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Abstract

The gradient descent (GD) has been one of the most common optimizer in machine learning.
In particular, the loss landscape of a neural network is typically sharpened during the initial
phase of training, making the training dynamics hover on the edge of stability. This is beyond
our standard understanding of GD convergence in the stable regime where stepsize is chosen
sufficiently smaller. Recently, Wu et al. [[63]] have shown that GD converges with much larger
stepsize under linearly separable logistic regression. Although their analysis hinges on the
self-bounding property of the logistic loss, which seems to be a cornerstone to establish a
modified descent lemma, our pilot study shows that other loss functions without the self-
bounding property can make GD attain arbitrarily small loss with large stepsize. To further
understand what property of a loss function matters in GD, we aim to show large-stepsize
GD convergence for a general loss function based on the framework of Fenchel-Young losses.
We essentially leverage the classical perceptron argument to derive the iteration complexity
for achieving e-optimal loss, which is possible for a majority of Fenchel-Young losses. This
convergence result highlights that the self-bounding property may not be necessary for GD
to attain arbitrarily small loss. Moreover, when a loss function entails separation margin, a
notion relevant to the margin in support vector machines, GD often yields faster convergence
than typical GD rate T = Q(¢~1) for convex smooth objectives. Specifically, GD with the
Tsallis entropy attains e-optimal loss with the rate 7 = Q(¢~'/2), and the Rényi entropy
achieves the far better rate T = Q(¢1/3).

1 Introduction

Gradient-based optimizers are prevalent in the modern machine learning community with deep
learning thanks to its scalability and plasticity. Among many variants, GD remains to be a standard
choice. GD with constant stepsize is written as follows:

Wil = Wy _UVL(Wt)7 fort = O,l,...,T— 1, (GD)

where w € R? is the optimization variables, L(-) is the loss function, and i > 0 is stepsize fixed
across all steps. The descent lemma [42), Section 1.2.3] is a key to GD convergence: for S-smooth
objective L, the stepsize choice 7 < 2/ ensures that L(w;) monotonically decreases. Nonetheless,
little optimization theory has been known beyond the threshold > 2//3; though modern neural
networks exhibit much smaller smoothness values than practically used stepsize values [66 [57].

*This work was primarily conducted during the period when HB was affiliated with Kyoto University, and
SS with the University of Tokyo and RIKEN AIP.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



tsallis (9 =0.5) logistic

2 2
2! 2
—_—
s 25
g : - 20 g - 20 \
I — =2 ST — =2
- n=2 - n=22
271 n=23 271 n=23
2717 n= 24 271 n= 24
20 : } i } i 20 i ; i } i
o = % 5 % p P * = ]
t t
tsallis (g =1.5) tsallis (g =2.0)
24 24
2! 2t
P e 52
~ — >0 ~ 2 — 90 ‘
g, =2 g, =2
I — =2 I — =2
- n=22 - n=22
2u n=23 210 n=23
277 n= 24 277 n= 24
20 : i i } i 20 : : | } i
o > = 5 = o P » 5 )
t t

Figure 1: Pilot studies of GD with the same toy dataset as [63]]. The dataset consists of four points, x; =
[1,02] ", y1 = 1,x2 = [-2,0.2] ",y = 1, x3 = [-1,-0.2] ", y3 = —1, x4 = [2,-0.2] ", and ys = —1.
GD is run with initialization wo = [0,0] . Note that the logistic loss corresponds to the Tsallis 1-loss. The
Tsallis 2- and g-loss are also known as the modified Huber loss [67] and g-entmax loss [45], respectively.

Moreover, recent studies have reported that GD trajectories of neural networks tend to inflate the
sharpness of the loss landscape and hover on the edge of stability (EoS) before convergence [34, 18] 12].

Among several recent developments in the theory of large-stepsize GD (which we will review in
Section [I.T)), Wu et al. [63] investigated the large-stepsize behavior of GD by using the binary
logistic regression with a linearly separable data, a minimal synthetic setting. They showed that GD
initially oscillates with non-monotonic loss values (the EoS phase), which terminates in finite time
(phase transition), and then the loss value decreases monotonically (the stable phase). Beyond the
logistic loss, these results have been extended to loss functions with the self-bounding property: for a
differentiable loss function £: R — R and its absolute derivative g(-) := |¢'(+)|, ¢ satisfies

U(z) < l(z)+l(z)(z — ) + Cgg(z)(z — x)2 Vz,x with |z — x| < 1, forsome Cz > 0. (1)

The self-bounding property generalizes the polynomially-tailed loss [31,130], and refines the standard
smoothness property by allowing the smoothness modulus locally adaptive to the derivative, such
that Cgg(z). Thus, large n can be cancelled out with the vanishingly small loss gradient after the
phase transition [63, Lemma 29], and GD follows the descent direction.

In this paper, we study GD with large stepsize under a wide range of loss functions to identify a key
factor to induce the convergent behavior. This is motivated by our pilot study shown in Figure [1}
where we found that GD with large stepsize such as 7 = 2% remains to converge under the Tsallis
g-loss (detailed in Section[d)), even if the stepsize has gone beyond the classical stable regime. It
is noteworthy therein that the Tsallis g-loss with ¢ > 1 does not enjoy the self-bounding property.
How much does the self-bounding property play a vital role in large-stepsize GD convergence?
We specifically consider Fenchel-Young losses [[11], a class of convex loss functions generated
by a potential function ¢, as a template of loss functions. Fenchel-Young losses have been used
in applications such as structured prediction [43]], differentiable programming [[10], and model
selection [7]], while being used as a theoretical tool for online learning [51 52]. We identify that
Fenchel—Young losses with separation margin (formally introduced in Section [2), a relevant notion
to the margin in support vector machines, can often benefit from better GD convergence rates. We
say a loss function has separation margin if the loss value vanishes with a sufficiently large positive
prediction margin. Specifically, our main result is informally stated as follows.

Theorem 1 (Informal version of Theorem[3). Consider a binary classification dataset that is linearly
separable. We run (GD)) with arbitrary constant stepsize 1 > 0 and initialization wy = 0 under



a Fenchel-Young loss generated by twice continuously differentiable and convex potential ¢ with
separation margin. For € > 0, after at most T steps of (GD), where

¢’ (1) [1— o(p) }

T=Qe™®) and «=limsup
) e’ (1)

o pe” ()

we have L(wr) < [

As defined in Section [2] a loss function with separation margin vanishes for a sufficiently large
prediction margin, which is a natural indicator of correct classification used in support vector
machines. The order of the convergence rate T’ = Q(e~*) differs across various potential ¢. With a
specific choice, the rate can be T = Q(c~1/2) (with ¢ being the Tsallis 2-entropy) and 7' = Q(s~1/3)
(with ¢ being the Rényi 2-entropy, also known as the collision entropy [14]). Remarkably, these
convergence rates are better than the classical GD convergence rate 7' = (¢~ !) under the stable
regime, and even better than the convergence rate of the logistic loss after undergoing the EoS and
phase transition [63]]. Both the Tsallis and Rényi entropies above lack the self-bounding property
but have separation margin. Therefore, we advocate the importance of separation margin for better
GD convergence rates. We compare different Fenchel-Young losses in Section[dand contrast our
convergence result with the EoS and implicit bias in Section 5]

We present Theorem |1| formally in Section [3] Our proof leverages the classical perceptron argu-
ment [44] without relying on the descent lemma at all. Intuitively speaking, we track the growth of
the parameter alignment (w;, w,) with the optimal separator w,. When a loss entails separation
margin, (w;, w,) cannot grow arbitrarily large (as we simulate in Figure later) while each step
of improves a lower bound on (w;, w..), leading to the convergence. Section describes
this proof overview in detail. This is different from the proof of Wu et al. [63]], whose core is the
modified decent lemma (recapped in Lemma [21]in the appendix) based on the self-bounding property.
Although the perceptron argument is partially used therein [63]], the average loss is finally controlled
by the modified descent lemma, and thus the proof is only applicable to the self-bounding losses.

1.1 Related work

Gradient descent with large stepsize has attracted attention recently. Specifically, non-monotonic
behaviors of loss functions [[65] and the sharpness adaptivity to loss landscapes [134} [18] have been
observed empirically. It was argued that the sharpness tends to initially increases until the classical
stable regime breaks down, and hovers on this boundary, termed as the edge of stability [18]. This
observation mainly sparks two questions: why the loss landscape hovers on the EoS, and why
converging. Answering either question must go beyond the classical optimization theory under the
stable regime.

On why hovering on the EoS, let us make a brief review, though it is not a central focus of this
paper: Ahn et al. [2] is a seminal work to empirically investigate the homogeneity of loss functions
contributes to maintain the EoS. Later, it was showed that normalized GD (represented by scale-
invariant losses) adaptively leads their intrinsic stepsize toward sharpness reduction [36]]. The
sharpness fluctuation is often attributed to the non-negligible third-order Taylor remainder of the loss
landscape [37, 20].

We rather focus on why GD attains arbitrarily small loss with much larger stepsize. In this line,
previous studies show convergence based on specific models such as multi-scale loss function [32],
quadratic functions [5], matrix factorization [39, 17], a scalar multiplicative model [68) 33], a
sparse coding model [3]], and linear logistic regression [62]. Among them, we advocate the logistic
regression setup proposed by Wu et al. [62] because it is relevant to implicit bias of GD [154} 29, 461,
and moreover, Wu et al. [63] corroborates the benefit of large stepsize in GD convergence rate.
Our work is provoked by Wu et al. [[63]], questioning what structure in a loss function leads GD to
arbitrarily small loss. Indeed, we observe in Figure[I]that loss functions without the self-bounding
property (I) can make GD attain arbitrarily small loss, though the self-bounding property seems
essential to calm the EoS down to the stable phase [63] as well as to establish the max-margin
directional convergence [29,/46]. A similar question to ours is raised by Tyurin [S8]], who argues that
the stable convergence of large-stepsize logistic regression might be an artifact due to the functional

'"Throughout this paper, we consider n = ©(1) with respect to the error tolerance € when we say arbitrary
stepsize unless otherwise noted.



form of the logistic loss—eventually Tyurin [58]] argued that large-stepsize logistic regression behaves
like the classical perceptron. To this end, we show in Theorem [3] that arbitrary-stepsize GD can
converge under a wide range of losses even without the self-bounding property (IJ), and moreover,
occasionally yielding a better rate than the classical stable convergence rate. We discuss it more
in Section 5] Note that one work attempts to extend the separable logistic regression setup to the
non-separable one [41]; yet, we still do not have satisfactory results beyond the one-dimensional case.
Due to its intricateness, we follow the separable case.

Lastly, our work benefits the study of regret bounds of surrogate losses [9, 1} 123/ 16, 38| 18]]. A surrogate
regret bound connect a surrogate loss to a downstream task loss, while the optimization error of the
surrogate loss is usually ignored. Our GD convergence analysis can be integrated to surrogate regret
bounds when discussing a downstream task performance.

1.2 Notation

Let R>( be the set of nonnegative reals. Let [n] := {1,...,n} forn € N. Let 1 be the all-ones
vector and e; € RY be the i-th standard basis vector, i.e., all zeros except for the i-th entry being one.
For S C R%, int(S) denotes its (relative) interior, and Is: R — {0, co} its indicator function, which
takes zero if 2 € S and oo otherwise. For ©: R? — RU {oo}, dom(Q) := {p € R? | Q(p) < o0}
denotes its effective domain and Q* () = sup {(0, ) — Q(p) | p € R%} its convex conjugate. Let
AT = {peR<y | (1, ) =1} be the probability simplex. We introduce C*(Z) as the set of k-th
continuously differentiable functions on the interval Z C R.

Let ¥: R? — R U {co} be a strictly convex function differentiable throughout int(dom ¥) # &.
We say W is of Legendre-type if lim;_, || V¥ (x;)|l2 = oo whenever x;, X, ... is a sequence in
int(dom W) converging to a boundary point of int(dom ) (see [49] Section 26]).

2 Preliminary on Fenchel-Young losses

Fenchel-Young losses have been introduced by Blondel et al. [11] as a general class of surrogate
losses for structured prediction, which are classification-calibrated [60]. This can be seen as a
Bregman divergence comparing primal and dual points [25]4]. Despite that the logistic and hinge
losses are widely prevailing in practice, we can improve the performance of some prediction tasks by
changing specific Fenchel-Young losses, as reported by Roulet et al. [50]. We choose Fenchel-Young
losses because a vast majority of convex, Lipschitz, and classification-calibrated losses are included in
this class—otherwise, GD convergence is hardly obtained beyond the edge of stability. Moreover, the
separation margin property, one of the key features of Fenchel-Young losses, controls GD behaviors
significantly.

Definition 2. Ler Q: RE — R U {oo} be a potential function. The Fenchel-Young loss
lo: dom(Q2*) x dom(2) — Rxq generated by Q) is defined as

lo(0; p) =" (0) + Q(p) — (6, ) .

In multiclass classification, £q(0; ;) measures the proximity between a score @ and a target label
p = e; (for aclass ¢ € [K]). By definition, ¢n(-, pt) is convex for any p € dom(§2). Moreover,
lo(0; 1) = 0 holds if and only if p € 9Q*(0) due to the equality condition of the Fenchel-Young
inequality.

We follow [[11, Section 4.4] to consider binary (K = 2) loss functions. The following set of
assumptions is imposed on a potential function 2. The asymmetric generalization is possible, but we
choose to keep the analysis simpler so that we can focus more on the essence of GD convergence.
Assumption 1. For a potential function 0, assume dom(Q) C AX and that §) satisfies the zero-
entropy condition Q(p) = 0 for p € {€;};¢(x; convexity Q((1 — a)p + ap’) < (1 — a)Q(p) +
aQ)(p') for p # p' and o € (0,1); symmetry Q(p) = Q(Pu) for any K x K permutation P.

Let us restrict ourselves to K = 2 (binary classification) and write ¢ () = Q([u, 1 — p] 7). If we
choose @ = [s, —s] T € R? as a score vector, the Fenchel-Young loss can be written as

e (—s) ifi=1,
éQ(e’”‘{w(s) ifi =2,



and dom(¢*) = R. Hence, the Fenchel-Young loss is simplified as ¢*(—ys) if we relabel two
classest = 1 and 7 = 2 with y = 1 and y = —1, respectively. Thus, we suppose the form of a
symmetric margin-based loss function ¢(z) := ¢*(—z). Therein, a Fenchel-Young loss ¢ extends a
proper canonical composite loss [47] over the entire prediction space z € R, as discussed in [[7].

Separation margin. For specific potential functions, Fenchel-Young losses entail separation
margin [11}, Section 5], which is a generalized notion of classical margin in support vector machines.

Definition 3. For a loss ¢: R — Rx(, we say £ has the separation margin property if there exists
m > 0 such that any prediction z > m incurs £(z) = 0. The smallest m is the separation margin of £.

Hence, ¢(z) = 0 indicates the prediction z € R not only correctly classifies a given point but also
has safe margin m away from the classification boundary z = 0. It is shown that the existence of the
separation margin property can be tested through the subgradient ¢ [11}, Proposition 6].

Proposition 4 ([T1]). A Fenchel-Young loss ((z) = ¢*(—z) satisfying Assumption[I|has separation
margin if and only if 0¢(u) # @ for any p € [0,1]. When ¢ € C1((0,1)) has separation margin m,

= —lim¢/(p).
m ;fg(b(u)

For a differentiable ¢, the nonempty-subgradient condition requires that the derivative ¢’ (1) does
not explode at the boundary points of the domain p € dom(¢) = {0, 1}. In this case, ¢ is nor of
Legendre-type [49]. As we will see later, the convergence behavior of GD hinges on the separation
margin property of a loss function. More detailed analysis of the separation margin property for
binary classification can be found in [[7]. In Section[E] we show that a loss satisfying the self-bounding
inequality (I} does not have separation margin (but not the other way around).

Examples. With the Shannon negentropy ¢(u) = plop + (1 — p) In(1 — p), we recover the
logistic loss ¢*(—z) = In(1 + exp(—2z)). With the negative of the Gini index ¢(u) = p? — p, we
can generate the modified Huber loss ¢* (—z) = max {0,1 — z}* /4if z > —1 and ¢*(—z) = —z
otherwise [67]], which is the binarized sparsemax loss [39]]. If we choose ¢(u) = max {p,1 — u},
we recover the hinge loss ¢*(—z) = max {0, 1 — z}. We discuss more examples in Section 4}

3 Convergence of large stepsize GD under Fenchel-Young losses

We consistently assume that the dataset is bounded and linearly separable.

Assumption 2. Assume the training data (X;,y;)ic[n) Satisfies
* foreveryi € [n], |x;|| <1landy; € {£1};
* there is v > 0 and a unit vector w, such that (w.,z;) > v for every i € [n], where z; ‘= y;x;.

Instead of logistic regression, we choose a Fenchel-Young loss £(z) = ¢*(—z) associated with a

binary potential function ¢, and minimize the following risk by (GD) with fixed stepsize n > 0 to

learn a linear classifier w

1 1
L(w) = - > U(w,yix;)) = - D U(w,zi)). )
i€[n] i€[n]

We impose the following assumptions on our loss function.
Assumption 3. Consider a loss £: R — Rx>.

A. Fenchel-Young loss. Assume that {(z) is a Fenchel-Young loss ¢*(—z) generated by a potential
¢ : R — R U {oco} such that ¢ € C*((0,1)) satisfies Assumption[l| ¢ is strictly convex, and
@" > 0 on the interval (0, 1).

B. Regularity. Assume that p(\) = min,cg M(z) + 22 (for X > 1) is well-defined.

’To generalize the linear model, one straightforward way is to focus on deep homogeneous networks [56].
We stay on the linear model for now because the straightforward extension to deep homogeneous networks may
not significantly change the problem structure.



C. Lipschitz continuity. For g(-) := |¢'(-)|, assume g(-) < C for some Cy > 0.

We will later see that p characterizes the growth rate of the parameter norm ||wy|| during GD in (3).
This notion is inherited from [63]]. Now, we are ready to state our main result, the GD rate to attain
arbitrarily small loss for linearly separable data under Fenchel-Young losses. Remarkably, we show
convergence without the self-bounding property of a loss function, unlike [63]].

Theorem 5 (Main result). Suppose Assumption[2)and consider (GD)) with stepsize n > 0 and wy = 0
under a Fenchel-Young loss ¢ satisfying Assumption Forany ¢ € (0,1), let

o' (1) [1 o) fi
pe’ () [a¢! (@) — o(m)]™’
where Cy > 0 depends on ¢ and & solely and [i = min {g(¢~*(€)),1}. If o, Cy € (0, 00) and

4 2nT
fore e (0,8), T r ( p(*nT) —|—C'g> e«

3

o= sup

and Cy =
1n€e(0,] pe' (1) ] ¢

>
Cpv? n
holds, then we have min,c(r) L(w) < e.

This convergence guarantee even applies to non-smooth Fenchel-Young losses as long as Assump-
tion [3]is satisfied—note that ¢ must be strongly convex to ensure the smoothness of the associated
Fenchel-Young loss [11, Proposition 2.4]. As seen later in Section El], o and Cy neither diverge
nor degenerate for arbitrarily small £ under many examples of ¢. When ¢ has separation margin,
Lemma9]in Section[A] provides a finite upper bound on p, yielding the following simpler form.

Corollary 6. Under the same setup with Theorem[3} we additionally assume that ¢ has separation
marginm > 0. For any € € (0,1), if (o, C) defined in () satisfies o, Cy € (0, 00) and

_ n dm _
fOi’EE(O,E), T>W<77+Cg)5 (63
holds, then we have min;c[p) L(w;) < e.

A loss function without separation margin does not have finite p, which typically yields slower
convergence as we see in Section[d] Therefore, (GD) operated on many common Fenchel-Young
losses converges under the separability, regardless of the choice of 7. Note that the classical GD
convergence analysis under convex smooth functions provides T = Q(¢71). As we see later in
Section 4] some loss functions entail better rates with o < 1, summarized in Table[I]

3.1 Proof outline

The proof of Theorem [3] essentially relies on the perceptron convergence analysis [44] and the
asymptotical order evaluation of rate functions [6]. We sketch the proof in this section to highlight
the structure of the GD convergence in our setup and complete the proof in Section [B]

When we show the convergence of perceptron, we leverage an inequality of the following type:
Cit < (wy, wo) < |[wy|| < Cu(t) fort =1, @
(%) ()

where C, > 0 is a non-degenerate constant independent of ¢. The inequality (&) holds only while
perceptron misclassifies some examples. Thus, perceptron correctly classifies all examples after at
most T iterations such that CLT > Cy(T"). Such T exists as long as Cy(t) is sublinear in 7".

When it comes to our setup, an inequality (&) is obtained by recursively expanding the update @Iﬂ

t—1
(Wi, Wy) > (Wi1, W) + %g(<wt_1,zit_l>) > > % Zg(<Wk,zik>) = G (W),
k=0

3This expansion relies on <w*7 zit71> > =, namely, the linear separability in Assumption To lift the
linear separability assumption, we may require to introduce additional distributional assumptions here.



where z;, is a misclassified example by wy,. Perceptron enjoys an inequality of (&)-type immediately
because it optimizes the loss function £pe;(2) = max {—z,0}, which yields g(z) = 1if z < 0 (i.e., if
misclassified). When considering a Fenchel-Young loss satisfying Assumption 3| we do not have a
non-degenerate lower bound for g(z) because we can make g(z) arbitrarily close to zero. Instead,
we lower-bound ¢(z) by a (non-degenerate) error tolerance €1 > 0, g(z) > &1, before we attain the
e-optimal loss. Lemma and (a part of) Lemma in Section are relevant to (). Note that the
perceptron argument is used in [63] but in a different way: they control L(wy,) through the upper

bound on G (W) (see Lemma . This is applicable only to self-bounding losses.

To obtain an inequality of (<})-type, by following the standard perceptron analysis, we directly expand
the update |we]|? = |[[wi—1 — nV L(w;_1)||? recursively, and upper-bound it by noting that
Cper has separation margin, leading to Cy(t) = O(V/t). Though this is possible for a Fenchel-Young
loss with separation margin, we can improve this bound by borrowing the split optimization technique,
introduced by [63]]. Eventually, we can upper-bound ||w|| as follows:

/ 2

In particular, we have p(\) = O(1) when a loss has separation margin (see Lemma[9), and therein
Cy(t) = O(1). This is where separation margin plays a crucial role. We recap the split optimization
technique in Lemma based on which Lemmain Section [D|shows this inequality of ({)-type.

The remaining piece is to assess the order of the convergence rate. After solving the inequality (&, {)
with ¢ = T being the stopping time, we have 1" as a function of the error tolerance ¢, T' = f(e),
where f is a nondecreasing rate function depending on ¢. To characterize the asymptotic order at
vanishing &, we attempt to evaluate in the form f(g) ~ £ for an order parameter «y > 0, which
can be estimated by

!
ef'(e) =
f(e)

Thus, the order parameter « is solely determined by the functional form of potential function ¢. This
technique has been initially developed in functional analysis to estimate moduli of Banach and Orlicz
spaces [153} 27, [13]], and recently introduced in convex analysis to approximate a convex function by
power functions [28]] and estimate moduli of convexity [6, 8]]. The general statement of the order
evaluation is given in Lemma|[I2]and instantiated for GD convergence in Lemma[I3]in Section

ag, if the limit exists.

4 Examples of loss functions

Now, we instantiate Theorem [5]for several examples of Fenchel-Young losses to discuss the con-
vergence rate. Instead of specifying a loss function ¢(z) = ¢*(—z), we directly specify its potential
function ¢ subsequently. For each ¢, we compute (o, Cy) in (3) to investigate the convergence rate
given by Theorem [5] by taking & (and thus i) vanishingly small. In addition, we can compute separa-
tion margin m by Proposition []if exists; otherwise, we need to compute p for a loss (see Lemma[27).
Table [[| summarizes different loss functions and their GD convergence rates. All the detailed calcula-
tions are deferred to Section[F} where we have an additional example of ¢ (pseudo-spherical entropy)
with non-converging a.

Shannon entropy. Consider the binary Shannon (neg)entropy ¢(u) = plnp + (1 — p) In(1 — p).
The generated Fenchel-Young loss is the logistic loss £(z) = In(1 + exp(—=z)), which enjoys the self-
bounding property and hence does not have separation margin (see Section [E). The loss parameters
are @ = 1 and C, = 1. Moreover, we know C,, = 1 and p(\) < 1 +In*()\) [63]. Plugging this back
to Theorem 5] we have the e-optimal risk at most after

o [4V2(logy(vPn) +1) | 1 | me!
~ n In2| ~2

T iterations,

where logarithmic factors in ¢! are ignored. This indicates the rate T' = Q(s_l), recovering the
standard GD convergence rate under the stable regime but with arbitrary stepsize 7. In Section [5] we
compare this rate with [[63]] in more detail.



Table 1: Comparison of Fenchel-Young losses generated by different potential function ¢. Here, m = oo and
[ = oo indicate the lack of separation margin and smoothness, respectively. Since we do not have closed-form
3 for the Rényi entropy with g € (1,2), we merely show its lower bound. The convergence rates ignore the
dependency on {m, n,~, n}, and hold for arbitrary stepsize 7 regardless of < 2/0.

Potential ¢ = Parameter g \ Sep. mgn. m  Smoothness 5 Order o Conv. rate for T

Shannon — ‘ 00 1/4 1 Qe
Semi-circle — \ o0 1/4 2 Q™)
(0,1) | 00 24—3 1 Q(e=%/1)
Tsallis (1,2] ‘ g q q Q(e~1/9)
2,00 | 971 o 1/2 Q(1/2)
(0,1) | 00 1/4q 1 Q(e=2/9)
Rényl L2 | e (= 1/4q) ‘ Q(e1/1)
o | 47! o0 1/3 Q(e1/%)

Semi-circle entropy. Consider ¢(u) = —24/u(1 — p). The generated Fenchel-Young loss (we

call the semi-circle loss) £(z) = (—z + v/22 + 4)/2 enjoys the self-bounding property and does
not have separation margin since ¢’'(u) — —oo as u | 0 (see Section EI) The semi-circle loss is
relevant to the exponential/boosting 10ss £exp(2) = exp(—z), which has the semi-circle entropy as
the Bayes risk [[15,[1]]. The loss parameters are o = 2 and C, = 1. Moreover, we have C; = 1 and
p(A) < 5X/(2In \). Plugging this back to Theorem [5] we have the e-optimal risk at most after

40nS 2
T > S e " 5 g4 +—Z€_2 iterations,
7?1 In(2y%n) gl
—_—————

extra price for lacking separation margin

where the first term Q(e %) is an extra price due to the lack of separation margin of the semi-circle
loss. For arbitrary stepsize 7, the convergence rate is T = Q(c~*), and stepsize 7 as large as

n = Q(e~2) improves the rate to be T' = Q(¢~2) by cancelling the extra term out.

This convergence rate of the semi-circle loss is even worse than the GD convergence rate for general
convex smooth functions, T' = Q(e~1). This is because the perceptron argument is merely sufficient
for GD convergence. Nonetheless, the perceptron argument more informatively states that we have
(Wi, Wy) /||we]| 2 €* after minimizing the risk at the e-optimal level—by combining the inequalities
(b, ) (in Eq. (E[)). This indicates that the loss function with larger « yields slower parameter
alignment toward w.

Tsallis entropy. For ¢ > 0 with g # 1, consider the Tsallis g-(neg)entropy

(A=) -1
P(p) = 1

generalizing the Shannon entropy for non-extensive systems [S5]]. It recovers the Shannon entropy at
the limit ¢ — 1. The generated Fenchel-Young loss is known as the g-entmax loss [45]. We divide
the case depending on parameter q:

* When 0 < g < 1: (o, Cy) = (1/g¢, 1), and ¢* does not have separation margin.
* When 1 < ¢ <2: (a,Cy) = (1/¢,1), and ¢* has separation margin m = ¢/(¢ — 1).
* When 2 < ¢: (o, Cy) = (1/2,4/2/q), and ¢* has separation margin m = ¢/(g — 1).
For all cases, o and C} stay in (0, 00). The convergence rate is 7' = Q(¢=2/9) for ¢ € (0,1) (by

Corollary 28); T = Q(e/9) for g € (1,2); T = Q(e~'/?) for 2 < g. This suggests that we have a
better convergence rate over the Shannon case when ¢ > 1 and the best rate is Q(c~/2).



Rényi entropy. For g € (0,2] \ {1}, consider the Rényi ¢-(neg)entropy

o(p) = qil In [p? 4+ (1 — )]

generalizing the Shannon entropy (with the limit ¢ — 1) while preserving additivity for independent
events [48]]. The Rényi entropy extended beyond ¢ > 2 becomes nonconvex, which we do not
consider. The Rényi 2-entropy is referred to as the collision entropy [[14].

We divide the case depending on parameter q:

* When 0 < ¢ < 1: (o, Cy) = (1/g¢, 1), and ¢* does not have separation margin.
* When 1 < ¢ < 2: (o, Cy) = (1/g¢, 1), and ¢* has separation margin m = ¢/(¢ — 1).
* When g = 2: (o, Cy) = (1/3, {/3/8), and ¢* has separation margin m = 2.

For all cases, o and Oy stay in (0, 00). The convergence rate is T = Q(¢~2/%) for ¢ € (0,1) (by
Corollary; T =Q(e" Y forq € (1,2); T = Q(¢~1/3) for ¢ = 2. Surprisingly, we have a “leap”
of the order from e~/9 to e =1/ as ¢ 1 2, and the convergence rate (¢ ~1/3) is far better than the
Shannon and Tsallis cases. When ¢ = 2, Corollary [6]implies that we have the e-optimal risk at most

after
8
T> 3 8/3% <77 + 1) =3 jterations.

S Discussion and open problems

Comparison with Wu et al. [63]. The large-stepsize logistic regression has been shown to ex-
hibit the following phase transition [63]]: the GD sequence initially stays in the EoS phase such
that the risk L(wy¢) fluctuates initially with its average ¢~ >, L(wy) controlled. Once we experi-
ence L(w;) < min {1/, £(0)/n}, which is possible within O(n) steps at most, GD leaves the EoS

and the loss converges in the rate L(w;) = O(1/(nt)). The stepsize 7 trades off the phase transition
time for the stable convergence rate. If we know the maximum number of steps 7" in advance, the

choice 7 = O(T') balances them, achieving the acceleration to L(w;) = O(1/T?). We detail them
in Section D] This is arguably interesting to demonstrate how GD benefits from large stepsize.

Nevertheless, we would like to highlight two caveats. First, we must undergo L(w;) < £(0)/n
before exiting the EoS phase. This means that our linear model has already classified all points
correctly during the EoS phase since any single point z; incurs loss at most £((w, z;)) < £(0) =
(ws,2z;) > 0 (cf. Lemmain Section@) GD keeps improving the logistic loss after the stable
phase just because the logistic loss does not enjoy separation margin and never touches strict zero.
We refer interested readers to the relevant discussion in Tyurin [58], who argues that the faster
convergence in the stable phase is attributed to the choice of the logistic loss.

Second, the EoS termination condition L(w;) < 1/1n suggests that the risk must be once O(1/T)-
optimal (with the optimally balancing choice n = ©(T')) before benefitting from the super-fast rate
O(1/T?). Yet, GD under some loss functions including the Tsallis g-loss (¢ > 1) and the Rényi
g-loss (g > 1) achieves better risk with the same GD steps. If our goal is simply to classify all training
points, these alternative losses might do better jobs in terms of optimization solely.

Self-bounding property and implicit bias. Having said that, the phase transition may play an
important role in implicit bias. It was shown under the linearly separable case that logistic regression
optimized with GD enlarges the norm ||w;|| toward the max-margin direction in rate Q(In(t)) [54}
62, [16]. Thus, we may argue that w; gradually comes to classify all data points correctly during the
EoS phase and evolves toward the max-margin direction in the stable phase.

We reported how ||w || evolves under the pilot setup in Figurewith different loss functions. As seen,
the logistic and Tsallis 0.5 losses inflate ||w|| endlessly, which do not have separation margin. In

4Cai et al. [16] extends Wu et al. [62] for two-layer near-homogeneous NNs, where it is not explicit that the
model correctly classifies all points after the EoS phase. Taking a closer look, we can see that their Lemma A.7
leverages the well-controlled risk, which is an alternative expression to “L(w,) < £(0)/n” under their setup.
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Figure 2: Under the same setup as Figure we show ||w|| along the number of steps ¢ with different losses.

stark contrast, the Tsallis 2-loss prevents ||w|| from growing endlessly just because of its separation
margin—recall the norm upper bounds of the norm || w|| in and the growth rate p in Lemma 9]
This raises two open questions: (1) Do we have similar implicit bias aligning toward the max-margin
direction under a loss function with separation margin? (2) What are benefits and caveats of endless
growing of ||wy||? The latter is particularly relevant to the overconfidence issue due to excessively
large ||w|| [61]] and worse generalization due to prohibitively large within-class variance [26]. Wu
et al. [64] argues that excessively large || w|| leads to an inconsistent estimator.

The study on implicit bias for loss functions with the self-bounding property has been very scarce. To
our knowledge, [35]] crafted the complete hinge loss, which behaves like the hinge loss before GD
converges to the zero risk yet incurs an extra penalty to artificially align the parameter toward the
max-margin direction. Together with the benefits and caveats of the max-margin implicit bias, we
believe this is an interesting open topic.

Dependency on n.  Our main result (Theorem [5)) provides the rate depending on the factor n. This
extra factor with respect to n arises due to the worst-case analysis such that we have at least one “bad”
direction z, before the convergence, corresponding to the inequality (9) in the proof of Theorem 3]
(see Section[B]). This worst-case scenario supposes that all data points are nearly equidistant, which
is unlikely since most data points tend to cluster in similar directions. We conjecture that this
n-dependency is not essential with additional mild data assumptions.

The stochastic case. Our result can be extended for the stochastic gradient descent (SGD). Consider
the scenario where we sample one fresh data point at each ¢ and update the linear parameter with the
loss function computed on this sample. Under the similar setup to Theorem 5] the population risk is
e-optimal with high probability after 7' = Q(e~(**2)). The formal statement and proof are shown
in Section |C| While this rate apparently looks significantly slower than the GD rate T = Q(c~%),
the extra iterations £ 2 is necessary for collecting sufficient samples to estimate the population risk.
By noting that the GD/SGD updates consume n/one samples, the GD/SGD rates are comparable in
terms of the number of consumed samples.

Finite-time convergence. Last but not least, we may potentially have another benefit of loss
functions with separation margin. Take a look at Figure|l|again. Loss functions without separation
margin, such as the Tsallis 1.5- and 2-losses, converge to exact zero within finite time when sufficiently
large stepsize is used. Such finite-time convergence under the linearly separable case can be shown
without significant challenges if we use perceptron, or even the hinge loss, while becoming highly
non-trivial in the case of twice-differentiable loss functions. This is because the perceptron argument
requires a non-degenerate lower bound on (wy, w..) (see (d))), which is not straightforward therein
as the loss gradient can be arbitrarily small positive (due to the twice differentiability of the loss).
We conjecture that an additional data assumption is necessary because the loss gradient could be
adversarially vanishing against GD convergence, and leave this as future work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]
Justification: In Section [T} we summarized our main result informally in Theorem [I]
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in
the paper.

 The abstract and/or introduction should clearly state the claims made, including the contri-
butions made in the paper and important assumptions and limitations. A No or NA answer
to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The implicit bias structure for large-stepsize GD is nuanced. We carefully discussed
this in Section

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low
or images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best judgment
and recognize that individual actions in favor of transparency play an important role in
developing norms that preserve the integrity of the community. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]

Justification: Our main set of assumptions are stated in Assumption [3] The complete proof
corresponding to our main result is in Section [B] and the proof sketch is in Section
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Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experimental details are described in the caption of Figure |1} despite that it
is a synthetic simulation. Since the problem is convex by construction, the reproduction is
straightforward.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived well by
the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.
* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate
the results, access to a hosted model (e.g., in the case of a large language model), releasing
of a model checkpoint, or other means that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submissions

to provide some reasonable avenue for reproducibility, which may depend on the nature of

the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the
model (e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer:

Justification: Our synthetic experiments reported in Figure[I]are not challenging to reproduce
because the dataset and model are extremely small and the problem is convex.
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Guidelines:

* The answer NA means that paper does not include experiments requiring code.

 Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

» At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

* Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: See the caption of Figure[T}
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that
is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We do not report the statistical significance for the synthetic simulation in Figure[T]
because there is no randomness. All of the initialization, algorithm, and datasets are deterministic.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to
a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).
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* If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer:

Justification: Since the synthetic experiments in Figure [I]are extremely small-scale, we do not
need a huge amount of computational resources to reproduce them. The experiments can be
finished within a minute with a consumer laptop.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper studies theoretical aspects of optimization, which hardly face such a
challenge.

Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: This paper studies theoretical aspects of optimization, which hardly face such a
challenge.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact
or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a generic
algorithm for optimizing neural networks could enable people to train models that generate
Deepfakes faster.
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* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA]

Justification: This paper studies theoretical aspects of optimization, which hardly face such a
challenge.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring that
users adhere to usage guidelines or restrictions to access the model or implementing safety
filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [NA]
Justification: All datasets used in the simulation in Figure [I]are synthetic.
Guidelines:

» The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service
of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets| has
curated licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

* For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: All datasets used in the simulation in Figure [T]are synthetic.

Guidelines:
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» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset
is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]
Justification: All datasets used in the simulation in Figure|l|are synthetic.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]
Justification: This paper does not involve any human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We did not use LLM in any aspects when conducting this research.
Guidelines:

* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical lemmas

We introduce the gradient potential for a loss function in consideration as follows:

Gw) = 5 > gl(w,20). ©

Lemma 7. Consider a loss { satisfying Assumption Then, we have

Proof. See [63, Lemma 20]. O

Lemma 8. Consider a Fenchel-Young loss {(z) = ¢*(—z) satisfying Assumption Then, £ and g
are nonincreasing. Moreover, £ is strictly decreasing on (—oo, m)(C R) if ¢ has separation margin
m > 0; otherwise, { is strictly decreasing on R.

Proof. We have by Danskin’s theorem [21] (¢*)’ = (¢')~!, and then
U(z) = —(¢") (=2) = — (¢')"'(=2) <0,
—_———
€dom(¢)C[0,1]

which implies that ¢ is nonincreasing. Since ¢ is convex and nonincreasing we have that g(-) =
|¢(-)] = —¢'(-) is nonincreasing.

For the latter part, if nonincreasing ¢ has separation margin, £(z) = 0 if and only if z > m. Then,
we have ¢ = 0 on the interval [m, c0) C R and £ > 0 on the interval (—oo, m) C R. On the latter
interval, / must be strictly decreasing because of its convexity. We can prove similarly for ¢ lacking
separation margin. O

Lemma 9. Consider a loss ¢ satisfying Assumption Suppose that € has separation margin m > 0.
Then, we have p(\) < m? for any \ > 1.
Proof. When ¢ has separation margin m (see Definition [3), we have

M(z) 422 = 2% forz > m.

By the definition of p, we have

p(\) = min M(2) + 2% < min 22 = m?.

z€R z>m

O

Lemma 10 (Split optimization [63]). Suppose Assumption2land consider a convex and nonincreasing
loss { satisfying Assumption[3Qand let u := u;y + uy such that

= 7770‘(7 W

u; = 0w, us
2y

*

For every t > 1, we have

lwe —uf? 1 1 nCy )
— -y L < — =4 .
ot +th:0 (Wk)_£(79)+2nt 0+ 2

Proof. For k < t, we have

IWi—1 = ul* = [lwy, — ul* + 29 (VL(wk), u = wi) +7° [V L(wy) ||
= |wi —ull* + 27 (VL(wy), wr = wi) + (2 (VL(Wy), uz) + ]| VL(wy)|*).
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For the second term, we have

(VE(wi)ous = we) = 3 £ ((we21)) a1 01— wi)

n

1 /
= ;E (Wi, 20)) (w1, 2i) — (Wi, 2:)) o
< 1 ((u1,2;)) — (W, 2;))] (¢: convex)
< 5(79) — L(wy). (¢: nonincreasing)

For the third term, we have
2(VL(wy), uz) + ||V L(wg)|?

n

S> " lwem)a

i=1

% ZE'((Wk, z;)) (zi,u2) +1
i=1

n 2

< i;ﬁl(<wk,zi> Z;,U2) + 1 ( Zﬁ (Wi, z ) (lzill <D

< @ ZE’((wk,zl)) (zs, Wy) +nCy - G(wWy) (Assumption[3C|and G(wy) > 0)
i=1

< —29|lu2||G(wy) +nCy - G(wy) (Assumption2]and G(w},) > 0)

= 0’

where the last equality is by the choice of uy and G(w) is defined in (6).
By combining them altogether, we have for k < ¢,

IWist —ull® < [[wy, — ulf? + 20 [£(+8) — L(wy,)].
Telescoping the sum from O to ¢ — 1 and rearranging, we get

b ol 1 Il
2t t = ot
which completes the proof. O

B Proof of Theorem

Lemma 11. Suppose Assumption 2 and consider (GD) with any stepsize n) > 0 under a Fenchel—
Young loss ¢ that satisfies Assumption Fort > 1, assume G(wy) > Guin > 0 forallk € [0,t—1],
where G(w) is defined in (6). Then, we have

YNGmint < (Wi, Wy) — (Wo, Wy) .

Proof. By the perceptron argument [44], we have

(Wit1, Wa) = (Wi, W) — 1 (VL(Wy), W)

= (Wj, W) — % <Z g’(<wk,zi>)zi,w*>

i=1
Wk:aw* Zg Wk7zz W*7 > (U.Se g() = _gl() by Lemma

> (Wi, W) + fynG(wk) (note g(-) > 0 and Assumption 2)
2 <Wka W*> + rYnGmin-

Telescoping the sum, we have the desired inequality. O
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Lemma 12 (Order evaluation). Let T C Rx( be an open interval containing zero as the left end. For
f:Rso = R U {oo} that is nondecreasing and differentiable on I and satisfies f(0) = 0, let

o= sup zf ()
z€(0,z0] f(fE)

for some xg € I. 8)

Then, for any x € (0, xq), we have

f(z) > Cx®, where C =

Proof. By the definition of «, we have

for all z € (0, z¢).

Then, for any x € (0, z(), we have
xo d o /
aln@:a/ —82 f(s)ds:lnf(xo).
x e 5 S f(s) f(x)
By reorganizing this inequality, we can prove the original argument. O

Lemma 13. Consider a Fenchel-Young loss ((z) = ¢*(—z) satisfying Assumption[3A| Then, for
arbitrary 0 < £ < 1 and « defined in (B), we have

I GC))

g(t7(e)) > Cye®™ fore € (0,8), where —

Proof. Choose any g > 0. For ¢ € (0,2¢), we can invert to get z = £~ () because / is strictly
decreasing on /~1((0, 1)) (by Lemma|8) and hence invertible. Note that

z € (L=Y(g0),m) if £ has separation margin m > 0,

z € (071(ep),0) otherwise,

because £~ (-) is nonincreasing. We write this range as Z, then z = {~1(g) € Z for e € (0, p).

Let us verify g(z) = —¢'(z) is differentiable at z € Z first. By the definition of Fenchel-Young
losses, we have

Uz) = ¢"(=2) = sup [z-(=2) = o(x)] =~z (¢') 7" (=2) = ¢ ((¢') 7' (~2)),

z€(0,1)

for z € Z, where we used the first-order optimality —z = ¢’(z) of the convex conjugate at the
last identity. Since ¢ is twice continuously differentiable and ¢” > 0 on the interval (0, 1) by
Assumption [JA] we can apply the inverse function theorem to have

R A )
(@) (=2) & (¢ (-2)

for z € Z. Since ¢ is twice continuously differentiable, we can apply the inverse function theorem
once again to get £”'(z) for z € Z, and hence g is differentiable on Z.

U(z) = =(¢) 7 (~2) = (@) (=),

In addition, ¢ is continuously differentiable with non-degenerate derivative at z € Z because ¢ is
strictly decreasing on Z. From these observations, we can see that g(¢~1(+)) = f(-) is nondecreasing
on Z and differentiable on Z (because it is the composition of two nondecreasing and differentiable
functions g and £~1). Now we can apply Lemma [12|to this f. Let us compute the exponent o,
defined in (). By the differentiability and non-degenerate derivative of £ on Z, we can apply the
inverse function theorem on ¢ to have

effle) € o 1 . .
o~ @) g (0 (e)) - m (inverse function theorem)
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()0 (z) _
= o (g(-) =—=L(-)
_9"(3) - (67)"(2) (Z=—2)
(%) (2)]?
A ¢/ - ¢ ”1# I(%
A {1 _ o) }
pe” (1) pe' () |

where at (A) we introduce p as the dual of z by the mirror map ¢’ such that
z=¢(p) and p=(¢")(2),
which implies ¢*(z) = pd’ (1) — ¢(u) together with the definition of the convex conjugate, and
[6"(w)] - [(67)"(2)] =1

with Danskin’s theorem [21]] and the inverse function theorem. Note that this identity is often referred
to as Crouzeix’s identity [19]. Here, we have

zé€ (—m,—0(g0)) and p € (0,9(¢(g0))) if £ has separation margin m > 0,
zZ € (—o0,—0(g9)) and p € (0,9(¢ (o)) otherwise,
by noting that g(z) = —¢'(z) = (¢*)'(—z) is nonincreasing. With this primal-dual relationship, we
have
¢"(2) = pz — ¢(n) and [¢"(n)] - [(¢7)"(2)] =1
by the definition of the convex conjugate and Crouzeix’s identity. Now we are ready to apply

Lemma T2} which yields
gt (e)) > Cye™ fore € (0,8),

where

R V) B PR (D) Gl C) R
O et 1o () [1 ucb’(u)]’ Co=""F15» and &:=g(l"(c0)).

Since the choice of ¢y > 0 was arbitrary and Im(g) = Im((¢*)") = dom(¢’) C [0,1], we can
choose such ¢ € (0, 1). O

Proof of Theorem 9] For a fixed k € [T — 1], if we have L(wy,) > ¢, there exists i € [n] such that
0({wy,2;)) > £. Then, we have for this specific i € [n],
(Wi, 2zi) < £71(e) (¢ is strictly decreasing when £ > 0 by Lemma 8]
= g((W,2;)) > g(£(c)). (g is nonincreasing by Lemmalg)
This implies that

G == 3 gllwa ) 2 ~g((wiz) 2 g (€ (2)) ©

n
j€[n]
holds while L(wy,) is e-suboptimal, that is, L(wy) > ¢.

Next, fix wo = 0 and consider the case where L(wy,) > ¢ holds for all k € [T — 1]. By Lemmalg]
we can use Lemma[19] By Lemmas[11]and[19] we can take Gruin = g(£~"(€))/n (noting () and
have
=) T

M < (wrp,w,) — (wo,w,) (Lemmal[lI)
n

= (W1, Wy) (with the choice of wy = 0)

<|wr| (the Cauchy-Schwarz inequality with ||w. || = 1)

Yoo,
< AV p(PnT) + an. (Lemma[T9)
v
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By reorganizing and applying Lemma[I3] we leverage the primal-dual relationship to have

e M (AeOT) oy L (AR )
g(=1(9) 0

7 1 72 Cpe
where Cy is defined in Lemma|13| Therefore, L(wy,) is e-suboptimal after at most

n (4 p(y?nt)

Co? n + Cg) e (=T(e))

iterations. That is, if 7 > T'(¢), the gradient lower bound (9) must be violated at some ¢ € [T, and
for this ¢, we achieve L(w;) < e.

Finally, we verify that C; defined in Lemma@matehes (3). By introducing Z as the dual of & such

that
z=d'(p) and f=(4")(2),
we have
g=1((g (@) (g is invertible when 0 < g(-) < 1)
= ¢"(2) (i = (¢*)(2) = g(—2) implies g~ (1) = —2)

= ¢’ (1) — o(),
where the invertibility of g can be verified through the differentiability of g as in Lemma [I3] (by
relying upon ¢” > 0 in Assumption , and the last identity follows by the definition of the convex
conjugate. Plugging this into Cy defined in Lemma([T3] we see that it matches Cy in (3). Thus, we
have proven all statements. O

C Extension to the stochastic gradient descent

We discuss the extension of Theorem [5]to the stochastic setup. We consider the constant-stepsize
online stochastic gradient descent (SGD) as follows:

Wiyl = wy —nVLi(wy), where Li(w):=L((w,yxs)), t>0, (SGD)
for a loss function ¢: R — R>q. Here, (x,y:):>0 are independently and identically distributed
according to the following assumption.

Assumption 4. Assume the training data (X, y.)i>0 are independent copies of (x, y) following a

distribution such that

1. ||x|| <1, and y; € {£1}, almost surely;

2. there is v > 0 and a unit vector W, such that (W.,z;) > vy for z; = y;xy, almost surely.

Proposition 14. Suppose AssumptionHand consider (SGD) with stepsize n > 0 and wo = 0 under
a Fenchel-Young loss { satisfying Assumption[3| and additionally having separation margin m > 0.
For arbitrary 0, € (0,1), define (o, Cy) as in Eq. , Sfor which we assume «,Cy € (0,00). In
addition, for arbitrary ¢ € (0, £), define

32M2_In(1/6
m +1Cy TIC'g) and t° = max{ TMQH( / )a 8Mx In(1/9) } .
v € 5

My, =4 (
Then, if we run (SGD)) with T iterations such that

2¢ 4
T>N-t° where N:=_—— (m —I—C'q> e 9,
Cov? \'m
then we have minyc(r E[Ly(w,)] < e with probability at least (1 — §)N.

Before proving Proposition[T4] several auxiliary lemmas are presented. Since the proof of Propo-
sition [T4] closely follows Theorem 3} the following Lemmas T3] and [T6 are almost identical to the
deterministic versions (Lemmas[TT]and[T9] respectively), and hence we omit the proofs.
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Lemma 15. Suppose AssumptionH|and consider (SGD) with any stepsize 1) > 0 under a Fenchel-
Young loss that satisfies Assumption Moreover, assume that there exists k € [0,t — 1] such that
we have a non-trivial lower bound g({wWy,,2)) > gmin > 0. Then, we have

VNGmin < (Wi, W) — (Wo, W) .

Lemma 16. Suppose Assumption[d|and consider with any stepsize n > 0 under a convex and
nondecreasing loss { satisfying Assumptions[3B|land[3CQ) For every t > 1, we have

4/ p(y2nt) +nCy
[well < o .

The following concentration result is an additional argument that we need in the stochastic case.

Lemma 17. Consider (SGD)) with any stepsize n > 0 under a Fenchel-Young loss that satisfies
Assumptions and[3Q) Let Zy, ..., Zy_y be the independent copies of data z = yx following
Assumption d| We introduce the filtration {F},~,, where Fy, is a o-algebra defined on Z, ... ., Zy,

and let Hy, = (((wy, Zy)) be a random variable, where wy, is an Fy_1-measurable random
variable. We write Sy == Z};}) Hj, for a random variable standing for the accumulated loss, and let
Sy = S;/t. Moreover, we introduce the following assumptions:

* (Bounded mean) iy, = E[Hy|Fr—1] < M fork =0,...,t— 1.

s (Bounded variance) Var(Hy|F_1) < o® fork =0,...,t — 1.

Then, for any e > 0 and § € (0, 1), if we have
E[S:]
t

(10)

2
>¢c and t> max{320 (1;(1/5)7 8Mh;(1/5)}7

then we have Sy > ¢ /2 with probability at least 1 — 6.

Proof. First, we apply a type of the martingale inequality, Freedman’s inequality [22, Theorem 1.6].
Since E[H}, — pg|Fk—1] is the mean-zero martingale difference with the bounded variance o2,

Freedman’s inequality is applicable. Then, we have

2

Pr{S, <E[S,] — u} < exp [—W] .

Equivalently, we have the following inequality with probability at least 1 — ¢:

S, > E[S \/M2 n2(1/6) + 2t02 In(1/6) — M In(1/5)
\/W 2M In(1/6).
Dividing by ¢, we have
E[S;] 2021In(1/6) 2M1In(1/4) e € ¢

3 - - _f_ce_ ¢
t> T t r ST 11w

where we used the conditions (I0) at the second inequality. Thus, the desired inequality is shown. [J

Now we are ready to prove Proposition [I4] Overall, the proof consists of the perceptron argument
and the concentration property.

Proof of Proposition The first step is to establish the concentration property. To apply Lemma|[T7]
we confirm the bounded moment conditions. For the mean E[Hy|Fi_1] = E[l({(Wg, Z))| Fr-1],

where Fj,_1 is the o-algebra defined on {Z; }f__ll, we have

E[l({(wi, Zi))| Fr—1] < E[l(—||wg||)|Fr—1] (¢ is nonincreasing and || Zy|| < 1)

( Am & 770 ) (Lemmas [9]and[T3)

= My .

)
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For the variance Var(Hy|Fj—_1), we similarly have
Var(Hg|Fr—1) = E[H} | Fr-1] — E[Hy| Fr—1]?
< E[H{|Fi-1]

2
< <_4m+770g>
Y

_ 2
- M’?v"/'

Note that these moment bounds hold uniformly for any k. By plugging M = M, , and 0 = Miv
into Lemma [I7] if we have

to+t°—1 2
1 32M2_1n(1/8) 8M, . n(1/8
= Z E[Lg(wg)] > e and t° Zmax{ "’:;2 / ),8 "’PYEH( / )}, (11)
k=tq
then we have
1 to+t°—1 c
w kzt Ly(wyg) > 3 with probability at least 1 — 4.
=to

Let us use this concentration argument. Split the interval [0, 7] into length-¢° sub-intervals (for ¢°
satisfying (TI)) such that

[0,7] = [0,£° — 1] [t°, 26° — 1] [2t°,3t° — 1] --- U [(N — 1)t°, Nt° — 1JU[Nt°, T].  (12)
——

=7, =T =73 =N

Consider the scenario where E[Ly(wy)] > ¢ holds for all £ € [0,T], and focus on an arbitrary
sub-interval Z;. Since we have 7t Y, .7 E[Lx(wy)] > €, the concentration argument implies that
A3 ez, Li(Wi) > €/2 with probability at least 1 — 4. This further indicates the high-probability
existence of k; € Z; such that Ly, (wy,) > /2. In this case, we have g((wg,,zx,)) > g(=1(g/2))
for this specific k; € Z;, which can be seen in the same manner as the proof of Theorem|[5] Since this
concentration argument does not depend on the sub-interval choice Z;, there exists a set of indices
{k1} ;¢ () such that each of g((wy,, zx,)) > g(£=1(£/2)) holds with probability at least 1 — 6.

Next, we invoke the perceptron argument. By combining Lemmas [I3] and [T with the choice
gmin = 9(£71(/2)), we have

2 — )

4/ p(2nT) +nC, _ 4m +nC
vng(f”(E))-N§<WT,W*>SHWT||§ p(vnv) 9 < m,yng

with probability at least (1 — 6)", where we additionally used Lemma@]at the last inequality. By
applying Lemma 3] at the left-most side, we have

e\« 4m + nC
- (5)" -z St

~y

)

which implies

2% (4m —a ]
Therefore, if N > N(g) (or T > N(g)-t°), with probability at least (1 —3), we have E[L(wy)] <
e for some k € [0, 7.

Finally, we need verify that Cs defined in Lemma [[3]matches (3)), but we skip it because it can be
confirmed in the same manner as in the proof of Theorem [5 O

C.1 Comparison between GD and SGD

Whereas the iteration complexity for GD given by Corollary @is T = Qe %), the iteration complex-

ity for SGD given by Propositionis T = Q(e~(@*2)). Hence, the SGD rate is significantly slower
than the GD case. This deterioration is because we can observe a non-trivial lower bound g({wy, zy))
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after every t° = Q(¢7?) steps. As in the GD case, we need N = Q(¢~) such non-trivial lower
bounds, and hence the total iteration number amounts to Nt° = Q(&:*(a”)). While this apparently
looks a big bottleneck, note that the GD rate is 7' 2 ne ™~ if we explicitly write the n-dependency.
Since consumes only one fresh sample at every update (while consumes n samples), the
extra complexity N = Q(¢~?) appearing in the SGD case compensates for this gap of sample sizes.
The GD/SGD rates are comparable in this sense.

D Phase transition of large-stepsize GD

We recap Wu et al. [63], who shows the existence of the phase transition from the EoS to stable
phases.

Assumption 5. Consider a loss { € C'(R) that is convex, nonincreasing, and {(+00) = 0.
A. Self-bounding property. For some Cg > 0, g(-) < Cgl(-) and
0(2) < l(z) + 0 (2)(2 — x) + Cpg(x)(z — x)®  for z and x such that |z — z| < 1.

B. Exponential tail. There is a constant C. > 0 such that £(z) < C.g(z) for z > 0.

Theorem 18 ([63]). Consider with stepsize 1 > 0 and initialization wo = 0 under a loss {
satisfying Assumptions[3Bland[3Q) and[5A] Let T be the maximum number of steps. Then, we have
the following:

o The EoS phase. For everyt > 0, we have

}HL(W ) < [6Vp(%n0) +nCyl°
t = M= 82t ’

* The stable phase. If s < T is such that

1 o)
L(WS> Smln{4cgn7n}7 (]3)

then (GD) is in the stable phase, that is, (L(w))1_ decreases monotonically, and moreover,

2
t —
Lwy) <520 =8) -y ey,
Yt —s)
* Phase transition time. There exists a constant Cy > 0 that only depends on Cy, Cg, and { (0)
such that the following holds. Let

1 ¥~ (Ci(n +n))
7= —maxs —————— = Ci1(n+n)np, where P(A)=——=.
7 { 0 ( V=00
If r < T, (13) holds for some s < 1. Moreover, if { additionally satisfies Assumption[5B|and
n > 1, there exists Cy > 0 that depends on C., Cy, Cg, £(0), and n such that T is improved as
follows:

A

C
T = 722 max {n,n}.

The proof consists of Lemma@] (the EoS phase), Lemma@] (the stable phase), and Lemmas @]
and [25] (phase transition time), respectively. Most of the results in this section have already been
provided in Wu et al. [63]]. We restate the statements and proofs here to make the paper self-contained,
and moreover, simplify the statements from the NTK setup to the linear-model case to highlight the
essential structures.

Lemma 19 (EoS phase). Suppose Assumption [2land consider a convex and nonincreasing loss {
satisfying Assumptions|3B|and For every t > 1, we have

1 ZH [6+/p(v2nt) +nCy)?
t — 9

8~2nt

k=0

4v/p(v*nt) +nC,y
[we < S ~

and
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Proof. By invoking Lemma|[T0] with the choice of ¢

p(y?nt)

0= ’
v

we have

t—1

lwe —uf?> 1 1 nCy\*
1+ -ML <)+ — [0+ 2
2nt + t (w) < £0v0) + 2nt + 27y

2 1 2
< p(r7mt) <9+ 77;}}’) ., (Lemmal7)

k=0

it 2t

which implies that
[well < llwe —ull + [|ul]

2 2
< \/2’)(72’”) + <a+ "Cg) + <9+ 7709)
Y 2y 2y
2
<2p(777’t)+2<9+772(“;~"> Va+b< Va+ Vb
4v/p(v*nt) + nCy
/_y )

and

1 Znt 1 Cy
Z L(wk)<”(72”)+ g+ 1%\
tk:o yEnt 2nt 2y

p(y*nt) 2\/ p(v2nt) + nCy)?
'v “nt 8v*nt
2(1++/2) \/Tnt ) +nC,2
8v2nt
6\/ p(2nt) +nC,)?
8v2nt
Thus, the proof is completed. O

(@®>+ b < (a+b)2f0ra,b20)

Lemma 20. Suppose Assumption [2] and consider a convex and nonincreasing loss { satisfying
Assumptions[3B|land[3C] Then, we have

tl

’Ynt

where G(w) is defined in @

Proof. By the perceptron argument [44], we have
(Wip1, W) = (Wi, wi) = (VL(wy), wy)

= (wy, W) — gZz'«wt,zm (We,2;)

> (Wi, Wa) — — Zf’ (W, z (Assumption [2]and note —¢'(-) > 0)

= (Wi, W) — 'YnG(Wt)'
Telescoping the sum, we have

LS ) < (0w = (v} _ il _ 4v/p0P00) + 1y
t= B ynt ot vt
where the last inequality is due to the parameter bound in Lemma [T9} O
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Lemma 21 (Modified descent lemma). Consider a loss satisfying[5A] Suppose there exists s < T
such that

<
Liws) = 4C3n’
then for every t € [s,T] we have
1. L(wy) < 1/(4C%n) and G(wy) < 1/(4Cgn),
2. L(Wes1) < L(wy) = 22| VL(wy)[|* < L(wy),

where G(w) is defined in ().

Proof. We first show that Claim 1 implies Claim 2. By Assumption[SA] we have
C(Wig1,2i) < LW, 22)) + € (W1, 20) (Wep1 — Wi, 25) + Cag((We, 2:)) (Wiegn — Wi, 2:)°
< U((We,20) + (Wi, 20)) (Wir — Wi, 25) + Cag((Wi, 22)) [ Wi — w12
Taking average over i € [n], we get
L(wii1) < L(we) + (VL(We), W1 — We) + CpG(We)[[Wen — wil|®
= L(wy) = nl|VL(w)[|* + Car* G(we) [ VL(w) ||
< Liwy) =l VL(w) |2 + 2|V L(wy)| (Claim 1)

3n
= L(w¢) — Z||VL(Wt)||27
which verifies Claim 2.

Next, we prove Claim 1 by induction. The base case ¢t = s holds by Assumption[5A]as follows:

1 1 « 1
G s) = — sy Zi)) < — Cst sy 4q = CglL s) S ——- 14
(v0) = 5 Dallwes ) < 032 Catliwara)) = CaLw) < g (19
To prove the step case, we suppose L(wy) < 1/(4C%n) and G(w) < 1/(4Cgn) for k = 5,5 +
1,...,t and prove them for k£ = ¢ + 1. Since Claim 1 implies Claim 2, we have
1
L(wi1) < L(wy) < oo < L(wg) < @
Since G(wy¢y1) < CgL(Wy41) holds as in (T4), we have
1
G < CgL < —
(Wet1) < CpL(wig) < iCon
Thus, the step case is shown, and all claims are proven. O

Lemma 22. Consider a nonincreasing and nonnegative loss {. For every w such that

we have y; (w,x;) > 0 fori € [n].

Proof. See [63, Lemma 31]. ]

Lemma 23 (Stable phase). Consider a nonincreasing loss ¢ satisfying Assumptions and
Suppose there exists s < T such that

. 1 ¢0)
L(w,) < m1n{40§n, n} .

Then, for everyt € [0,T — s|, we have




Proof. By the lemma assumption, we can apply Lemma[2T|for s onwards. Therefore, we have for
k>0,

NIVL(weir)|? <

SIS
SIS

[L(Wsik) = L(Wsikt1)] < 5 L(Wsik)- 15)

Choose a comparator centered at w,

p(n3t)
¥

u:=ws+0w,, 60:=

For k <t — 1, we have
[Weirrn =l = [Wapr = ul® + 20 (VL(Wesr),u = Weir) + 72 VL(wari) |

4
< Wk =l 20 (VL(Wea),u = Wes) + gnLwers). by @)

Following the same derivation of , we can bound the second term as follows:

1 n
(VL(Woir), 0 — Waik) ﬁzlg 07+ (Ws,2i)) — L(Wsyi).

The assumption L(w) < £(0)/n allows us to apply Lemma[2] so (w,, z;) > 0 and thus

Oy + (ws,2:)) < L(07) = L(\/ p(v?nt)),

where £ is nonincreasing due to the lemma assumption. Consequently, we can control the second
term by

(VL(Wstk),u = W) < U/ p(v?nt)) — L(Wst).
Plugging this back, we get

4
Wi =l < wor = ull? + 20[E(/p(708) = L(wara)] + gnL(Were)

2
< N Wogr — ul|* + 200(y/ p(v?nt)) — S1L(Wepr).

Telescoping the sum from O to ¢ — 1 and rearranging, we get

t—1

1
+ 3 2 Llwass) < 3/p070) +

3|Wepr —ull?
2nt

3| we — ulf?
2nt

2
t
p(vn)+

3wy —ulf?
2t 2t

<3

(Lemmal[7)

Finally, we can show the claims as follows:

t—1 9 2
L(wair) < 30(7 nt) | 3llws —ul

P ~v2nt 2nt
_ 9p(7*nt)
2 2t
2
t
< 5p(72 )
yent

S

By Lemma[21] L(w) is nonincreasing for ¢ > s, and thus we have

t—1

2
¢
S L(wa k) < 5p(v2 )
P vt

L(Ws+t) <

| =
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Lemma 24 (Phase transition). Suppose Assumption|2|and consider a convex and nonincreasing loss
{ that satisfies Assumptions[3B|and[3C} Define

Then, there is C > 0 depending on Cg, Cg, and £(0) such that the following holds. Let
{w—1<0(n +n))
Ui

T ‘= — Imax

7 ,C(?H—n)n}.

If T < T, then there exists s € [0, 7] such that

. 1 £0)
L(w,) < mln{40§n, n} .

Proof. Applying Lemma[I9]with ¢ = 7, we have

ETZ_IL(W) < [6vp(Pnm) +nCyl? _ [ 3 [p(y*nm) | V2 nC, ]

2
k=0 87 nr

Choose 7 such that

v’nT > max {w—l (18[4C3n +n/L(0)]) , %(an)z(‘lCEn +n/0(0))

—

It is clear that

1 p(N) . 22
ey S L S Y

is a decreasing function. Then, we have

3 Jpy?nr) 3 [ 1 _ 3 1
18[4C2%n + n/(0)]

1

JACIn + n/e(0)

1
E\ v T\ eeEn < v 2

and

V2 7709

1 1
vy < = .
VT 2 JaCn + n (o)

These two inequalities together imply that

T—1

lX:L(W)<;<min LK
T Y= 40T + n/0(0) AC%" n |

k=0
which implies that there exists s < 7 for L(w) satisfies the right-hand side bound. O
Lemma 25 (Phase transition time under exponential tail). Suppose Assumption [2land consider a

nonincreasing loss { satisfying Assumptions[3Bjand[3C) and[5B] Furthermore, assume 1 > 1. Then,
there exists C' > 0 depending on C,, Cg4, Cg, £(0), and n such that the following holds. Let

T = %max{n,nlnn}.

If T < T, then there exists s € 0, 7] such that




Proof. Under Assumption[5B] we have
U(z) < Ceg(z) = =Cel'(z), forz>0,

which implies
' (z)

0(2)

<—-C7', forz>0.

Integrating both sides, we get
Q)
Inf(z) <In/(0 +/
(2) (0) G
0(z) < £(0)exp(—C.'z), forz>0.

Using the exponential tail property, we have

p(N) = min A(2) + 2% < M(Ce (X)) + CZIn*(A) < £(0) + CZn*(A).

d¢ <In¢(0) — C; 'z, forz >0,

e

which implies

Applying Lemma 20} we have

lil(}’ 4\/ p(v2nT) +nCy

T k=0 ’}/ nrt
4\/€ + C21In*(y2n7) +nC,
- T
5 SO+ 40 ) + 96, (VaTh< va+ Vb
_ 4Cc In(y°7) L Gy +4C. 4F 1
o AT VAT nooT

Here, we take C' > 0 depending on C., Cy, Cg, £(0), and additionally n such that
21 > C'max {n,n}

and

. £(0)
InC mm{zlcicgv C. }
C 7 4C.(1+1nn) + Cy +4C. + 4/0(0)

This choice is possible with sufficiently large C' > e because (In C)/C is strictly decreasing in C' > e
toward zero. Such C enables us to have

T7—1
1
= Z G(wy)
k=0
1 AC, 4,/7(0)
W (1nC+1nmaX {T],n}) +Cg +4Ce —+ 1
4C’ (lnC+lnn)+C +4C. + 4./(( (n>1)
Cmax{n,n} =
< InC4C.(1+1nn) + Cy + 4C. + 4,/¢(0) (InC > 1)
C max {n,n}
: 1 £(0)
mm{wecgv Ce }
max {n,n}

< min L 40)
- 40, C’gn Cen
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From this we have some s < 7 such that

1 £(0)
Gws) <min{ ————, —= /.
(W) < min§ 7o oy
B
This ensures that for every i € [n],

%g(<ws;zi>) < G(wg) = %Zg(<ws7zi>) < gOT)L < @7
i=1 e

n

where the last inequality is due to Assumption The above implies (ws,z;) > 0 since g(-) is
nonincreasing. Thus, we can apply Assumption [5B|for (w,, z;) and get

(W, 2i)) < Ceg((Ws, 2i)).
Taking an average over i € [n], we have
L(ws) < C.G(ws).
We complete the proof by plugging in the upper bound on G(wy). O

E Separation margin and self-bounding property

In this section, we discuss the relationship between separation margin and the self-bounding property.
First, we show that a loss function does not have separation margin if it satisfies the self-bounding
property.

Proposition 26. Consider a loss {: R — R that is continuously differentiable and nonincreasing,
and satisfies {(z9) > 0 for some zo € R. If { satisfies Assumption then £ does not have separation
margin.

Proof. Choose any € € (0,1/C3). The convexity of ¢ implies that

L(z)—14
g(z)=—-0'(2) > M for any z € R.
By the self-bounding property (Assumption[SA), we further have
Lz)—¢
M2 A2 o) < ot

Solving this, we have
Uz+e) > (1 —Cge)l(z).

Thus, if £(z) > 0 holds, we additionally have ¢(z + ¢) > 0 fore € (0,1/Cj3), and we conclude that
£ cannot have separation margin because ¢ > 0 holds on the entire R. O

Next, we argue that the converse of Proposition does not hold, that is, even if a loss ¢ does
not have separation margin, it does not always imply that ¢ satisfies the self-bounding property. A
counterexample is a Fenchel-Young loss generated by the following potential function:

" 1
o(p) = / &~ !(p)dp, where ® is the standard normal CDF ®(z) := 5 [1 + erf (%)}
0

and erf is the error function. The generated Fenchel-Young loss is relevant to the probit model [40]
because ¢’ is nothing else but the probit link function prevailing in generalized linear models. Hence,
we call the generated Fenchel-Young loss the probit Fenchel-Young loss for convenience. We can
have a concise form of the probit Fenchel-Young loss:

0z) = 6*(—2)
- /_ (¢)1(C)d¢

oo

= [ w0

oo
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=[C2(O) + 2(O)]-%
= —20(—2) + &'(—2).
The probit Fenchel-Young loss does not have separation margin because ¢'(1) = ®~!(u) — —oo

as p | 0 (see Proposition ). However, it does not satisfy the self-bounding property. To see this, we
have

|
—
]
11l

—Z)

which implies

) @'(2) .

lim 82— L’ Hépital’s rul
b l(z) | somee B(2) + 20 (2) + B/ (2) (L Hopital's rule)
(b/

(L’Hopital’s rule)

Hence, g(z) cannot always be bounded from above by #(z), that is, the self-bounding property is not
satisfied.

F Omitted calculation for examples

Here, we compute for each ¢,

A [1 o) }
1d0 1 (1) (e’ (1)

to estimate the power « of the convergence rate provided in Theorem[5] by making the error parameter

€ > 0 in (@) arbitrarily small. Correspondingly, we compute

. K
Im ————
ulo [pg! (1) = d(p))*
to estimate the constant Cy, in the convergence rate, verifying that C, neither degenerates nor diverges
for arbitrarily small error parameter € > 0.

Before proceeding with each example, we provide a rough estimate of p for loss functions without
separation margin.

Lemma 27. Consider a loss { satisfying Assumptions and |3B| that does not have separation
margin. Then,
1
p(A) < —¢ (2) A

Proof. First, we rewrite p as a dual form. By introducing the dual variable x of z by
z=¢'(u) and p=(¢")(2),
we have

p(\) = min M(z) + 2*

z€R
_ . * 2
= min Ap*(2) + =
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= min Aud' (1) — o(u)] + [¢' (1)]?,

nelo,1]

where we use the definition of the convex conjugate ¢*(z) = pz — ¢(u) at the last identity. Now, we
write the objective as R(u):

R(p) = Npd' () — o()] + [¢' ()]
Differentiating R, we have

4 A
R (1) = e +26' ()]0 () =0 =" /() = - S

at the minimizer p, of R. Plugging this back to R, we have

P(A) = R(pe) = A [u* (—;\u*) - ¢(M*)} + (—;u*>2 = —Ap(s) < =9 (;) A,

where the last inequality owes to that a convex potential satisfying Assumption [I]is minimized at the
uniform distribution p, = 1/2 [L1l Proposition 4]. O

By using Lemma[27] we can simplify the convergence rate of given by Theorem [5|for a loss
that does not have separation margin. Note that the following convergence rate is not sufficiently tight
due to overestimation of p by Lemma[27} nevertheless, the provided convergence rate is convenient
when we do not have an access to p analytically.

Corollary 28. Under the same setup with Theorem[5| we additionally assume that { does not have
separation margin. If (a, Cy) with (@) satisfies o, Cy € (0, 00) and
Xy _,  161-60/2)]n" _,,

T> €
Co? Civ*n

fore € (0,2),

then we have L(wr) < &

Proof. Combining Theorem [5|and Lemma 27, we have the following convergence rate:

dn\/—¢(1/2)e™ JT Cyne=®
T> T+ 5
Corv/n Covy

Defining

_Any/—o(1/2)e” and b e Cyne~

Covy/m o Ogy?

we have the following inequality in 7"
T? — (a® +2b)T + b* > 0.

This can be solved for T > 1:

a? +2b 26 \?
T> 1 1—(—=——) |,
2 * (a2 + 2b>
<1
for which 7' > a? + 2b is sufficient. Thus, we have shown the statement. O

Throughout this section, we repeatedly use L’Hopital’s rule. When it is used, we notate by ().
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F.1 Shannon entropy

For the Shannon entropy ¢(p) = plnp + (1 — p) In(1 — p), we have

1 1
d(w)=Inp—In(l—p) and ¢"(u)=—+-—r0,
(1) = In g~ n(1 — ) ) = + 1
which imply
AT {1_ (1) ] i 25 [ gt (L ) In(l — pr)
10 e (1) pe'(p) | wlo1— £ plnp — pIn(l — p)
Inpg—pln(l —p) —plnp — (1 — p)In(l —
g A g = pn(l - p) MILM (1 —p)In(1 — p)
plo 1 —p ulnﬂ
= lim ——~ In(1 = 1)
w0 1%
@y 1
= lim
w0 1 —p
:17
and
: 1 . 1
lim = lim
nd0 pg’(p) — ¢(p)  wlo plnp —pn(l —p) —plnp — (1 —p) In(l - p)
. m 1
= lim .
who —In(l—p) 2pu—1
=lim ———
1o In(1 — p)
@ ..
D Jim(1 —
lim (1 — p1)
=1.

Finally, we derive the convergence rate for the logistic loss. Plugging o = 1, Cy = 1, Cy = 1, and
p(A) < 1+1n*(N) < 2In*(\) to Theorem we have

2 2 4:4/2
T <4\/§ln(w nT) +1> 1 lﬁlﬁln(v m o2
o] " " 1

ne~1

Dividing both ends by In 7', we have

T (4\/5111(7277) n 1) 1 4\/5] ne~!
n

InT

for which the following is sufficient when 7" > 2:

T 44/21n(~?n) 1 1 n 42| ne~t
InT 7 In2 7 ~2
42logy(V?m) 1 42| me!
= (e Uy R
n In2 n v

By ignoring the logarithmic factor, we have

T>

~

n In2 n

44/21 2 1 4+/2 -1
4v2logy(47n) +f]n€.
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F.2 Semi-circle entropy

For the semi-circle entropy ¢(u) = —2+/u(l — ), we first derive the analytical form of the
corresponding Fenchel-Young loss. We have
o —1 . 1
P =2l and ()=
(1 — p) 2[u(1 — p)]?/2

The dual transform (¢*)’ is given by

—_
[SIEN

(@) (2) = ()7 () = 5 | ——=—+1],

(5)°+1

thanks to the Danskin’s theorem [21]. Then, we can derive the Fenchel-Young loss by the definition
of the convex conjugate:

* * * —Z+ v 22 +4
U(2) = ¢"(=2) = =2(¢")'(2) = 0 ((¢") (=2)) = ——F——
Next, we compute the loss parameters o and Cy, respectively as follows:
2p—1
! 1(1— 2 1-—
. ¢£u) [1_ ¢(/u) } TR/ g P lé( - 1)
1l0 pd (1) pe' ()] w0 spatsere %
p(l—p
. 2(1 - p)
=1lim2(2u — 1)(1 — 1+ ——=
lin 2(2p = 1)( u){ + 2u—1]
fr— 27
and
8 ) oGP — A - 2
o [ug’ (1) — o(p n .
/}J\/il(li_lu)‘kz\//u(l_:u)]
= lim(1 —
lim(1 = p)
=1.
To estimate p(A),
— mi 2
p(\) = min M(z)+z
—1 VIn? X +4
<A “JFQDML +In? A (z=1In\)

= 2A —|—ln2)\
In\+vVIn?\+4
5\

~ 2ln )\’

where we used
2\

A
> >
InA 7 V2 A+ 4

Finally, we derive the convergence rate for the semi-circle loss. Plugging oo =2,Cy =1, Cy =1,
and p(A) < 5A/(2In \) to Theorem 5| we have

‘In? X\ forA>1.

[SVRN )

ne2

v

+1

5 2nT
n 4 2 ln’(\/'ygnT) _9 24/10 ’)/2’[7T
—_— 41 = 5

n \ In(v*nT)
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for which the following is sufficient when 7" > 2:

2v/10 ~2nT 1 ne=?2
n | In(2y%n) 72

T >

Subsequently, we follow the same flow as in the proof of Corollary 28] Defining

2 /10 —2 2 —2
a = 2n5 7 Z and b:= %,
72 In(2v%n) ¥

we have the following inequality in 7":

T2 — (a® + 2b)T + b > 0.

This can be solved for 7" > 1:

a? +2b 2 \?
T 1 1—( ———
S R <a2 n 2b) :
<1
for which T' > a? + 20b is sufficient, namely,
40n2 2n
T> —— 44 2

v2n In(29%n) 72

is sufficient. Thus, the convergence rate is T = Q(s~%).

F.3 Tsallis entropy

For the Tsallis entropy
_pi+(A-p)i-1

o(1) 1 ;
define

do(p) = p?+ (1 —p)? -1,

Pr(p) = ptt = (1= ),

Ga(p) = p?72 4 (1 — p)7=2.

When 0 < g < 2(q # 1),
¢ (1) [1 o (1) } _ b b apdi (i) — do(w)

wo pd”(n) [ nd'(n) ] alg —1) wio é2(p) 2
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1 1 o\ po
e () ea () ]
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g
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In addition, we have

lim K

w0 [ (1) — p(w)]'/9

(q— 1)y

1

40 (g (1) — o ()] /4

= (o= >1/q({1ImW}l/q
{

— ) (-1 T
q—ll/q q— l—hm e }
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=1
When g > 2,
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In addition, we have
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@ (y—1)1/2 {hm 91 (1) + alg — Dpda(p) — a1 (1) }_1/2
nd0 2,U,

B —1/2
(ql)m{Q(q2 o) i 2+(1u)q2]}

1
= (¢g—1)"2. {(]((]2—1)} ~1/2

2

q

40



F.4 Rényi entropy

For the Rényi entropy

define

When 0 < ¢ < 2 with g # 1,

8() = Il + (1= ).
po(p) = p? + (1 - p)?,
Gr(p) = p?™t = (1= ),
Go(p) = p?72 4+ (1 — )72,
G3(p) = 7 = (1= p)??
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-
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In addition, we have
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When ¢ = 2, we leverage

to have
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which implies

By solving this, we have
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Figure 3: For the pseudo-spherical entropy, (1) = [¢' (1) /pe” ()] - [1 — () /119’ (11)] is shown.

F.5 Pseudo-spherical entropy

Consider the g-pseudo-spherical entropy ¢(u1) = [u? + (1 — p)9]*/2 — 1 for ¢ > 1 [24]. It is also
known as the g-norm (neg)entropy [[12]]. When g = 2, it recovers the spherical entropy associated
with the spherical loss [[1]. When ¢ 1 oo, it approaches ¢ oo (1) = max {p, 1 — u} — 1, which is the
Bayes risk of the hinge/0-1 losses [13]. As seen in Figure 3] the limit c (in (3)) does not exist, which
indicates that we cannot guarantee the e-optimal risk for vanishingly small €.
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