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Abstract
Chain-of-Thought (CoT) reasoning is known to
improve Large Language Models both empirically
and in terms of theoretical approximation power.
However, our understanding of the inner workings
and conditions of apparition of CoT capabilities
remains limited. This paper helps fill this gap
by demonstrating how CoT reasoning emerges
in transformers in a controlled and interpretable
setting. In particular, we observe the appearance
of a specialized attention mechanism dedicated
to iterative reasoning, which we coined "iteration
heads". We track both the emergence and the
precise working of these iteration heads down to
the attention level, and measure the transferability
of the CoT skills to which they give rise between
tasks.

1. Introduction
In the rapidly evolving field of artificial intelligence, Large
Language Models (LLMs) have emerged as a pivotal com-
ponent (OpenAI et al., 2024). Their ability to understand,
generate, and manipulate human language has opened up
new avenues towards advanced machine intelligence. In-
terestingly, despite being primarily trained on next-token
prediction tasks, LLMs are able to produce much more
sophisticated answers when asked to generate steps of rea-
soning (Kojima et al., 2023; Wei et al., 2023). This phe-
nomenon, often referred to as Chain-of-Thought (CoT) rea-
soning, and illustrated on Table 1, appears paradoxical: on
the one hand, LLMs are not explicitly programmed to rea-
son; on the other hand, they are capable of following logical
chains of thoughts to produce relatively complex answers.

Recent studies have shown that the class of problems a
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transformer can solve with single-token prediction, i.e. by
outputting a single token meant to be the correct answer,
is rather limited (Hahn, 2020; Strobl et al., 2023; Delétang
et al., 2023). In contrast, when transformers are allowed to
freely generate tokens before providing a final answer, they
can use those generated tokens as a tape to emulate a form
of Turing machine (Pérez et al., 2019). This enables them to
solve a larger class of problems (Malach, 2023; Feng et al.,
2023; Merrill & Sabharwal, 2024; Li et al., 2024). However,
our understanding of why and how transformers gain CoT
abilities when trained with next-token predictions remains
limited. We aim to provide insights on the matter.

Summary of Contributions. We adopt a “mechanistic
interpretability” approach (see Elhage et al., 2021): we
work with simple, controlled problems and architectures
that capture the key aspects of the problem and allow us to
observe and analyze, down to the network’s weights and
attention, the emergence of CoT in our models. In practice:

• We describe the simple yet rich setting of iterative
tasks and iterative algorithms, including three simple
examples: a copying, a polynomial iteration, and the
parity problems.

• We explain why such problems are hard to solve for
transformers with single-token prediction. Conversely,
we describe how a certain distribution of weights
within the first two attention layers of a transformer,
which we call an “iteration head”, enables a trans-
former to solve iterative tasks with CoT reasoning with
relative ease.

• We hypothesize that iteration heads naturally appear in
transformers trained on (hard enough) iterative tasks,
and verify this hypothesis in small-scale experiments.

• Ablation studies demonstrate the impact of the training
set and choice of hyperparameters in their emergence.
We also observe the good transferability of the iterative
reasoning skills granted by the attention heads from
one iterative task to another, from which we deduce
the usefulness of data curation.

Our controlled yet illustrative experimental setup sheds light
on the emergence of CoT capabilities in larger LLMs, whose
attention patterns are much harder to interpret. In partic-
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Table 1: Chain-of-Thought consists in eliciting reasoning steps before answering (A) a question (Q).

[Q] What is 8× 8× 3? : [A] 210.
[Q] What is 8× 8× 3? Take it step by step. : [A] 8× 8 = 64, 64× 3 = 192. It is 192.

ular, our experiments suggest that transformers are likely
to develop “inner circuits” specially dedicated to multistep
reasoning, which can then be applied, in combination with
more specialized skills, to a variety of tasks that share the
same underlying logical structure. This gives a credible ex-
planation of the strong CoT reasoning capabilities of current
state-of-the-art LLMs, as their training corpora (human-
written texts, computer code) include many examples of
complex multistep reasoning.

Related Work. This work is set in the realm of mechanis-
tic interpretability (e.g., Olah et al., 2020; Bau et al., 2020).
A top-down line of work is trying to explicit algorithms
implemented by transformers in the wild (e.g. Wang et al.,
2022; Geva et al., 2023; Hanna et al., 2023), although some
findings might be fallacious (Bolukbasi et al., 2021). A
bottom-up line of work, to which we belong, consists in
building understandings from small models that are rele-
vant for bigger models, in particular regarding in-context
learning (see, e.g. Xie et al., 2022; Garg et al., 2023; Bietti
et al., 2023; Guo et al., 2023; Akyürek et al., 2023; Li et al.,
2023; Reddy, 2023; Edelman et al., 2024; Wu et al., 2024b).
In-context learning relates to the reproduction of reasoning
patterns that appear in a prompt or context (Brown et al.,
2020). In contrast, our study of CoT relates to reproducing
reasoning patterns that appear in the training set.

2. Controlled Setup: Learning Iterative
Algorithms

Human language and human reasoning are often organized
in a multistep, cumulative fashion, with each new thought
or group of sentences building upon the ones that precede to
work towards some final conclusion. LLMs naturally bene-
fit from learning such reasoning patterns: not only are they
prevalent through much of their training data, but they also
represent an efficient way to divide the total processing ef-
fort required into easier intermediate steps. In what follows,
we choose to focus on iterative algorithms and iterative
tasks as a controlled proxy for more general forms of CoT
reasoning. Indeed, though conceptually simple, iterative
algorithms exhibit a key property: they are simultaneously
hard to learn for transformers using next-token predictions,
and comparatively easy to learn using CoT reasoning. As
such, iterative tasks are ideally suited to illustrate the useful-
ness of CoT reasoning, and to study its emergence.

We define iterative algorithms, or iterative schemes, as fol-
lows: an iterative algorithm is the combination of an input
sequence, denoted as Sequence, and made of L elements

Algorithm 1 Iterative Schemes
s = Init
for x in Sequence do
s← F (s, x);

end for
Return s

(xt)t∈[L] (with [L] = {1, · · · , L}), and an internal state,
denoted as s, initialized to some default value s0 = Init,
and updated as the sequence is processed according to some
rule st = F (st−1, xt) for some function F . Pseudo-code
illustrating the concept is provided by Algorithm 1. By
extension, we informally call iterative task a task which
is naturally solved by outputting the end product of some
iterative algorithm applied to some input sequence. As an
example, consider the parity problem, i.e. the problem of
computing the parity of the sum of a sequence of 0s and
1s: it can be easily framed as an iterative task. Using the
notations of Algorithm 1, let the initial state Init be equal
to 0, and let F (s, x) be equal to 0 if s is equal to x, and
1 otherwise. Then the final sL gives the parity of the sum.
Although this task could also be solved in a non-iterative
fashion, the iterative solution can be seen as simpler and
more parsimonious.

Can a Transformer Learn Iterative Algorithms?
Briefly summarized,1 a transformer is composed of a se-
ries of transformer blocks and operates on the space of
sequences. A transformer block performs cross-operations
that combine elements of a sequence through the use of
attention heads to generate new sequences, and parallel op-
erations applied to each element of a sequence separately
through the use of feedforward layers (or MLP, i.e., multi-
layer perceptrons). Auto-regressive transformers in partic-
ular are trained to perform next-token prediction; in other
words, from a training corpus that contains sequences (zt)
of tokens, the transformer is trained to output zt+1 from the
truncated sequence St = (zr)r∈[t].

Given a certain number of transformer blocks, a transformer
can only apply a corresponding number of cross-operations
to predict the next token. This limits its ability to learn
even relatively simple iterative tasks. E.g., consider the
task where the input sequence is (x1, . . . , xL), possibly
restricted to xi ∈ [a, b] for some a < b, and the desired

1We assume that the reader is familiar with the transformer
architecture (see, e.g., Vaswani et al., 2023; Lin et al., 2021, for
details).
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output is the product
∏

xi. The product is multilinear in
the entries of the input sequence (x1, . . . , xL). If we model
the output of an attention layer as sums of monomials of
degree at most three in its input variables (due to key-query-
value interaction), this makes learning the task quite hard
for a transformer, and bounds the maximum length of the
sequences that a transformer with a given number of blocks
can correctly process (see Sanford et al., 2024, and related
literature for formal discussions on the matter that capture
this log-depth dependency).

However, when transformers are allowed to generate many
tokens before providing an answer, which implicitly lifts
the constraint on the number of operations performed by
the transformer, the picture changes (Pérez et al., 2019;
Merrill & Sabharwal, 2024; Li et al., 2024) (see also Darcet
et al., 2024; Goyal et al., 2024). In particular, Figure 1,
explained in the next subsection, illustrates how a two-layer
transformer can implement what we named an “iteration
head”. This potentially enables it to learn any iterative
algorithm, assuming that its second layer MLP is big enough
to implement any successor function F : (xt, st−1) 7→ st.

Synthetic Data. To study the emergence of CoT in con-
trolled settings, we introduce two simple iterative problems.
The first problem is a straightforward instance of Algo-
rithm 1, where the tokens and the states are elements of
the finite field Fp = Z/pZ (for some prime number p), i.e.,
integers modulo p, and the iterative step is the evaluation of
a polynomial function P ∈ Fp[X,Y ] in those two variables:

x ∈ Fp, Init = 0, F (s, x) = P (s, x)
(Polynomial Iteration)

Letting P (s, x) = s+ x and p = 2, the problem reduces to
the so-called parity problem:

x ∈ {0, 1}, Init = 0, F (s, x) = s+ x.
(Parity Problem)

For ease of study, we also consider an even simpler problem:
the copying problem, where the goal is simply to output an
exact copy of the input sequence.

x ∈ {0, 1}, F (s, x) = x (Binary Copy)

Note that there is a small abuse of notation here, since we
are interested in the unrolled sequence of states produced
iteratively by Algorithm 1, rather than the last token only.
While copying may seem like an overly simplistic task, it
should be put in parallel with the seminal work of Olsson
et al. (2022) that advocates studying a copying mechanism
to better understand in-context learning.

For each of our problems, we encode the data, i.e. the
sequences (zt), in the following form:

[Problem] [x1] [x2] · · · [xL] [EoI] [s1] [s2] · · · [sL] [EoS].

A first token indicates the problem generating the sequence
(e.g., “copy”, or “parity”), after which L input tokens xt are
provided. The end of the input is specified by an end-of-
input token (EoI). Subsequent tokens encode the states st
of Algorithm 1 at each iteration, until termination, which is
indicated by an end-of-sequence token (EoS).

3. One Head to Rule Them All
We have discussed how transformers are limited in the iter-
ative tasks that they can efficiently solve using only next-
token prediction. By contrast, we describe in this section
a certain distribution of weights which, if correctly learnt,
would allow a two-layer transformer to efficiently imple-
ment iterative algorithms by using chain-of-thought reason-
ing. After that, we perform various experiments to identify
the conditions under which this theoretical circuit does ap-
pear.

3.1. Theoretical Circuit

This subsection describes a natural way to implement an iter-
ative algorithm with a transformer. Let us consider a prompt
(xt)t∈[L], to which we append a special “end-of-input” (EoI)
token that marks the end of the input. The completion se-
quence will be generated with the t-th new element encoding
for the state variable after t steps of Algorithm 1. The t-th
new element (i.e. the L+1+t-th token of the full sequence)
is produced as follows. The first attention head is tasked
with retrieving the position of the end of the initial prompt,
i.e. the position of the EoI token. As illustrated in Figure 1,
it does so using a query-key combination which informally
encodes the question “Are you EoI?” and the answer “I am
EoI.”. Thus it extracts the positional encoding pL+1 (which
is the value associated to the L + 1-th token) regardless
of the sequence length L ∈ N, and brings pL+t into its
working space as well through the residual connection (we
formalize such statements in the next paragraph). As shown
further below in Figure 1, the next attention head then gen-
erates a query “Are you pt?” from pL+1 and pL+t, which is
answered positively by a key “I am pt” associated to the t-th
position. Hence the head retrieves the value associated to
this position, which is xt. It also obtains st−1 (or rather the
approximation of it that was produced at the previous step)
through the residual stream. The MLP can finally compute
the new state st = F (st−1, xt) from st−1 and xt. This can
always be done by a large-enough MLP assuming that the
second attention layer outputs all the relevant information re-
garding st−1 and xt, as a result of universal approximation
(Hornik et al., 1989). Note that the operations performed
by the two attention layers are totally independent from the
precise iterative task considered, i.e. from the choice of
F ; their only goal is to retrieve xt and st−1. We call the
pattern of weights that realize these operations, as well as
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Figure 1: Implementation of an iteration head with a two-layer transformer. Contiguous box: superposition in high-dimensional
space. Blue: information brought to working space thanks to residual connections. Red: information brought thanks to attention.
Green: next-token prediction. The first layer MLP implements a subtraction t = (L+ t)− (L+ 1) + 1 for the second attention to
be able to query pt from (pL+1, pL+t). The second layer MLP implements F to be able to predict st from (st−1, xt), with the
“end-of-input” mark assimilated to the initial state s0 of Algorithm 1.

the underlying algorithm, an “iteration head”.

Information Superposition in Working Spaces. In our
description of an iteration head, we have rather informally
said that some variable x is “extracted” or “obtained”. For-
mally, a transformer transforms a sequence (xt)t∈[L] into
a series of sequences (et,l)t∈[L], where l is an index spec-
ifying layers, and et,l ∈ Rd, with Rd being referred to as
the “working space”. The input tokens and their positions
are brought into working spaces using embeddings that are
typically learned, then added together. Assuming that the
working spaces are high-dimensional enough, and because
those embeddings are learned, a transformer can use differ-
ent parts of Rd to simultaneously store token and positional
information, as if those embeddings were actually concate-
nated rather than added. Likewise, transformer layers output
variables are learned functions of their input; if needed, and
assuming that d is large enough, et,l+1 can superpose some
es,l and er,l for different s, r ≤ t, in which case one may
consider et,l+1 as somewhat equivalent to the concatenation
of es,l and er,l. This is why our exposition above focuses
on “information pathways”, i.e. which variable is generated
using which variable, and sentences such as “xt and st−1

are brought to the working space” should be understood as
“some vector encoding the relevant information of both xt

and st−1 is produced”.

Approximate Iteration Heads. Iteration heads are an effi-
cient, flexible and parsimonious way to implement iterative
algorithms; as such, we expect them to naturally emerge
during training. Nonetheless, transformers have flexible
architectures that can perform similar operations in different
ways. Hence we also expect to see some variations with
respect to the schematic architecture described above (see
Figures 4 and 9), in particular when the embedding dimen-

sion becomes too small for the information superposition
from the previous paragraph to be correctly implemented.

3.2. Learning an Iteration Head

In this subsection, we examine the circuit that a transformer
actually learns when trained on an iterative task with chain-
of-thought. We observe that the theoretical circuit described
in the previous subsection does appear in practice.

Experimental Design. Unless otherwise stated, our ex-
perimental setup is as follows. Data was generated for
the binary-copy, parity, and polynomial iteration problem
with P (X,Y ) = XY + 1 in F11. For each length L from
Lmin = 1 to Lmax = 32, we generated n = 1024 input
sequences of length L (corresponding to a total sequence
length of 2L+3) uniformly at random for both training and
testing sets, creating datasets of N = 16, 384 = 16× 1024
sequences in total.2 We utilized auto-regressive transform-
ers (Brown et al., 2020) with two layers and one atten-
tion head per layer. The embedding dimension was set to
d = 128, with learned absolute positional encoding added to
the learned token embedding. The weights were optimized
over 1000 epochs with Adam (Kingma & Ba, 2017), a batch
size of 256, and a fixed learning rate set to γ = 3 · 10−4,
with default PyTorch parameters otherwise (Paszke et al.,
2019). Our experiments consumed 12k V100-hours.

Attention Heads. In our initial experiment, we trained a
transformer to solve either the parity task or the copying
task only. The “iteration head” pattern of weights, described

2Note that, even when xt ∈ F2, the expected percentage of col-
lision between the training and testing set decreases exponentially
fast with L, ensuring minimal contamination between training and
testing.
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Figure 2: Left: attention maps learned for the parity problem when processing a sequence of length L = 29. Yellow indicates
high attention score. The yellow line on the left plot shows that all the queries after the EoI token at position t = 30 point to the
EoI token. In other terms, the first attention implements the “Are you EoI?” query of Figure 1, while the second implements the
“Are you pt?” query. Right: accuracy dynamics for different sequence lengths when learning the parity problem. We observe fast
learning of short sequences (we used the tab10 color scheme of Matplotlib (Hunter, 2007) with L ∈ {8, 11, 14, 17, . . . , 32}), and
characteristic staircase behaviors.

in the previous sub-section, can be seen in the attention
maps of the first and second attention layers: an example
is reported in Figure 2. Namely, we observe that when
the model produces the (L + t + 1)-th token (meant to
be st), the following happens. The attention of the first
transformer block is fully focused on the position of the
EoI token, corresponding to the informal query “Is this
token equal to EoI?”, creating a yellow line on the left of
Figure 2. This allows the first attention layer to retrieve the
positional encoding pL+1 of the EoI token, in addition to
the positional encoding pL+t of the last token of the current
sequence (the state st−1) coming from the residual stream.
Using this information, the second attention layer is able to
generate the informal query “Is this token in position t?”, to
extract some encoding of the token xt. Consequently, the
attention of the second layer is fully focused on the position
of the t-th entry, creating the yellow off-diagonal line on the
second plot of Figure 2. Using the information of xt and
st, the following MLP can then compute st = F (xt, st).
For a given sequence length L, the learned attention maps
were found to be invariant to the input token (xt)t∈[L]: the
standard deviation of attention patterns computed over all
the data was negligible.

Successor Function. We empirically verified that after
training a two-layer transformer with one attention head
per layer on the copying dataset, fine-tuning only the sec-
ond layer MLP on parity data enabled us to achieve 100%
accuracy on the parity problem. In the context described
previously, this transfer was accomplished in fewer than 20
epochs of fine-tuning on the parity dataset. This confirms
that the feed-forward layer of the second transformer block
is computing the successor function F . In more general con-
texts, we found the successor function to be implemented
jointly by the second layer MLP, the second attention values
and output matrices, as well as the un-embedding matrix.

Position Subtraction. The accuracy of the model de-
creases with the embedding dimension d, as shown on the
left of Figure 3. Figure 4 suggests that when d is small,
the first attention layer remains capable to accurately locate
the “EoI” token, but the second attention layer struggles to
retrieve xt. This can be explained as follows: in a model
that implements an iteration head, the first layer’s MLP, in
conjunction with the second attention key and query ma-
trices, is expected to generate the query-key pair “Are you
pt” and “I am p′′t by transforming pt on the one hand, and a
superposition of pL+t and pL+1 on the other hand, so that
the end results are aligned. More abstractly, this encodes
the positional subtraction L+ t− (L+ 1) + 1 = t. In high
dimensions, it is relatively easy to find a set of weights to
align a large number of vectors (viz., the ones encoding for
(pL+1, pL+t) and for pt). However, in lower dimensions,
this can only be achieved when the vectors form certain
special geometrical patterns (see e.g. Nanda et al., 2023;
Zhong et al., 2023), which the model struggles to learn in
our setting, at least with the optimization choices we made.

Evaluation Dynamics. With a sufficiently small model,
we might expect to understand the training dynamics quite
well, which could in turn provide insights on design choices
for larger models to minimize training costs. While a de-
tailed study of the training dynamics of our two-layer trans-
formers is beyond the scope of this paper (see e.g., Nichani
et al., 2024), we note several interesting facts that align
with recent findings in the literature, such as the staircase
profile of accuracy plots in Figure 2 (Abbe et al., 2022;
Andriushchenko et al., 2023; Chen et al., 2024), as well as
the usefulness of small batch sizes and large learning rates
reported in Figure 8 in Appendix (Cabannes et al., 2024a)
despite the risk of loss spikes (Cabannes et al., 2024b; Wu
et al., 2024a).
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Figure 3: Test accuracy (where red indicates better performance) after learning the polynomial iteration task with P (X,Y ) =
XY + 1 in F11 for 1000 epochs. The accuracy is reported as a function of the embedding dimension (on the y-axis), and the
maximum sequence length Lmax (on the x-axis). The learning was conducted with a two-layer transformer with CoT (left), without
CoT (middle), or with a one-layer transformer with CoT (right). This illustrates the usefulness of CoT and two-layer architectures.

3.3. Ablation Studies

Next-token Prediction; One or Two Layers. As an ini-
tial ablation study, we considered the polynomial iteration
problem with P (X,Y ) = XY + 1 in F11, and compared
the performance of CoT reasoning with next-token predic-
tion (i.e., without CoT), as well as CoT with a single layer
transformer. Two parameters come into play: the length of
the sequence, which can be seen as a difficulty parameter
regarding the data; and the embedding dimension, which
can be seen as a model capacity parameter (Kolmogorov
& Tikhomirov, 1959; Vapnik, 1995; Smale & Zhou, 2007).
The results, unequivocal in favor of CoT and two-layer
transformers, are reported in Figure 3.

Alternative Circuits. Next, we explored other circuits
that a two-layer transformer can learn to perform the same
tasks as an iteration head. We proceed by assigning a score
to measure how closely the attention maps follow the pat-
terns of Figure 2. For the first attention map, we would like
a measure of the concentration of the attention at the “Are
you EoI? I am” query-key pairs, which correspond to the
vertical yellow line from the left of Figure 2. For the second
attention map, we would like a measure of the concentration
of the attention at the “Are you pt? I am” query-key pairs,
which corresponds to the yellow off-diagonal from Figure 2.
To avoid scaling issues, we define an attention score ai
as “peaky” if it is greater than 50% after softmax averag-
ing. We then measure the average number of peaky scores
(within one sequence, and over sequences), i.e., we compute∑

1ai>.5 instead of
∑

ai. This provides a clear measure
of the degree to which a transformer is implementing the
attention mechanisms described in the previous section.

On the left of Figure 4, we report the average peakiness
found for the first and second attention layers when training
a transformer for different maximum sequence lengths Lmax

and embedding dimensions d. We only run one experiment
per pair (Lmax, d) with a fixed random seed. The texture
of the figure indicates a certain randomness between runs
for similar pairs (Lmax, d). The first attention layer almost

always learns the “Are you EoI?” query-key combination,
except when the maximum sequence lengths are very small.
In these cases, the transformer might find different circuits
to solve for different sequence lengths.

The second attention layer tends to vary more. In particular,
for small embedding dimensions, the position subtraction
might be challenging for the transformer to perform, leading
it to find alternative mechanisms. For instance, the first
layer attention might perform a previous token copy when
processing the input tokens, superposing the current token
xt and the previous one xt−1 in the current working space.
This allows the second layer to solely point at every other
position, e.g., only attend even positions t ∈ 2 · N, either
recovering the current token xt, or the previous one xt−1.
Implementing position subtraction towards even positions
only reduces the learning capacity needed by the first layer
MLP (see Cabannes et al., 2024a, for related scaling laws).
Such a sub-sampling mechanism is notably observed on the
right of Figure 4.

4. Skill Transfer
Some skills might be easier to acquire when trained on cer-
tain data rather than others, highlighting the importance of
data curation when training LLMs. For example, datasets
of code or math (e.g., Hendrycks et al., 2021) might exhibit
formal reasoning structures that compel LLMs to learn mul-
tistep reasoning patterns when trained on them, leading to
improved reasoning abilities of the final model, even in plain
English (see, e.g., Ma et al., 2023). Our synthetic problems
are ideally suited to highlight the mechanisms at play in
these observations. This section illustrates how strategic
data curation can facilitate learning to solve the parity prob-
lem. The crux is to find a dataset that helps the creation of
iteration heads, which, once present, significantly eases the
learning of the parity problem by a transformer.

6



10 20 30

Max seq. len.

20

40

60

E
m

b.
di

m
.

1st Attn. peak.

10 20 30

Max seq. len.

2nd Attn. peak.

0.0

0.5

1.0

0 50

Key tokens

Q
ue

ry
to

ke
n

First attention map

0 50

Key tokens

0

20

40

60

Second attention map

Figure 4: Left: attention peakiness score after 1000 epochs of learning with the polynomial iteration task parameterized by
P (X,Y ) = XY + 1 in F11 as a function of the embedding dimension d and the maximum sequence length Lmax. Right: example
of attention maps of sub-sampled iteration heads.

4.1. Inducing Induction

We now address a simple question: can we “pretrain” a
model on a task A, and then “finetune” it on a task B in
order to learn to solve the task B with a smaller total number
of flops than if we were to learn the task B from scratch?
We will see that the answer is positive.

Figure 5 compares three learning scenarios. The learning of
the polynomial iteration task corresponding to P (X,Y ) =
XY + 1 in F11 is reported in blue. The learning of the
parity problem is reported in orange. Finally, the green
curve represents training on the polynomial iteration task
for 200 epochs (these epochs are not reported in the graph,
hence the curve offset), before switching tasks and con-
tinuing the training on the parity problem. When switch-
ing from the polynomial iteration dataset to the parity
dataset, we chose to reset the Adam buffers to zero. More-
over, our default experimental parameters were changed to
Lmax = 16 and n = 512, generating training and testing
sets of N = 8, 192 = 16× 512 sequences. The left side of
Figure 5 reports testing accuracy averaged over 100 runs,
along with its standard deviation. The polynomial iteration
task is learned relatively quickly, while the parity problem
takes longer. The right side of Figure 5 reports the second at-
tention peakiness score, capturing whether or not the second
attention is implementing the “Are you pt?” query. After
200 epochs of training with the polynomial iteration task,
the iteration head is formed, and fine-tuning the network on
the parity problem for less than 30 epochs enables the reuse
of this circuit on the parity data (green curve, right plot),
thus solving the parity task (green curve, left plot). Overall,
the data curation represented by the green plot enables the
computation of parities in less than 300 epochs, compared
to 1000 epochs when learning solely with parity data.

This example provides a controlled setup to understand the
usefulness of data curation when training larger models.
It biases the model toward the implementation of specific
circuits. In particular, adding code or math datasets to the
training of LLMs might induce the learning of more circuits

that implement various forms of reasoning patterns. These
could be viewed as atomic skills that could be reused to
solve more generic problems (see, e.g., Arora & Goyal,
2023, for further discussions on skill factorization).

4.2. The Role of Inductive Biases

To illustrate the usefulness of data curation and skill transfer,
we needed to find a problem that is hard to learn from scratch.
The parity problem was well-suited to play this role in our
synthetic setting. On the other hand, the polynomial itera-
tion task with P (X,Y ) = XY +1 in F11 was the easier task.
One might wonder why learning with P (X,Y ) = XY + 1
in F11 turned out to be a simpler task than learning pari-
ties, which corresponds to P (X,Y ) = X + Y in F2. Our
intuition is that the parity problem can be solved in many
different ways, which leads to competing signals in the gra-
dient for updating the weights, reminiscent of the theoretical
study by Shalev-Shwartz et al. (2017) (see also Rosenfeld &
Risteski, 2023; Zhong et al., 2023). For example, we see on
the right of Figure 5 that the standard deviation of the atten-
tion peakiness score is quite high when learning with parity
data. This can also be observed from the texture in Figure 7
in the Appendix. This creates a challenging optimization
landscape. In contrast, the polynomial P (X,Y ) = XY +1
was chosen to make the final state dependent on the token
order. Removing permutation invariance is useful to reduce
the variety of circuits that can solve the polynomial iteration
task, and seems to speed up the training dynamics. Finally,
starting from a pretrained model that already implements
an iteration head creates a strong inductive bias toward the
iteration head circuit to solve the parity problem, allowing
the parity problem to be learned within a very small number
of epochs.

To deepen our understanding of the parity problem, we con-
ducted the same scaling study depicted in Figure 3 using the
parity dataset. The results are presented in Figure 6. Train-
ing was conducted over 5000 epochs. The data generation
process was slightly modified to generate all sequences of
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Figure 5: Left: Test accuracy as a function of the number of epochs, averaged over 100 runs, when learning the polynomial iteration
task with P (X,Y ) = XY + 1 in F11 (blue) and the parity problem (orange). Right: The second attention peakiness score indicates
whether the network is learning the iteration head described in Figure 1. The green curve corresponds to the accuracy on the parity
problem when learning the polynomial iteration for the first 200 epochs before switching the dataset to learn the parity problem.
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Figure 6: Same figure as Figure 3, except that we considered the parity problem, and 5000 training epochs.

length less than L = log2(1048), and these were evenly
split between training and testing (instead of generating
redundant random sequences). In some sense, the parity
problem can be considered relatively easy to solve in a
non-iterative fashion: simply add all the elements of se-
quences, and reduce the sum modulo two. In theory, a
single-layer transformer can use uniform attention to bring
all the input tokens into superposition as input for the two-
layer MLP layer, which is a universal approximator (Hornik
et al., 1989). As a result, the parity with a fixed sequence
length can be solved with such an architecture (see e.g.
Barak et al., 2023). Indeed, the bottom right of the left
and middle plots in Figure 6 indicate that next-token pre-
diction performs better than chain-of-thought for sequence
lengths up to Lmax = 32 with an embedding dimension of
d = 32. This is due to the difficulty of performing position
subtraction necessary for the CoT circuit, compared to the
relative ease of performing addition of up to 32 bits with our
two-layer architecture. Similarly, we found that a one-layer
transformer was able to learn to produce correct CoT se-
quences for this task, demonstrating the existence of circuits
fundamentally different from our iteration head to solve it.
Anecdotally, the top right of the left and middle plots of
Figure 6 indicate that as the model capacity increases, next-
token prediction tends to overfit the training data, while CoT
induces the transformer toward understanding the underly-
ing structure that generated the data.

5. Conclusion
In this paper, we have explored the emergence of Chain-
of-Thought (CoT) reasoning in Large Language Models
(LLMs) through the lens of iterative algorithms. We have
shown that, despite being trained on next-token prediction
tasks, transformers can learn to solve iterative tasks effi-
ciently using CoT reasoning. In particular, we have demon-
strated that a two-layer transformer can implement what we
named an “iteration head”, enabling it to learn any iterative
algorithm, assuming that it has enough feedforward layers
following its two transformer blocks.

We have also shown that data curation can play a significant
role in guiding the model towards the implementation of
specific circuits. While our study has focused on simple,
controlled problems and architectures, we hope that our
findings shed light on the emergence of CoT capabilities
in larger LLMs, whose attention patterns are much harder
to interpret. In particular, they suggest that transformers
are likely to develop “inner circuits” dedicated to multistep
reasoning, which can then be applied to a variety of tasks
that share the same underlying logical structure.

Interestingly, our work also highlights a limitation of the
transformer architecture: they are stateless models. Indeed,
our CoT implementation of Algorithm 1 requires the gener-
ated states (st) to have a token representation. This allows
us to recover the state of the iterative algorithm at the root
(i.e., the input) of the transformer. For complex iterative
algorithms, or generic language modeling, it would be more
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logical to maintain a state internal to the model in the em-
bedding space. The fact that GPT architectures do not allow
this is arguably a shortcoming of the current transformer ar-
chitecture (see LeCun, 2022; Bardes et al., 2024; Gu & Dao,
2023; Peng et al., 2023; Zhang et al., 2024, for interesting
discussions), (see also Nye et al., 2021; Lewis et al., 2021).
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Societal Impact. Mechanistic interpretability is focused on understanding the key mechanisms at play in deep learning
systems by tracing them down to the weights. It is often associated with AI safety, hoping that a deeper understanding of
these systems can help us steer them to be more “aligned” with “human values”, and prevent AI dystopia scenarios. On the
other hand, it could also prove useful in training more powerful models, which is associated with significant societal issues
linked to the rise of advanced AI systems. These issues are too broad to be discussed in this paragraph.

A. Additional Figures & Findings
Figure 7 studies the probability of finding the iteration head when learning with the parity data. As mentioned in the main
text, it showcases the bigger probability of learning other circuits when learning the parity problem only.
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Figure 7: Same figure as Figure 4 yet when learning with the parity dataset. The whitening of the row around d = 20 is due to GPU
failure, and should not be considered when parsing this figure.

Figure 8 showcases the usefulness of large learning rates and small batch size when using SGD, and the correction brought
by Adam.
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Figure 8: Test accuracy for SGD and Adam after 100 epochs.

Finally, Figure 9 plots some attention maps when learning with a three layers transformer with two attention heads per layer.
Knowing the iteration head circuit, we are able to observe a similar circuit, yet with work shared across heads and layers.

Position embeddings. When we started this project, we were expecting to find some grokking structure emerged from the
need to perform position subtraction. In particular, as mentionned in the main text, we were expecting this mechanism to
appear as the position embedding dimension was small. When learning on the parity problem, we found that the network
was not implementing the iteration head when the position embedding dimension was really small. This can notably be
seen on Figures 11 and 10. We notably observed that freezing the position embedding does not change much the picture,
which can be seen as a result of overparameterization. Similar type of observation were observed when learning with the
polynomial iteration problem, as reported on Figure 12.
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Figure 9: Recovering the “who is pt?” key-query association, yet shared across layers and heads when training a three layers
transformer with two attention heads per layer.
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Figure 10: The effect of small embeddings when learning the parity problem. The top row corresponds to what has been learned
after 1000 epochs. The bottom one corresponds to 5000 epochs.
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Figure 11: Attention learned when studying frozen vs learned positional embedding.
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Figure 12: Attention learned when studying frozen vs learned positional embedding. The setting is slightly different, we fixed the
token embedding dimension to 32, and added the position embedding only on the first p dimension, where p was varying from 2 to
32.
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