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Abstract

Recent advances in deep learning enable new approaches to protein design through1

inverse folding and backbone generation. However, backbone generators may2

produce structures that inverse folding struggles to identify sequences for, indi-3

cating designability issues. We propose Amalga, an inference-time technique that4

enhances designability of backbone generators. Amalga leverages folding and5

inverse folding models to guide backbone generation towards more designable6

conformations by incorporating “folded-from-inverse-folded” (FIF) structures.7

To generate FIF structures, possible sequences are predicted from step-wise pre-8

dictions in the reverse diffusion and further folded into new backbones. Being9

intrinsically designable, the FIF structures guide the generated backbones to a more10

designable distribution. Experiments on both de novo design and motif-scaffolding11

demonstrate improved designability and diversity with Amalga on RFdiffusion.12

1 Introduction13

Rational protein design aims to create novel proteins or modify existing ones to obtain desired14

structures and functions. Accurate protein design methods enable direct applications such as enzyme15

engineering [10] and antibody-based drug design [15]. However, the vast combinatorial spaces of16

protein sequence and structure, along with their intricate interdependence, render this problem a17

longstanding challenge in biotechnology.18

Fortunately, recent advances in deep learning illuminate new approaches to design proteins de novo.19

Capitalizing on abundant sequence and structure data, inverse protein folding models [7, 4] have20

succeeded in designing protein sequences that fold into specified target structures. Meanwhile,21

inspired by the formidable successes of diffusion models in image generation [6, 11], diffusion-based22

backbone generators [2, 13, 16, 17, 14] explore the prospects of generating novel protein backbone23

structures. The integration of these two methods outlines a pipeline to design proteins: 1) sample24

protein structures using backbone generators; 2) determine corresponding sequences with inverse25

folding models; 3) screen the generated proteins based on designability - how well the generated26

sequence folds into the accompanying structure; and 4) further screen the designable structures for27

desired applications, based on both sequences and structures.28

While existing backbone generation models, as exemplified by RFdiffusion [14], produce backbones29

with sensible local structures and appropriate proportions of stable secondary structures (helices and30

sheets), inverse folding models struggle to identify sequences for a sizable proportion of the generated31

backbones, even when human evaluation deeming them reasonable. Quantitatively, RFdiffusion32

benchmarking indicates approximately 30% of samples did not satisfy the designability criterion. We33

reckon this issue arises due to two possible factors: 1) current protein folding and inverse folding34
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models lack sufficient accuracy; 2) most existing backbone generation models are explicitly trained35

to reproduce structures alone, without capturing the intricate sequence-structure relationship which36

essentially depicts designability. We aim to address the second factor in this paper.37

Here we propose Amalga, a simple yet effective inference-time technique to enhance the designability38

of diffusion-based backbone generators. By harnessing off-the-shelf folding and inverse folding39

models, Amalga guides backbone generation towards more designable conformations. Specifically,40

Amalga generates a set of “folded-from-inverse-folded” (FIF) structures by folding the sequences41

which are inverse folded from step-wise predicted backbones. These FIF structures, being inherently42

designable, are aligned to the predicted backbone and input into RFdiffusion’s self-conditioning43

channel. Intuitively, this encourages RFdiffusion to match the distribution of designable structures.44

While retraining or finetuning RFdiffusion with FIF inputs may further improve performance, we45

demonstrate that Amalga significantly boosts designability when applied solely during inference.46

2 Preliminaries47

Diffusion-based Protein Backbone Generation. Recent works [1, 13, 17] have explored generating
protein backbones using diffusion models such as denoising diffusion probabilistic model (DDPM)
[6] and generative stochastic differential equations [12]. These generative models leverage forward
and reverse diffusion processes to gradually transform samples from a simple prior distribution (often
Gaussian) into complex backbone structures. The forward process perturbs the coordinates and
orientations of each residue by adding noise with different scales on the timestep t. The reverse
process then recovers high-quality backbones by iteratively predicting less noisy versions from the
prior. Taking DDPM as an example, the forward and backward diffusion processes are formulated as:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)
pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2)

where q(xt|xt−1) perturbs xt−1 with Gaussian noise to obtain xt, and pθ predicts the reverse step48

result with neural networks based on the diffused sample xt.49

RFdiffusion. RFdiffusion [14] is a recent example of diffusion-based backbone generators. It50

finetunes RosseTTAFold [3], a multiple sequence alignment (MSA) based protein structure prediction51

model, with noised samples generated from the forward diffusion. Specifically, the structures of52

proteins to be designed are perturbed, and their corresponding sequences are masked. RFdiffusion53

also utilizes the original template channel in RosseTTAFold to input previously generated backbones54

into the model for self-conditioning. In this work, we additionally send the generated FIF samples55

through this channel to encourage the model to match the distribution of designable structures.56

Designability Formulation. Given a folding model f and an inverse folding model f−1, the general
designability metric D(x) is defined as:

D(x) := min
s∈S

∥x− f(s)∥ ≈ ∥x− f(f−1(x))∥ (3)

where s and x denote protein sequences and structures respectively, ∥ · ∥ quantifies the structural57

differences between two conformations (e.g. RMSD), and S represents the set of all feasible protein58

sequences. Conceptually, designability measures how accurately a structure x can be reproduced59

by its predicted sequence f−1(x) after folding, with lower values indicating higher designability.60

Notably, this metric depends on the accuracy of the folding and inverse folding models.61

3 Method62

Figure 1 illustrates the workflow of Amalga at each timestep t of the reverse diffusion process. We63

demonstrate Amalga on RFdiffusion, while the idea is broadly applicable to other baselines [17, 13].64

The model takes as input the noised backbone xt+1 from the forward process, the predicted backbone65

x̂t+1, and the FIF samples {x̃i
t+1}

NFIF
i=1 generated in the previous step to make new backbone x̂t. This66

predicted backbone, together with xt+1, is used to compute the noised input for the next timestep67

via the reverse diffusion formula. Amalga then inverse folds the prediction x̂t using ESM-IF [7] to68

generate possible sequences {sit}
NFIF
i=1 . These sequences are then folded using ESMFold [9] to obtain69

new FIF backbones {x̃i
t}

NFIF
i=1 to guide the next step. Note that x̂t is directly produced by the backbone70
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Figure 1: Amalga pipeline in each step. Amalga generates FIF samples from step-wise predicted backbones
and inputs them to the model via the self-conditioning channel.

generator, thus assumed to have more reasonable structures and sensible inverse folding results, while71

xt is the intermediate result in the diffusion process, thus with discontinuities.72

In an attempt to further guide the model towards predicting foldable protein structures, we also73

explored providing the predicted sequences ({sit}) as inputs to the sequence channel of RFdiffusion.74

As the sequence channel in the original RosseTTAFold architecture leveraged multiple sequence75

alignments (MSAs) to inform structural predictions, we hypothesized that explicitly providing these76

inverse-folded sequences could similarly enhance folding precision. However, as is shown in the next77

section, experiments inserting {sit} did not always result in improved performance. We believe the78

model likely requires a finetuning stage in order to integrate the sequences more properly.79

In fact, the FIF samples directly inherit zero designability error, since their sequences are known to80

fold into the generated structures (up to the error of the folding model). As such, they are already81

successful design outcomes for unconstrained, de novo generation. However, these FIF structures82

may not conform to the motif constraints specified by the user. In contrast, the final output structure83

from the reverse diffusion process will explicitly satisfy the desired motifs, since they are fixed during84

this process. Therefore, Amalga balances global designability, provided by guiding the diffusion85

model with the FIF samples, and precise motif reconstruction in the final output.86

4 Experiments87

Settings. We conducted comparative experiments between the original RFdiffusion model and the88

RFdiffusion model augmented with Amalga. We utilized ProteinMPNN [4] following RFdiffusion89

for inverse folding, however, we replaced AlphaFold [8] with ESMFold to fold the final structures,90

as ESMFold achieves superior performance when multiple sequence alignments are unavailable.91

This replacement did not significantly altered the results, as we have analyzed in the appendix. For92

Amalga, we tested settings with NFIF = 1, 5. We reported results for two Amalga variants: one where93

we input predicted sequences via the MSA channel (denoted “+seq”), and one where we did not.94

We evaluated two backbone generation task schemes: 1) de novo design, in which backbones are
generated without external constraints, and 2) motif-scaffolding, in which backbones should contain
a predefined motif with known sequence and structure. In the former task, we generated 20 structures
of lengths 100, 150, 200, 250 and 300, respectively. In the latter task, we generated 100 structures
for each of the 25 benchmark tasks in RFdiffusion. We use the root-mean-square deviation of self-
consistency (scRMSD) and the in silico success rate to depict designability. The scRMSD measures
the error between a generated structure and its closest foldable structure:

scRMSD(x̂) = min
s∈F−1(x̂)

RMSD(x̂, f(s)) (4)

where F−1(x̂) denotes the set of 8 inverse-folded sequences of x̂. The in silico success criteria were95

adopted from RFdiffusion: for de novo design, an scRMSD below 2Å was required to be considered96

successful; for motif-scaffolding, an additional requirement was that the RMSD between the motif97

in the best design and the target motif be less than 1Å. We also report a metric of design diversity:98

all success backbones were clustered using MaxCluster [5] with a TM-score threshold of 0.5. The99

diversity was quantified as the number of the unique clusters in the generated success samples.100
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Table 1: Results of Amalga and the original RFdiffusion, averaged over all cases.

DE NOVO MOTIF-SCAFFOLDING
% success scRMSD Diversity % success scRMSD Diversity

RFdiffusion 86.00 1.29 15.60 69.28 1.24 14.24

Amalga

(NFIF = 1) 86.00 1.58 16.00 73.20 1.05 14.88
(NFIF = 1, +seq) 87.00 1.30 15.40 74.24 0.98 14.24
(NFIF = 5) 83.00 1.65 15.40 75.64 0.98 16.56
(NFIF = 5, +seq) 83.00 1.43 15.80 70.84 1.03 16.44

Figure 2: Success rate of 25 benchmark tasks in RFdiffusion. RFdiffusion (ref) in light blue displays statistics
directly taken from [14], while RFdiffusion in dark blue shows reproduced statistics under our settings, compa-
rable to Amalga. The columns are ranked by RFdiffusion performance.

Results. Table 1 shows metrics averaged on all 100 de novo generation samples and 2500 motif-101

scaffolding samples. Notably, results for motif-scaffolding are more informative, as in de novo102

task the FIF samples are already samples with zero scRMSD. Overall, Amalga obtained superior103

designability and diversity over RFdiffusion. Adding the sequence into the MSA channel (+seq) with104

NFIF = 1 improves the performance, while the contradictory result holds with NFIF = 5. We posit105

that the model needs further training to adapt to more inverse-folded sequences. We examine the106

specific success rate of 25 motif-scaffolding tasks in Figure 2. Amalga consistently outperforms107

RFdiffusion on the 25 benchmark cases with few exceptions. Notably, we observed significant108

improvements in the RFdiffusion performance over the originally reported. We posit the current109

release of RFdiffusion parameters have been refined since its publication. Results with regard to110

motif RMSDs, etc. are available in the appendix.111

Efficiency. We analyzed the running time of Amalga to quantify the introduced complexity of FIF112

computation. To generate one 100 amino acid protein, the running time on a 32GB NVIDIA V100113

GPU increased from 1′00′′ to 3′04′′ with NFIF = 1 and 5′12′′ with NFIF = 5. Overall, the introduced114

complexity is comparable to the original model’s complexity.115

5 Conclusion & Future Work116

In this work, we have proposed Amalga as a broadly applicable inference-time technique to enhance117

the designability of diffusion-based backbone generators exemplified by RFdiffusion. Our experi-118

ments demonstrate that Amalga successfully improves the designability and diversity of generated119

structures from RFdiffusion, at the cost of additional inverse folding and folding computations. As120

a direct path for improvement, an obvious next step is to fine-tune RFdiffusion to better adapt it121

to Amalga inputs. Furthermore, inference speed could be enhanced by optimizing Amalga imple-122

mentation, such as enabling batched ESMFold inference. Since predicted backbones may not vary123

drastically step-by-step, utilizing longer intervals between FIF evaluations leads to another gain of124

efficiency. For more rigorous validation, pending experimental conditions, we hope to perform wet125

lab experiments to further prove the effectiveness of Amalga designs. As ongoing work, we are also126

actively exploring adaptations of this approach to other existing protein design baselines.127
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A Implementation Details187

Our work implements the open-source code of RFdiffusion 3. We use the default sampling settings188

from RFdiffusion, except where noted. The number of sampling steps is set to 50, and the Cα189

translation noise scalar is 1. For generating FIF samples, we leverage ESM-IF and ESMFold models 4190

due to their state-of-the-art performance and efficiency. To evaluate generated sequences orthogonally,191

we follow the original RFdiffusion and use ProteinMPNN 5, replacing the protein folding model from192

AlphaFold with ESMFold for its superior single-sequence structure prediction.193

B Effect of Folding Models194

To examine whether the folding model used for evaluation impacts the final results, we generate 10195

samples for each case and fold the same ProteinMPNN sequences with both ESMFold and Alphafold2.196

Using the same designability criteria as described in Section 4, Fig. 3 shows that the choice of folding197

model does not substantially influence the evaluation of designability.198

Figure 3: Designability metrics between AlphaFold and ESMFold.

C RMSD Variation in Sampling199

We plot the step-wise RMSD and motif RMSD between the backbone generator output x̂t and the FIF200

samples {x̃i
t} during the denoising process on two motif-scaffolding cases. Notably, as x̂t maintains201

the target motif almost identically, the reported motif RMSD reflects the deviation between FIF202

samples and the target motif. As shown in Figure 4, both RMSDs decrease consistently following the203

reverse process.

Figure 4: Step-wise RMSDs between FIF samples and generated backbones.
204

3https://github.com/RosettaCommons/RFdiffusion
4https://github.com/facebookresearch/esm
5https://github.com/dauparas/ProteinMPNN
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