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ABSTRACT

As a few large-scale pre-trained models become the major choices of various
applications, new challenges arise for model pruning, e.g., can we avoid pruning
the same model from scratch for every downstream task? How to reuse the
pruning results of previous tasks to accelerate the pruning for a new task? To
address these challenges, we create a small model for a new task from the pruned
models of similar tasks. We show that a few fine-tuning steps on this model
suffice to produce a promising pruned-model for the new task. We study this
“meta-pruning” from nearest tasks on two major classes of pre-trained models,
convolutional neural network (CNN) and vision transformer (ViT), under a
limited budget of pruning iterations. Our study begins by investigating the
overlap of pruned models for similar tasks and how the overlap changes over
different layers and blocks. Inspired by these discoveries, we develop a simple
but effective “Meta-Vote Pruning (MVP)” method that significantly reduces the
pruning iterations for a new task by initializing a sub-network from the pruned
models of its nearest tasks. In experiments, we demonstrate MVP’s advantages in
accuracy, efficiency, and generalization through extensive empirical studies and
comparisons with popular pruning methods over several datasets.

1 INTRODUCTION

Large-scale pre-trained models usually contain tens of millions or even billions of parameters
for promising generalization performance. The computation and memory of modern GPUs or
clusters can support to train such models, but directly deploying them to edge devices can easily
violate the hardware limits on memory and computation. Network pruning (Han et al., 2016; Tian
et al., 2020; Li et al., 2020; Chin et al., 2020) has been widely studied to compress neural nets
by removing redundant connections and nodes. Numerous empirical results have verified that
pruning can compress the original network into much smaller sub-networks that still enjoy the
comparable performance. Instead of reducing the network to the target size by one-time pruning,
iterative pruning that alternates between pruning and fine-tuning for iterations usually achieves
better performance (Han et al., 2015; Li et al., 2017). Theoretically, a line of recent works (Frankle
& Carbin, 2018; Ye et al., 2020; Savarese et al., 2020; Malach et al., 2020) attempts to prove the
lottery ticket hypothesis, i.e., the existence of such sub-networks, for different pruning settings.

In a variety of practical applications, a pre-trained network usually needs to be pruned for a
wide variety of devices and adapted to different downstream tasks. Running an iterative pruning
algorithm for every device or task from the same pre-trained network can create enormous carbon
footprint overload in our biosphere and waste a lot of computational power. On the other hand, the
wide applications of a few pre-trained models have already created thousands of pruned models
for different downstream tasks. Can we reuse these pruned models as prior knowledge to save the
pruning computation on new tasks? We call this problem “meta-pruning”. In this paper, we mainly
focus on a special case of it, which initializes a sub-network for a given new task based on the
pruned models of similar tasks. Meta-pruning is non-parametric if no parametric model is trained
to produce the initialization. It is analogous to MAML (Finn et al., 2017) in that the meta-objective
optimizes the initialization of a network. It differs from MAML in that (1) both the sub-network’s
architecture and weights are initialized; and (2) the initialization is not universal but task-specific.
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Since meta-pruning aims to find better sub-network initialization for new tasks, we limit the
iterations during meta-pruning to strengthen the impact of initialization on the final pruned model.
This also controls the computational cost and carbon footprint of meta-pruning much less than
conventional pruning that requires many iterations. Under this constraint, a well-performed pre-
trained model is critical to the meta-pruning performance because (1) it needs to provide initialized
sub-networks for different tasks; and (2) a few iterations of fine-tuning to the sub-networks should
suffice to produce high-quality pruned models for targeted tasks. Meta-pruning follows a practical
setting where one single pre-trained model is tailored for different tasks using limited iterations. We
study two classes of the most widely used pre-trained models, i.e., convolutional neural networks
(CNN) (He et al., 2016) and vision transformer (ViT) (Dosovitskiy et al., 2021).

The primary contribution of this paper is two folds. In the first part, we conduct a thorough em-
pirical study that applies different pruning methods to CNN and ViT and compare their produced
sub-networks for hundreds of downstream tasks. No meta-pruning is studied in this part and its pri-
mary purpose is to (1) find the nearest tasks for a new task using different similarity metrics; and (2)
compare the pruned models for different but similar tasks. To this end, we build a dataset of tasks
and their sub-networks pruned from the same pre-trained models. Statistics and evaluations on this
dataset indicate similar tasks with high similarity tend to share more nodes/filters/heads preserved in
their pruned models, especially in deeper layers that notably capture high-level task-specific features.

Motivated by the empirical study, the second part of this paper proposes a simple yet strong
meta-pruning method called “meta-vote pruning (MVP)”. It can significantly reduce the pruning
cost and memory required by previous pruning approaches yet still produce pruned models with
promising performance. Given a pre-trained model, MVP finds a sub-network for a new task by
selecting nodes/filters/heads through majority voting among its nearest tasks, e.g., a filter will be
sampled with a higher chance if it is selected into more sub-networks of similar tasks. To keep the
method simple, we sample the same proportion of nodes/filters/heads as the targeted pruning ratio.
Then we apply a few iterations of fine-tuning to the initialized sub-network using training data of the
new task. Although a more sophisticated procedure can be developed, the proposed method already
saves a substantial amount of computation and memory while maintaining a high test accuracy of
pruned models. We demonstrate these via experiments over tasks from CIFAR-100 (Krizhevsky
& Hinton, 2009), ImageNet (Deng et al., 2009) and Caltech-256 (Griffin et al., 2007). The pruned
models extracted from an ImageNet pre-trained model can also vote for tasks drawn from the
unseen dataset Caltech-256 with great performance, which shows the generalization of MVP.

2 RELATED WORKS

Network pruning Network pruning has been widely studied to compress network and accelerate
its inference for a single task. We mainly summarize structure pruning below. In CNN, to encourage
the sparsity of the pruned network, L0 (Louizos et al., 2018), L1 (Liu et al., 2017) or L2 (Han et al.,
2015) regularization have been used, and recent polarization regularization (Zhuang et al., 2020)
shrinks some nodes towards 0 and meanwhile strengthen the others to keep important nodes intact.
Different criteria have been proposed to evaluate the importance of nodes/filters. Li et al. (2017)
prunes filters with the smallest sum of parameters’ absolute values. Lin et al. (2018) prune filters
according to the second-order Taylor expansion of the loss. Methods (Bai et al., 2022; Frankle &
Carbin, 2018) based on lottery ticket hypothesis try to find a well-performed sparse initialization
for each task.

ViT has been widely used in computer vision and achieved SOTA performance in many tasks. The
input patches for each block can be pruned to save computation for ViT. Goyal et al. (2020) propose
a metric for the importance of each patch and dynamically prune patches in each layer. PatchSlim-
ming (Tang et al., 2022) retains patches critical to preserve the original final output. HVT (Pan
et al., 2021) is a CNN-like method which shortens the patch sequence by max-pooling. Another line
of work (Zhu et al., 2021; Yu et al., 2022b;a) automatically prunes the unimportant heads, nodes
and blocks in ViT. These methods excel on single-task pruning but their cost linearly increases
for multiple tasks (and thus more expensive than meta-pruning) because: (1) a large model needs
to be trained for every task; (2) every task requires to prune its own large pre-trained model from
scratch. For both CNN and ViT, it is time-consuming for these pruning methods to build a pruned
model for each unseen target task from a large pre-trained model. Our proposed method can borrow
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the knowledge of the existing pruned models extracted by these pruning methods and use them to
generate a well-performed pruned model for the unseen task with a few fine-tuning iterations.

Meta-pruning To the best of our knowledge, the non-parametric meta-pruning problem,
i.e., how to prune a model for a target task using the pruned models of other tasks, has not
been specifically studied in previous work. However, several recent researches aim at learning
meta(prior) knowledge that can improve pruning in other scenarios. MetaPruning (Liu et al.,
2019) trains a weight-generation meta-network to prune the same network for the same task under
different constraints, e.g., user/hardware defined pruning ratios. DHP (Li et al., 2020) addresses
the same problem but does not rely on any reinforcement learning or evolutionary algorithm
since it makes the pruning procedure differentiable. Meta-learning has been studied to find better
weight-initialization for pruning on different tasks, e.g., Tian et al. (2020) applies Reptile (Nichol
et al., 2018) for overfitting reduction. Meta-learning has also been studied to select the best pruning
criterion for different tasks (He et al., 2019). In (Sun et al., 2020), a shared sparse backbone
network is trained for multi-task learning but it cannot be adapted to new tasks. Our method is the
first one to use meta-learning to extract a pruned model for a new task. The main differences of our
approach to them are: (1) we do not train a parametric meta-learner but instead use majority voting
from similar tasks; and (2) our meta-voting generates a pruned small sub-network to initialize the
target task training, which significantly reduces the pruning cost.

3 EMPIRICAL STUDY: PRUNING A PRE-TRAINED MODEL FOR DIFFERENT
TASKS

In this section, we conduct an empirical study that applies different methods to prune a CNN or ViT
pre-trained model for over hundreds of tasks. Our study focuses on the overlap between the pruned
models for different tasks and whether/how it relates to their similarity. To this end, we introduce
different task similarities and compare the overlap associated with different similarity groups. The
results show that more similar tasks tend to share more nodes/filters/heads in their pruned models.
And this holds across different pruning methods, datasets and pre-trained models. No meta-pruning
is used in the study.

3.1 A DATASET OF PRUNED MODELS

While the number of possible downstream tasks and users can be huge in practice, the current
progress on foundation models show that one or a few large-scale pre-trained models with light
fine-tuning usually achieve the SOTA performance on most of them. To simulate this scenario
on a standard dataset, our empirical study creates a dataset of pruned models for hundreds of
tasks from the same pre-trained model. We choose CIFAR-100 (Krizhevsky & Hinton, 2009)
and ImageNet (Deng et al., 2009) for the study due to many classes in them. Each class in
CIFAR-100 and ImageNet has 500 and 1300 samples, respectively. For each dataset, we randomly
draw 1000 classification tasks, each defined on 5 classes sampled without replacement. We adopt
ResNet-18 (He et al., 2016) pre-trained on CIFAR-100, ResNet-50 (He et al., 2016) and a small
version of ViT (Touvron et al., 2021b) pre-trained on ImageNet. For ResNet-18 and ResNet-50,
we prune two types of pre-trained models, i.e., the supervised training following Devries & Taylor
(2017) and the self-supervised training following SimSiam Chen & He (2020) (only the encoder is
used). For ViT, the training of its pre-trained model follows (Dosovitskiy et al., 2021).

Iterative Pruning We apply iterative filter-pruning (IFP) to ResNet. Unlike magnitude-based
pruning (Li et al., 2017) with one-time selection of nodes/weights, iterative pruning alternates
between network pruning and fine-tuning of model weights for multiple iterations, each of which
prunes p% of the remaining nodes/weights so it progressively prunes a large network to the targeted
size. It usually performs better than other pruning methods and has also been mainly studied in
theoretical works about Lottery Ticket Hypothesis (Frankle & Carbin, 2018). We take the activation
values of filters averaged over all training samples to measure the importance of filters (Molchanov
et al., 2016), referred as Activation Pruning, in which filters with smaller activation values contain
less information of input data. The detailed procedure of IFP is described in Alg. 2 in Appendix.

Automatic Pruning Inspired by the SOTA ViT structured pruning method (Yu et al., 2022b), we
prune ViT by automatic head&node pruning (AHNP) for a given task, which parameterizes the sub-
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network as the pre-trained model with a learnable score multiplied to each prunable head and node.
To encourage sparsity, the differentiable scores of all prunable heads and nodes are optimized with
an additional L1 regularization loss. After each optimization step, we apply a simple thresholding
to these scores to remove heads and nodes with small scores. The optimization stops if the pruned
model reaches the targeted size and the model will be fine-tuned for a few iterations. The detailed
procedure of AHNP can be found in Alg. 3 in Appendix. For tasks of CIFAR-100, we run IFP for
all 1000 tasks on ResNet-18. And we apply IFP and AHNP to tasks of ImageNet on ResNet-50 and
ViT respectively. Finally, we create a dataset of pruned models for thousands of tasks over different
pre-trained models. For each task i, we record its labels Ci, the set of preserved nodes/filters/heads
{Ω`}`=1:L−1 and the pruned model θT . We use the same hyper-parameters for different tasks. For
IFP on ResNet, we use a learning rate of 0.005, pruning iterations of 1000 and batch-size of 128
for both the tasks of CIFAR-100 and ImageNet. When applying AHNP to ViT, we follow the ViT
training in (Touvron et al., 2021a). We reduce the pruning iterations to 1000 and use a small learning
rate of 0.00005 for parameters inherited from the pre-trained ViT (to preserve its knowledge) and
a large learning rate of 0.05 for the learnable scores. The pruning ratio is 0.9 for all pruned models.

3.2 DO SIMILAR TASKS SHARE MORE NODES/FILTERS/HEADS ON EACH LAYER OF THEIR
PRUNED MODELS?

The representations learned for a task can still be helpful to its similar tasks. This motivates
transfer/multi-task/meta learning methods. But do similar tasks also share more structures in their
pruned sub-networks? We apply two metrics to measure the similarity between classification tasks
in our dataset and study whether/how the similarity relate to their shared nodes/filters/heads in
different layers of their pruned models.

Similarity Metrics We apply two metrics to compute the similarity between tasks and find the
nearest tasks, i.e., the Log Expected Empirical Prediction (LEEP) (Nguyen et al., 2020) and the
Wordnet wup similarity (Pedersen et al., 2004; Wu & Palmer, 1994). LEEP score is widely used in
transfer learning to estimate the knowledge transferability from a source task to a target task. In our
study, for each target task, we can rank the other tasks by their LEEP similarity score from each of
them to the target one. Computing the LEEP score only requires a single forward pass of the pruned
model on the target task’s data. Wordnet wup similarity only requires the semantic labels of classes
in each task and it is based on the depths of the their corresponding synsets in the Wordnet (Miller,
1995) taxonomies. It does not depend on the pruned model so it is more efficient to compute.

Overlap Between Tasks Let Ωi
` and Ωj

` denote the sets of filters/nodes/heads remained in layer-`
after running IFP or AHNP for task i and j (when using the same pre-trained model), we
measure the overlap of the two sets by intersection over union (IoU) ratio (Jaccard, 1901), i.e.,
IoU = |Ω

i
`∩Ωj

` |/|Ωi
`∪Ωj

` |.

(a) CIFAR-100, Supervised model (b) CIFAR-100, Self-supervised model (c) ImageNet, LEEP Similarity (d) ImageNet, Wordnet Similarity

Figure 1: IoU of layers in ResNet between tasks with different similarities.
Fig. 1 (ResNet) and Fig. 2 (ViT) report the IoU of each layer/block for pairs of tasks with different
similarities. For each target task, the tasks in the dataset are partitioned into 5 similarity groups
according to their LEEP scores or Wordnet similarities to the target task. The similarity decreases
from group 1 to group 5.

For all the datasets and architectures, more similar tasks tend to share more filters/nodes/heads
(larger IoU) between their pruned models. Therefore, for a new task, the pruned models of its
nearest tasks preserve many important filters for it and combining them might result in a better
and much smaller sub-network to initialize the new task. Moreover, for deeper layers/blocks in
both ResNet and ViT, the gap between different similarity groups on the IoU increases because the
features are more task-specific in deeper layers. Due to the same reason, for every similarity group,
IoU decreases with depth in the overall trend (though fluctuating locally). Furthermore, Fig. 2 shows
that the IoU gap between similarity groups defined by the LEEP score is larger than that obtained by
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(b) ImageNet, Wordnet Similarity

Figure 2: IoU of blocks in ViT between tasks with different similarities.

Wordnet similarity. This indicates that the semantic similarity between class labels might not be as
accurate as the LEEP score that takes the pruned model and its learned representations into account.

Algorithm 1 META-VOTE PRUNING (MVP)
Input : Target task i and its training set Di, pruning ratio r, J , N , a dataset of pruned models for

different tasks
Output : A pruned model for target task-i
Initialize: Ω` ← ∅, the set of filters in layer-`

1 Sample/find N similar tasks N i to task i according to LEEP score or Wordnet similarity;
2 for `← 1 to L− 1 do
3 Sample (1− r)n` filters with probability p(k) (Eq. (1)) and add them to Ω`;
4 for k ∈ Ω` do
5 Initialize filter-k by averaging its parameters of tasks in {j ∈ N i : k ∈ Ωj

`};
6 end
7 end
8 Fine-tune the pruned model for J iterations on Di.

4 META-VOTE PRUNING (MVP)

Inspired by the empirical study above, we propose a simple yet strong baseline “meta-vote pruning
(MVP)” (Alg. 1) for non-parametric meta-pruning. The procedure of MVP majority voting is
shown in Fig. 3. Given a target task i, MVP draws a sub-network of a pre-trained network by
sampling filters/nodes/heads in each layer using majority voting from its nearest tasks N i and their
pruned models. In particular, for each filter-k ∈ [n`] from layer-` of the pre-trained model, we
apply softmax (with temperature τ ) to the times of each filter being selected by tasks in N i, which
yields a probability distribution over all the filters [n`], i.e., ∀k ∈ [n`],

p(k) =
exp(|{j ∈ N i : k ∈ Ωj

`}|/τ)∑
h∈[n`] exp(|{j ∈ N i : h ∈ Ωj

`}|/τ)
(1)

To initialize layer-` of the sub-network, MVP samples filters from this distribution (without
replacement) according to the targeted pruning ratio r. We further initialize the parameters of each
filter-k by averaging its parameters in the pruned models of the similar tasks which preserve filter-k.
MVP then fine-tunes the initialized sub-network for a few iterations on the training set of the target
task since MVP targets to keep the computational cost low.

5 EXPERIMENTS

In this section, we conduct extensive experiments on CIFAR-100 (Krizhevsky, 2009) and ImageNet
(Ren et al., 2018) over different pre-trained models, which evaluate MVP (Alg. 1) and compare it
with SOTA pruning methods under different settings. We study the effect of different meta-pruning
iterations, neighbour numbers, and similarity metrics for MVP. All the results show that MVP can
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outperform other methods with better performance and higher efficiency. We further validate the
strong generalization of MVP by applying it to unseen tasks from Caltech-256.

5.1 IMPLEMENTATION DETAILS

Task N-1Task 2 Task 3 Task 4

2       0      4       0      0       2      0      1       0 1 1 1                                     

Softmax (Eq.(1))

0.098  0.066  0.147 

Votes for filters in layer-

……
Probabilities of being selected

Target task 

...Task 1 Task N

Similarity score =  13.25       19.68       19.11     18.57    20.78      12.46

Target task selected filters

Find nearest tasks

1 122 3 4 5 6 7 8 9 10 11

1 3 6

Task2 selected filters

3 6 10

Task3 selected filters

1 3 8

...

TaskN-1 selected filters

1 3 11

Task4 selected filters

3 6 12

Figure 3: The example of majority voting in MVP. Each similar
neighbour task of the target task vote for filters which are
reserved by its pruned model. Then, softmax is applied to the
votes of all filters in layer-` and filters with more votes have
higher probability to be selected by the target task.

The experiments of MVP are
mainly based on the tasks
from the dataset introduced
in Sec. 3.1. For each setting
of experiments, we randomly
draw 100 test tasks (i.e., the
target task in Alg. 1) from the
dataset and treat the rest tasks as
training tasks. To evaluate MVP
on CNN, we run MVP on the
pruned models of ResNet-18
and ResNet-50 for CIFAR-100
and ImageNet respectively. For
both these two experiments, we
use the meta-pruning iterations
of 100, batch size of 128, learn-
ing rate of 0.01 and optimizer of
SGD with the cosine-annealing
learning rate schedule. For
experiments of ViT, MVP is
applied to the pruned models
of ViT for ImageNet. The
meta-pruning iterations and
batch size are also set as 100
and 128 respectively. Following the setting of training ViT in (Touvron et al., 2021a), we apply
a small learning rate of 0.0002 and optimizer of AdamW with the cosine-annealing learning rate
schedule. The small number of meta-pruning iterations demonstrates the efficiency of MVP. The
target pruning ratio of MVP for all tasks is 0.9. All the results of accuracy shown in this section are
averaged over the 100 test tasks.

5.2 BASELINE METHODS

We compare MVP with several baselines and SOTA pruning methods. We first implement two
baselines to show the advantages of MVP. (1) Conventional pruning. We apply a larger number
of pruning iterations to extract pruned models for each target task by IFP or AHNP introduced
in Sec. 3.1. This baseline can be regarded to provide the upper bound performance. (2) Random
pruning. To validate whether the initialization of MVP makes sense, for each target task, we
initialize its sub-network by randomly sampling the same number of nodes/filters/heads as MVP
from the pre-trained model. We take this baseline as the one with the lower bound performance.

We also include other SOTA pruning methods as baselines. For MVP on CNN models, we compare
MVP with IHT-based Reptile (Tian et al., 2020), a meta-pruning method that uses Reptile (Nichol
et al., 2018) and iterative pruning to find better weight-initialization for a pruned meta-model. Given
a new task, it fine-tunes the pruned meta-model for a limited number of iterations to obtain the final
pruned model. MEST (Yuan et al., 2021) is the SOTA method in sparse training community, which
trains a model from a sparse sub-network so that less computation is required. DLTH (Bai et al.,
2022) is based on a variant of the Lottery Ticket Hypothesis. It transforms random tickets into
winning tickets. We compare MVP with UVC (Yu et al., 2022b) and PoWER (Goyal et al., 2020)
on ViT pruning. Unlike AHNP, which prunes heads and nodes, UVC also skips the unimportant
layers and blocks in ViT. Unlike parameter pruning, PoWER adopts a dynamic method pruning
the input patches of each block for each input sample. For a fair comparison, except for the upper
bound baseline, the pruning iterations of all other baselines and MVP are set to 100. And the
pruning ratios of all methods are set to 0.9.
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Table 1: Comparison between MVP and baseline methods on CNN. The ’-SSL’ behind each method means
applying this method to pruned models extracted from self-supervised pre-trained models. Bold and Bold gray
mark the best and second best accuracy.

Methods Pruning Iterations ResNet-18 ResNet-50
Acc FLOPs Acc FLOPs

IFP 1000 87.99±0.47 14.88(T) 91.16±0.68 110.06(T)
IFP-SSL 1000 85.22±0.52 14.88(T) 85.84±0.75 110.06(T)
Random Pruning 100 33.12±6.47 0.43(T) 22.42±3.92 3.16(T)
IHT-based Reptile(Tian et al., 2020) 100 75.23±0.87 0.43(T) 73.40±0.75 3.16(T)
MEST(Yuan et al., 2021) 100 76.28±0.82 0.47(T) 66.25±2.33 3.48(T)
DLTH(Bai et al., 2022) 100 74.46±1.24 4.28(T) 69.33±1.56 31.64(T)
MVP(ours) 100 88.98±0.38 0.43(T) 91.80±0.26 3.16(T)
MVP-SSL(ours) 100 86.82±0.13 0.43(T) 85.92±0.26 3.16(T)

5.3 MAIN RESULTS

The results of applying MVP to tasks from CIFAR-100(ImageNet) on ResNet-18(ResNet-50)
supervised and self-supervised pre-trained model, and the baseline methods are reported in Tab. 1.
On both datasets and pre-trained models, MVP outperforms IFP which spends 10× iterations of
MVP. Hence, MVP can produce a higher-quality pruned model when using fewer iterations. The
results demonstrate that MVP can work well on tasks from both supervised and self-supervised
pre-trained models. The random pruning performs much poorer than MVP, which indicates the
importance of majority voting from nearest tasks in selecting filters.

We also compare MVP with SOTA pruning methods for CNN. IHT-based Reptile Tian et al. (2020)
trains a universal sparse sub-network for all target tasks by applying meta-learning on training
tasks. MVP achieves higher accuracy than IHT-based Reptile under the same training iterations,
implying that MVP can find an accurate sub-network for each target task as its initialization and
improve its performance. MEST Yuan et al. (2021) can speed up pruning by starting training from
a well-designed sub-network. As a variant of Lottery Ticket Hypothesis, DLTH Bai et al. (2022)
proposes a method to transform any random ticket into the winning ticket. MVP outperforms
MEST and DLTH by a large margin because MVP is trained on a sub-network selected using meta
knowledge from similar tasks. In contrast, the initial sub-network for MEST or the winning ticket
of DLTH does not leverage any prior knowledge about the target task.

Table 2: Comparison between MVP and baseline methods on ViT. Bold and Bold gray mark the best and
second best accuracy

Methods Pruning Iterations ViT
Acc FLOPs

AHNP 1000 89.48±0.62 81.50(T)
Random Pruning 100 58.71±4.14 3.25(T)
UVC(Yu et al., 2022b) 100 80.30±0.57 26.73(T)
PoWER(Goyal et al., 2020) 100 77.76±1.18 20.86(T)
MVP(ours) 100 89.23±0.49 3.25(T)

Tab. 2 shows the comparison between MVP and baseline methods on ViT. Similar to the results on
pruning CNN, the performance of MVP on ViT is comparable to AHNP that applies much more
pruning iterations. The accuracy of random pruning is still much worse. MVP also outperforms
SOTA pruning methods developed for ViT. Hence, on ViT, MVP can efficiently produce a small yet
high-quality sub-network for each new task by exploiting the nearest tasks’ models. The baselines
are slower and require more iterations than MVP because they need to re-train the model to achieve
a small loss when some parameters or patches are removed. Both UVC (Yu et al., 2022b) and
PoWER (Goyal et al., 2020) cannot recover the accuracy under this strong constraint. In contrast,
the majority voting in MVP directly produces a small sub-network from similar tasks’ models so
only a few iterations suffice to reach a downstream task performance comparable to AHNP with 10x
iterations.
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Figure 4: (a) Comparison between MVP and conventional pruning methods with different pruning
iterations on different architectures. For both ResNet-18 and ViT, MVP converges much faster in
a small number of iterations than conventional pruning methods. (b) Comparison between LEEP
score and Wordnet similarity for MVP with different pruning iterations. From similarity groups 1 to
5, the similarities between tasks decrease. For both similarity metrics, more similar tasks get better
performance. LEEP score has a better ability to measure similarities between tasks than Wordnet
similarity.

5.4 ABLATION STUDY

Effect of Iteration Numbers Given a new target task and a pre-trained model, MVP can build a
well-performed small model in a few iterations, demonstrating its capability in reducing adaptation
cost. In the left plot of Fig. 4, we compare MVP with conventional pruning methods using different
numbers of iterations. On different architectures of pre-trained models, MVP converges to a high
accuracy after nearly 100 iteration. On the contrary, the conventional pruning methods need much
more iterations(> 500) to be comparable to MVP. With only ≤ 50 pruning iterations, MVP can
reach a reasonable accuracy, while conventional pruning methods perform poorly. These imply that
the initialized sub-network obtained by majority voting already contains helpful knowledge from
its similar tasks to speed up the training of the pruned model.

Effect of Similarities between Tasks MVP consistently achieves better performance when applied
to nearest tasks with the highest similarities. In the right plot of Fig. 4, we compare the LEEP
score with the Wordnet similarity and study the effect of applying MVP to neighbour tasks with
different similarities. From similarity group 1 to group 5, the similarities between tasks decrease.
We find that for both the two similarity metrics, the accuracy of MVP improves significantly when
the similarities between tasks increase. When the pruning iterations are small(= 20), where the
initialization of the sub-network is more important, the accuracy of tasks from similarity group 1
leads to similarity group 5 by 15%. Despite the accuracy of similarity group 5 improving when the
pruning iterations increase to 100, there is still a gap of 7%. This result indicates that neighbour
tasks with high similarities share more knowledge with the target task. In this plot, we also find that
tasks in different similarity groups classified by LEEP score show larger differences than Wordnet
similarity, implying that LEEP score can better evaluate similarities between tasks. This result is
consistent with our observation in the empirical study. The performance of Wordnet similarity is
also good and can still be an alternative when the time and computational resources are limited.

Comparison between Pruned Models Extracted by Different Pruning Method In this part, we
apply MVP to pruned models extracted by Taylor Pruning (Molchanov et al., 2019) on ResNet-
18 for CIFAR-100 tasks, to prove that MVP works well on pruned models extracted by various
pruning methods. Taylor Pruning measures the importance of each filter by the effect of removing
this filter on final loss. In the left plot of Figure 5, we show the IoU of each layer for pairs of
tasks with different task similarities, of which the pruned models are extracted by Taylor Pruning.
Consistent with our observation in the empirical study, pruned models with higher similarities share
more filters. In the right plot of Figure 5, we investigate the effect of the number of neighbours
for MVP. When the number = 1, MVP reduces to transfer learning which learns from the pruned
model of a single selected similar task. In the plot, when the number of neighbours increase from
1 to 2, the performance improves sharply. This result implies the effectiveness of meta knowledge
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from different neighbours. When the number of neighbours ≥ 3, for both Activation Pruning and
Taylor Pruning, the accuracy improves little, which indicates that 3 neighbours are enough for MVP
to produce a high-quality initialization.
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Figure 5: (a) IoU of layers in ResNet-18 between tasks whose pruned models are extracted by
IFP (Taylor Pruning) and more similar tasks also share more filters, especially in deeper layers.
(b) Results of applying MVP to pruned models from Activation Pruning and Taylor Pruning over
different number of neighbours. MVP(neighbour number ≥ 2) can improve the performance of
transfer learning(neighbour number = 1) by a large margin when applied to pruned models extracted
by different pruning methods.

5.5 PERFORMANCE ON UNSEEN DATASET

Table 3: Accuracy of applying MVP to unseen tasks
from Caltech-256.

Methods Pruning Iterations ResNet-50
Acc FLOPs

IFP 1000 82.40±1.35 110.06(T)
IFP 60 42.90±3.79 6.73(T)
MVP 60 80.72±0.64 1.90(T)

In this section, to validate the general-
ization of MVP, we apply MVP to pro-
duce pruned models for target tasks from
Caltech-256 (Griffin et al., 2007) using the
pruned models of tasks from ResNet-50
training on ImageNet. The data of Caltech-
256 is never seen by the pre-trained model
and training tasks in the pruned model
dataset. Each target task is defined on 5
classes sampled without replacement from
Caltech-256, and each class has about 100
samples. The performance of MVP on
Caltech-256 are shown in Tab. 3, which is still comparable to the conventional pruning method
using 10x pruning iterations. When the number of pruning iterations of the conventional pruning
method decreases, its performance becomes much worse. The results show that MVP can still pro-
duce a high-quality initialization for the task from Caltech-256 by majority voting of similar tasks,
so that the pruned model can converge quickly with high accuracy. This experiment demonstrates
that MVP can be applied to various datasets and generalizes well.

6 CONCLUSION

In this paper, we study “non-parametric meta-pruning” problem that aims to reduce the memory and
computational costs of single-task pruning, via reusing a pre-trained model and similar tasks’ pruned
models to find an initialization sub-network for a new task. We conduct an empirical study to investi-
gate the relationship between task similarity and the pruned models of two tasks for different datasets
and deep neural networks. The empirical study motivates a simple yet strong baseline for meta-
pruning, called “meta-vote pruning (MVP)” (Alg. 1). By extensive experiments on multiple tasks
drawn from several datasets under different training settings, we demonstrate the advantages of MVP
over other SOTA pruning methods in the region of limited computation and show its potential on re-
ducing carbon footprint of pruning/fine-tuning large networks for billions of edge devices and tasks.
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A APPENDIX

Algorithm 2 ITERATIVE FILTER PRUNING (IFP)
Input : Pre-trained network F (·; θ), Task T and training set DT , Hyperparameters J, h, r, p
Initialize: Ω` ← [n`], the set of filters preserved in layer-`

9 for j ← 1 to J do
10 if j%h = 0 and |Ω`| > (1− r)n` then
11 for `← 1 to L− 1 do
12 Prune p% of filters in Ω` with the smallest importance score over DT ;
13 end
14 end
15 Apply one SGD step on a mini-batch of DT to fine-tune the remained filters {θ`,i : ` ∈ [L −

1], i ∈ Ω`} and θL;
16 end

A.1 ITERATIVE FILTER PRUNING

The detailed procedure of IFP is described in Algorithm 2. Given a pre-trained network F (·; θ) of L
layers (layer-L is fully-connected) with parameter θ = {θ`}`=1:L and a training set DT of a target
task T , let θ` = {θ`,i}i=1:n`

denote all parameters in layer-` composed of θ`,i for every filter-i. IFP
fine-tunes the model for total J iterations. It prunes p% of the filters remained in each layer every
h iterations according to their activation values f`,i(x). It stops to prune layer-` if reaching the
targeted pruning ratio r.

A.2 AUTOMATIC HEAD&NODE PRUNING

The detailed procedure of AHNP is described in Algorithm 3. Given a pre-trained network F (·; θ)
of L layers (layer-L is fully-connected) with parameter θ = {θ`}`=1:L and a training set DT of
a target task T , let θ` = {θ`,i}i=1:n`

denote all parameters in layer-` composed of θ`,i for every
head/node-i. S`,i denote the score for each prunable head/node-i in layer-`. AHNP fine-tunes the
model and scores for total J iterations. It prunes the heads/nodes if their scores are smaller than
the threshold τ . It stops to prune layer-` if reaching the targeted pruning ratio r. Then, AHNP
fine-tunes the pruned model for K iterations.

Algorithm 3 AUTOMATIC HEAD&NODE PRUNING (AHNP)
Input : Pre-trained network F (·; θ), Task T and training set DT , Hyperparameters J,K, r, τ
Initialize: Ω` ← [n`], the set of heads/nodes preserved in layer-`. S`,i ← 1, the score for each

prunable head/node in layer-`.
17 for j ← 1 to J do
18 for `← 1 to L− 1 do
19 for i ∈ Ω` do
20 Prune the head/node if its score S`,i < τ ;
21 end
22 end
23 Stop pruning if reaching the target pruning ratio r.
24 Apply one optimization step on a mini-batch of DT to fine-tune the remained heads/nodes and

scores {θ`,i, S`,i : ` ∈ [L− 1], i ∈ Ω`} and θL;
25 end
26 Remove S, fine-tune the pruned model for K iterations on Di.

A.3 RESULTS OF APPLYING MVP TO SUB-TASKS OF DIFFERENT SIZES

In the experiments of applying MVP to 10-classification and 3-classification sub-tasks, the pruning
ratio is set to 85% and 95% respectively. The results are shown in Tab.4. From the results we can
find that on sub-tasks of different sizes, MVP can always achieve comparable or better performance
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Table 4: Results of MVP on sub-tasks of different sizes for CIFAR-100.

Methods 10-classification 3-classification
Pruning Iterations Acc FLOPs Pruning Iterations Acc FLOPs

IFP 1500 84.29±0.26 25.48(T) 500 88.75±0.71 5.59(T)
MVP(ours) 190 83.53±0.34 1.21(T) 60 89.25±0.23 0.12(T)

than IFP which needs much more computation. MVP is applicable to a variety of tasks of different
sizes.

A.4 COMPARISON OF IOU BETWEEN MVP AND RANDOM PRUNING

In Fig.6, besides MVP, we also show the IoU of pruned models extracted by random pruning. When
the similarity between tasks is large, the IoU of MVP is much larger than random pruning, implying
that these tasks contain lots of relevant information. When the similarity between tasks is small, in
the last few blocks, the IoU of nodes is similar to that of random pruning, which indicates that tasks
of low similarity share little high-level information with the target task.
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Figure 6: Comparison of IoU between MVP and random pruning.

A.5 THE DIFFERENCE OF IOU BETWEEN DIFFERENT SIMILARITY GROUPS

In Fig.7, we draw the difference of IoU between tasks of similarity group 1 and similarity group 5
for ResNet-50. As the layer gets deeper, the difference increases.

In Fig.2 of the paper, the average difference of IoU between similarity group 1 and similarity group
5 over all layers is 0.195 and 0.150 respectively for LEEP and Wordnet similarity, which has a large
gap. In Fig.4 of the paper, the LEEP score performs a little better than Wordnet similarity in MVP
which indicates that models with the larger IoU share more relevant parameters and LEEP has a
good ability to find the nearest neighbours.
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Figure 7: The difference of IoU between tasks of similarity group 1 and similarity group 5 for ResNet-50.
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