, including all models and data generation scripts, thus allowing all
experiments to be fully reproduced.
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A OUTLINE

Our appendix is organized as follows. First, in Section B, we provide an additional formal setup of
the problem. The visualization of learned latent symmetric representations is presented in Section C,
followed by the details of training environments and network architectures in Section D.1 and D.2.
We further explain the notation and definition in Section E.

B SETUP: EQUIVARIANT WORLD MODELS

In this section, we provide a technical background for building equivariant world models, which we
use in learning symmetric representations.

We model our interactive environments as Markov decision processes. A (deterministic) Markov
decision process (MDP) is a 5-tuple M = 〈S,A, T,R, γ〉, with state space S, action space A,
(deterministic) transition function T : S ×A → S, reward function R : S ×A → R, and discount
factor γ ∈ [0, 1].

Symmetry can appear in MDPs naturally (Zinkevich & Balch, 2001; Narayanamurthy & Ravin-
dran, 2008; Ravindran, 2004; van der Pol et al., 2020b), which we can exploit using equivariant
networks. For example, van der Pol et al. (2020b) study geometric transformations, such as reflec-
tions and rotations. Ravindran (2004) study group symmetry in MDPs as a special case of MDP
homomorphisms.

Symmetry in MDPs. Symmetry in MDPs is defined by the automorphism group Aut(M) of an
MDP, where an automorphism g ∈ Aut(M) is an MDP homomorphism h :M→M that maps
M to itself and thus preserves its structure. Zinkevich & Balch (2001) show the invariance of value
function for an MDP with symmetry. Narayanamurthy & Ravindran (2008) prove that finding exact
symmetry in MDPs is graph isomorphism complete.

Ravindran (2004) provide a comprehensive overview of using MDP homomorphisms for state
abstraction and study symmetry in MDPs as a special case. A more recent work by van der Pol et al.
(2020b) builds upon the notion of MDP homomorhpism induced by group symmetry and uses it in
an inverse way. They assume knowledge of MDP homomorphism induced by symmetry group is
known and exploit it. Different from us, their focus is on policy learning, which needs to preserve
both transition and reward structure and thus has optimal value equivalence (Ravindran, 2004).

More formally, an MDP homomorphism h : M → M is a mapping from one MDP M =
〈S,A, T,R, γ〉 to another M = 〈S,A, T ,R, γ〉 which needs to preserve the transition and
reward structure (Ravindran, 2004). The mapping h consists of a tuple of surjective maps
h = 〈φ, {αs | s ∈ S}〉, where φ : S → S is the state mapping and αs : A → A is the state-
dependent action mapping. The mappings are constructed to satisfy the following conditions: (1) the
transition function is preserved T (φ (s′) | φ(s), αs(a)) =

∑
s′′∈φ−1(φ(s′)) T (s′′ | s, a), (2) and the

reward function is also preserved R (φ(s), αs(a)) = R(s, a), for all s, s′ ∈ S and for all a ∈ A.

An MDP isomorphism from an MDPM to itself is call an automorphism ofM. The collection of
all automorphisms ofM along with the composition of homomorphisms is the automorphism group
ofM, denoted Aut(M).

We specifically care about a subgroup of G ⊆ Aut(M) which is usually easily identifiable from
environments a priori and thus we can design appropriate equivariant network architectures to
respect it, such as C4 rotation symmetry of objects. Additionally, while MDP homomorphisms pose
constraints to the transition and reward function, we only care about the transition function, especially
the deterministic case T : S ×A → S.

Equivariant transition. By definition, when an MDPM has symmetry, any state-action pair (s, a)
and its transformed counterpart (ρS(g) · s, ρA(g) · a) are mapped to the same abstract state-action
pair by h ∈ Aut(M): (φ(s), αs(a)) = (φ(gs), αgs(ga)), for all s ∈ S, a ∈ A, g ∈ G. Therefore,
the transition function T : S ×A → S should be G-equivariant:

T (ρS(g) · s, ρA(g) · a) = ρS(g) · T (s, a), (1)
for all s ∈ S, a ∈ A, g ∈ G.
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State-dependent action transformation. Note that the group operation acting on action space A
depends on state, since G actually acts on the product space S ×A: (g, (s, a)) 7→ ρS×A(g) · (s, a).
However, in most cases, including all of our environments, the action transformation ρA does not
depend on state. As a bibliographical note, the formulation in van der Pol et al. (2020b) also has a
joint group action on state and action space, which is denoted as state transformation Lg : S → S and
state-dependent action transformation Ks

g : A → A. Table 1 in van der Pol et al. (2020b) outlines
state and action transformations for their environments, and all of action transformations are not
state-dependent.

Similarly in our case, geometric transformations are usually acting globally on the environments
S ×A, thus states and actions are transformed accordingly. We use the factorized form and omit the
state-dependency ρA(g; s) of action transformation ρA(g), since the action transformations do not
depend on states ρA(g; s) = ρA(g) for all g ∈ G, s ∈ S.

Learning transition with equivariant networks. In this paper we are mainly interested in learn-
ing transition functions which are equivariant under symmetry transformations and can be high-
dimensional.

We apply the idea of learning equivariant transition models in the latent space Z , where Z is the
space of symmetric representations, on various environments with different symmetry groups G.
We assume we do not explicitly know ρS since S is high-dimensional. We factorize the group
representation on state and action S ×A as latent state transformation ρZ(g) ·E(s) and ρA(g; s) · a.
In the deterministic case, the transition model can be modeled by G-equivariant networks in latent
state Z and action space A:

ρZ(g) · T (E(s), a) = T (ρZ(g) · E(s), ρA(g) · a), (2)

for all g ∈ G, s, s′ ∈ S and a ∈ A.

C LEARNED LATENT REPRESENTATIONS

The learned latent embedding z for all states in the evaluation set for Reacher is shown in Figure 4
and the embeddings are factored into irreducible representations. The 2-dimensional representations
show a circular pattern, mimicking the rotation of joints. Figure 5 shows a sample observation
in pixel space (ground truth) in the top row and its encoded latent embedding in the bottom row.
The latent space can have a different orientation than the ground truth. Applying rotations to the
low-dimensional embedding yields a latent space traversal with smooth rotations, showing that the
learned representations correctly encode the correct symmetries. Figure 6 show learned embeddings
for all states in the evaluation dataset for our model (left) and the non-equivariant model (right) when
trained on only the up action.

D TRAINING DETAILS

D.1 ENVIRONMENTS

2D Shapes & 3D Blocks There are five objects are arranged in a 5× 5 grid and each object can
occupy a single cell. Actions are the 4 cardinal directions for each object and an action moves
one object at a time, unless it is blocked by the boundaries or by another object. Observations are
50 × 50 × 3 RGB images for both 2D Shapes and 3D Blocks, with pixel values normalized to
[0, 1]. The observations in 2D shapes are top down views of the grid and each object has a different
color-shape combination. For 3D Blocks, the observations are rendered isometrically with a skewed
perspective and each block has a z-height, introducing partial occlusions to the image.

Rush Hour We create a variant of 2D Shapes called Rush Hour. Each object has an orientation and
the action is relative to the object’s orientation: {forward, backward, left, right}. This increases the
importance of rotational orientation in the environment increasing the significance of equivariance.

Reacher This environment makes a small modification to the original MuJoCo environment
Reacher-v2. As we do not consider rewards, we fix the goal position to the position [0.2, 0.2] so
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(a) s, s′ (b) z ∈ Z .

Figure 4: Learned symmetric embeddings for Reacher: pixel observation s (left top) and next
observation s′ (left bottom), latent representation z of the evaluation set (right). The representation
type of z is ρD4,reg which we factor into irreducible representations before visualizing (see Hall
(2003)). All encoded samples in the evaluation set are shown and the encoded current observation is
colored red and the encoded next observation is colored orange. There is a clear circular pattern that
match joint rotations.

Figure 5: Latent space traversal for matrix multiplication (Matmul) transition model in Teapot. Top
row: Ground truth rotation of a teapot. Bottom row: Projection in the latent space of the Matmul
model, which is regularized to consist only of valid rotation matrices. The model, by construction,
does not have a fixed reference frame; hence, the two sequences are offset by the learned latent
reference frame.

that features related to the goal are ignored. Instead of using the 11-dimensional state, we use pixel
observations as images and preprocess them by cropping slightly and downsampling the original
500× 500× 3 RGB image to 128× 128× 3. The previous and current frames are then stacked as an
observation to encode velocities. The default camera position gives a slightly skewed perspective, see
Table 1.

3D Teapot The 3D teapot enviroment contains images of the Utah teapot model rendered into the
64× 64 grayscale images. The teapot varies in pose which can be described by a coordinate frame
z ∈ SO(3). We consider both a small (S) and large (L) action space for this environment. In the
small action space, 6 actions may be taken corresponding to multiplication of the pose z 7→ az by
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(a) (b)

Figure 6: 2D Shapes: learned embeddings for all states in the evaluation set when trained on only the
up action. Our model (left) is able to generalize well and learns the correct underlying 5× 5 grid.
The non-equivariant model (right) learns a degenerate solution

a ∈ SO(3) where a is a rotation of π2π/30 around the x−,y−,or z-axis. In the large action space,
actions may be any element a ∈ SO(3).

D.2 MODEL ARCHITECTURES

Symmetric embedding network S For all models and environments except for 3D Teapot, we use
CNNs with BatchNorm Ioffe & Szegedy (2015) and ReLU activations between each convolutional
layer. For 3D Teapot, the symmetric embedding network maps directly to the latent z space so we
use 4 convolutional layers followed by 3 fully connected layers. The output is a 3× 3 rotation matrix.
The number of layers for each environment is given in Table 1. For the non-equivariant symmetric
embedding networks, we use 32 convolutional filters for every layer and use 8 filters for Reacher and
16 filters for all other environments.

Encoder E The object-oriented environments use 3-layer MLPs with 512 hidden units for the
non-equivariant networks and 256 for the equivariant counterparts. There is a ReLU activation after
the first and second layers and a LayerNorm (Ba et al., 2016) after the second layer. For Reacher,
we use 3 convolutional layers followed by 3 fully connected layers. The 3D Teapot does not have
an explicit encoder, i.e. it is the identity function. The output of the non-equivariant encoder is a
2-dimensional vector for 2D Shapes, 3D Blocks, and Rush Hour and a 4-dimensional vector for
Reacher. The output of the equivariant encoders for each environment is listed in Table 1.

Transition T The object-oriented environments use GNN transition models where the edge and
node networks have the same structure as the encoder (3-layer MLPs). For Reacher and 3D Teapot,
the transition model T is a MLP with 512 hidden units for the non-equivariant version and 256 for the
equivariant version. Actions are concatenated to the latent z and are input into the transition models
which then outputs a z′ of the same dimension as the input z. We use one-hot encoding for discrete
actions.

(a) 3D Blocks (b) Reacher

Figure 7: Original observations and their G-transformed versions
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Gram-Schmidt embedding for Teapot transition model In the case of the teapot domain, the
transition model is constrained to output an element of SO(3) representing a positively-oriented
orthonormal frame. This is achieved by having the network output two vector u, v ∈ R3 and then
performing Gram-Schmidt orthogonalization. Only two vectors are necessary since orthogonality
and orientation determine the third, after producing two orthonormal vectors u′, v′, the third vector
w′ is uniquely determined by the property that it completes a positively-oriented orthonormal frame
and can be computed by cross product. In summary,

u′ = u/‖u‖, v′ =
v − (u′ · v)u′

‖v − (u′ · v)u′‖
,

w′ = u′ × v′, y = [u′ v′ w′].

D.3 DATASETS AND HYPERPARAMETERS

For training, we use 1000 episodes of length 100 as training data for the grid world environments
(2D shapes, 3D blocks, Rush Hour), 2000 episodes of length 10 for Reacher, and 100,000 episodes
of length 1 for the 3D teapot. For Reacher, the starting state is restricted to a subset of the whole state
space, so we perform warm starts with 50 random actions in order to generate more diverse data. The
evaluation datasets are generated with different seeds from the training data to ensure that transitions
are different.

For the object-oriented environments, we follow the hyperparameters used in (Kipf et al., 2020): a
learning rate of 5 × 10−4, batch size of 1024, 100 epochs, and the hinge margin γ = 1. We find
that these hyperparameters work well for all other environments, except that Reacher uses a batch
size of 256 and mixed precision training was used for both non-equivariant, fully-equivariant, and
our method, in order to keep the batch size relatively high for stable contrastive learning. Most
experiments were run on a single Nvidia RTX 2080Ti except for 3D Cubes which used a single
Nvidia P100 12GB.

E GROUP REPRESENTATIONS

We explain the notation and definitions of the different representations of the groups considered in
the paper and displayed in Table 1.

The ρstd representation of C4 or D4 on R2 is by 2-by-2 rotation and reflection matrices. The
ρstd representation of S5 permutes the standard basis of R5. The regular representation ρreg of
G permutes the basis element of R|G| according to the multiplication table of G. The trivial
representation of G fixes R as ρtriv(g) · x = x. For D4, ρflip(g) = ±1 is a representation on R
depending only on if g contains a reflection. Given representations (ρ1,Rn1) and (ρ2,Rn2) of G1

and G2, (ρ1 � ρ2)(g1, g2)(v ⊗ w) = g1v ⊗ g2w gives a representation on G1 ×G2 on Rn1 ⊗ Rn2 .
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