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ABSTRACT

To accurately recognize objects despite variation in their appearance, humans rely
on shape more than other low-level features. This is in contrast to leading deep
neural network (DNN) models of visual recognition, which are texture biased,
meaning they rely more on local featural information rather than global shape for
categorization. Does the finding of texture bias in DNN models suggest that object
representations in biological and artificial neural networks encode different types
of information? Here, we addressed this question by recording neural responses
from inferior temporal (IT) cortex of rhesus macaque monkeys in response to a
novel object stimulus set, containing variation in shape, texture, and pose. We
observed reliable tuning for both object shape and texture in IT cortex, but tex-
ture information was more accurately decodable. We assessed the performance of
IT neural responses and DNN model features in classifying images based on their
category or texture and found that when shape and texture were pitted against each
other, IT neural responses, like DNN models, classified images based on their tex-
ture more so than their shape. However, information about both texture and shape
was recoverable from the IT neural representation using a particularly tailored
readout. Thus, our results suggest that the ventral visual cortex, like DNN models,
provides a basis set of local visual features, and that further neural computations,
perhaps downstream of IT, are necessary to account for the shape selectivity of
visual perception.

1 INTRODUCTION

Visual object recognition requires detecting features that are diagnostic of an object’s identity. For
humans and other primates, the global shape of an object is perhaps the most important feature
for identifying an object. Indeed, even very young children can accurately identify an object just
from a line drawing of its silhouette. Extracting the global shape of an object is no trivial task,
especially considering the many dimensions in which an object’s local features, such as its color,
pose, and surface texture, may vary. The non-triviality of extracting global shape information is
best demonstrated in deep neural network models (DNNs) of visual recognition, such as Imagenet-
trained deep convolutional neural networks, which are incredibly successful at the task of object
categorization, but unlike humans, do so by using local visual features, such as texture, rather than
global object shape (Baker et al., 2018; Geirhos et al., 2019). How does the primate visual system
achieve this feat of identifying an object despite significant variation in its local visual features?

The neural system in primates most likely to underlie this ability of invariant object recognition
via global shape extraction is the ventral stream of the occipitotemporal cortex, and particularly,
the inferior temporal (IT) cortex. Indeed, decades of research have demonstrated that as electrical
signals carrying visual information cascade along the ventral visual pathway, from primary visual
cortex (V1) to IT, those neural representations become more sensitive to identity-distorting trans-
formations and less sensitive to low-level transformations, e.g. color, texture, viewpoint, that are
orthogonal to identity (Rust & DiCarlo, 2010). This hierarchical representational structure is mir-
rored in deep neural network models (DNNs). Like the primate ventral stream, DNNs contain a
sequence of processing stages in which representations become increasingly selective for complex
high-level visual features (Olah et al., 2017), and increasingly invariant to low-level variation, for
example in translation, pose, or color (Goodfellow et al., 2009). In the last decade, deep hierarchical
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neural network models have thus emerged as a state-of-the-art predictor of neural responses in the
visual cortex of non-human primates (Yamins et al., 2014; Schrimpf et al., 2018), humans (Seibert
et al., 2016; Khaligh-Razavi & Kriegeskorte, 2014), and rodents (Nayebi et al., 2023), as well as
accurate predictors of object recognition behavior, at the category level (Rajalingham et al., 2018).

However, several recent findings have highlighted misalignments between deep neural network mod-
els of vision and the primate visual system (Bowers et al., 2023). For example, DNN models are
highly sensitive to high spatial frequency image manipulations that are nearly imperceptible to hu-
mans (Szegedy et al., 2013). Further, Imagenet-trained DNN models fail to encode the 3D shape
of objects (Jacob et al., 2021) and therefore cannot match human performance on tasks that require
judging object structure from different viewpoints (Bonnen et al., 2021; O’Connell et al., 2023; Ab-
bas & Deny, 2023; Cooper et al., 2021). Finally, Imagenet-trained DNN models rely more on texture
than shape for classification (Geirhos et al., 2019; Baker et al., 2018; Hermann et al., 2020). Taken in
sum, these results demonstrate that DNN models are local feature extractors, unlike primate visual
perception, which critically relies on global shape information.

How then is global shape information extracted in primate vision? An emerging hypothesis suggests
counterintuitively that the primate ventral visual cortex, long thought to be the seat of object percep-
tion, is instead providing a basis of local visual features that downstream neural systems can extract
and recombine to generate visual object perception. Indeed, category-orthogonal information such
as location and pose are more readily decodable from IT cortex than earlier regions (Hong et al.,
2016); neurons in primate IT cortex are sensitive to high-spatial frequency adversarial image per-
turbations (Guo et al., 2022; Yuan et al., 2020); and neural populations in human ventral temporal
cortex (VTC) encode the local complex visual features that make up objects, but not their spa-
tial configuration, suggesting a texture-like representation of objects (Jagadeesh & Gardner, 2022;
Ayzenberg & Behrmann, 2022). This viewpoint, if true, would suggest that DNNs are actually bi-
ologically well-aligned, not with primate visual perception as a whole, but with the initial stage of
cortical processing that takes place in the ventral visual cortex.

In the present study, we offer neurophysiological evidence that indeed, representations in primate
IT cortex are sensitive to local visual features corresponding to the color and surface texture of an
object, more than to its global shape. We develop a novel stimulus set, designed to probe invariances
to object category, identity, viewpoint, and texture, where texture is defined by spatially averaged
summary statistics extracted from intermediate layers of a pretrained dCNN model. We then demon-
strate that IT neurons are reliably tuned to both object category and object texture, but in most cases,
texture is more readily decodable. Finally, we demonstrate that when global shape and local tex-
ture information are made to conflict in synthetic stimuli, IT neurons, like DNN models, prioritize
texture over shape as a means of categorization.

2 METHODS

2.1 STIMULI

We generated a novel stimulus set that contained controlled variation in object category, exemplar,
viewpoint and texture. To generate this stimulus set, we gathered 2D renderings of 3D Shapenet
object models (Chang et al., 2015; Choy et al., 2016) from several different categories (e.g. car, TV
monitor, sofa, bench, ship, etc.). We included multiple exemplars of objects within each category,
and selected three different viewpoints for each object exemplar. We also gathered images of four
different naturalistic textures — bark, brick, leaf, and elephant skin — which varied in color, pattern,
and spatial frequency. We then employed neural style transfer via adaptive instance normalization to
synthesize images matching the texture of each of the four naturalistic texture images and the content
of each image of every object (Geirhos et al., 2019; Michaelis et al., 2019; Huang & Belongie, 2017).
The set of image statistics matched by this style transfer algorithm serves as an operational definition
of texture. The texture of an image is characterized as the channel-wise mean and variance (across
all spatial positions) from 4 intermediate layers (relu1 1, relu2 1, relu3 1, relu4 1) of a pretrained
VGG19 network. Though not explicitly included, low-level visual features such as mean color and
spectral power are, to some approximation, likely encompassed within this set of texture statistics.
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Figure 1: Stimuli used in experiment. Images are 2D renderings of Shapenet objects. Shown here is
3 different viewpoints of each object exemplar, as well as 2 to 3 different object exemplars in each
category. Rows represent different textures, generated using style transfer.

2.2 DATA COLLECTION

Using chronically implanted electrode arrays, we recorded electrophysiological responses from the
inferior temporal cortex of 6 rhesus macaque monkeys for 5 or 6 sessions per subject. 5 subjects
were implanted with microwire brush arrays targeting either anterior or central IT, and one subject
was implanted with a Neuropixels electrode array, targeting anterior IT. Subjects passively fixated
at the center of the screen while images were presented at the center of the receptive field of the
measured population. Subjects were rewarded for maintaining gaze position at the fixation point
for the duration of each trial. Receptive fields of neurons in the array were mapped in a prior
session. Images subtended 12 degrees and were presented for 215 ms with an interstimulus interval
of 315 ms. We presented a total of 575 unique images, and each image was viewed numerous times
by each subject across all sessions to allow for trial-averaging. (Repetitions per image for each
monkey: Monkey R: mean=33.0, range=[31,36]. Monkey S: mean=27.1; range=[26,30]. Monkey
L: mean=26.5, range=[24,28]. Monkey A: mean=15.4, range=[14,18]. Monkey B1: mean=34.0,
range=[33,36]. Monkey J: mean=7.6, range=[6,10]).

2.3 DATA ANALYSIS

We analyzed multiunit activity, which was z-scored within each session before concatenating, to
account for variability in mean and variance of response from one day to another. We calculated the
split-half reliability of each unit, by randomly dividing all trials into two halves, averaging across
repeats within each half, and computing the Pearson correlation between the unit’s response to all
575 images in one half of the data with the other half. We selected units for inclusion in analyses
only if their split half reliability exceeded 0.2.

All results shown with dynamics (Figs. 2A, 2B, 3A, 3B) were estimated by averaging over a 25 ms
window, centered at 10 ms intervals between 0 and 500 ms after stimulus onset. All results plotted
without dynamics (Figs. 2B, 3A, 3C-E) were estimated by summing responses over a temporal
window from 100-300 ms.

All analyses were performed on an individual subject basis. For group results as we have done here,
we used two methods: (1) we estimated statistics individually within each subject, then averaged
across all subjects, (2) we grouped together all reliable units from all monkeys and computed each
statistic on this pseudopopulation. All results shown replicated across both these methods of group-
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averaging; however, for the purposes of conciseness, we have shown only results computed using
the latter method.

3 RESULTS

3.1 RELIABLE, INDEPENDENT TUNING FOR TEXTURE AND CATEGORY IN IT

We found that neuronal tuning for texture was comparably reliable to tuning for category. We de-
scribed neuronal tuning as the ordering of each unit’s response magnitude to each category or to
each texture. We computed the reliability of neuronal tuning by separately estimating the ordering
of each unit’s response to different categories and textures across two split-halves of the data. That
is, we randomly divided all image presentations into two halves, then within each half, grouped
presentations by image category, averaged together all presentations of a given category, and esti-
mated the ordering of each unit’s response magnitude over all categories (then repeated the same
with image textures). We found that in both central and anterior IT cortex, on average, the reliability
of texture tuning and category tuning were not meaningfully different (Fig. 2C). This is noteworthy
because in our stimulus set, texture was uncorrelated with image category. Therefore, the tuning for
texture cannot be explained alone by its co-occurrence with image category and suggests that there
is reliable information encoded in IT cortex about low- and mid-level visual features, even when that
information is unrelated to the object’s identity.

3.2 IMAGES WITH SIMILAR FEATURES EVOKE SIMILAR NEURAL RESPONSES

The population response in IT cortex encoded information about both the texture and the shape
of objects. For the purpose of dissociating texture from category, we computed the similarity of
the neural response to each image with that of all other images of the same texture but different
category, as well as with all other images of the same category but different texture (Fig. 3A). We
also computed a baseline similarity, which was the similarity between an image and every image that
did not share the same category or texture. If IT cortex were fully invariant to category-irrelevant
local features, we would expect that the similarity between the neural response to images of the
same texture but different categories would be indistinguishable from the similarity between the
neural response to two images that differ in all aspects. Instead, we found that in both central
and anterior IT cortex, images of the same texture but different category evoked a significantly more
similar neural response than images that differed in their texture and category (Fig 3A,B). Moreover,
in anterior IT cortex, images of the same texture but different category evoked neural response that
was more similar than images of the same category but different texture, suggesting that texture
information influenced the neural representation structure of aIT more than category information
(Fig. 3B). In central IT cortex, images of the same category were initially represented more similarly
than images of the same texture; however, by 150ms, both texture and category equally influenced
the similarity structure of the cIT representation. This suggests that IT is sensitive to variation
in lower-level features such as texture, even when orthogonal to category information, counter to
widespread views about the invariances of category representations in IT.

3.3 IT ENCODES BOTH CATEGORY AND TEXTURE INFORMATION, AND WHEN IN CONFLICT,
PRIORITIZES TEXTURE

To determine how distinguishable the neural representations are for different textures, different cat-
egories, or different identities, we fit linear support vector machine (SVM) classifiers on IT neural
responses to predict either an object’s texture, category, or object exemplar (i.e. instance-level iden-
tity) (Fig. 4A). For category, we held out all images of a particular exemplar in different views and
textures, and trained the classifier on all other images of that same category and other categories,
and then tested on the held out exemplar (and then repeated for all exemplars). Thus, accurate
category classification required texture-invariant generalization across exemplars. For texture clas-
sification, we held out all images of a particular exemplar in a particular texture (e.g. all ship2 in
leaves) then trained the classifier on the remaining images and tested on the held out exemplar x
texture combination (then repeated for all exemplar x texture pairs). For exemplar classification, we
held out a single viewpoint of a particular exemplar, trained the classifier on all other viewpoints of
that exemplar as well as all other exemplars of that category, and tested on the heldout viewpoint

4



To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

B

C

R
aIT

S
cIT

S
aIT

L
cIT

A
aIT

J
aIT

B
aIT

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Tu
ni

ng
 R

el
ia

bi
lit

y 
 (S

pe
ar

m
an

 R
an

k-
O

rd
er

 C
or

re
la

tio
n)

permutation
distribution

category

texture

Reliability of neuronal tuning for category and texture

Monkeys

0 100 200 300 400 500
Time from stimulus onset 

 (ms)

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

0.125
Av

er
ag

e 
m

ul
ti-

un
it 

ac
tiv

ity
 

 (z
-s

co
re

d)

Response PSTH by image category
Central IT (cIT)

car
ship
lamp
desk
sofa
plane
bench
tvmonitor

0 100 200 300 400 500
Time from stimulus onset 

 (ms)

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

0.125

Response PSTH by image texture

elephant skin
bark
bricks
leaves
original

0 100 200 300 400 500
Time from stimulus onset 

 (ms)

−0.02

0.00

0.02

0.04

0.06

0.08

Av
er

ag
e 

m
ul

ti-
un

it 
ac

tiv
ity

 
 (z

-s
co

re
d)

Anterior IT (aIT)
car
lamp
ship
sofa
desk
tvmonitor
bench
plane

0 100 200 300 400 500
Time from stimulus onset 

 (ms)

−0.02

0.00

0.02

0.04

0.06

elephant skin
bricks
original
bark
leaves

A

Figure 2: Tuning and preference for texture vs. category in IT cortex. (A) Post-stimulus time
histograms of multi-unit activity in central IT, grouped by image category (left) and image texture
(right), averaged across all reliable units from all subjects. Each time bin represents a 25ms window,
plotted at 10ms intervals from 0 to 500ms after stimulus onset. (B) Same as A, for anterior IT. (C)
Split-half reliability of neuronal tuning, plotted for each subject, measured by the Spearman rank-
order correlation between two randomly split halves of image presentations. Each point represents
one unit.

(then repeated for all viewpoints). Thus accurate exemplar categorization required discriminating
between different objects of the same category. To empirically determine the chance-level perfor-
mance of these classifiers, we permuted the labels and computed a null distribution of classification
accuracies, a necessary step given different numbers of textures, categories, and exemplars. We also
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Figure 3: Preference for texture vs. category in IT cortex. (A) Similarity in neural response between
pairs of images that have the same texture but different category (purple), same category but different
texture (blue), and different texture and category (gray), measured by Pearson correlation. Left: raw
image similarity; Right: baseline-subtracted image similarity, computed by subtracting the similarity
between images with different texture and category.

performed random undersampling to assure an equal number of classes in the training set, which
was necessary given that we were performing one-vs-all classification.

We found that information about object texture was more readily accessible from IT responses com-
pared to information about object category or identity. Information about texture and category were
decodable above chance in both central and anterior IT cortex (Fig 4A, blue and purple bars); how-
ever, we found that exemplar decoding was not significantly above chance-level (Fig. 4A, pink
bars). Taken in conjunction with the previous finding, these results suggest that IT responses reli-
ably encode information about low-level visual features and are at least as sensitive, if not more, to
variation in low-level visual features as they are to variation in category or identity.

To compare the relative importance of texture and category information in structuring IT represen-
tations, we trained an SVM classifier to learn the optimal linear classification boundary between
images of a particular category and images of a particular texture and then evaluated the classifier
on images that had both that category and that texture. For example, we held out all images of ship2
in brick texture, then trained a classifier on all other ship images and all other brick images, and
tested it on the held out ship2 brick images (and then repeated for all exemplar x texture pairs). We
found on average that images of conflicting shape and texture were classified according to their tex-
ture label marginally more often than according to their shape label (Fig. 4B). Given that we would
expect human observers to classify images according to their shape label far more often, this result
demonstrates a notable divergence between IT cortex and visual perception.
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Figure 4: Classification accuracy. (A) Leave-one-out decoding accuracy of linear support vector
machine classifier for category (cyan), texture (purple) and exemplar (pink) and corresponding per-
mutation distributions (light colored filled area) in anterior IT cortex (left) and central IT (right).
Each bar represents one monkey. (B) Leave-one-out classification accuracy when discriminating
texture from category.

3.4 IT-DNN ALIGNMENT IN MATCH-TO-SAMPLE TASK

If visual object perception were supported by a direct uniform readout from IT neural responses
(or DNN model features), how might the observer perform in a behavioral discrimination task?
To address this question, we developed a two-alternative match-to-sample task and constructed an
observer model that makes use of either neural responses or DNN features to perform the task. On
each trial of this task, the observer was presented with a sample image and then given two choices.
In the category matching task (Fig. 5C, left), both choices were of the same texture as the sample,
but one choice matched the sample category, though was always a different object exemplar, and
the other choice was an image of a different category. In the texture matching task (Fig. 5D, left),
both choices were of the same category as the sample image, but one image had matching texture
and the other contained a different texture. In the exemplar matching task (Fig. 5E, left), both
choices were of the same category, but one image was of the same object exemplar, from a different
viewpoint, and the other image was of a different object exemplar. Both choices had randomized
texture. Finally, in the texture vs. category matching task, one choice (“category match”) was of
the same category but a different texture as the sample and the other choice (“texture match”) was
of the same texture but a different category. We constructed a neural observer model, which on
each trial selected the choice image whose pattern of neural response was more similar (measured
with Pearson correlation) to that of the sample image. Similarly, we constructed a DNN observer
model, which on each trial selected the choice image whose feature vector, extracted from different
intermediate layers of a DNN model, was more similar to that of the sample image.
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We found that for both the category matching and texture matching tasks, the IT neural observer
model was significantly above chance at selecting the correct match (Fig. 5A, blue and purple). The
relatively low accuracies may be explained by the fact that each of these two tasks controlled for
the effect of the opposite feature. That is, in the category matching task, both choices had the same
texture, and in the texture matching task, both stimuli were of the same category. This suggests
that prior results demonstrating high decoding accuracy of category from IT cortex may rely on the
inherent confound in naturalistic stimuli between texture and category information. Next, for the
exemplar matching task, we found that the IT neural observer model was only marginally better
than chance at selecting the choice of the same exemplar in a different viewpoint (Fig. 5A, pink).
Finally, for the texture vs. category matching task, we found that IT responses were significantly
below chance at selecting the category match (Fig. 5a, yellow). Higher values indicate higher
proportion of choices for the category match). In other words, approximately on 60% of trials,
the IT neural observer model chose the image with the matching texture over the image with the
matching category, providing evidence for a texture biased representation in IT cortex.

When examining performance broken down by temporal response window, we found that accuracy
in the category match-to-sample task peaked around 120ms after stimulus onset (Fig. 5B, blue line),
whereas texture match-to-sample task accuracy peaked later, around 180ms after stimulus onset (Fig.
5B, cyan line). In the texture vs. category matching task, the performance of the neural observer
model began favoring texture after 100ms.

We found that DNN model performance was well-aligned with IT performance across the four be-
havioral experiments. We compared the performance of IT neurons in each of these four tasks
to 7 state-of-the-art deep neural network models of vision, including 6 deep convolutional neu-
ral network models (alexnet, vgg19, inception v3, resnet18, resnet50, and resnext50) and a vision
transformer model (vit b 16). From each model, we selected 3 intermediate layers, approximately
distributed across the depth of the model (early, middle, and late). In the category matching (Fig. 5C)
and texture matching tasks (Fig. 5D), we found that nearly all DNN models and layers performed
above chance in selecting the correct match. Similar to the IT observer model, most DNN models
performed slightly better at the texture match-to-sample task compared to the category match-to-
sample task. In the exemplar matching task, most DNN models were only marginally better or no
better at all than chance at selecting the matching exemplar over the image of a different object
exemplar from the same category (Fig. 5E). To assess the maximum performance of DNN models
with an optimal linear readout rather than an unweighted readout, we also trained SVM classifier to
maximize prediction accuracy of category, texture, or exemplar information. While indeed, this did
result in significantly improved category and texture discrimination for all DNN models (Fig 6A,B),
exemplar discrimination was still not significantly better than chance in most DNN models (Fig.
6C). This is somewhat unsurprising considering these models are trained on the task of categoriza-
tion not exemplar recognition. Nonetheless, this corroborates recent findings that Imagenet-trained
DNN models lack viewpoint-invariant 3D object representations (O’Connell et al., 2023; Abbas &
Deny, 2023; Jacob et al., 2021). Finally, on the texture vs. match-to-sample task, nearly all DNN
models and layers were below chance in selecting the choice which matched in category (Fig. 5F)
and training an SVM linear discriminator to find the optimal boundary between texture and shape
did not improve models’ shape bias and in many cases made DNN models appear even more texture
biased (Fig. 6D). In other words, just like the IT neurons, the DNN observer models were pref-
erentially biased towards texture-matched images over category-matched images. Interestingly, in
some of the models, including alexnet, resnet18, resnet50, and resnext50, later layers of the models
appeared more texture-biased than early layers.

Taken in sum, these results indicate alignment between IT neurons and DNNs in their texture-biased
representation of visual objects. Indeed, across all object categories and tasks, we find a high degree
of correlation in the performance of a behavioral observer using IT neural responses and one using
DNN features (Fig. 4G, R = 0.703 for resnet50 and R = 0.699 for alexnet). These findings
demonstrate that both IT and DNN models contain information about the shape and the texture
of objects, but lack invariant representations of the 3D structure of objects. When probed with
artificial stimuli that have conflicting shape and texture information, both IT neurons and DNN
models preferentially represent the texture of a visual object over its shape, leading to our conclusion
that IT neurons, like DNN models, are texture biased.
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Figure 5: Match-to-sample task comparison of neural responses to DNN models. (A) Performance
of IT neural observer model, constructed using neural responses pooled from 100-300 ms after
stimulus onset, on each of the four tasks. Gray dotted line is chance level (50%) performance.
Error bars denote standard error of the mean over trials. (B) Dynamics of IT neural observer model
performance over time for each of the four tasks. (C) Category match-to-sample task. Left: example
trial. Right: comparison of IT cortex performance to DNN observer model performance. Ordinate
axis indicates proportion of correct choices for the matching choice. (D-E) Same as C for texture
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point represents one category for the sample image. Pearson correlation coefficient, R, indicated at
top right of plot.
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3.5 SHAPE-GUIDED READOUTS FROM IT CAN SUPPORT OBJECT PERCEPTION

Thus far, we have only tested unbiased readouts from IT cortex representation. However, it is pos-
sible that a linear readout that explicitly seeks a more shape-biased representation might be a closer
match to perception. Indeed, we trained a logistic regression classifier explicitly designed to in-
crease the proportion of choices for the category-matched stimulus in the 2-AFC task and tested
it on a held-out subset of trials, and found that indeed this representation was significantly more
shape-biased (Fig. 6E). Similarly, we trained a logistic regression classifier to explicitly increase the
proportion of choices for the texture-matched stimulus and also observed a notable increase in the
proportion of choices for the texture-matched stimulus. In sum, it is possible to increase shape or
texture bias via a specifically tailored linear readout from the IT neural representation.
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Figure 6: Readout from visual representations. (A) Optimal (SVM) weighted linear readout to max-
imize category discrimination from macaque brain responses and DNN features. (B,C) Same as
(A) but for texture and exemplar discrimination, respectively. (D) SVM classification accuracy dis-
criminating texture from category. (E) Comparison of unweighted readout to two types of weighted
readouts - one to maximize category accuracy and one to maximize texture accuracy.

4 DISCUSSION

In this study, we have shown that while IT cortex reliably encodes both texture and shape information
about objects, texture is preferentially represented: when texture and shape are made to conflict in
artificial stimuli, IT neural responses prefer texture to shape as a basis for categorization. Further,
we showed that this aligns with DNN model performance, which also encodes both texture and
shape but prioritizes texture information when the two are in conflict. Finally, we provide evidence
that neither IT cortex nor DNN models contain robust texture- and viewpoint-invariant 3D object
representations.

Our results have two implications: first, they suggest that the primate ventral visual stream, culmi-
nating in the inferior temporal cortex, is not nearly as aligned with invariant visual object perception
as has been previously assumed. This requires considering that the ventral visual stream is not the
end stage of visual object processing in the brain, but simply an intermediate stage, and downstream
neural circuitry is necessary for invariant object recognition. Second, these results demand a rethink-
ing of the relationship between DNNs and visual object perception. Instead of considering DNNs
as a model of perception (Bowers et al., 2023), we should consider them as a model for IT cortex,
which is itself only an intermediate stage of perceptual processing.

These results provide evidence that preference for texture persists relatively late in the temporal
course of the neural response. This may cohere with prior findings in the literature of non-trivial
dynamics in IT responses. Sugase et al. (1999) demonstrated that early time-point responses in face-
selective cells convey global, coarse, and categorical information, whereas late time-point responses
convey more local, precise, and identity-based information. Our results may fit with this finding, as
texture information may be more fine, local and contain high spatial frequency information, whereas
category/shape information may be encoded in the global low spatial frequency component of the
image.
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In modeling match-to-sample task performance, we compared a uniform readout to a weighted
readout from both the IT neural responses as well as from the DNN models. We found indeed
that a weighted linear readout improved task performance in the category matching and texture
matching, but surprisingly, not in the exemplar matching task. Moreover, an unbiased weighted
linear readout did not improve shape bias in the shape-texture conflict task, but a linear readout
targeted at improving shape bias was able to improve shape bias. That is, by subselecting specific
units that conveyed more information about the category of the stimulus, it was possible to tailor
a readout that makes the neural performance appear less texture-biased and more shape-biased.
Similarly with DNNs, despite their apparent texture bias, it is possible to decode information about
shape using a simple linear classifier, and simply fine-tuning the last layer can increase the shape
bias of the network.

One key consideration in our study design is the importance of finding textures and shapes which
evoke relatively similar strength responses in IT cortex. For example, when recording from face
patches, which are highly selective for face-like stimuli, if we included faces as a shape category
without finding an equivalently strong texture, our results may have instead found neurons to be
shape-tuned. However, this may simply reflect the strong preference for face features, rather than
actually testing claims about the preference for shape compared to texture. Indeed, recent neuro-
physiological evidence suggests that even in highly face-selective patches of IT cortex, neurons are
largely driven by highly local features, rather than global shape structure (Waidmann et al., 2022;
Sharma et al., 2023).

A limitation of our findings is that in this stimulus set, color is inherently confounded with texture.
Still, the major claim of this work remains unchanged: IT neurons are not as selective for global
shape information or as invariant to low- and mid-level visual features as has been previously hy-
pothesized. Furthermore, there is evidence in the literature that the mid-level feature selectivity we
observe in IT cortex is not merely about color. Long et al. (2018) showed that the functional orga-
nization of high-level visual cortex can be predicted by “texforms”, grayscale stimuli that preserve
local second-order statistics of natural images even while unrecognizable. Jagadeesh & Gardner
(2022) controlled for low- and mid-level visual features, including color and spectral power, using a
deep texture synthesis algorithm and found that neural populations in human VTC were not selective
for natural feature configuration. That is, human VTC did not preferentially encode natural images
compared to synthetic images with similar features in a scrambled configuration.

It is possible to achieve human-level performance in metrics of shape bias or 3D object pose in-
variance by training directly on the tasks which measure these abilities. For example, one can train
dCNNs to be more shape-biased by incorporating stylized images (with conflicting shape and tex-
ture information) into their training diet and supervising the classification of these images according
to their shape label (Geirhos et al., 2019). Similarly, it is also possible to train models to be more ad-
versarially robust by incorporating images with adversarial perturbations into the training diet of the
models (Madry et al., 2017). Finally, it is possible to train dCNN models to recognize a particular
object in a novel viewpoint by exposing the model to multiple viewpoints of the same object during
training and incorporating viewpoint invariance into the training objective of the model (O’Connell
et al., 2023). However, our results suggest that that form of task-specific learning of object rep-
resentations may not be built into the primate ventral visual cortex. Instead, the primate ventral
visual cortex may provide a texture-like basis space of visual features that downstream neural cir-
cuitry uses via specifically configured readouts for specific tasks. Evidence exists for neural systems
downstream of IT cortex, such as the perirhinal cortex (Bonnen et al., 2021) and the prefrontal cor-
tex (Kar & DiCarlo, 2021) that both readout information from and provide feedback to the ventral
visual cortex. Further work is required to elucidate the role that these downstream cortical regions
play in closing the gap between IT cortical representations and visual perception.
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