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Abstract

Federated learning (FL) is a promising machine learning paradigm that collaborates
with client models to capture global knowledge. However, deploying FL models in
real-world scenarios remains unreliable due to the coexistence of in-distribution
data and unexpected out-of-distribution (OOD) data, such as covariate-shift and
semantic-shift data. Current FL researches typically address either covariate-shift
data through OOD generalization or semantic-shift data via OOD detection, over-
looking the simultaneous occurrence of various OOD shifts. In this work, we
propose FOOGD, a method that estimates the probability density of each client
and obtains reliable global distribution as guidance for the subsequent FL pro-
cess. Firstly, SM3D in FOOGD estimates score model for arbitrary distributions
without prior constraints, and detects semantic-shift data powerfully. Then SAG in
FOOGD provides invariant yet diverse knowledge for both local covariate-shift
generalization and client performance generalization. In empirical validations,
FOOGD significantly enjoys three main advantages: (1) reliably estimating non-
normalized decentralized distributions, (2) detecting semantic shift data via score
values, and (3) generalizing to covariate-shift data by regularizing feature extractor.
The prejoct is open in https://github.com/XeniaLLL/FOOGD-main.git.

1 Introduction

Federated learning (FL) [56] provides a distributed machine learning paradigm, which collaboratively
models decentralized data resources. Specifically, each client models its data locally and server
improves model performance by aggregating client models, which indirectly shares knowledge among
clients and preserves privacy. FL further makes efforts to adapt real-world scenarios, i.e., adapting
non-independent and identical distribution (non-IID) [39, 30].

Beyond non-IID issues, deploying FL models in real-world also encounters different tasks of out-of-
distribution (OOD) shift [69, 26, 6], e.g., tackling covariate shifts (OOD generalization) and handling
semantic shifts (OOD detection). In FL, OOD generalization task is devised to capture the invariant
data-label relationships of covariate-shift data intra- and inter-client, which offers the potential of
adapting unseen clients [17, 60, 70, 84]. The OOD detection task in FL aims to find semantic-shift
data samples that do not belong to any known categories of all client data during FL training [83].
Both OOD generalization and detection simultaneously exist in FL, hindering the deployment of
FL methods. Nevertheless, the existing work only tackles each OOD task in isolation. SCONE [3]
proposes a unified margin-based framework to realize OOD generalization and OOD detection tasks
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in centralized machine learning. But it is infeasible to FL due to two reasons, i.e., being non-trivial in
searching for consistent margin among non-IID distribution, and requiring outlier exposure of data.
This motivates us to a crucial yet unexplored question:
Can we devise a FL framework that adapts to wild data, which coexists with non-IID in-distribution
(IN) data, covariate-shift (IN-C) data, and semantic-shift (OUT) data?

Figure 1: Motivation of FOOGD. The distributions
of two clients are non-IID, and we seek to estimate
the global distribution among decentralized data.

In this work, we simultaneously promote OOD
generalization and detection by collaborating
with clients in FL. The objectives of OOD gen-
eralization and detection vary among different
clients due to their non-normalized and hetero-
geneous probability densities. This motivates us
to build systematic and global guidance to distin-
guish IN, IN-C, and OUT data. As depicted in
Fig. 1, for non-IID client distributions, we first
estimate the probability density in each local
client and then compose these local estimations
for global distribution in server. Once a reliable
global distribution estimation is established, we
can leverage it to guide FL OOD tasks in deployment. However, this approach presents two chal-
lenges, i.e., CH1: How to estimate the reliable and global probability density among decentralized
clients for detection? and CH2: How to enhance intra- and inter-client OOD generalization based
on global distribution estimation?

To fill these gaps, we propose a federated collaboration framework named as FOOGD, which estimates
client distribution in feature space via score matching with maximum mean discrepancy (SM3D) and
enhances the client model generalization by Stein augmented generalization (SAG). To solve CH1,
inspired by the flexibility of score matching [58, 7], we originally devise SM3D to train score model
that estimates limited and heterogeneous data distributions for each client, and aggregate score
models in server as global estimation. Because the score values are vectors indicating position
and changing degree of the log data density [55], SM3D brings the potential of discriminating OUT
data in low-density areas with large change degree. However, it is unreliable to directly apply
vanilla score matching for modeling decentralized data, which suffers from sparsity and multi-
modal complexity [72, 55]. To obtain a reliable density estimation, SM3D explores wider space by
generating random samples via Langevin dynamic sampling, and constrains the generated samples to
be similar to data samples via maximum mean discrepancy (MMD). To mitigate CH2, SAG regularizes
feature invariance between data samples and its augmented version, which is measured by score-
based discrepancy. Though the existing generalization methods capture the invariance in feature
space [1, 34], the vital feature information is inevitably lost due to strictly invariant constraints [87, 10].
This also deteriorates the performance of solving FL OOD generalization. With the benefits of
distributional alignment based on Stein indentity [46], SAG in client model captures IN-C data in a
similar feature space with IN data, which not only avoids representation collapse but also maintains
diversifying information. Thus SAG makes FOOGD generalize to IN-C data from local covariate-shift
distribution and unseen client distribution.

The main contributions are: (1) We are the first to study OOD generalization and detection in FL
simultaneously, and formulate a evaluation on deploying FL methods in the wild data. (2) We propose
FOOGD which estimates reliable global distributions based on arbitrary client probability densities, to
guide both OOD generalization and detection. (3) We devise SM3D which not only explores wider
probability space for density estimation, but also provides the score function values to detect OUT
samples. (4) We utilize SAG to maintain the invariance between IN-C and IN data in feature space,
which obtains better generalization without collapsing for FL scenarios. (5) We provide theoretical
analyses and conduct extensive experiments to validate the effectiveness of FOOGD.

2 Related Works

2.1 OOD Detection

OOD detection discriminates semantic shift (OUT) data during deployment time [3, 20, 53]. There
are two main categories of OOD detection work, i.e., enhancing training-time regularization [48,
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21, 75, 13], and measuring post-hoc detection function of a well-trained model [20, 74, 37]. The
first category focuses on ensuring predictors produce low-confidence predictions for OOD data
during training, which is effective but mainly requires access to real OUT data [21, 5, 80, 86]. By
the way, selecting different auxiliary detection objectives [22, 57] unexpectedly varies the overall
performance. The second category utilizes the classification logits [74], energy score [35, 48], and
feature space estimation [37, 66] from pre-trained models, to detect the OUT data. This reduces the
costly computation burden but rigidly relies on the data distribution captured in the pre-trained model.
As one kind of methods in post-hoc way, density-based estimation methods [37, 66, 68] can relieve
the cost of collecting or synthesizing representative OOD datasets, avoiding biased and ineffective
detection [74, 35] and bringing the potential of densities composition.

2.2 OOD Generalization

OOD generalization targets extracting invariant feature-label relationships and maintaining the de-
ployment performance of model with covariate-shift data in the open-world [31, 54]. To reach this
goal, IRM-based work [2, 1, 34] utilizes invariant risk regularization to find invariant representations
from different covariate shift data. Besides, there are various work calibrating invariant represen-
tations by distribution robust optimization methods [65, 16], feature alignment methods [15, 14],
augmentaed training [10], gradient manipulation methods [24], diffusion modeling [82] and so on.
SCONE [3] takes advantage of unlabeled wild mixture data to enhance generalization and build
detectors simultaneously. However, SCONE is not suitable for FL, since it requires a hyper-parameter
of energy margin and the outlier exposure data [83, 75]. To tackle the meta-task detection and
generalization, Chen[9] propose an Energy-Based Meta-Learning (EBML) framework that learns
meta-training distribution via two energy-based neural networks. However, it is tough to model two
reliable energy models in decentralized models where data and computation resources are constrained.

2.3 Federated Learning with Wild Data

In FL, wild data makes it challening in tackling non-IID modeling, OOD generalization, and OOD
detection. Firstly, FL with non-IID data presents significant challenges in balancing global and
local model performance [56, 8, 39, 43, 89, 42](Appendix C). Secondly, FL considers two aspects
of generalization, i.e., (1) intra-client generality, and (2) inter-client generality. The intra-client
generalization keeps the invariant relationship between data samples and class labels[26, 69, 70, 63],
which is similar to centralized OOD generalization. The inter-client generality work captures invariant
representation for heterogeneous client distributions, making the global model adaptive to a newly
unseen client [84, 60, 17, 44]. Lastly, regarding OOD detection in FL, it is expected to detect
semantic shift data out of the whole class categories set among decentralized data, yet avoid wrongly
distinguishing unseen data classes of other clients. FOSTER [83] treats unseen data classes in each
client as OUT, and enhances their detection capability via synthesizing virtual data with external
classes of other clients. Different from the above methods, we aim to enhance OOD detection
and generalization simultaneously by collaborating with different clients. Recently, FedGMM [77]
utilizes a federated expectation-maximization algorithm to fit data distribution among clients by
estimating Gaussian mixture models(GMM), and detects OUT data via computing GMM probability.
It can only roughly capture the data distribution with the prior assumption of GMM. Meanwhile,
a orthogonal paradigm of studies focus on tackling concept shifts in federated process [61, 29].
However, it overlooks the coexistence of wild data, resulting in suboptimal performance in federated
tasks of OOD generalization and detection.

3 Methodology

3.1 Problem Setting

Federated Learning Formulation with Wild Data. We first formulate the wild data in FL de-
ployment and provide the optimization goal of FL. Empirically, we assume a dataset decentralizes
among K clients, i.e., D = ∪k∈[K]Dk. The data distribution of k−th client is simulated following
the real-world wild data, i.e., Dk = DIN

k + DIN-C
k + DOUT

k . The objective of the FL model, which
simultaneously tackles OOD generalization and detection, is defined as follows:

argminθf ,θg
ΣK

k=1wkEx∼pDk
[Lk(θf ,θg;Dk)], (1)
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Figure 2: Framework of FOOGD. For each client, we have main task feature extractor, a SM3D module
estimates score model (Eq. (8)) for detection, and a SAG module regularizes feature extractor for
enhancing generalization. The server aggregates models and obtains global distribution.

where Lk(θg,θf ;Dk) = ℓIN
k + ℓIN-C

k + ℓOUT
k , and wk represents weight ratio for the k-th client. The

OOD measurements ℓIN
k , ℓIN-C

k , ℓOUT
k correspondingly justify the IN generalization, IN-C generaliza-

tion, and OUT detection in each client k, as follows:

ℓIN
k := E(x,y)∼pDIN

k

(I {ypred (fθ(x)) ̸= y}) (a)

ℓIN-C
k := E(x,y)∼pDIN-C

k

(I {ypred (fθ(x)) ̸= y}) (b)

ℓOUT
k := E(x,y)∼pDOUT

k

(I {gθ(x) = IN}) (c),

(2)

where fθ(·) is main task model, gθ(·) is detector, I is indicator function, and ypred is predicted label.

Framework Overview. To optimize the FL objective in Eq. (1), we propose FOOGD whose framework
overview is depicted in Fig. 2. For K clients with non-IID data, FOOGD composes their local
distributions and aggregate their model parameters in server. In each client, the data samples x
as well as its fourier augmented [79] counterparts x̂, are fed into the same feature extractor of
main task fθ(·) to obtain their latent features, z = fθ(x) and ẑ = fθ(x̂), respectively. To avoid
overwhelming communication costs brought by score models, score matching with maximum mean
discrepancy (SM3D) trains a score model sθ(·) in feature space. This model captures the data
distribution by estimating the gradient of log densities (score functions) of latent features z, i.e.,
sθ∗(z) = ∇z log pθ(z) ≈ ∇z log pD(z) [7, 72]. Then score model serves as the detector for the
objective in Eq. (2c), discriminating OUT based on the norm of score function values. Besides, Stein
augmented generalization (SAG) enhances the generalization capabilities of the feature extractor fθ(·),
by the distribution regularization defined via score model. Because score model based distribution
ensures that data features and their neighboring augmented samples, e.g., z and ẑ, maintain a
consistent probability space [46]. The local modeling iterates until performance converges.

In each communication round, since both main task model and score model are parameterized neural
networks, it is practical to follow conventional weighted average aggregation [56], i.e.,

{θs,θf} =
K∑

k=1

wk{θk
s ,θ

k
f}, (3)

with wk = |Dk|∑K
k=1 |Dk|

,∀k∈[K]. These collaborative processes among clients continue until the global
model converges, bringing reliable and comprehensive global distribution in the form of global score
model. We introduce the details later and illustrate the algorithm of FOOGD in Appendix A Algo. 1.

3.2 SM3D: Estimating Score Model for Detection

In this part, we introduce the estimation of FL data distribution and how to utilize it for detection. As
shown in Fig. 1, a reliable probability density is eagerly necessary for distinguishing IN and OUT
data [75, 27]. Different from existing centralized OUT aware and OUT synthesis methods [13, 21],
the FL framework suffers from the accessibility of OUT data [83]. In this study, we aim to explicitly
capture the local IN data distribution of clients, and subsequently compose them to reliable global
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distribution for discrimination. However, it remains challenging to estimate heterogeneous and
non-normalized probability density without prior information during FL modeling.

Dynamic Feature Density Estimation. FOOGD estimates score model via score matching in the
feature space [72, 32, 7], i.e., pD(z), circumventing the need for prior distribution knowledge or
distribution normalization [72]. Moreover, it alleviates the computational burden by modeling the
score of latent representations in a smaller, yet more expressive and continuous space, compared to
the scores of the original data [71]. Specifically, given the latent features z = fθ(x), we perturb it
via adding random noise v ∼ N (0, I) to obtain z̃ = z + σv, which follows noise-perturbed data
distribution pσ(z̃|z) := N

(
z̃; z, σ2I

)
. And we model it with noise conditional score model [67]

sθ (z̃, σ) by minimizing the denoising score matching (DSM) loss, i.e.,

min ℓDSM =
1

2
EpD(z)pσ(z̃|z) ∥sθ (z̃, σ)−∇z̃ log pσ(z̃ | z)∥2 , (4)

where the score function of∇z̃ log pσ(z̃ | z) for d-dimensional features, is computed as follows:

∇z̃ log p (z̃ | z) = ∇z̃

log 1(√
2πσ2

)d
exp

{
−∥z̃ − z∥2

2σ2

} = − z̃ − z

σ2
= −v

σ
. (5)

When the noise get to zero, i.e., σ → 0, we have the exact score values sθ (z̃, σ) = sθ(z). However,
score model based density estimation will inevitably fail once the distribution contains sparse data
samples [67, 55, 67] or multiple modalities [32], as shown in Fig. 3 (a). SM3D is motivated to broadly
explore the generated random features zgen that samples from the whole distribution space. In detail,
SM3D first sample from a random distribution, e.g., Normal distribution, as the start latent features,
i.e., z0 ∼ N (0, I). Then SM3D utilizes T -step Langevin dynamic sampling [67] (LDS) from density
vector fields modeled by the score model, to derive generated latent features zgen = zT :

zt = zt−1 +
ϵ

2
sθ(z

t−1, σ) +
√
ϵwt, (6)

with ϵ indicating the step size and wt ∼ N (0, I) introducing stochasticity in each step. Lastly, the
distribution of a batch of the generated features Zgen = {zgen,i}Bi=1, i.e., pgen(zgen), is supposed to
approximate the distribution of original features Z = {zi}Bi=1, i.e., pD(z), with the calibration of
maximum mean discrepancy (MMD(Z,Zgen)) matching:

ℓMMD = EzD,z′
D∼pD [k(zD, z

′
D)]− 2EzD∼pD,z′

gen∼pgen [k(zD, z
′
gen)] + Ezgen,z′

gen∼pgen [k(zgen, z
′
gen)].

(7)

Figure 3: Motivation of SM3D. Red
points are sampled from target data dis-
tribution, and the blue points are gener-
ated by LDS in Eq. (6).

where k(z, z′) = exp( 1h∥z − z′∥2) with bandwidth h
is Gaussian kernel function [47, 49] within a unit ball in
universal Reproducing Kernel Hilbert Space (RKHS). Be-
cause MMD is a non-parametric method that accurately
measures the distance between two densities in RKHS, it
provides reliable estimations and adapts well to complex
data modalities [4]. This approach mitigates the limita-
tions of directly using DSM to estimate distributions by
exploring a wider feature space. Unfortunately, as de-
picted in Fig. 3 (d), simply using MMD matching does not
enhance density estimation, when the target distribution
is unknown or inaccurate. But it is quite necessary that
the latent distribution is inaccurate and heterogeneous in
FL. To fill this gap, SM3D seeks to harness and integrate
the strengths of both density estimation paradigms, via a
trade-off coefficient λm:

ℓOUT = (1− λm)ℓDSM + λmℓMMD. (8)

In this way, SM3D brings an accurate and flexible implementation for non-normalized data distribution.
The implementation procedure of SM3D is in Appendix A Algo.2. To illustrate the effectiveness of
SM3D, we further visualize a density estimation of 2-D toy example in Fig. 3. In detail, we model
the red target points by tuning a series of coefficients, i.e., λm = {0, 0.1, 0.5, 1} in Eq. (8). As we
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can see, with the mutual impacts between score matching and MMD estimation, SM3D has more
compact density estimation when λm = 0.1, compared with blankly using score matching (λm = 0)
or simply using MMD (λm = 1). As a brand new objective of density estimation, SM3D expands the
searching range and depth of score modeling, making it possible to comprehensively model data
density. Moreover, with the calibration of MMD estimation, original data features and the generated
samples based on the score model are effectively matched. Hence SM3D could ensure a more aligned
and reliable density estimation for sparse and multi-modal data.

OOD detection in clients. Remind that the score function indicates the gradient of the log density,
which are actually vector fields pointing to the highest density area, as shown in the score function
visualization of Fig. 2. The IN data should point to the high density and reflect the distance via
its vector norm. While the OUT data cannot present this satisfying property and further exposure
boldly, since the OUT data is always in low-density area [48, 55]. That is, the norm of the score
∥sθ∗(z)∥ = ∥∇zpθ∗ (z)

pθ∗ (z) ∥ decreases in regions of higher density, while increases in lower density.
It indicates the larger the norm of score is, the more likely the data sample is OUT. For negative
threshold τ < 0, we have detection score function:

IsOUT(x) = True, when ∥sθ∗(fθ∗(x))∥ > −τ ; otherwise, IsOUT(x) = False. (9)

3.3 SAG: Enhancing Feature Extractor for Gerneralization

In this section, we will illustrate how to enhance generalization capability of feature extractor in FOOGD.
In FL scenarios, solving OOD generalization needs not only to keep the local IN-C data classification
correctly, but also to maintain performance consistency among all participating clients. The non-IID
issue creates a contradiction between achieving both targets. This is because enhancing IN-C accuracy
intra-client requires diversification across different classes, whereas inter-client generalization benefits
from all IN data being closely clustered, irrespective of class distinctions. Hence, it is expected to
balance the feature diversification of different classes and the feature consistency of in-distribution,
to realize the consistent data-label relationships intra- and inter-client.

Diversifying Feature Invariance Augmentation. FOOGD regularizes invariance among client feature
extractors using distribution-aware divergence between the original data x and its augmented version
x̂ = T (x) by transformation T . To address this, we propose SAG, which utilizes global distribution
and optimizes distributional invariance between latent features of the original and augmented data.
This approach maintains the distinguishable diversification of features and consistent data-label
mapping across clients.

In the feature space, SAG regularizes original data samples to be aligned with augmented ones, i.e.,
aligning z = fθ(x) and ẑ = fθ(x̂). However, directly computing the norm regularization between
z and ẑ will cause mode collapse [28] in FL, further degrading the estimation of score model sθ(·)
based on SM3D. While contrastive methods [62, 73, 51, 50] like FedICON [69], and L-DAWA [64]
ensure diversification and alignment for generalization, they rely on selecting negative samples
instead of leveraging global distribution knowledge. Consequently, they fail to maintain consistent
invariance among clients. Instead, SAG alternatively introduces kernelized Stein operator guided by
score function, i.e.,

Apϕ(z) = ϕ(z)∇z log p(z) +∇zϕ(z), (10)
where ϕ(z) is implemented with kernel function k(·, ·) mentioned in Eq. (7) [46], while p(z) and q(ẑ)

are the distributions for a batch of features Z = {zi}Bi=1, and Ẑ = {ẑi}Bi=1, respectively. By utilizing
the kernelized Stein operator, SAG encourages the samples of augmented features to align with high
probability regions of the original features. Additionally, the second term of (10) improves feature
diversification and prevents data from collapsing directly to the original distribution modes. According
to a fundamental theory named as Stein identity, i.e., Eq(x) [Aqϕ(x)] = 0 for arbitrary distribution
q(x) [46], Stein operator brings the potential of measuring two data distributions with the guidance
of global distribution estimation. Because score models capture local probability densities and are
aggregated into a global score model on the server, they inherit distribution information from all
participating clients. Specifically, we first illustrate kernelized Stein discrepancy (KSD) [46, 41, 45]
that measures the distribution discrepancy between original data p(z) and augmented data q(ẑ):

KSD(p(z), q(ẑ)) = Eẑ,ẑ′∼q[sθ(ẑ)
⊤sθ(ẑ

′)k(ẑ, ẑ′) + sθ(ẑ)
⊤∇ẑ′k(ẑ, ẑ′)

+ sθ(ẑ
′)⊤∇ẑk(ẑ, ẑ

′) + trace(∇ẑ∇ẑ′k(ẑ, ẑ′))].
(11)
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We provide the full induction of KSD between original data and augmented data in Appendix B.2.
And KSD(p(z), q(ẑ)) equals zero if and only if p(z) and q(ẑ) are the same. By taking the derivative
of KSD, we can obtain the updating direction of moving ẑ towards z, which not only keep the
invariance of features, but also guarantee diversification avoiding collapse. Therefore, the augmented
representation Ẑ has minimal KSD with the original latents Z. This ensures that the final objective
of the feature extractor is to minimize the subsequent classification error (between predictions Ypred
and ground truth Ygr) and achieve invariant alignment:

ℓIN + ℓIN-C = CrossEntropy(Ypred,Ygr) + λa KSD(p(Z), q(Ẑ)). (12)

Besides, the score model in Eq. (11) communicates among different clients to obtain the global
distribution, making it possible to be reliable guidance of invariance among clients. This makes
SAG a potential generalization approach for modeling feature invariance in the overall FL scenario,
even acting warm-start for unseen clients. Therefore, FOOGD is capable of both local IN-C data
generalization and consistent performance generalization of clients. The algorithm of SAG can be
found in Appendix A Algo. 3.

4 Theoretical Discussion

In this section, we provide the error bound of modeling score model via SM3D in federated scenarios,
and provide the error bound in Theorem 4.1. Besides, the federated training procedure of score model
is the same with the main task model. This indicates that our federated learning convergence bound
is unchanged, following [40]. We provide more theoretical details in Appendix B.
Theorem 4.1 (Error Bound of Decentralized Score Matching via SM3D). Assume the original
MMD(Z,Zgen) ≤ C for randomly initialized score model sθ(z) in Eq. (7), the score model achieves
optimum and MMD decreases. By Lemma B.1, we can obtain the final error bound of global sθ(·) as:

∥sθ(z)−∇z log pD(z)∥2 ≤
v⊤v

σ2
− EpD(z)[∥∇z log pD(z)∥2] +

|D|
B

C, (13)

where C is the upper bound of the MMD, B is batch size, and |D| is the data amount.

5 Experiments

5.1 Experimental Setups

Datasets. Following SCONE [3], we choose clear Cifar10, Cifar100 [33], and TinyImageNet [36] as
the IN data, and select the corresponding corrupted versions [19], i.e., Cifar10-C, Cifar100-C and
TinyImageNet-C as IN-C data. We evaluate detection with five OUT image datasets: SVHN [59],
Texture [11], iSUN [78], LSUN-C and LSUN-R [81]. To simulate the non-IID scenarios, we sample
data by label in a Dirichlet distribution parameterized by non-IID degree [23], i.e., α, for K clients.
The smaller α simulates the more heterogeneous client data distribution in federated settings. To
evaluate FOOGD on unseen client generalization data, we also use PACS [38] dataset for leave-one-out
domain generalization. Details of dataset simulation are in Appendix D.1.

Comparison Methods and Evaluations. We study the performance of FOOGD with the state-of-the-
art (SOTA) federated learning model and FedAvg-like derivant of SOTA centralized OOD methods,
i.e., LogitNorm [76] (FedLN), ATOL [88] (FedATOL), T3A [25] (FedT3A). We compare FOOGD with
three types of baseline models, i.e., (1) Vanilla FL model: FedAvg [56] and FedRoD [8], (2) FL with
OOD detection: FOSTER [83], FedLN, and FedATOL, (3) FL with OOD generalization: FedT3A,
FedIIR [17], FedTHE [26], FedICON [69]. For evaluation, we report the accuracy of IN data (ACC-
IN) and IN-C data (ACC-IN-C) to validate IN generalization and OOD generalization, respectively.
We compute the maximum softmax probability [20] (MSP) and report the standard metrics used for
OOD detection, i.e., the area under the receiver operating characteristic curve (AUROC), and the
false positive rate at threshold corresponding to a true positive rate of 95% (FPR95) [20].

Implementation Details. We choose WideResNet [85] as our main task model for Cifar datasets,
and ResNet18 [18] for TinyImageNet and PACS, and optimize each model 5 local epochs per
communication round until converging with SGD optimizer. We conduct all methods at their best
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(a) FedATOL (b) FedAvg+FOOGD (c) FedTHE (d) FedRoD+FOOGD

Figure 4: T-SNE visualizations of FedAvg and FedRoD with FOOGD.

and report the average results of three repetitions with different random seeds. We consider client
number K = 10, participating ratio of 1.0 for performance comparison, and the hyperparameters
λm = 0.5, λa = 0.05. We provide the full implementation details in Appendix D.2.

Table 1: Main results of federated OOD detection and generalization on Cifar10. We report the ACC
of brightness as IN-C ACC, the FPR95 and AUROC of LSUN-C as OUT performance.

Non-IID α = 0.1 α = 0.5 α = 5.0
Method ACC-IN ↑ ACC-IN-C↑ FPR95↓ AUROC↑ ACC-IN ↑ ACC-IN-C↑ FPR95↓ AUROC↑ ACC-IN ↑ ACC-IN-C↑ FPR95↓ AUROC↑
FedAvg 68.03 65.44 83.41 58.05 86.59 83.72 43.70 84.18 86.50 85.08 38.24 85.37
FedLN 75.24 71.77 56.14 84.14 86.10 84.20 39.26 89.64 87.20 85.08 33.33 90.87
FedATOL 55.93 54.44 49.50 86.22 87.55 85.64 27.87 93.48 89.27 88.28 19.66 95.25
FedT3A 68.03 61.52 78.12 63.64 86.59 82.85 43.70 84.18 86.50 85.01 38.24 85.37
FedIIR 68.26 66.12 79.48 63.31 86.75 84.75 40.91 84.94 87.77 86.10 34.69 87.66
FedAvg+FOOGD 75.09 73.71 35.32 91.21 88.36 87.26 17.78 96.53 88.90 88.25 12.02 97.77
FedRoD 91.15 89.90 47.97 80.96 89.62 87.70 37.03 86.50 87.69 86.26 36.13 86.65
FOSTER 90.22 88.70 47.40 77.43 86.92 85.82 42.03 83.91 87.83 85.96 36.42 86.19
FedTHE 91.05 89.71 58.14 82.04 89.14 87.68 40.28 85.30 88.14 86.18 35.35 86.79
FedICON 89.06 89.18 48.22 81.28 75.83 75.35 56.19 79.88 87.20 85.39 35.63 86.45
FedRoD+FOOGD 93.51 92.74 32.99 91.76 90.46 90.16 25.51 94.19 89.44 88.62 18.91 96.25

5.2 Experimental Results

Performance Comparison on non-IID data. We categorized our baseline models into two groups
based on whether they consider personalization. The results for Cifar10, Cifar100, and TinyImageNet
are shown in Tab. 1, Tab. 2, and Tab. 7 in Appendix E.1, respectively. For the first group without
considering personalization, the existing centralized OOD methods, i.e., LogitNorm (FedLN),
ATOL (FedATOL) and T3A (FedT3A), are not directly competitive among different non-IID sce-
narios. Though FedATOL achieves satisfying results for both generalization and detection tasks
on Cifar10 α = 5, it fails neither in smaller α and dataset containing more classes (i.e., Cifar100).
Meanwhile, the vanilla FedAvg degrades its performance in OOD generalization for both Cifar10
and Cifar100 data, and shows no potential of detecting OUT data samples. FedIIR pays more effort
to maintain the inter-client generalization via restricting model consistency, making it less effective
in non-IID settings. For the second group of personalized FL methods, personalization is quite
necessary for both IN data generalization and IN-C generalization, which is similarly illustrated
in FedTHE [26] and FedICON [69]. In general, personalized methods are worse in FL detection
than non-personalized methods, indicating that there is a conflict between detecting OUT data and
enhancing prediction in non-IID setting. More surprisingly, we also discover that personalized
adaption methods also detect outliers better compared with vanilla FedRoD model. FOSTER has
better detection in more heterogenous data distribution, i.e., α = 0.1, compared with its results in
α = 5, but its overall performance is supposed to enhance in the future. FOOGD is a flexible FL

Table 2: Main results of federated OOD detection and generalization on Cifar100. We report the
ACC of brightness as IN-C ACC, the FPR95 and AUROC of LSUN-C as OUT performance.

Non-IID α = 0.1 α = 0.5 α = 5.0
Method ACC-IN ↑ ACC-IN-C↑ FPR95↓ AUROC↑ ACC-IN ↑ ACC-IN-C↑ FPR95↓ AUROC↑ ACC-IN ↑ ACC-IN-C↑ FPR95↓ AUROC↑
FedAvg 51.67 47.54 78.35 67.16 58.28 54.62 72.84 70.86 61.40 56.72 72.68 70.59
FedLN 52.48 48.15 66.94 74.82 59.39 53.86 68.31 73.41 61.00 56.33 69.18 75.87
FedATOL 43.65 41.08 65.26 81.64 60.62 56.63 70.10 79.27 64.16 63.61 80.27 60.51
FedT3A 51.67 51.50 78.36 67.22 59.07 55.42 72.86 70.88 61.64 55.51 72.77 70.44
FedIIR 51.63 47.88 81.91 63.99 58.66 55.72 77.62 65.87 61.70 57.65 72.57 69.07
FedAvg+FOOGD 53.84 51.69 36.40 91.41 61.82 59.91 55.70 86.42 64.96 64.18 57.70 84.03
FedRoD 73.13 69.26 66.34 73.02 66.88 61.28 70.13 69.48 61.34 55.80 74.86 67.76
FOSTER 72.54 67.50 61.25 75.44 62.45 57.62 73.26 68.71 53.80 49.28 76.94 65.47
FedTHE 73.83 69.09 64.73 75.16 66.22 61.19 72.95 69.38 61.03 57.03 71.43 69.01
FedICON 72.22 67.79 61.36 77.12 65.86 61.83 69.99 71.03 62.11 57.62 70.91 70.84
FedRoD+FOOGD 77.88 75.70 58.81 86.07 70.30 68.23 45.19 89.59 64.94 62.56 65.18 80.47
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Table 3: Cifar10 ablation study on varying α modeled by FedAvg.
Non-IID α = 0.1 α = 0.5 α = 5.0

Method ACC-IN ↑ ACC-IN-C↑ FPR95↓ AUROC↑ ACC-IN ↑ ACC-IN-C↑ FPR95↓ AUROC↑ ACC-IN ↑ ACC-IN-C↑ FPR95↓ AUROC↑
fix backbone 68.03 65.44 51.27 88.49 86.59 83.72 20.40 95.82 86.50 85.08 15.44 96.96
w/o SM3D 74.70 73.35 41.86 88.88 88.01 87.17 19.96 95.86 88.52 87.79 15.05 97.06
w/o SAG 73.15 70.79 37.59 91.47 87.32 85.33 18.83 96.13 87.86 86.20 12.73 97.65
FedAvg+FOOGD 75.09 73.71 35.32 91.21 88.36 87.26 17.78 96.53 88.90 88.25 12.02 97.77

Table 4: Cifar100 ablation study on varying α modeled by FedAvg.
Non-IID α = 0.1 α = 0.5 α = 5.0

Method ACC-IN ↑ ACC-IN-C↑ FPR95↓ AUROC↑ ACC-IN ↑ ACC-IN-C↑ FPR95↓ AUROC↑ ACC-IN ↑ ACC-IN-C↑ FPR95↓ AUROC↑
fix backbone 51.67 47.54 56.11 82.94 58.28 54.62 68.90 77.26 61.40 56.72 68.04 77.05
w/o SM3D 53.45 51.58 43.49 89.26 61.82 59.91 62.18 84.72 64.03 62.19 64.18 83.16
w/o SAG 53.14 48.35 37.23 91.13 60.39 55.72 60.53 85.17 62.12 57.16 59.58 82.84
FedAvg+FOOGD 53.84 51.69 36.40 91.41 62.19 60.25 55.70 86.42 64.96 64.18 57.70 84.03

framework and achieves significant results for wild data tasks, i.e., IN generalization, IN-C
generalization, and OUT detection, on Cifar10, Cifar100, and TinyImageNet. Specifically,
FOOGD achieves comparable performance in enhancing both FedAvg and FedRoD, free of the FL
framework constraints. FOOGD enjoys the benefits of SM3D, achieving distinguishable detection im-
provement by Eq. (9). Besides, the regularization of score model with global distribution makes
SAG regularize main task feature extractor better than contrastive-based methods, e.g., FedICON, and
rebalanced-methods, e.g., FedTHE and original FedRoD.

Ablation Studies. We devise the variants of FOOGD , i.e., fix backbone, w/o SM3D, and w/o SAG, to
study the effectiveness of our three main ideas: (1) obtaining reliable global distribution as guidance,
(2) estimating score model by SM3D, and (3) enhancing FL method generalization by SAG, respectively.
From Tab. 3 and Tab. 4, simply modeling score model enhances detection slightly, since it brings
the knowledge of global distribution. When we remove SM3D, the estimation of data probability is
severely impacted, bringing no detection capability. While the generalization performance decreases
once we remove SAG. Moreover, compared with fix backbone, both w/o SM3D and w/o SAG have
better generalization and detection results, indicating the necessity of regularizing feature extractor
with global distribution.

Visualization. To explore the wild data distribution of FL OOD methods, we visualize T-SNE of
data representations in Fig. 4, and the detection score distributions in Fig. 5, on Cifar10 α = 5 for
FedAvg+FOOGD , FedRoD+FOOGD and their runner-up methods, FedATOL and FedTHE, respectively.
It is evident that FOOGD represents IN-C data more tight with IN data, and constructs a comparably
clear decision boundary between IN data and OUT data. Besides, we also discover that FOOGD will
push OUT data away from its IN and IN-C data, which validates the guidance from the global
distribution. Additionally, in Fig. 5, FOOGD makes the modes among IN, IN-C, and OUT, more
separable than existing methods. This also proves the effectiveness of FOOGD in detection task.

Extensive experiments on other IN-C and OUT data. In this part, we study the performance evalu-
ation of FOOGD in additional IN-C and OUT datasets. In Tab. 5, we can find that FOOGD consistently
enhances the detection capability for different OUT data, validating the effectiveness of estimating
global distribution via SM3D. Meanwhile, we compute the average results of different IN-C accuracy
for FL models trained on Cifar10 and Cifar100 in Fig. 6. The +FOOGD in each group is short for
FedAvg+FOOGD and FedRoD+FOOGD, respectively. We provide the details in Appendix E.7 Tab. 13
and Tab 14. FOOGD consistently improve the generalization in all unseen IN-C data, indicating the
effectiveness of enhancing feature extractor via SAG.

(a) FedATOL (b) FedAvg+FOOGD (c) FedTHE (d) FedRoD+FOOGD

Figure 5: Detection score distribution of FL methods on Cifar10 (α = 5.0).
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Table 5: Other detection results on Cifar10 (α = 0.1).

OUT Data iSUN SVHN LSUN-R Texture
Method FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
FedAvg 62.10 76.29 80.02 62.14 62.01 77.02 80.53 66.23
FedLN 66.41 76.03 70.95 76.82 61.31 78.34 93.90 71.99
FedATOL 61.01 80.05 85.39 82.17 64.01 79.89 66.33 78.77
FedIIR 57.86 77.98 83.68 64.04 58.44 78.69 91.72 62.32
FedAvg+FOOGD 37.55 91.22 44.59 87.63 44.16 90.16 28.60 91.75
FedRoD 43.40 82.83 40.72 83.55 41.80 82.92 53.24 81.52
FOSTER 48.73 76.29 39.55 83.07 48.09 76.24 54.23 77.62
FedTHE 43.72 83.50 39.22 85.95 42.95 83.46 53.58 82.19
FedICON 49.98 82.95 34.94 85.56 49.05 83.30 51.57 80.96
FedRoD+FOOGD 36.17 88.69 17.61 94.56 41.46 92.80 19.46 93.39
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Figure 6: The average results for
Cifar100-C generalization.

Client Generalization on PACS Dataset. To validate the effectiveness of FOOGD in domain general-
ization tasks, i.e., each client contains one domain data and we train domain generalization model by
leave-one-out, following FedIIR [17]. To compare fairly, we pretrain all models from scratch and
utilize adaption methods as stated in their main paper. In terms of Tab. 6, FOOGD obtains performance
improvements for FedAvg and FedRoD. Compared with existing adaption methods, FOOGD achieves
outstanding results even in the toughest task, i.e., leaving Sketch domain out. This also concludes
that FOOGD is capable of inter-client generalization, via utilizing global distribution knowledge.

Table 6: OOD generalization task for PACS.

Method \Domain Art Painting Cartoon Photo Sketch Average

FedAvg 97.21 62.58 91.00 35.28 71.52
FedRoD 93.45 88.85 89.34 29.95 75.39
FedT3A 97.13 75.71 93.21 37.40 75.86
FedIIR 86.86 80.29 88.98 31.38 71.88
FedTHE 96.17 90.72 93.57 29.14 77.40
FedICON 50.42 53.36 52.19 50.87 51.58
FedAvg+FOOGD 97.46 89.32 91.48 41.40 79.92
FedRoD+FOOGD 97.85 92.31 93.01 50.95 83.53

Hyperparameter sensitivity studies
and other empirical studies. Due
to the space limitation, we leave
the other relevant experiments in Ap-
pendix E. Summarily, we study four
additional evaluations: (1) In Tab. 10
We compute different detection met-
rics, i.e., MSP, energy score, and ASH,
and validate that Eq. (9) is consis-
tently powerful in detection. (2) We
vary the coefficient of SM3D λm = {0.1, 0.2, 0.5, 0.8, 1} in Fig. 11(a)-Fig. 11(b), and vary the co-
efficient of SAG λa = {0, 0.01, 0.05, 0.1, 0.2, 0.5, 0.8} in Fig. 11(c), to obtain the best modeling in
FOOGD. (3) We vary the number of participating clients in Fig. 10 and found FOOGD can have better
results among different participating clients.

6 Conclusion and Future Work

In this work, we consider enhancing both detection and generalization capability of FL methods
among non-IID settings. To realize it, we try to model global distribution by collaborating clients, and
propose FOOGD, which consists of SM3D for estimating score model for detection, and SAG to enhance
the invariant representation for generalization. We conduct extensive experiments to validate the
effectiveness of FOOGD: (1) reliably and flexibly estimating non-normalized decentralized distribution,
(2) detecting semantic shift data via the norm of score values, and (3) generalizing adaption of
covariate shift data by regularizing feature extractor invariant distribution discrepancy.

In the future, we plan to integrate privacy enhancement techniques, such as differential privacy, into
FOOGD. While the score model in FOOGD captures the score function of the data probability in the latent
space, which is extremely difficult to be used for reconstructing the original data by attacking. The
primary risk exposure for each client arises from the exchange of model parameters, i.e., the feature
extractor and score model. Hence, FOOGD has a comparable level of privacy exposure as existing FL
methods dealing with non-IID and OOD shifts, acquiring to be addressed comprehensively.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction section include the main claims made in the
paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The paper focuses on federated modeling, and we will focus on enhancing
privacy-preserving ability of FOOGD in our future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We have provided the full set of assumptions and a complete (and correct)
proof. Please refer to Section 4 in the main paper and Section B in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided detailed implementation details in Section 5.1 of the main
paper and Section A and D of the Appendix.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have provided publicly available dataset and experiment details information
in Section 5.1 of the main paper and Section A and D of the Appendix. We commit to
releasing the source code after the paper is accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided detailed implementation details and training settings in
Section 5.1 of the main paper and Section A and D of the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our experimental results are computed three times and report the average
result.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: My research group supports me in computer resources.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper fully adheres to the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discussed both potential positive societal impacts and negative
societal impacts in Section 1 of the Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The data and code used in this paper have obtained legal permissions.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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In the supplemental materials, we provide all algorithms in Appendix A, the theoretical analysis in
Appendix B, additional related work on federated learning with non-IID data in Appendix C, experi-
mental implementation details in Appendix D, the additional experimental details in Appendix E.

A Algorithms

The overall algorithm of FOOGD is in Algo. 1. In line 1:10, the server collaborates with clients to
optimize the feature extractor model for representation and the score model for density estimation.
The clients execute training local models separately in line 11:19. In each client, SM3D estimates data
density based on the latent representation of feature extractor, and SAG computes the kernelized stein
discrepancy based on score model to regularize the optimization of feature extractor. We update score
model with SM3D in Algo. 2, and the training procedure of feature extractor is detailed in Algo. 3.

Algorithm 1 Training procedure of FOOGD
Input: Batch size B, communication rounds T , number of clients K, local steps E, dataset D =
∪k∈[K]Dk

Output: feature extractor and score model parameters, i.e., θT
f and θT

s

1: Server executes():
2: Initialize {θ0

f ,θ
0
s} with random distribution

3: for t = 0, 1, ..., T − 1 do
4: for k = 1, 2, ...,K in parallel do
5: Send {θt

f ,θ
t
s} to client k

6: {θt,k
f ,θt,k

s } ← Client executes(k, {θt
f ,θ

t
s})

7: end for
8: Update parameters of {θt

f ,θ
t
s} by Eq. (3)

9: end for
10: return {θT

f ,θ
T
s }

11: Client executes(k, {θt
f ,θ

t
s}):

12: Assign global model to local model {θk
f ,θ

k
s} ← {θt

f ,θ
t
s}

13: for each local epoch e = 1, 2, ..., E do
14: for batch of samples (X1:B ,Y1:B) ∈ Dk do
15: Execute θk

s = SM3D(X1:B ,Y1:B) in Algorithm 2
16: Execute θk

f = SAG(X1:B ,Y1:B) in Algorithm 3
17: end for
18: end for
19: return θE

k to server

Algorithm 2 Algorithm of SM3D
Input: Batch size B, batch of samples (X1:B ,Y1:B) ∈ Dk, fixed feature extractor θf , and initialized
score model θs
Output: score model parameters, i.e., θs

1: Feature Extraction Z1:B ← fθ(X1:B)
2: Sample B random data points Z0 with z0

i ∼ N (0, I)
3: Take Langevin dynamic sampling started at Z0 to obtain generated samples Zgen by Eq. (6)
4: Perturb noise on data features to obtain Z̃ ∼ N (Z, σI)
5: Compute denoising score matching by Eq. (4)
6: Regularize maximum mean discrepancy between generated Zgen and Z by Eq. (7)
7: Optimize score model θs with objective ℓOUT

k by Eq. (8)
8: return θs
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Algorithm 3 Algorithm of SAG
Input: Batch size B, batch of samples (X1:B ,Y1:B) ∈ Dk, fixed score model θs, and initialized
feature extractor θf
Output: feature extractor parameters, i.e., θf

1: Augment samples X̂1:B = T (X1:B)

2: Feature extraction Z1:B ← fθ(X1:B), and Ẑ1:B ← fθ(X̂1:B)
3: Compute kernelized Stein divergence by Eq. (11)
4: Compute cross entropy loss between prediction Ypred = Classifier(Z) and ground truth Ygr

5: Optimize feature extractor θf with objective ℓIN
k + ℓIN-C

k by Eq. (12)
6: return θf

B Theoretical Analysis

B.1 Error Bound of SM3D

Lemma B.1 (Error Bound of Decentralized Score Matching). The error bound of global score model
aggregated from local scores models is

∥∇z log pθ(z)−∇z log pD(z)∥2 =
v⊤v

σ2
− EpD(z)[∥∇z log pD(z)∥2]. (14)

Proof. For the global score model aggregated from local score models that estimate IN data probabil-
ity densities, it holds:

∇z log pθ(z) = sθ(z) =

K∑
k=1

wksθk
(z)

=

K∑
k=1

wk∇z log pθk
(z)

= ∇z

K∑
k=1

wk log pθk
(z).

(15)

Then we formulate the score matching for global distribution as

∥∇z log pθ(z)−∇z log pD(z)∥2

= ∥
K∑

k=1

wk∇z log pθk
(z)−∇z log pD(z)∥2

= ∥
K∑

k=1

wk∇z log pθk
(z)−

K∑
k=1

wk∇z log pD(z)∥2

= ∥
K∑

k=1

wk[∇z log pθk
(z)−∇z log pD(z)]∥2

≤
K∑

k=1

wk∥∇z log pθk
(z)−∇z log pD(z)∥2,

(16)

where
∑K

k=1 wk = 1, and the last term is held by Jensen inequation.
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In term of Vincent [72], the DSM for each local model sθk
(z) is bounded as follows,

JDSM(θk)
def
= Ep(z,z̃)

[
∥sθk

(z)−∇z̃ log p (z̃ | z)∥2
]

= Ep(z,z̃)

[
∥sθk

(z)∥2 − 2sθk
(z)⊤∇z̃ log p (z̃ | z) + ∥∇z̃ log p (z̃ | z)∥2

]
= Ep(z)

[
∥sθk

(z)∥2
]
− 2Ep(z,z̃)

[
sθk

(z)⊤∇z̃ log p (z̃ | z)
]
+

v⊤v

σ2

= JESM(θk) + 2Ep(z,z̃)

[
sθk

(z)⊤
v

σ

]
+

v⊤v

σ2
− Ep(z)[∥∇z̃ log p(z)∥2]

= JESM(θk) +
v⊤v

σ2
− Ep(z)[∥∇z̃ log p(z)∥2],

(17)

where v ∼ N (0, I) and

∇z̃ log p (z̃ | z) = ∇z̃

log 1(√
2πσ2

)d
exp

{
−∥z̃ − z∥2

2σ2

} = − z̃ − z

σ2
= −v

σ
. (18)

Therefore, when θ = θ∗ = θ∗
k, we have JESM(θ) = JESM(θk) = 0 ∀k ∈ [K], the global score

matching finally satisfies:

∥sθ(z)−∇z log pD(z)∥2

= ∥∇z log pθ(z)−∇z log pD(z)∥2

≤
K∑

k=1

wk∥∇z log pθk
(z)−∇z log pD(z)∥2

=
v⊤v

σ2
− EpD(z)[∥∇z log pD(z)∥2],

(19)

which holds due to
∑K

k=1 wk = 1.

Theorem B.2 (Error Bound of Decentralized Score Matching via SM3D). Assume the original
MMD(Z,Zgen) ≤ C for randomly initialized score model sθ(z) in Eq. (7), the score model achieves
optimum and MMD decreases. By Lemma B.1, we can obtain the final error bound of global sθ(·) as:

∥sθ(z)−∇z log pD(z)∥2 ≤
v⊤v

σ2
− EpD(z)[∥∇z log pD(z)∥2] +

|D|
B

C, (20)

where C is the upper bound of the MMD, B is batch size, and |D| is the data amount.

B.2 The overall induction of Kernelized Stein Discrepancy in SAG

Assume feature distributions p(z) and q(ẑ) are two bounded distributions satisfying
lim||z||→∞ p(z)ϕ(z) = 0 and lim||ẑ||→∞ q(ẑ)ϕ(ẑ) = 0. And we denote the gradient of log density
in z as∇ẑ log q(ẑ) =

∇ẑq(ẑ)
q(ẑ) .

Lemma B.3 (Stein identity). If the ϕ(·) in Stein operator Aqϕ(ẑ) = ϕ(ẑ)∇ẑ log q(ẑ) +∇ẑϕ(ẑ)
introduced in Eq. (10) is Stein class, then we have a fundamental property called Stein identity as
below:

Eẑ∼q [ϕ(ẑ)∇ẑ log q(ẑ) +∇ẑϕ(ẑ)] = 0. (21)
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Proof.

Eẑ∼q [ϕ(ẑ)∇ẑ log q(ẑ) +∇ẑϕ(ẑ)] =

∫ +∞

−∞
q(ẑ)ϕ(ẑ)∇ẑ log q(ẑ) + q(ẑ)∇ẑϕ(ẑ) dẑ

=

∫ +∞

−∞
q(ẑ)ϕ(ẑ)

∇ẑq(ẑ)

q(ẑ)
+ q(ẑ)∇ẑϕ(ẑ) dẑ

=

∫ +∞

−∞
ϕ(ẑ)∇ẑq(ẑ) + q(ẑ)∇ẑϕ(ẑ) dẑ

=

∫ +∞

−∞
(ϕ(ẑ)q(ẑ))′dẑ

= ϕ(ẑ)q(ẑ)|+∞
−∞

= 0.

(22)

Definition B.4 (Stein Discrepancy). Stein identity induces Stein discrepancy for two distributions
p(z) and q(ẑ):

SD(p(z), q(ẑ)) = sup
ϕ∈F

Eẑ∼q [Apϕ(ẑ)]
⊤ Eẑ′∼q [Apϕ(ẑ

′)] , (23)

where ϕ(·) is the stein class function satisfying boundary conditions, and F is the function space.

Lemma B.5. If F is a unit ball in reproducing kernel Hilbert space (RKHS) with positive definite
kernel function k(·, ·) ∈ F , we obtain the Kernelized Stein Discrepancy for p(z) and q(ẑ) as below:

KSD(p(z), q(ẑ)) = Eẑ,ẑ′∼q[sθ(ẑ)
⊤sθ(ẑ

′)k(ẑ, ẑ′) + sθ(ẑ)
⊤∇ẑ′k(ẑ, ẑ′) + sθ(ẑ

′)⊤∇ẑk(ẑ, ẑ
′)

+ trace(∇ẑ∇ẑ′k(ẑ, ẑ′))].
(24)

Proof. Firstly, considering the expectation of q(ẑ) on the Stein operator with score of p(z), we can
expand it via introducing Stein identity:

Eẑ∼q [Apϕ(ẑ)] = Eẑ∼q [Apϕ(ẑ)]− Eẑ∼q [Aqϕ(ẑ)]

= Eẑ∼q [Apϕ(ẑ)−Aqϕ(ẑ)]

= Eẑ∼q [ϕ(ẑ) (∇ẑ log p(ẑ)−∇ẑ log q(ẑ))] .

(25)

Then, with the property of RKHS, we have k(ẑ, ẑ′) := ⟨ϕ(ẑ), ϕ(ẑ′)⟩H, sp(ẑ) and sq(ẑ) are short
for ∇ẑ log p(ẑ) and ∇ẑ log q(ẑ), respectively, the Stein discrepancy can be rewritten as

S(p(z), q(ẑ))

= Eẑ∼q [Apϕ(ẑ)]
⊤ Eẑ′∼q [Apϕ(ẑ

′)]

= Eẑ,ẑ′∼q

[
(∇ẑ log p(ẑ)−∇ẑ log q(ẑ))

⊤
k(ẑ, ẑ′) (∇ẑ′ log p(ẑ′)−∇ẑ′ log q(ẑ′))

]
= Eẑ,ẑ′∼q

[
(sp(ẑ)− sq(ẑ))

⊤
k(ẑ, ẑ′) (sp(ẑ

′)− sq(ẑ
′))

]
= Eẑ,ẑ′∼q

[
(sp(ẑ)− sq(ẑ))

⊤
(k(ẑ, ẑ′)sp(ẑ

′) +∇ẑ′k(ẑ, ẑ′)− k(ẑ, ẑ′)sq(ẑ
′)−∇ẑ′k(ẑ, ẑ′))

]
= Eẑ,ẑ′∼q

[
(sp(ẑ)− sq(ẑ))

⊤
(k(ẑ, ẑ′)sp(ẑ

′) +∇ẑ′k(ẑ, ẑ′))
]
,

(26)
where the last second equation is also held by Stein identity.

Next, we define the
v(ẑ, ẑ′) = k(ẑ, ẑ′)sp(ẑ

′) +∇ẑ′k(ẑ, ẑ′), (27)

introducing another Stein identity holds, i.e.,

Eẑ,ẑ′∼q

[
sq(ẑ)

⊤v(ẑ, ẑ′) +∇ẑv(ẑ, ẑ
′)
]
= Eẑ,ẑ′∼q [Aqv(ẑ, ẑ

′)] = 0. (28)
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Finally, taking v(ẑ, ẑ′) back to Eq. (26) and substitute sθ(ẑ) = ∇ẑ log pθ(ẑ), we can obtain the
final KSD without the requirement of computing score values of q(ẑ).

KSD(p(z), q(ẑ))

= Eẑ∼q [Apϕ(ẑ)]
⊤ Eẑ′∼q

[
Apϕ(ẑ

′)
]

= Eẑ,ẑ′∼q

[
(∇ẑ log p(ẑ)−∇ẑ log q(ẑ))

⊤ k(ẑ, ẑ′)
(
∇ẑ′ log p(ẑ′)−∇ẑ′ log q(ẑ′)

)]
= Eẑ,ẑ′∼q

[
sθ(ẑ)

⊤sθ(ẑ
′)k(ẑ, ẑ′) + sθ(ẑ)

⊤∇ẑ′k(ẑ, ẑ′) + sθ(ẑ
′)⊤∇ẑk(ẑ, ẑ

′) + trace(∇ẑ∇ẑ′k(ẑ, ẑ′))
]
.

(29)

B.3 Bound of Client Model Divergence

In this part, we first introduce mild and general assumptions [40], and induct the model updating di-
vergence bound for each client. Because FOOGD aggregates client models similar to its original model,
i.e., FedAvg and FedRoD, its generalization bound is unchanged compared with the generalization
bound proposed in [40]. Please kindly refer to the original paper.
Assumption B.6. Let Fk(θ) be the expected model objective for client k, and assume F1, · · · , FK

are all L-smooth, i.e., for all θk, Fk(θk) ≤ Fk(θk) + (θk − θk)
⊤∇Fk(θk) +

L
2 ∥θk − θk∥2.

Assumption B.7. Let F1, · · · , FN are all µ-strongly convex: for all θk, Fk(θk) ≥ Fk(θk) + (θk −
θk)

⊤∇Fk(θk) +
µ
2 ∥θk − θk∥2.

Assumption B.8. Let ξtk be sampled from the k-th client’s local data uniformly at random. The
variance of stochastic gradients in each client is bounded: E ∥∇Fk (θ

t
k, ξ

t
k)−∇Fk (θ

t
k)∥

2 ≤ σ2
k.

Assumption B.9. The expected squared norm of stochastic gradients is uniformly bounded, i.e.,
E ∥∇Fk (θ

t
k, ξ

t
k)∥

2 ≤ V 2 for all k = 1, · · · ,K and t = 1, · · · , T − 1.

Next, we introduce the lemma related to the bound of client model divergence.
Lemma B.10 (Bound of Client Model Divergence). With assumption B.9, ηt is non-increasing and
ηt < 2ηt+E (learning rate of t-th round and E-th epoch) for all t ≥ 0, there exists t0 ≤ t, such that
t− t0 ≤ E − 1 and θt0

k = θt0 for all k ∈ [K]. It follows that

E

[
K∑

k=1

wk∥θt − θt
k∥2

]
≤ 4η2t (E − 1)

2
V 2. (30)

Proof. Let E be the maximal local epoch. For any round t > 0, communication rounds from t0 to t
exist t− t0 < E − 1. and the global model θt0 and each local model θt0

k are same at round t0.

E

[
K∑

k=1

wk∥θt − θt
k∥2

]

= E

[
K∑

k=1

wk∥(θt
k − θt0)− (θt − θt0)∥2

]
(31a)

≤ E

[
K∑

k=1

wk∥θt
k − θt0∥2

]
(31b)

= E

 K∑
k=1

wk

∥∥∥∥∥
t−1∑
τ=t0

ηt∇Fk(θ
τ
k , ξ

τ
k )

∥∥∥∥∥
2
 (31c)

≤ E

[
K∑

k=1

wk(t− t0)

t−1∑
τ=t0

η2
t0 ∥∇Fk(θ

τ
k , ξ

τ
k )∥2

]
(31d)

≤ 4η2
t (E − 1)2V 2, (31e)

where the Eq. (31b) holds since E(θt
k−θt0) = θt−θt0 , and E∥X−E(X)∥ ≤ E∥X∥, and Eq. (31d)

derives from Jensen inequality.
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C Related Work

C.1 Federated Learning with Non-IID Data

Federated Learning (FL) with non-IID data presents significant challenges in balancing global and
local model performance. One prominent method, FedAvg [56], uses simple averaging but struggles
with client heterogeneity, often degrading individual client models. To improve global performance,
methods like FedProx [39] introduce regularization to keep local updates close to the global model,
and SCAFFOLD [30] uses control variates to reduce variance from client heterogeneity. For local
personalization, meta-learning and transfer learning techniques such as DFL [52] focus on enhancing
individual client models to adapt better to local data. Lastly, methods like FedRoD [8] attempt to
achieve joint global and local performance by decomposing models, aiming to balance both objectives,
though extreme non-IID settings still pose challenges. However, these FL methods modeling non-IID
data take no actions to OOD data, causing them less advantageous.

D Experimental Implementation Details

D.1 Experimental Setups

Datasets Following SCONE [3], we choose clear TinyImageNet [36], Cifar10 and Cifar100 [33]and
as the IN data. For OOD generalization, we select the corresponding synthetic covariate-shift dataset
as IN-C data, by leveraging 15 common corruptions for all datasets, and 4 additional corruptions
for Cifar10-C and Cifar100-C [19]. To evaluate FOOGD on unseen client data, we also perform
experiments on PACS [38] for leave-one-out domain generalization. For OOD detection, we evaluate
five OUT image datasets: SVHN [59], Texture [11], iSUN [78], LSUN-C and LSUN-R [81].

Heterogeneous client data The original train and test datasets are split to all clients to simulate the
practical non-IID scenario [23]. Specifically, we sample a proportion of instances of class j to client
k using a Dirichlet distribution, i.e., pj,k ∼ Dir(α), where α denotes the non-IID degree of each
class among the clients. A smaller α indicates a more heterogeneous data distribution. For the PACS
dataset, 3 clients are set where each client holds data from one distinct domain, and the remaining
unseen domain data is used for testing.

OOD evaluation setups We construct three types of test sets to assess the model’s classification,
domain generalization, and out-of-distribution detection ability. Test set from IN dataset is used to
evaluate how well the model adapts to local training distribution, i.e., model’s classification ability. To
simulate the non-IID distribution in real-world scenarios, we partition the IN-C dataset with the same
heterogeneous distribution as the IN dataset. This setup evaluates the model’s generalization ability
on the IN-C dataset to determine whether existing FL methods can keep the data-label relationship
in the presence of covariate shift in data features. All covariate-shift types in the IN-C dataset are
test individually. For testing OOD detection ability, all clients use the same OOD test set for fair
evaluation. After collecting performance data from all clients, we calculate a weighted average of the
performance based on the volume of data each client holds.

D.2 Implemetnation Details

We choose WideResNet [85] as our main task model for Cifar datasets, and ResNet18 [18] for
TinyImageNet and PACS, and optimize each model 5 local epochs per communication round until
converging with SGD optimizer. We conduct all methods at their best and report the average results
of three repetitions with different random seeds. We consider client number K = 10, participating
ratio of 1.0 for performance comparison, and the hyperparameters λm = 0.5, λa = 0.05.

Below are the detailed settings and hyperparameters for all federated baseline models.

1. FedAvg [56] is the classic federated learning method in which clients perform multiple epochs of
SGD on their local data. The learning rate is set to 0.1, with a momentum of 0.9 and weight decay
of 5e-4.

2. FedIIR [17] tries to implicitly learn invariant relationships through inter-client gradient alignment.
We set the ema parameter 0.95 and penalty term 1e-3.
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Table 7: Main results of federated OOD detection and generalization on TinyImageNet.
Method ACC-IN ↑ ACC-IN-C↑ FPR95↓ AUROC↑
FedAvg 29.51 15.18 69.22 80.17
FedLN 38.23 15.64 61.40 82.31
FedATOL 23.32 13.69 29.04 94.91
FedT3A 29.46 00.50 69.14 80.08
FedIIR 38.01 14.90 78.84 69.38
FedAvg+FOOGD 47.87 31.16 22.17 95.24
FedRoD 57.78 30.51 68.55 73.82
FOSTER 56.91 28.74 67.17 73.22
FedTHE 58.23 30.24 63.63 76.83
FedICON 60.98 33.16 51.47 86.46
FedRoD+FOOGD 63.27 37.26 47.26 89.31

3. FedRoD [8] is the personalized federated learning method that adopts two classifiers to achieve
both generic and personalized performance.

4. FOSTER [83] learns a class-conditional generator to synthesize virtual external-class OOD
samples to enhance the detection ability. The weight for the outlier exposure term is set to 0.1.

5. FedTHE [26] also contains a personalized classifier. This method adopts an test time adaptation
strategy that interpolates the personalized head and global classifier to enforce feature space
alignment. We set α = 0.1 and β = 0.3 as suggested in the original paper.

6. FedICON [69] performs different contrastive learning during training and test phrase to handle
test-time shift problem. Each client finetunes their classifier with learning rate 0.01.

We also compare with centralized OOD generalization and detection methods, adapting them to a
FedAvg-like approach for the federated learning scenario.

1. LogitNorm [76] applies a straightforward modification to the cross-entropy loss, imposing a
constant norm on the logits to improve detection capabilities. τ is tuned to be set as 0.04.

2. ATOL [88] generates OOD data to devise an auxillary OOD detection task to facilitate real OOD
detection. We set the dimension of the latent to be 100, the mean and variance of the Gaussian
distribution generating OOD data to be 5.0 and 0.1.

3. T3A [25] adjusts a trained linear classifier using a pseudo-prototype. The filter number is set to be
100 for experiments on Cifar10, Cifar100 and TinyImageNet, 50 for experiments on PACS.

E Extensive Experiment Results

To summary, we study four additional evaluations: (1) To compare the performance in domain
generalization, we also provide the leave-one-out study on PACS [38] in Tab. 11, where FOOGD also
obtains better results. (2) In Tab. 10 We compute different detection metrics, i.e., MSP, energy
score, and ASH, and validate that Eq. (9) is consistently powerful in detection. (3) We vary the
coefficient of SM3D λm = {0.1, 0.2, 0.5, 0.8, 1} in Fig. 11(a)-Fig. 11(b), and vary the coefficient of
SAG λa = {0, 0.01, 0.05, 0.1, 0.2, 0.5, 0.8} in Fig. 11(c), to obtain the best modeling in FOOGD. (4)
We vary the number of participating clients in Fig. 10 and found FOOGD can have better results among
different participating clients.

E.1 Evaluation on TinyImageNet Dataset.

Additionally, we present the results of TinyImageNet in Tab. 7, and report our main results with
variances in Tab. 15 and Tab. 16. It vividly states that FOOGD can also generalize in the task of more
classes and more heterogeneous data distribution.

E.2 Ablation Studies

We devise the variants of FOOGD , i.e., fix backbone, w/o SM3D, and w/o SAG, to study the effectiveness
of our three main ideas: (1) obtaining reliable global distribution as guidance, (2) estimating score
model by SM3D, and (3) enhancing FL method generalization by SAG, respectively.s From Tab. ?? and
its full version in Appendix E.2 Tab. 8 and Tab. 9, simply modeling score model fails in both OOD

29



Table 8: Cifar10 ablation study on varying α modeled by FedAvg.
Non-IID α = 0.1 α = 0.5 α = 5.0

Method ACC-IN ↑ ACC-IN-C↑ FPR95↓ AUROC↑ ACC-IN ↑ ACC-IN-C↑ FPR95↓ AUROC↑ ACC-IN ↑ ACC-IN-C↑ FPR95↓ AUROC↑
fix backbone 68.03 65.44 51.27 88.49 86.59 83.72 20.40 95.82 86.50 85.08 15.44 96.96
w/o SM3D 74.70 73.35 41.86 88.88 88.01 87.17 19.96 95.86 88.52 87.79 15.05 97.06
w/o SAG 73.15 70.79 37.59 91.47 87.32 85.33 18.83 96.13 87.86 86.20 12.73 97.65
FedAvg+FOOGD 75.09 73.71 35.32 91.21 88.36 87.26 17.78 96.53 88.90 88.25 12.02 97.77

Table 9: Cifar100 ablation study on varying α modeled by FedAvg.
Non-IID α = 0.1 α = 0.5 α = 5.0

Method ACC-IN ↑ ACC-IN-C↑ FPR95↓ AUROC↑ ACC-IN ↑ ACC-IN-C↑ FPR95↓ AUROC↑ ACC-IN ↑ ACC-IN-C↑ FPR95↓ AUROC↑
fix backbone 51.67 47.54 56.11 82.94 58.28 54.62 68.90 77.26 61.40 56.72 68.04 77.05
w/o SM3D 53.45 51.58 43.49 89.26 61.82 59.91 62.18 84.72 64.03 62.19 64.18 83.16
w/o SAG 53.14 48.35 37.23 91.13 60.39 55.72 60.53 85.17 62.12 57.16 59.58 82.84
FedAvg+FOOGD 53.84 51.69 36.40 91.41 62.19 60.25 55.70 86.42 64.96 64.18 57.70 84.03

generalization and detection tasks, since feature extractor not adjusted with the global distribution.
When we remove SM3D, the estimation of data probability is severely impacted, bringing no detection
capability. On the contrary, the generalization performance decreases once we remove SAG. Moreover,
compared with fix backbone, both w/o SM3D and w/o SAG have better generalization and detection
results, indicating that it is necessary to introduce the global distribution.

E.3 Toy Example for validating SM3D

To illustrate the effectiveness of SM3D, we further visualize a density estimation of 2-D toy example
in Fig. 3. In detail, we model the red points sampled from target distribution, by tuning a series of
coefficients, i.e., λm = {0, 0.05, 0.1, 0.2, 0.4, 0.5, 0.8, 1} in Eq. (8). To start with, the blue generated
data contract loosely close to the red target data. Then the distribution divergence gets smaller,
making generated distribution overlap with targeted distribution. While, as the effect of MMD
increases, the distribution alignment dramatically worsens, even causing the blue generated data
to collapse into the expectation of target distribution. As we can see, the mutual impacts between
score matching and MMD estimation, SM3D has more compact density estimation when λm = 0.1,
compared with blankly using score matching (λm = 0) or simply using MMD (λm = 1). In the
brand new objective of density estimation, SM3D expand the searching range and depth of score
modeling, making it possible to comprehensively model data density. Moreover, with the calibration
of MMD estimation, original data representation and the generated latents based on the score model
are effectively matched, bringing more realistic and correct estimation. Hence SM3D could ensure a
more aligned and reliable density estimation for sparse and multi-modal data.

E.4 Detection Score Methods Comparison

To study the effectiveness of our choice, i.e., IsOUT(·) defined by the norm of score model in Eq. (9),
we compare it with existing benchmarks, MSP [20], Energy score [3], and ASH [12]. As listed
in Tab. 10, MSP is the runner-up method to detection, and it is flexible to detect in all baseline
methods. However, IsOUT(·) is more competitive and reliable, since it utilizes the global distribution
as guidance.

E.5 Extensive Visualization Results

To explore the wild data distribution of FL OOD methods, we visualize T-SNE of data representations
in Fig. 8, and the detection score distributions in Fig. 9, on Cifar10 α = 5 for FedAvg, FedRoD,

Table 10: Metric comparison FedRoD+FOOGD on Cifar10.
Non-IID α 0.1 0.5 5.0
Method FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
MSP 47.96 80.95 37.02 86.49 36.13 86.64
Energy 61.90 85.55 49.73 90.93 54.10 91.12
ASH 51.06 89.55 42.36 92.11 38.77 93.14
+FOOGD 32.99 91.76 25.51 94.19 18.91 96.25
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Figure 7: Motivation of SM3D. The red points are sampled from target distribution, while the blue
points are generated via Langevin dynamic sampling from random noise.

(a) FedATOL (b) FedTHE (c) FedAvg

(d) FedAvg+FOOGD (e) FedRoD (f) FedRoD+FOOGD

Figure 8: T-SNE visualizations of FedAvg and FedRoD with FOOGD.

FedAvg+FOOGD , FedRoD+FOOGD and their runner-up methods, FedATOL and FedTHE, respectively.
It is evident that FOOGD represents IN-C data more tight with IN data, and constructs a comparably
clear decision boundary between IN data and OUT data. Besides, we also discover that FOOGD will
push OUT data away from its IN and IN-C data, which validates the guidance from the global
distribution. Additionally, in Fig. 9, FOOGD makes the modes among IN, IN-C, and OUT, more
separable than existing methods. This also proves the effectiveness of FOOGD in detection task.

E.6 Client Generalization on PACS Dataset

To validate the effectiveness of FOOGD in domain generalization tasks, i.e., each client contains one
domain data and we train domain generalization model by leave-one-out, following FedIIR [17].
To obtain a fair comparison, we pretrain all models from scratch and utilize adaption methods as
stated in their main paper, instead of using a public ImageNet pre-trained model. In terms of Tab. 11,
FOOGD obtains performance improvements for FedAvg and FedRoD. Compared with existing adaption
methods, FOOGD achieves outstanding results even in the toughest task, i.e., leaving Sketch domain
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(a) FedATOL (b) FedAvg+FOOGD

(c) FedTHE (d) FedRoD+FOOGD

Figure 9: Detection score distribution of FedAvg and FedRoD with FOOGD on Cifar10 (α = 5).

Table 11: OOD generalization task for PACS.

Method \Domain Art Painting Cartoon Photo Sketch Average

FedAvg 97.21 62.58 91.00 35.28 71.52
FedRoD 93.45 88.85 89.34 29.95 75.39
FedT3A 97.13 75.71 93.21 37.40 75.86
FedIIR 86.86 80.29 88.98 31.38 71.88
FedTHE 96.17 90.72 93.57 29.14 77.40
FedICON 50.42 53.36 52.19 50.87 51.71
FedAvg+FOOGD 97.46 89.32 91.48 41.40 79.92
FedRoD+FOOGD 97.85 92.31 93.01 50.95 83.53

out. This also concludes that FOOGD is capable of inter-client generalization, since FOOGD has utilized
global distribution knowledge.

E.7 Extensive Experiments on Other IN-C and OUT data

In this part, we study the performance evaluation of FOOGD in additional IN-C and OUT datasets. In
Tab. 12, we can find that FOOGD consistently enhances the detection capability for different OUT data,
validating for the effectiveness of estimating global distribution via SM3D. Meanwhile, we compute
the average results of different IN-C data on Fig. 12 and provide the details in Tab. 13 and Tab. 14.
FOOGD consistently improve the generalization in all unseen IN-C data, indicating the effectiveness
of enhancing feature extractor via SAG.

E.8 The Study of Hyper-parameter Sensitivity

We vary the coefficient of SM3D λm = {0.1, 0.2, 0.5, 0.8, 1} in Fig. 11(a)-Fig. 11(b), and vary the
coefficient of SAG λa = {0, 0.01, 0.05, 0.1, 0.2, 0.5, 0.8} in Fig. 11(c), to obtain the best modeling in
FOOGD. To study the effect of different client numbers, we vary the number of participating clients
K = {5, 10, 20, 50} in Fig. 10 and find FOOGD can have better results among different participating
clients.
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Figure 10: Effect of participating clients numbers K.
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Figure 11: Effect of λm and λa.

Table 12: Other detection results on Cifar10 (α = 0.1).
OUT Data iSUN SVHN LSUN-R Texture
Method FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
FedAvg 62.10 76.29 80.02 62.14 62.01 77.02 80.53 66.23
FedLN 66.41 76.03 70.95 76.82 61.31 78.34 93.90 71.99
FedATOL 61.01 80.05 85.39 82.17 64.01 79.89 66.33 78.77
FedIIR 57.86 77.98 83.68 64.04 58.44 78.69 91.72 62.32
FedAvg +FOOGD 37.55 91.22 44.59 87.63 44.16 90.16 28.60 91.75
FedRoD 43.40 82.83 40.72 83.55 41.80 82.92 53.24 81.52
FOSTER 48.73 76.29 39.55 83.07 48.09 76.24 54.23 77.62
FedTHE 43.72 83.50 39.22 85.95 42.95 83.46 53.58 82.19
FedICON 49.98 82.95 34.94 85.56 49.05 83.30 51.57 80.96
FedRoD +FOOGD 36.17 88.69 17.61 94.56 41.46 92.80 19.46 93.39

33



Fed
Avg

Fed
LN

Fed
ATOL

Fed
T3A

Fed
IIR

+FOOGD

Fed
RoD

FOSTER

Fed
THE

Fed
IC

ON

+FOOGD
0

25

50

75

A
C

C
-I

N
-C

(a) Cifar10 α = 0.1

Fed
Avg

Fed
LN

Fed
ATOL

Fed
T3A

Fed
IIR

+FOOGD

Fed
RoD

FOSTER

Fed
THE

Fed
IC

ON

+FOOGD
0

20

40

60
A

C
C

-I
N

-C

(b) Cifar100 α = 0.1
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