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ABSTRACT

The lack of sufficient flexibility is the key bottleneck of kernel-based learning that
relies on manually designed, pre-given, and non-trainable kernels. To enhance ker-
nel flexibility, this paper introduces the concept of Locally-Adaptive-Bandwidths
(LAB) as trainable parameters to enhance the Radial Basis Function (RBF) kernel,
giving rise to the LAB RBF kernel. The parameters in LAB RBF kernels are
data-dependent, and its number can increase with the dataset, allowing for better
adaptation to diverse data patterns and enhancing the flexibility of the learned
function. This newfound flexibility also brings challenges, particularly with re-
gards to asymmetry and the need for an efficient learning algorithm. To address
these challenges, this paper for the first time establishes an asymmetric kernel
ridge regression framework and introduces an iterative kernel learning algorithm.
This novel approach not only reduces the demand for extensive support data but
also significantly improves generalization by training bandwidths on the available
training data. Experimental results on real datasets underscore the outstanding per-
formance of the proposed algorithm, highlighting its superior capability in reducing
the required number of support data compared to Nyström approximation-based
algorithms, all while maintaining state-of-the-art regression accuracy.

1 INTRODUCTION

Kernel methods play a foundational role within the machine learning community, offering a lot of
classical non-linear algorithms, including Kernel Ridge Regression (KRR, Vovk (2013)), Support
Vector Machines (SVM, Cortes & Vapnik (1995)), kernel principal component analysis (Schölkopf
et al., 1997), and a host of other innovative algorithms. Nowadays, kernel methods maintain their
importance thanks to their interpretability, strong theoretical foundations, and versatility in handling
diverse data types (Ghorbani et al., 2020; Bach, 2022; Jerbi et al., 2023). However, as newer
techniques like deep learning gain prominence, kernel methods reveal a shortcoming: the learned
function’s flexibility often falls short of expectations.

Recent studies (Ma et al., 2017; Montanari & Zhong, 2020) demonstrate that the fundamental behavior
of a sufficiently flexible model, such as deep models, can interpolate samples while maintaining good
generalization ability. However, interpolation with either single or multi-kernel methods is achieved
using kernels close to Dirac function and ridgeless models, leading to large parameter norms and
poor generalization. The reason for imperfect interpolation in kernel-based learning stems from its
inherent lack of flexibility. The flexibility of a model, often referred to as its degree of freedom,
is directly indicated by the number of its free parameters. Recent studies (Allen-Zhu et al., 2019;
Zhou & Huo, 2024) have revealed that a model with ample flexibility tends to be over-parameterized.
However, the number of free parameters of classical kernel-based models are constrained by the
number of training data points N , falling far short of the capabilities observed in over-parameterized
deep models. The primary challenge in augmenting the trainable parameters of kernel methods arises
from the reliance on manually designed, fixed kernels in traditional learning algorithms, which are
inherently untrainable.

Over the past decade, various data-driven approaches have been explored to introduce trainable
parameters to kernels to enhance the flexibility. However, despite significant progress, there remains
ample room for improvement in this area. For instance, multiple kernel learning (MKL, Gönen &
Alpaydın (2011)) employs linear combinations of kernels instead of a single one, yet the increase in
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Figure 1: A toy example demonstrating the regression of a one-dimensional signal y = sin(2x3). (a)
Ground truth. (b) Function obtained with a universal kernel bandwidth, showing a lack of accuracy in
high-frequency regions. (c) Function obtained with a increased bandwidth, resulting in unnecessary
sharp changes in low-frequency areas. (d) In our proposed LAB RBF kernels, data-dependent
bandwidths are trained, effectively adapting to the underlying function: larger bandwidths correspond
to the left part, and smaller bandwidths correspond to the right part.

the number of learnable parameters is limited to the number of kernel candidates, falling short of
expectations. Deep kernel learning (Wilson et al. (2016)) introduces deep architectures as explicit
feature mappings for kernels, with the core of its techniques residing in feature learning rather than
kernel learning. Recent works, such as Liu et al. (2020), propose the direct introduction of trainable
parameters into the kernel matrix but lack corresponding kernel function formulations. Furthermore,
the increased flexibility in these works, while advantageous, has not mitigated the computational
issues arising from the large N ×N kernel matrices.

In this paper, we introduce a novel approach to enhance kernel flexibility, significantly differing from
current research endeavors. Our proposal involves augmenting the RBF kernel by introducing locally
adaptive bandwidths. Given a dataset X = {x1, · · · ,xN} ⊂ RM and let ⊙ denote the Hadamard
product, then the kernel defined on X is outlined below:

K(t,xi) = exp
{
−∥θi ⊙ (t− xi)∥22

}
, ∀xi ∈ X , ∀t ∈ RM , (1)

where θi ∈ RM
+ ,∀i denotes a positive bandwidth1. We name (1) as Local-Adaptive-Bandwidth RBF

(LAB RBF) kernels. The key difference between LAB RBF kernels and conventional RBF kernels
lies in assigning distinct bandwidths θi to each sample xi rather than using a uniform bandwidth
across all data points, and we proposed to estimate these bandwidths θi from training data.

Obviously, the introduction of such data-dependent bandwidths can effectively increase the flexibility
of kernel-based learning, making bandwidths adaptive to data, not universal as in conventional kernels.
Fig. 1 illustrates the benefits of introducing locally-adaptive bandwidths. The underlying function
y = sin(2x3) exhibits varying frequencies across its domain. When employing the RBF kernel
with a global bandwidth, a dilemma arises: using a small bandwidth (=20) yields an inadequate
approximation of the high-frequency portion (highlighted in the red box in Fig.1 (b)). Conversely, a
larger bandwidth (=100) is necessary to approximate the high-frequency section, resulting in a final
function that is overly sharp and struggles to accurately represent the smooth portions (highlighted in
the red box in Fig.1 (c)). The proposed LAB RBF kernel emerges as an optimal solution, offering
a more flexible approach to bandwidths. As depicted in Fig. 1 (d), it strategically employs larger
bandwidths on the left and smaller bandwidths on the right.

1Strictly speaking, the bandwidths in a LAB RBF kernel should be a vector function defined on RM .
However, for better clarity in illustrating the subsequent learning algorithm, we discretely define the bandwidth
for each support vector data point in a point by point way.
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Notably, LAB RBF kernels exhibit inherent asymmetry since θi is not required to be equal to θj ,
allowing for cases where K(xi,xj) ̸= K(xj ,xi). This asymmetry, while providing added flexibility
to LAB RBF kernels compared to traditional symmetric kernels, presents two algorithmic challenges:
how to determine the bandwidths for support data? and how to incorporate asymmetric LAB RBF
kernels into existing kernel-based models? This paper addresses these challenges by developing an
asymmetric KRR model and introducing an innovative technique for learning asymmetric kernels
directly from the training dataset. To summarize, the contributions of this paper are as follows:

Flexible and trainable kernels. The introduced LAB RBF kernel, as presented in (1), incorporates
individualized bandwidths for each data point, introducing asymmetry and thereby augmenting the
number of trainable parameters. This augmentation significantly boosts the model’s flexibility when
employing LAB RBF kernels in kernel-based learning, enabling it to better accommodate a wide
array of diverse data patterns.

Asymmetric kernel ridge regression framework. For the application of asymmetric LAB RBF
kernels, this paper for the first time establishes an asymmetric KRR framework. An analytical
expression for the stationary points is derived, elegantly represented as a linear combination of
function evaluations at training data. Remarkably, coefficients of the combination take the same form
as those of classical symmetric KRR models, despite the asymmetric nature of the kernel matrix.

Robust kernel learning algorithm. We introduce a novel kernel learning algorithm tailored for
LAB RBF kernels, enabling the determination of local bandwidths. This algorithm empowers the
regression function not only to interpolate support data effectively but also to achieve excellent
generalization ability by tuning bandwidths on the training data.

The experimental results underscore the advanced performance of our algorithm: it achieves state-of-
the-art regression accuracy while substantially reducing the required amount of support data (model
complexity) compared to advanced kernel-based methods.

2 ASYMMETRIC KERNEL RIDGE REGRESSION

2.1 KERNEL RIDGE REGRESSION

Kernel ridge regression (Vovk, 2013) is one of the most elementary kernelized algorithms. De-
fine the dataset X = {x1, · · · ,xN} ⊂ RM ,Y = {y1, · · · , yN} ⊂ R, and data matrix
X = [x1,x2, · · · ,xN ] ∈ RM×N ,Y = [y1, y2, · · · , yN ]⊤ ∈ RN . The task is to find a lin-
ear function in a high dimensional feature space, denoted as RF , which models the dependen-
cies between the features ϕ(xi),∀xi ∈ X of input and response variables yi,∀yi ∈ Y . Here,
ϕ : RM → RF denotes the feature mapping from the data space to the feature space. Define
ϕ(X) = [ϕ(x1), ϕ(x2), · · · , ϕ(xN )], then the classical optimization model is as follow:

min
w

λ

2
w⊤w +

1

2
∥Y − ϕ(X)⊤w∥22, (2)

where λ > 0 is a trade-off hyper-parameter. By utilizing the following well-known matrix inversion
lemma (see Petersen & Pedersen (2008); Murphy (2012) for more information),

(A+BD−1C)−1BD−1 = A−1B(CA−1B +D)−1, (3)
one can obtain the solution of KRR as follow

w∗ = (ϕ(X)ϕ(X)⊤ + λIF )
−1ϕ(X)Y

(a)
= ϕ(X)(λIN + ϕ(X)⊤ϕ(X))−1Y ,

where (3) is applied in (a) with A = IF , B = ϕ(X), C = ϕ⊤(X), D = IN .

2.2 ASYMMETRIC KERNEL RIDGE REGRESSION

Assume we have two feature mappings from data space to an unknown vector space: ϕ : RM → RF ,
and ψ : RM → RF . Given training dataset (X,Y ), the asymmetric kernel ridge regression model is

min
w,v

λw⊤v + (ϕ⊤(X)w − Y )⊤(ψ⊤(X)v − Y )

⇐⇒min
w,v

λw⊤v +
1

2
∥ϕ⊤(X)w − Y ∥22 +

1

2
∥ψ⊤(X)v − Y ∥22 −

1

2
∥ψ⊤(X)v − ϕ⊤(X)w∥22.

(4)
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Here, λ > 0 serves as a trade-off hyper-parameter between the regularization term w⊤v and the error
term (ϕ⊤(X)w − Y )⊤(ψ⊤(X)v − Y ). Given the existence of two feature mappings, we have two
regressors in the space RF : f1(t) = ϕ⊤(t)w and f2(t) = ψ⊤(t)v. To enhance clarity regarding
the meaning of the error term, we decompose it into the sum of three terms, as shown in the second
line. The terms 1

2∥ϕ
⊤(X)w − Y ∥22 + 1

2∥ψ
⊤(X)v − Y ∥22 are employed to minimize the regression

error. Additionally, the term λw⊤v − 1
2∥ψ

⊤(X)v − ϕ⊤(X)w∥22 aims to emphasize the substantial
distinction between the two regressors. Then we have the following result on the stationary points.

Theorem 1. One of the stationary points of (4) is

w∗ = ψ(X)(ϕ⊤(X)ψ(X) + λIN )−1Y , v∗ = ϕ(X)(ψ⊤(X)ϕ(X) + λIN )−1Y . (5)

The proof is presented in Appendix A. Theorem 1 establishes a crucial result, demonstrating that
the stationary points can still be represented as a linear combination of function evaluations on
the training dataset. This validates the practical feasibility of the proposed framework. With the
conclusion in Theorem 1, we can easily apply asymmetric kernel functions. Define an asymmetric
kernel by the inner product of ϕ and ψ, i.e. K(x, t) = ⟨ϕ(x), ψ(t)⟩, ∀x, t ∈ RM , and denote
a kernel matrix [K(X,X)]ij = K(xi,xj) = ϕ⊤(xi)ψ(xj), ∀xi,xj ∈ X , then we obtain two
regression functions:

f1(t) = ϕ(t)⊤w∗ = K(t,X)(K(X,X) + λIN )−1Y ,

f2(t) = ψ(t)⊤v∗ = K⊤(X, t)(K⊤(X,X) + λIN )−1Y .
(6)

Theorem 1 also indicates the proposed asymmetric KRR framework includes the symmetric one.
That is, model (4) and model (2) share the same stationary points when the two feature mappings are
equivalent, as shown in the following corollary.

Corollary 2. If the two feature mappings ϕ and ψ are equivalent, i.e. ϕ(x) = ψ(x),∀x ∈ RM ,
then stationary conditions of the asymmetric KRR model (4) and the symmetric KRR model (2) are
equivalent. And the stationary point is w∗ = v∗ = ϕ(X)(λIN + ϕ(X)⊤ϕ(X))−1Y .

2.3 ALTERNATIVE DERIVATION AND FUNCTION EXPLANATION

We can also derive a similar result in Theorem 1 in a LS-SVM-like approach (Suykens & Vandewalle,
1999), from which we can better understand the relationship between the two regression functions.
By introducing error variables ei = yi − ϕ(xi)

⊤w and ri = yi − ψ(xi)
⊤v, the last term in (4)

equals to
∑

i eiri. According to this result, we have the following optimization:

min
w,v,e,r

λw⊤v +

N∑
i=1

eiri

s.t. ei = yi − ϕ(xi)
⊤w, ∀i = 1, 2, · · · , N,

ri = yi − ψ(xi)
⊤v, ∀i = 1, 2, · · · , N.

(7)

From the Karush-Kuhn-Tucker (KKT) conditions (Boyd & Vandenberghe, 2004), we can obtain the
following result on the KKT points.

Theorem 3. Let α = [α1, · · · , αN ]⊤ ∈ RN and β = [β1, · · · , βN ]⊤ ∈ RN be Lagrange multipliers
of constraints ei = yi − ϕ(xi)

⊤w and ri = yi − ψ(xi)
⊤v,∀i = 1, · · · , N , respectively. Then one

of the KKT points of (7) is

w∗ =
1

λ
ψ(X)β∗, e∗ = β∗ = λ(ϕ⊤(X)ψ(X) + λIN )−1Y ,

v∗ =
1

λ
ϕ(X)α∗, r∗ = α∗ = λ(ψ⊤(X)ϕ(X) + λIN )−1Y .

This model shares a close relationship with existing models. For instance, by modifying the regular-
ization term from w⊤v to w⊤w + v⊤v and flipping the sign of

∑N
i=1 eiri, we arrive at the kernel

partial least squares model as outlined in Hoegaerts et al. (2004). In the specific case where ψ = ϕ, its
KKT conditions align with those of the LS-SVM setting for ridge regression (Saunders et al., 1998;
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Figure 2: The idea of the kernel learning in this paper. When interpolating support data to obtain
decision function, we actually search in the hypothesis space HK. When optimizing Θ with training
data, we actually adapt the hypothesis space. By repeating these two operation, we finally obtain a
good hypothesis space close to the target function.

Suykens et al., 2002). Furthermore, under the same condition of ψ = ϕ and when the regularization
parameter is set to zero, it reduces to ordinary least squares regression (Hoegaerts et al., 2005).

With the aid of error variables e and r, a clearer perspective on the relationship between f1 and f2
emerges. As clarified in Theorem 3, the approximation error on training data is equal to the value of
dual variables, a computation facilitated through the kernel trick. Consequently, this reveals that f1
and f2 typically diverge when ϕ and ψ are not equal, as they exhibit distinct approximation errors. A
complementary geometric insight arises from the term

∑N
i=1 eiri within the objective function. This

signifies that, in practice, f1 and f2 tend to approach the target y from opposite directions because
the signs in their approximation errors tend to be dissimilar. For practical applications, one may opt
for the regression function with the smaller approximation error.

3 LEARNING LOCALLY-ADAPTIVE-BANDWIDTH RBF KERNELS

Based on the above theoretical result of asymmetric KRR, in this section we provide a learning
algorithm of the LAB RBF kernel, to determine the local bandwidths θi and the decision function f .
The key of our approach is that, we use a part of available data as support data, to which the proposed
asymmetric KRR model is applied to obtained the formulation of f . Then we use the rest of data to
train bandwidths θi corresponding to support data.

The training scheme is given in Fig. 2 (a): Assume a support dataset Zsv = {Xsv,Ysv} and a training
dataset Ztr = {Xtr,Ytr} are pre-given. Let Θ denotes the set of bandwidths for support data, i.e.,
Θ = {θ1, · · · ,θNsv

}. We firstly fix Θ and apply asymmetric KRR model on support data to obtain
the decision function, denoted by fZsv,Θ. Denote the test data as t, Theorem 1 and (6) provides
two choices of regression functions associated with K(t,Xsv) and K⊤(Xsv, t), respectively. It
is important to note that within LAB RBF kernels, the matrices K(t,Xsv) and K⊤(Xsv, t) are
distinct. The bandwidth of the former is dependent on Xsv , while the bandwidth of the latter depends
on t. Since only bandwidths for support data are optimized, we can compute solely K(t,Xsv), and
we are unable to calculate K(Xsv, t) due to the absence of bandwidth information for testing data.
Consequently, only f1 in (6) can be utilized to interpolate the support data. That is,

fZsv,Θ(t) = KΘ(t,Xsv)(KΘ(Xsv,Xsv) + λIN )−1Ysv. (8)

As a function that interpolates a small dataset, it is evident that the generalization performance
of fZsv,Θ falls short of expectations. However, by introducing trainable bandwidths Θ, we can
substantially improve the generalization capacity of fZsv,Θ. This enhancement is achieved by the
following optimization model to train Θ, enabling the function to approximate the training data:

Θ∗ = argmin
Θ

∥fZsv,Θ(Xtr)− Ytr∥22

= argmin
Θ

∥KΘ(Xtr,Xsv)(KΘ(Xsv,Xsv) + λIN )−1Ysv − Ytr∥22.
(9)

After the above optimization, we finally obtain the regression function fZsv,Θ∗(t).

5



Under review as a conference paper at ICLR 2024

Algorithm 1 Learning LAB RBF kernels with SGD and dynamic strategy.
1: Input: Data Z = {X ,Y}, regularization hyper-parameter λ.
2: Initialization: Error tolerance ϵ > 0, initial bandwidth Θ(0) > 0, learning rate for gradient

descent method η > 0, k for the dynamic strategy, and uniformly sampled support dataset
Z(0) = {X (0)

sv ,Y(0)
sv }.

3: repeat
4: Compute the function fZ(t)

sv ,Θ(t) according to (1) and (8).
5: t=0.
6: repeat
7: Randomly sample a subset {Xs,Ys} ⊂ Z \ Zsv .
8: Compute Θ(t+1) = Θ(t) + η ∂

∂ΘL(fZ(t)
sv ,Θ(t)(Xs),Ys) according to (9).

9: t=t+1.
10: until the maximal number of iteration is exceeded.
11: Compute error ξi = (fZ(t)

sv ,Θ(t)(xi)− yi)
2 for all data {xi, yi} ∈ Z \ Zsv .

12: if maxi ξi ≤ ϵ or the maximal support data number is exceeded, then
13: break.
14: else
15: Add the first k samples with largest error to the support dataset and obtain Z(t+1)

sv

16: end if
17: until the maximal number of iteration is exceeded.
18: Compute the α = (KΘ(t)(X

(t)
sv ,X

(t)
sv ) + λIN )−1Y

(t)
sv .

19: Return α,Z(t)
sv and Θ(t).

In this approach, we utilize support data in Zsv for optimizing the regressor and training data in Ztr
for optimizing Θ. This sets our algorithm apart from existing deep kernel learning and multiple kernel
learning methods, where both the decision function and the kernel are optimized concurrently using
the same data. It is worth noting that Zsv in our strategy serves a similar role to the selected subset
of training data in Nyström approximation, (see Williams & Seeger (2000); Rudi et al. (2017) for
reference). However, with the integration of locally-adaptive bandwidths, our subsequent bandwidth
training process significantly enhances the generalization ability of decision models, as we will
demonstrate in the next experiment section. Overall, the proposed kernel learning algorithm yields
advantages in terms of efficiency and effectiveness:

Computational efficiency with small support data. In traditional kernel-based learning, computing
the kernel matrix and its inverse is the most computationally demanding operation. However, our
approach confines this computation to a small dataset Xsv , resulting in a manageable computational
complexity of O(N3

sv). Moreover, our approach explores a completely different mechanism than
current accelerating techniques for kernel machines. This opens the possibility of incorporating
methods from, for example, Rudi et al. (2017); Abedsoltan et al. (2023) into our framework, resulting
in higher computational efficiency. Additionally, in Equation (9), the relationship between the
objective function and Θ is analytically determined, as fZsv,Θ is explicitly presented. This enables
the utilization of gradient-descent-based (GD-base) methods for training Θ, leveraging advancements
in hardware and software that have significantly improved computational efficiency.

Enhanced generalization with large training data. The training procedure for optimizing Θ in
our approach closely resembles a parameter-tuning step, akin to cross-validation, commonly used
to enhance the generalization ability of decision functions in traditional learning frameworks. Here
the generalization ability of fZsv,Θ is also enhanced by effectively approximating a large amount
of training data. This augmentation of generalization stems from the incorporation of training data
information into the local bandwidths of LAB RBF kernels. These bandwidth adjustments essentially
correspond to different hypothesis spaces, as depicted in Fig. 2 (b). By adapting these functional
spaces optimally, our approach empowers the regression function to efficiently approximate larger
datasets with reduced complexity compared to classical kernel-based models.

Dynamic strategy for selecting support data. The selection of support data is an important step
in constructing a regressor, as it can significantly impact the performance of the final model. There
are various strategies for selecting support data, ranging from simple random selection to more
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Table 1: R2 (↑) of different regression methods on real datasets.

Dataset Tecator Yacht Airfoil SML Parkinson Comp-activea

N=240,M=122 N=308,M=6 N=1503,M=5 N=4137,M=22 N=5875,M=20 N=8192,M=21
RBF KRR 0.9586±0.0071 0.9889±0.0025 0.8634±0.0248 0.9779±0.0013 0.8919±0.0091 0.9822
TL1 KRR 0.9670±0.0113 0.9705±0.0033 0.9464±0.0065 0.9947±0.0005 0.9475±0.0034 0.9801

R-SVR-MKL 0.9711±0.0212 0.9945±0.0008 0.9201±0.01099 0.9959±0.0006 0.9032±0.0122 0.9834
SVR-MKL 0.9698±0.0157 0.9957±0.0022 0.9535±0.0042 0.9970± 0.0006 0.9011±0.0110 0.9829
EigenPro3.0 0.9758±0.0029 0.9944±0.0036 0.9262±0.0166 0.9934±0.0009 0.9260±0.0079 0.9830

RFMs 0.9811±0.0078 0.9947±0.0018 0.9394 ±0.0079 0.9960±0.0007 0.9988±0.0004 0.9852
Falkon 0.9769±0.0086 0.9982±0.0024 0.9377 ±0.0067 0.9960±0.0007 0.9492±0.0063 0.9808
ResNet 0.9841±0.0067 0.9940±0.0003 0.9538±0.0066 0.9976±0.0004 0.9906±0.0048 0.9836
WNN 0.9875±0.0044 0.9924±0.0025 0.9128±0.0089 0.9926±0.0008 0.9139±0.0055 0.9817

LAB RBF 0.9752±0.0139 0.9985±0.0004 0.9608±0.0079 0.9990±0.00005 0.9990±0.0006 0.9835
a The test set of Comp-activ is pre-given.

Notations N, M denote the data number and the feature dimension, respectively.

sophisticated methods based on data information. For example, sorting data according to their labels
and then evenly selecting a required amount of data is a reasonable and practical approach. Besides,
we propose a dynamic strategy for selecting support data. Initially, we uniformly select N0 support
data points Z(0)

sv and then: (i) Optimize (8) and (9) accordingly to obtain fZ(0)
sv ,Θ

. (ii) Compute
approximation error (fZ(0)

sv ,Θ
(xi)− yi)

2,∀{xi, yi} ∈ Ztr. (iii) Add data with first k largest error to

form a new support dataset Z(1)
sv . Repeat the above process until all approximation error is less than a

pre-given threshold or the maximal support data number is exceeded.

In Alg. 1, the overall algorithm is presented with dynamic strategy and stochastic gradient descent
(SGD) methods. Therefore, the convergence analysis for the optimization (9) in the algorithm can
adopt the current framework and results from SGD for non-convex functions. For more detailed
information, please refer to Fehrman et al. (2020). Additionally, the use of SGD requires initialization
of Θ, and in our experiments, we suggest using the global bandwidth of a general RBF kernel, tuned
on the training data, as the initial parameter.

4 NUMERICAL EXPERIMENTS

This section is dedicated to assessing the performance of the proposed LAB RBF kernels and Alg. 1
by comparing them to widely used regression methods on real datasets. We particularly focus on
addressing the following questions: (1) Does training bandwidths on the training dataset significantly
enhance generalization ability? (2) Can the utilization of LAB RBF kernels lead to a reduction in the
number of support data and make them applicable to large-scale datasets?

4.1 EXPERIMENT SETTING

Datasets. Real datasets include: Yacht, Airfoil, Parkinson (Tsanas et al., 2009), SML, Electrical,
Tomshardware from UCI dataset2 (Asuncion & Newman, 2007), Tecator from StatLib 3 (Vlachos
& Meyer, 2005),Comp-active from Toronto University4, and KC House from Kaggle 5 (Harlfoxem,
2016). The detailed description of datasets are provided in Appendix C. Each feature dimension of
data and the label are normalized to [−1, 1].

Measurement. We use R-squared (R2), also known as the coefficient of determination (refer to
Gelman et al. (2019) for more details), on the test set Ztest to evaluate the regression performance.

R2 = 1−
∑

(xi,yi)∈Ztest
(yi − f̂(xi))

2∑
(xi,yi)∈Ztest

(yi − ȳ)2
,

where f̂ is the estimated function, and ȳ is the mean of labels. All the following experiments randomly
take 80% of the total data as training data and the rest as testing data, and are repeated 50 times.

2https://archive.ics.uci.edu/ml/datasets.php
3http://lib.stat.cmu.edu/datasets/
4https://www.cs.toronto.edu/˜delve/data/comp-activ/desc.html
5https://www.kaggle.com/datasets/harlfoxem/housesalesprediction
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Table 2: Number of support vectors of different kernel-based regression methods on real datasets.
Dataset Tecator Yacht Airfoil SML Parkinson Comp-active

R-SVR-MKL 174.2 224.7 953.1 2844 4047 1397
SVR-MKL 160.7 144.5 1035 1424 3759 1423

Falkon 100 200 900 2000 4000 1500
EigenPro3.0 192 247 1203 3310 4700 6554
LAB RBF 20 30 200 340 350 70

All the experiments were conducted using Python on a computer equipped with an AMD Ryzen 9
5950X 16-Core 3.40 GHz processor, 64GB RAM, and an NVIDIA GeForce RTX 4060 GPU with
8GB memory. The code will be made publicly accessible after the review process.

Compared methods. We compared nine regression methods, including two traditional kernel
regression methods using RBF (RBF KRR, (Vovk, 2013)) and indefinite TL1 kernels (TL1 KRR,
(Huang et al., 2018)). Additionally, there are multiple kernel learning methods applied on support
vector regression, denoted as SVR-MKL and R-SVR-MKL (using only RBF kernel candidates). We
also consider three recent kernel methods: Falkon (Rudi et al., 2017; Meanti et al., 2022), EigenPro3.0
(Abedsoltan et al., 2023), Recursive feature machines (RFMs, (Radhakrishnan et al., 2022)), with
the first two being based on the Nyström method. Finally, two neural network-based methods are
included: ResNet (Chen et al., 2020), and wide neural network (WNN).

All setting and hyper-parameters of these methods are determined for each dataset by 5-fold cross-
validation. Details of compared methods and hyper-parameters are given in Appendix D.

4.2 EXPERIMENTAL RESULTS

Compared with popular regression methods. The results of the regression analysis on small-
scale datasets, as measured by the R2, are presented in Table 1. It is evident that greater model
flexibility leads to improved regression accuracy, thus highlighting the benefits of flexible models.
Notably, TL1 KRR outperforms RBF KRR in most datasets due to its indefinite nature. R-SVR-MKL,
which considers a larger number of RBF kernels, exhibits much better performance than RBF KRR.
While SVR-MKL, which considers a wider range of kernel types, achieves even higher accuracy
compared to R-SVR-MKL. Among the neural network models, both ResNet and WNN demonstrate
superior performance to the aforementioned methods. Advanced kernel methods, including Falkon,
EigenPro3.0, and RFMs, also present significant improvement over traditionay kernel methods.
Overall, our proposed LAB RBF achieves the highest regression accuracy, significantly increasing
the R2 compared to the baseline. Notably, LAB RBF performs better than ResNet in certain datasets,
indicating that LAB RBF kernels offer sufficient flexibility and training bandwidths on the training
dataset is indeed effective to enhance the model generalization ability.

Table 2 additionally reports the number of support vectors of sparse kernel methods, which enables a
more intuitive understanding of the sizes of decision models. Specifically, it provides the maximal
support data number in Alg. 1 for LAB RBF, and the predefined number of centers for Falkon, and the
average number of support vectors for SVR methods. It should be noted that KRR uses all training
data as support data, which results in a much larger complexity of the decision model compared
to other kernel methods. This observation further underscores the advantage of enhancing kernel
flexibility and learning kernels, as demonstrated by the compact size of the decision model achieved
with our proposed LAB RBF kernel.

Performance on large-scale datasets. Traditional kernel-based algorithms are inefficient on large-
scale datasets due to the matrix inverse operator on the large kernel matrix. Consequently, we compare
our algorithm with three advanced kernel methods and two neural-network-based methods. The results
are presented in Table 3, which more prominently underscores the capability of LAB RBF kernels in
effectively reducing the required number of support data. Furthermore, it achieves a comparable level
of regression accuracy to other advanced choices designed for such datasets. Notably, these advanced
methods exhibit substantial model sizes. For instance, ResNet has a substantial number of parameters,
and RFMs utilize all of the training data as support data. Although Falkon and EigenPro3.0 are
based on the Nyström method, their reliance on symmetric kernel functions forces them to use a
large amount of training data as support data to achieve high accuracy. In contrast, LAB RBF kernels
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Table 3: Mean and standard of R2(↑) of different algorithms in large-scale datasets.

Dataset Electrical KC House TomsHardware
N=10000,M= 11 N=21623,M=14 N=28179,M=96

WNN 0.9617±0.0027 0.8501±0.0194 0.9248±0.0303
ResNet 0.9705±0.0025 0.8823±0.0117 0.9697±0.0021

EigenPro3.0 (#S.V.)a 0.9513±0.0024(8000) 0.8636±0.0119(17291) 0.9436±0.0282 (20000)
RFMs (#S.V.) 0.9582±0.0028(8000) 0.9008±0.0072 (17291) 0.9115±0.0031(22544)
Falkon (#S.V.) 0.9532±0.0025 (3000) 0.8640±0.0145 (5000) 0.9001±0.0143 (5000)

LAB RBF kernels (#S.V.) 0.9642±0.0021 (300) 0.8917±0.0086(400) 0.9809±0.0028(500)
a Notation # S.V. denotes the number of support vectors.

maintain a comparatively low number of support data, attributed to the high flexibility provided by
locally adaptive bandwidths and the kernel learning algorithm.

5 RELATED WORKS

RBF kernels with diverse bandwidths. Long-standing research in statistics, particularly in kernel
regression and kernel density estimation, such as Abramson (1982); Brockmann et al. (1993);
Zheng et al. (2013), has investigated RBF kernels with varying bandwidths in local regions. These
studies have consistently shown the superiority of locally adaptive bandwidth estimators over global
estimators in theory and simulations. However, due to computational constraints and specific problem
settings, these analyses have largely focused on one-dimensional algorithms without addressing
generalization. In the field of machine learning, works like automatic relevance determination Neal
(2012) and hierarchical Gaussian kernels (Steinwart et al., 2016; Hang & Steinwart, 2021) propose
to employ heterogeneous bandwidths specific to each feature. Recent research in Radhakrishnan
et al. (2022) integrates the concept of deep feature learning into kernel learning through efficient
algorithms, albeit confined to the domain of symmetric kernels. There has been a limited exploration
of data-dependent bandwidths, largely due to a lack of understanding and application of asymmetric
kernels. In this paper, we address this limitation by introducing an innovative asymmetric KRR
framework. Consequently, we achieve locally data-adaptive bandwidths tailored to RBF kernels.

Asymmetric kernel-based learning. Existing research in asymmetric kernel learning has primarily
proposed frameworks based on SVD (Suykens, 2016) and least square SVM (He et al., 2023),
lacking interpretable models for other tasks. Furthermore, these works predominantly concentrate
on the application of asymmetric kernels within established kernel methods (Koide & Yamashita,
2006) and the interpretation of associated optimization models (Lin et al., 2022). Despite notable
progress in these contexts, the field still grapples with the scarcity of versatile asymmetric kernel
functions. Current applications of asymmetric kernel matrices often rely on datasets (e.g. the directed
graph in He et al. (2023)) or recognized asymmetric similarity measures (e.g. the Kullback-Leibler
kernels in Moreno et al. (2003)) This yields improved performance in specific scenarios but leaving
a significant gap in addressing diverse datasets. With the help of trainable LAB RBF kernels, the
asymmetric kernel learning framework proposed in this paper thus lays a robust groundwork for
utilizing asymmetric kernels in tackling general regression tasks.

6 CONCLUSION

This paper introduces locally-adaptive-bandwidths to RBF kernels, significantly enhancing the
flexibility of the resulting LAB RBF kernels. We tackle the inherent asymmetry of LAB RBF kernels
by establishing an asymmetric KRR framework, demonstrating that one of its stationary points
maintains a structure akin to classical symmetric KRR. Additionally, an efficient LAB RBF kernel
learning algorithm is devised, allowing for bandwidth determination with control over support vectors.
The experimental results underscore the algorithm’s superiority in reducing the required number
of support data, surpassing state-of-the-art accuracy, and even outperforming well-trained residual
networks. This work underscores the benefits of enhancing kernel flexibility and highlights the
effectiveness of the proposed asymmetric kernel learning approach. Considering the fundamental
role of non-Mercer kernels and asymmetric kernels in modern deep learning architectures, such
as transformers (Wright & Gonzalez, 2021; Chen et al., 2023), our GD-based asymmetric kernel
learning algorithm exhibits great potential for future integration with deep architectures.
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