
Under review as a conference paper at ICLR 2023

DYNAMICS-INSPIRED NEUROMORPHIC
REPRESENTATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper investigates the dynamics-inspired neuromorphic architecture for neu-
ral representation and learning following Hamilton’s principle. The proposed ap-
proach converts weight-based neural structure to its dynamics-based form that
consists of finite sub-models, whose mutual relations measured by computing
path integrals amongst their dynamic states are equivalent to the typical neural
weights. The feedback signals interpreted as stress forces amongst sub-models
push them to move based on the entropy reduction process derived from the Euler-
Lagrange equations. We first train a dynamics-based neural model from scratch
and observe that this model outperforms its corresponding feedforward neural net-
works on MNIST dataset. Then we convert several pre-trained neural structures
(e.g., DenseNet, ResNet, Transformers, etc.) into dynamics-based forms, followed
by fine-tuning via entropy reduction to obtain the stabilized dynamic states. We
observe consistent improvements of these transformed models on the ImageNet
dataset in terms of computational complexity, the number of trainable units, test-
ing accuracy, and robustness. Moreover, we demonstrate the correlation between
the performance of a neural system and its structural entropy.

1 INTRODUCTION

A biological brain learns by both the structural evolution via rewiring neural pathways (Chklovskii
et al., 2004) and the numerical evolution via strengthening/weakening neural connections (Cho et al.,
2015). Following the rule of biological neurons, the artificial neural networks (ANNs) mimic the
biological brain with neurons organized in a fixed multi-layered structure organized as the fully con-
nected neural network (Hinton et al., 2006), CNN (Krizhevsky et al., 2017) and Transformers (Liu
et al., 2021). In real applications such as image recognition, extensive experiments (Golubeva
et al., 2020) reveal that different neural structures demonstrate varying performance on widely-used
datasets (e.g., ImageNet (Deng et al., 2009)). Despite the great success already achieved, ANNs are
believed to have several intrinsic drawbacks, such as the requirement of a massive number of pa-
rameters, the gradient vanishing and/or explosion (Pascanu et al., 2013), and the inefficiency due to
the redundant computations (RoyChowdhury et al., 2018). Therefore, the fixed structure of ANNs
might be a suboptimal design choice that hinders the ANNs from approximating the brain more
efficiently (Han et al., 2021).

It has been proved that evolving neural topologies via methods such as NeuroEvolution (Stanley &
Miikkulainen, 2002) and neural architecture search (NAS) (Elsken et al., 2019) that alter the layers
and their parameters can significantly outperform their counterparts with fixed structures (Assunção
et al., 2018). Nonetheless, the evolving neural mechanisms established as dynamic neural net-
works (Han et al., 2021) require a large number of expensive fitness evaluations that are inefficient
for real-time learning (Stork et al., 2019) and appear to be unstable compared to the fixed structure
paradigm. As another direction of research endeavors, some approaches attempt to reconsider the
importance of neural weight and structure, for instance, weight agnostic neural network (Gaier &
Ha, 2019), Spiking neural networks Basegmez (2014) and weight mirror (Akrout et al., 2019). How-
ever, these approaches either still rely on explicit neural weight computing or have yet to develop
an efficient learning mechanism, e.g., difficulties of training a spiking neural network via super-
vised learning (Huynh et al., 2022). In summary, the evolving neural mechanism still relies on the
weight-based parameters, which leads to evolutionary inefficiency and huge search space (Ren et al.,

1

Under review as a conference paper at ICLR 2023

2021); thus, the traditional weight-based ANNs can hardly achieve unified structural and numerical
learning, which hinders the development of brain-inspired learning system.

In our study, we consider the structure and numerical learning from neuromorphic dynamics aspect,
inspired by Hebb’s learning rule (Cooper, 2005). The rule states that neural connections between
neurons with similar dynamic behaviors tend to be stronger. Rather than constructing a neural
structure with a learning mechanism following Hebb’s rule, it is better to make the dynamic be-
haviors of a neuron directly on its coordinates. In this setting, neurons with similar behavior have
stronger connections because their coordinates are intrinsically closer. To formalize the whole learn-
ing mechanism, we further reinterpret the universal approximation theorem (UAT) (Scarselli & Tsoi,
1998) into a dynamical alternative, claiming that the neural weight is equivalent to the covariant of
neuronal states while retaining their approximation capacity (Fig. 1b). In our proposed principle,
neurons receive input signals that drive them to adjust their dynamical states and excite them to fire
signals to each other. The signals between neurons decay during transmission (via path integral)
and the output signals are obtained when the neuronal states reach equilibrium. In this case, we do
not need to treat the neural weight between neurons as the trainable units, since these weights can
be expressed as path integrals between trainable neuronal dynamics. Given a specific learning task,
the total path length of all neurons that follow the dynamical UAT is theoretically conservative. It
gradually approaches an upper bound when dealing with an increasingly complicated computational
task (see Section F in the Appendix). Accordingly, we assert that neural weights are mathematically
trivial. This claim is biologically well supported since neurons in the human brain have good spa-
tial effectiveness (Gerstner et al., 2014), and contain sufficient information for the generation and
evolution of neural connections (Camp & Treutlein, 2022).

In this regard, we propose a framework where the essential trainable parameters are the dynamic
states of neurons rather than the neural weights connecting neurons, as shown in Fig. 1b. Our neu-
romorphic architecture DyN applies dynamics-inspired update rules on finite sub-models, i.e., the
highly functional neurons capable of receiving-emitting signals and changing dynamic states. Under
this formulation, the typical neural weights used in most mainstream neural models can be explicitly
avoided by computing the path integral between interacting neuronal dynamics. From a computa-
tional aspect, as we replace the classical weight connection with functional integrals (Weinberg,
1995), it allows one to change coordinates between distinct neurons easily. Therefore, this formula-
tion makes the system independent of a network’s structural design. It provides a more global and
efficient way to implement the interaction between arbitrary neurons of distinct layers, compared to
the traditional layer-by-layer update rules (Pascanu et al., 2013).

Experimentally, we first validate our DyN on MNIST to verify its capacity as a universal approxi-
mator and observe that a DyN layer trained from scratch requires only 7.9% amount of parameters
to outperform its equivalent fully-connected layer in a feedforward neural network by 0.26% on ac-
curacy. We transform the weight-based connection blocks of several mainstream pre-trained neural
models to the DyN blocks, followed by fine-tuning on ImageNet. With our transformation, the
amount of parameters has been reduced by a factor of 5-10, and the transformed models outper-
form the original ones on the large-scale ImageNet benchmark in terms of improved accuracy and
reduced parameter size. These observations reveal the possibility and potentiality of building an
efficient neural computing architecture focusing on neuronal dynamics rather than weight transport.
Meanwhile, we also consider the practical implementation issue, assuming that existing computing
devices contains noisy naturally (Braverman et al., 2015), e.g., the quantization error of digitaliza-
tion, which affects the model precision during the storage and calculation process. Thus, we assume
a model’s parameter space is reconstructed by noise (uniform on an ϵ-ball). We round all parameters
to a certain precision and see how the performance is affected. The results indicate that our model is
robust to different level of noise, which also indicates that the model can be further accelerated via
hashing in the future.

2 PRELIMINARIES

Interpreting ANN as a dynamics system: A typical ANN is composed of neurons that follow a
specific structure, and these neurons are connected by trainable neural weights of specific values.
The neural models equipped with arbitrary mechanisms (e.g., convolution, transformer, etc.) are
equivalent to the typical ones (will be discussed later). For a neural network, the neurons are inter-

2

Under review as a conference paper at ICLR 2023

(a) Weights-based neural networks: weights are trainable variants that are
explicitly isolated from each others; they are treated as the essential parameters
that directly affected by the feedback signals such as predictive error during the
back-propagation process.

(b) Dynamics-inspired
neural network: weights
are path integrals between
neuronal dynamics.

Figure 1: Comparison between neural networks and dynamics-inspired neuromorphic system.
A dynamics-inspired neural system does not require weights. Weights are mathematically equivalent
to the path integral between sub-models’ dynamic states (denoted by q(l,t)i , which are the trainable
units). The inference phase and the learning phase involve both feedforward and feedback signals
that simultaneously push the sub-models continuously move until reaching equilibrium state. A
sub-model’s dynamic states determine the spatial “density” nearby, affecting the signals travelling
among sub-models.

connected by the predefined weighted connection structure. The weights among different neurons
are updated during the training stage, with layer-by-layer updating rules.

From the dynamics perspective, an ANN can be viewed as a dynamic system where the neurons are
dynamically interacting towards an minimal objective function, e.g., the cross-entropy loss. How-
ever, the learning strategy of ANN seems to be local and suboptimal from the dynamics perspective.
First, the fixed connection structure constrains the learning process towards a comprehensive and
universally optimal configuration. Second, the fixed connection structure imposes an unnecessary
computational burden on the training and inference process.

In comparison, our method is straightforward, i.e., by treating each neuron as a basic unit in the
whole neuron system, we replace the trainable neural weights between neurons with the dynamic
relations between neuronal dynamics. In contrary to a typical ANN whose neural weights are train-
able units, we suggest that the neurons are trainable units, and the neural weights are just interme-
diate values measuring the interaction between neurons, and they can be directly accessed from the
dynamic states of neurons. Under this dynamics-inspired framework, the neurons are supposed to
be fully interacted during the training stage, thus comprehensively releasing the model capacity.

Sub-models and subsystems: In our method, a neuron’s dynamic states (aka. neuronal dynamics),
e.g., spatial location, velocity, acceleration, activation/inhibition state, etc., can be described in a
specific phase space in which neurons that are located close to each other or have similar dynamic
patterns are closer together. To distinguish them from node-like neurons in the computational sense,
we use the concept of sub-models. A sub-model is a highly functional neuron capable of receiving
or emitting signals and changing its dynamic states. This paper interprets both the signals and the
dynamic states as time-variant d-dimensional vectors: S(l,t)

i and q(l,t)i , where t refers to the time-
step, i refers to the index of a sub-model, and l refers to the index of the subsystem that contains
the sub-model i. Note that a group of sub-models sharing identical global settings (e.g., a specified
hidden layer in an ANN) is collectively referred to as a subsystem.

Basically, any neural layer interpreted as a tensor-formed structure can be equivalently transformed
to a set of subsystems. For an MLP or a feedforward DNN, the sub-models corresponding to neurons
at the same layer form a subsystem. For a convolution layer (kernel’s window shape k × k, with
Nin input channels and Nout output channels), there are k2 subsystems containing Nin + Nout

sub-models. For a transformer layer, the concatenated matrix R3d×d of Query, Key, and Value
matrices refers to a subsystem containing 3d + d sub-models, in which d represents the dimension

3

Under review as a conference paper at ICLR 2023

of a semantic token. The corresponding learning mechanisms are equivalent to the one applied in
the MLP case. The pseudocode for each neural layer is present in Appendix. H).

Universal Approximation Theorem (UAT): The UAT demonstrates the approximation capabilities
of a feedforward neural network in the space of continuous functions between two Euclidean spaces.
This part focuses on Cybenko’s arbitrary-width one. It states that, for every n ∈ N, m ∈ N, compact
K ⊆ Rn, f : K → Rn, ε > 0, there exists k ∈ N, A ∈ Rk×n, C ∈ Rm×k such that

∥f(x)− C · (σ(A · x+ b))∥ < ε

where σ : R → R is not polynomial. There are various UAT for the arbitrary-depth case and other
widely used architectures like convolutional neural networks. However, they all rely on a setting
that the trainable units are neural weights between neurons. Next, we will present an alternative to
these typical UAT by considering the neuronal states rather than their weights as the trainable units.

Principle of dynamic subsystems: On the basis of Cybenko’s UAT, we propose its DyN form in
which the principal trainable units are the neurons’ dynamic statesQ(t) rather than the weight-based
parameters k ∈ N, A ∈ Rk×n, C ∈ Rm×k in UAT. For every d ∈ N, k ∈ N, l ∈ N, N ∈ N, M ∈ N,
given a system of sub-models with a set of time-variant coordinates Q(t) = {q(t)i ∈ Rd, i ∈ [1, N]}
that receive and emit time-variant signals S(i;t)

in ∈ Rk and S(i;t)
out ∈ Rl, then for arbitrary sequential

mapping F : S
(i;1..M)
in ∈ Rk×M → S

(i;1. . .M)
out ∈ Rl×M , there exists A ∈ Rk×l, B ∈ Rd×l),

C ∈ Rk×l, D ∈ Rd×l, Q(t), and a 2-form φ : Rd × Rd → Rd, such that for any t ∈ [1,M]:

S
(i;t)
out = ATS

(i;t−δ)
in +BT d

dt
q
(t)
i ;

d

dt
q
(t)
i = CTS

(i;t−δ)
in +DT q

(t)
i

S
(i;t)
in =

N∑
j ̸=i

S
(i;t−δ)
out · φ(q(t)i , q

(t−δ)
j)

(1)

where the non-polynomial 2-form φ(x, y) = θ(y− x) · ∥y− x∥ denotes the path integral between x
and y, and is applied on a polar field θ : Rd → Rd that turns the translational variation of y to the
angular variation of x such that the spatial displacements of sub-models have nonlinear effect (e.g.,
logistic activation function) on each other.

The proof is presented in Appendix. A. This principle implies the equivalence between a weight-
based neural structure and a neuron-based one that considers weights as the covariants of the train-
able neuronal states. Consequently, the dynamic relations amongst trainable neurons are sufficient
to construct an arbitrary continuous function between topological spaces based on specific metrics.
This fact reveals that the trainable neural weights in an ANN might be mathematically trivial, i.e.,
they can be interpreted as the covariants of neuronal dynamics.

Formulation of a DyN system: The proposed DyN system contains finite subsystems {P (l), l ∈
[1, L]} interpreted as a directed graph denoted by G . Each subsystem contains finite time-variant
(via time-step t) sub-models with d-dimensional neuronal states {q(l,t)i ∈ Rd, i ∈ [1, N]} capable
of emitting or receiving signals. The emitting signals are denoted by E(l,t)

i ∈ Rd, and the receiving
signals are denoted by R(l,t)

i = Σj ̸=iE
(l,t)
ji , where E(l,t)

ji is the signal emitted from a sub-model

q
(l,t∗)
j at unspecified time-step t∗ and then arrived at q(l,t)i at time-step t. Details of notation t∗ and

path integral are presented in Appendix. B. The generalized dynamics is given as:

∂

∂t
q
(l,t)
i =

N∑
j ̸=i

f (l)(E
(l,t∗)
j , q

(l,t∗)
j , q

(l,t)
i);

∂

∂l
E

(l,t)
i =

N∑
k ̸=i

g(l)(R
(l∗,t)
k , q

(l∗,t)
k , q

(l,t)
i) (2)

where f (l) and g(l) are specific nonlinear mappings, and l∗ represents the index of an adjacent
subsystem P (l∗) of P (l) in graph G . Intuitively, a sub-model’s dynamic states are related to its
received signals and local states; and its initial emitting signal is related to its received signals from
the adjacent subsystems. Since the relations between E(l,t)

i and R(l,t)
i are implicitly included in f (l)

and g(l), thus, both E(l,t)
i and R(l,t)

i are simplified as S(l,t)
i in the paper.

4

Under review as a conference paper at ICLR 2023

3 THE DYN MECHANISM

In this section, we first present how to transform a fully-connected layer of shape Ra×b into a DyN
subsystem that contains a + b sub-models via a dynamics-inspired mechanism, then we present
how to apply this mechanism to any tensor-formed neural layer. Lastly, we present the equivalence
between this dynamics-inspired mechanism and the process of entropy reduction.

Training a linear layer with DyN mechanism: For a feed-forward neural network, the l-th fully-
connected layer with M input neurons and N output neurons is a matrix A ∈ RM×N . Here,
we present a method that converts A into two subsystems of sub-models: M receival sub-models
Q(l) = {q(l)i , i ∈ [1,M]} and N disposal sub-models Q(l+1) = {q(l+1)

j , j ∈ [1, N]}, which are
responsible for receiving and emitting signals to the others. The relative positional vector between
sub-models of distinct subsystems is denoted by vij = q

(l)
i − q

(l+1)
j . We assume that ∂

∂lE
(l,t)
i = 0

in Eq. 2 because we deal with a single linear layer; thus, the dynamic states of multiple subsystems
are synchronous, e.g., q(l+1,t∗)

j = q
(l,t)
j , implying that q(l,t)i − q(l,t

∗)
j = vij and E(l,t∗)

j = Eij . Thus,
f (l) in Eq. 2 can be defined as

f (l)(E
(l,t∗)
j , q

(l,t∗)
j , q

(l,t)
i) =

vij
∥vij∥

· Eij (3)

In an idealized case, the dynamic relation between two sub-models is computed as the path integral
on an unevenly distributed non-Euclidean space, which is not a computation-friendly formulation.
Because a nonlinear relation can be split into a weighted sum of multiple linear relations, we can
efficiently deal with the non-linearity by dividing each sub-model into w copies. Each copy refers to
a sub-subsystem P

(l)
k = {q(l)ik , k ∈ [1, w]}. Note thatw is not fixed; it changes during learning stage:

subsystems with similar behavior are merged into one subsystem, and a subsystem with fluctuating
behavior is split into multiple systems. Therefore, an element D(l;l+1)

ij ∈ R of the distance matrix
D(l;l+1) ∈ RM×N between Q(l) and Q(l+1) is

D
(l;l+1)
ij =

w∑
k=1

h
(l;l+1)
k

∥∥∥q(l)ik − q
(l+1)
jk

∥∥∥ (4)

where h(l;l+1)
k ∈ R represents the shared coefficient between P (l)

k andP (l+1)
k . TheDyN mechanism

can then find proper Q(l) and Q(l+1) such that the weighted distance matrix D(l;l+1) approximate
arbitrary matrix A ∈ RM×N . Suppose that vij;k = q

(l)
i;k − q

(l+1)
j;k , and the stress force between

sub-models under the target A is denoted by fij;k = Aij − ∥q(l)i;k − q
(l+1)
j;k ∥. Since the stress force

can be equivalently interpreted as the signal Eij in Eq. 3, thus, the update rules for Qs and h are:

∂q
(lλ)
λ;k

∂t
= −h(l;l+1)

k

∑
Iλ

vij;k
∥vij;k∥

· fij;k,
∂h

(l;l+1)
k

∂t
+
∑
i,j

∥vij∥ · fij;k = 0 (5)

where (λ, lλ, Iλ) ∈ {(i, l, j), (j, l + 1, i)}. The last line of Eq. 5 is proposed due to the energy
and momentum conservation laws in subsystems since we assume that our system strictly follows
the dynamics theory. The proposed mechanism in Eq. 5 can dynamically approximate arbitrary
linear transformation and is consistent with the back-propagation algorithm (Appendix. D). Since
the hidden states fij;k are accessible from the signals in P (l) and P (l+1), this iterative DyN update
mechanism is capable of approximating arbitrary nonlinear transformation.

Training an MLP with DyN mechanism: Given a multilayer perceptron that contains two tensor-
formed weights W (ih) ∈ RNin×Nh and W (ho) ∈ RNh×Nou . The transmitting signals along with
each layer are defined using a sequence: [S(in), σ(S(in)), S(h), σ(S(h)), S(ou)]. Inspired by Eq. 5,
we can train this MLP via a DyN system containing three subsystems: input neurons Q(in) =

{q(in)i , i ∈ [1, Nin]}, hidden neurons Q(h) = {q(h)k , k ∈ [1, Nh]}, and output neurons Q(ou) =

{q(ou)j , j ∈ [1, Nou]}. The path integral between arbitrary q(x)i and q(y)j is denoted by I(xy)ij . The

resultant signal received by sub-model q(y)j from all the sub-models in subsystem Q(x) is defined by

Φ
(xy)
j = Σiσ(S

(x)
i) · v(xy)ij . Recall that v(xy)ij = q

(x)
i − q(y)j . Our goal is to find proper Qs such that

5

Under review as a conference paper at ICLR 2023

I
(in;h)
ij =W

(ih)
ij and I(h;ou)ij =W

(ho)
ij for each i, j. Using back-propagation to replace fij;k in Eq. 5

with the gradients w.r.t. neural weights as hidden states, we obtain the update rule for Qs as follows

[
∂q

(in,t)
i

∂t
;
∂q

(ou,t)
k

∂t
] ≈ [Φ

(in)
i · Φ(h;in)

i ; Φ
(ou)
k · Φ(h;ou)

k],
∂q

(h)
j

∂t
≈ Φ

(in;h)
j +Φ

(ou;h)
j

(6)

where Φ
(in)
i = σ(S

(in)
i), and Φ

(ou)
k = T

(out)
k − S(ou)

k denotes the stress force between the desired
output T (out)

k and the actual output S(ou)
k . Mathematically, Eq. 6 is equivalent to the process of

implicitly updating neural weights via back-propagation while simultaneously minimizing the stress
force between neuronal states via Eq. 5.

There are some practical tips to save computational complexity and memory. For instance, the
adjacent sub-models that share similar dynamic behaviors can be clustered as a single one, and the
resultant spatial coordinates of sub-models under specified precision (see Eq. 8) can be compressed
as a sparse matrix via methods like vector quantization. Besides, a sub-model’s dynamic states of
Rd with an exact resolution 1/δ can be encoded via a Cantor space M : Rd → N ∈ [1, δ−d], where
δ−d should not exceed the maximal allowable integer allowed in the current computing system, e.g.,
1.8× 10108 for any floating-point number represented as a 64-bit double-precision value.

Interpreting DyN mechanism as entropy-reduction: The dynamics presented in Eq. 6 is also
equivalent to the process of entropy reduction derived from the Hamilton’s principle and the Euler-
Lagrange equation (Appendix. E):

∂q
(L,t)
i

∂t
= ηi · exp

(
−

Σk ̸=i
∂
∂tL

(L,t)
ik

Σk ̸=iL
(L,t)
ik

· t

)
(7)

where q(L,t)
i is the dynamic states of a sub-model, and ηi is a constant related to q(L,t)

i . The La-
grangian L(L,t)

ik = S
(L,t)
ik Φ

(L,t)
i , where S(L,t)

ik is emitted from q
(L,t∗)
i and received by q(L,t)

k , being
influenced by the resultant potential field Φ

(L,t)
i around q(L,t)

i . The signals S(L,t)
ik refers to the feed-

back control correlated with an objective function, and the trainable potential field Φ
(L,t)
i is related

to specified sub-models; we simplify Φ
(L,t)
i as a constant field by adding shared coefficients applied

in Eq. 4. Intuitively, a sub-model tends to move toward the region with a lower structural entropy
of energy distribution as the traveling signals (i.e., signals just emitted but not yet received) can be
regarded as packets of energy (visualized in Eq. 5 of Appendix. F). This result presents a practi-
cal approach for physical implementation that a well-formed DyN system can be updated in a global
dynamics-based way. Furthermore, MLP blocks, convolutional blocks (Fig. 2b), and attention layers
can be transformed to the DyN forms; the details are discussed in section 2 and Appendix. H.

4 EXPERIMENTS

4.1 EVALUATION METRICS AND DATASETS

Datasets and compared approaches. We evaluate our approaches on two visual classification
datasets, MNIST (Deng, 2012) and ImageNet (Deng et al., 2009)). We first conduct experiments
on MNIST to compare a simple feedforward neural network trained via back-propagation algorithm
with its DyN -formed alternative, which converts each Linear layer of shape Ra×b into a subsystem
containing a + b sub-models. Then we further validate our approaches on ImageNet, by convert-
ing mainstream pre-trained neural models from torch.hub, including Inception-v3 (Szegedy et al.,
2016), DenseNet-161 (Huang et al., 2017), ResNet-152 (He et al., 2016), ViTs (Dosovitskiy et al.,
2020), Swin-Transformer (Liu et al., 2021), to their DyN forms. Note that on both datasets, for fair
comparison, the model configuration of the original ANNs and their DyN counterparts (e.g., the
number of hidden units, validation criterion, etc.) are set to be the same.

Evaluation metrics. On both datasets, we report the top-1 accuracy (the training procedure for
each configuration is repeated 20 times to calculate its variance), the number of parameters, and
the computational complexity that measures how many operations are implemented for each model
during the inference phase. In addition to the typical evaluation (e.g., ideal column in Table. 2), we
also conduct experiments under varying resolution 1/δ(δ > 0) that measures a model’s robustness

6

Under review as a conference paper at ICLR 2023

(a) A DyN system in physical view (b) The corresponding CNN in DyN form

Figure 2: a. A DyN system consists of layered subsystems, whose hierarchical structures are
controlled by specifying the relations amongst them (the right side). The external signals hit the
uppermost subsystem P (1) and interact with the sub-models inside, the processed signals are trans-
mitted based on the specified relations between subsystems. b. The subsystem P (1) receives an
input image I with Nsize pixels as Nin channels signals, and the three subsystems P (2), P (3) and
P (4) responsible for processing signals in distinct kernel-units as convolutional layers K1, K2 and
K3. The processed signals are passed through the fully-connected layers FC1, FC2 and FC3 then
concatenated as an output vector O presented in the subsystem P (5).

during inference stage. This hyper-parameter truncates the trainable parameters W ∈ Rm×n into its
physical form Wpy ∈ Rm×n via:

Wpy = ∥pδ(W)∥ = δ · ⌊ ∥W −Wmin∥
δ · ∥Wmax −Wmin∥

⌋ (8)

For the ideal case where δ = 0, Wpy = ∥W−Wmin∥
∥Wmax−Wmin∥ . Note that the trainable units in a weight-

based neural model are the weights {wi, i ∈ [0,mn]}, while the ones in a DyN model are the
dynamic states Q = [qji ∈ Rd, i ∈ [1,m + n], j ∈ [1, d]] of sub-models. This fact implies that
pδ(wi) = pδ/

√
d(q

j
i). The computational complexities of a weight-based model and its DyN

alternative are measured using Multiply-Accumulate units (MACs), measured by the number of
FLOPs (Patil & Kulkarni, 2018). As for aDyN model, we also compute its computational complex-
ity in physical way (denoted in brackets next to the MACs), which assumes that the computational
process of path integral amongst sub-models is reached instantaneously without any computational
complexity (a phenomenon that exists in the spatiotemporal liquid crystal structures (Zhang et al.,
2021)). The dimension d of dynamic states is often set to 9 (each of position, momentum, and
acceleration accounts for 3 states) unless otherwise noted, since we are concerning with the three-
dimensional cases that are consistent with the hardware implementation in physical world. The
models are trained on a cloud server with eight NVIDIA RTX3090 24GB GPUs.

4.2 VISUAL CLASSIFICATION

The main results on two datasets are presented in Tab. 1 and Tab. 2. Compared against feedfor-
ward neural networks and a LeNet-5, our randomly initialized DyN models from scratch trained
via Eq. 6 achieve consistent improvements in accuracy and computational complexity with fewer
parameters. Then we use several pre-trained models as backbone networks by converting their
MLP-layers, convolution-layers, and attention-layers into DyN forms. The final dynamic states of
the sub-models are determined via fine-tuning the transformed neural models based on ImageNet
and the original weights; this process continues until the stress force amongst sub-models is lower
than a certain threshold (e.g., 10−3 of the normalized distances between sub-models). Specifically,
we transform each RM×N module to a finite amount H of subsystems consisting of M receival
sub-models and N disposal sub-models. The upper-bound and selection of H-value is discussed in
Appendix. A. We observe that each neural model transformed via DyN mechanism achieves signif-
icant improvement in accuracy especially with a lower resolution. Furthermore, a neural model with

7

Under review as a conference paper at ICLR 2023

more neural blocks transformed via DyN mechanism performs better than the one with less DyN
blocks (e.g., swinDyN in Tab. 2 and Fig. 3a). These results show thatDyN mechanism can preserve
more information captured from the ground-truth in an efficient way with a denser structure.

Table 1: Evaluating Neural Models and Their DyN Forms on MNIST

Model Configs No.Params C.Ratio MFLOPs Top1-TestAcc
(50-epochs)Structure Layer Type

2-layer MLP FC Linear 0.52M 1 0.52 97.180±0.010
DyN subsys 0.041M 12.68 0.32 (0.07) 97.345±0.005

3-layer MLP FC Linear 2.29M 1 2.30 97.898±0.010
DyN subsys 0.2M 11.45 0.61 (0.14) 98.077±0.011

4-layer MLP FC Linear 4.55M 1 4.56 97.955±0.032
DyN subsys 0.36M 12.65 1.12 (0.18) 98.215±0.013

LeNet-5 FC Linear, Conv 61.7K 1 0.60 98.681±0.003
DyN subsys 8.3K 7.43 0.29 (0.18) 98.821±0.001

(a) (b)

Figure 3: a) As the number of parameters transformed and instantiated via physical view increases,
the DyN models outperform their original forms more significantly as the improved accuracy in-
creases. The presented models are distinguished in terms of the inverse of resolution δ and the
stress-threshold that determines when DyN process ends. b) As δ increases, though the original
model performance greatly degrades, the DyN alternatives remain almost unchanged. The interac-
tive one (Eq. 50) outperforms the isolated one (Eq. 5). This phenomenon is attributed to the global
dynamics of sub-models that are moving and interacting with others in a fully stabilized manner.

4.3 CORRELATION WITH STRUCTURAL ENTROPY

We examine our systems under different settings of the resolution parameter δ (e.g., the coordinates
of sub-models) via Eq. 8. Though larger δ leads to lower model accuracy, we observe an existence of
peak that corresponds to the optimal setting of δ such that a model achieves its best testing accuracy
(Fig. 6b in Appendix. F). We then postulate that the peak corresponds to some regularization effect
that prevents over-fitting. This regularization term is also related to the cross entropy loss and the
system’s structural configuration. To validate our postulate, we first evaluate the new coordinates qi
of sub-models due to varying δ by qi(δ) = δ×⌊qi/δ⌋, then we count the spatial distribution of each
newly resulted sub-model in terms of coordinates Pr(vx, δ) = |{qi|qi(δ) = vx}|/|{qi}|, and next
we obtain the function of structural entropy ψ(δ):

ψ(δ) = −
∑
vx

Pr(vx, δ) · logPr(vx, δ) (9)

The structural entropy ψ(δ) defined in Eq. 9 measures the structural disorder correlated to the energy
distribution of the system. To link the structural entropy with its physical meaning, we evaluate the

8

Under review as a conference paper at ICLR 2023

Table 2: Evaluating Weight-based Neural Models and Their DyN Forms on ImageNet

Model Configs No.Params C.Ratio GFLOPs Top1-TestAcc

Structure Layer Type Ideal δ=1e-3 δ=5e-3

Inception-V3 FC, Conv 27.20M 1 2.85 67.278 65.400 58.176
DyN subsys 3.66M 7.64 1.43 (2.2e-3) 67.382 67.092 66.764

DenseNet-161 FC, Conv 28.68M 1 7.82 75.254 71.336 48.594
DyN subsys 6.05M 4.78 3.28 (0.089) 75.314 75.246 75.294

ResNet-152 FC, Conv 60.40M 1 11.58 77.014 75.776 71.692
DyN subsys 6.51M 9.29 5.25 (3.5e-3) 77.203 76.604 76.544

ViT-S-224 FC, Conv, Attn 36.38M 1 1.11 80.108 80.038 79.970
DyN subsys 3.71M 9.83 0.45 (0.75e-3) 80.150 80.122 80.116

SwinT-S-224
FC, Conv, Attn 49.94M 1 8.52 82.634 82.07 80.452

DyN subsys 10.38M 4.81 3.35 (0.024) 82.646 82.604 82.594
6.65M 7.51 2.37 (0.018) 82.688 82.66 82.604

Laplacian of curvature κ of ψ(δ) (denoted by LapCurSE) which accounts for the energy of surface
diffusion flow (Sethian & Chopp, 1999)

LapCurSE(δ) =

∥∥∥∥ ∂2∂δ2κ(ψ(δ))
∥∥∥∥ (10)

and we observe that an optimal structural setting always refers to a lower LapCurSE, whose ex-
pected value is negatively correlated with model performance(Fig. 4a). This observation implies
that an optimal performance requires a stable structure instantiated as a minimal surface of energy
distribution: δoptimal = argminδ LapCurSE(δ), which ensures that all sub-models find the dy-
namic states that make them the most stable as a whole with the lowest energy. We further evaluate
the LapCurSEs of the DyN models of several mainstream models on ImageNet, and observe that
an optimal performance always refers to a lower LapCurSE (Fig. 4b).

(a) 2-layered DyN models on MNIST (b) Deep DyN models on ImageNet

Figure 4: Scattered points and their expectations that represent model performances for simple 2-
layer DyN model with distinct resolution on MNIST (a), and for several mainstream neural models
transformed via DyN approach on ImageNet (b).

5 CONCLUSION

We propose a dynamics-inspired neuromorphic architecture that interprets neural representation and
learning from dynamics theory. It emphasizes the state representation of the neurons rather than the
neural weights. The experimental results show that our architecture conducts full exploitation of
each neuronal parameter, demonstrating significant advantages over other neural models in visual
classification in terms of testing accuracy, size of trainable units, and computational complexity.
Future work will be devoted to the application of Dyn on multimodal data, new tasks (e.g., retrieval
and QA) and a more elegant physical interpretation from the dynamics theory.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Henry DI Abarbanel and A Rouhi. Phase space density representation of inviscid fluid dynamics.
The Physics of fluids, 30(10):2952–2964, 1987.

Mohamed Akrout, Collin Wilson, Peter Humphreys, Timothy Lillicrap, and Douglas B Tweed. Deep
learning without weight transport. Advances in neural information processing systems, 32, 2019.

Filipe Assunção, Nuno Lourenço, Penousal Machado, and Bernardete Ribeiro. Evolving the topol-
ogy of large scale deep neural networks. In European Conference on Genetic Programming, pp.
19–34. Springer, 2018.

Erdem Basegmez. The next generation neural networks: Deep learning and spiking neural networks.
In Advanced Seminar in Technical University of Munich, pp. 1–40. Citeseer, 2014.

Mark Braverman, Jonathan Schneider, and Cristóbal Rojas. Space-bounded church-turing thesis and
computational tractability of closed systems. Physical review letters, 115(9):098701, 2015.

J Gray Camp and Barbara Treutlein. Human brain organoids influence rat behaviour, 2022.

Dmitri B Chklovskii, BW Mel, and K Svoboda. Cortical rewiring and information storage. Nature,
431(7010):782–788, 2004.

Richard W Cho, Lauren K Buhl, Dina Volfson, Adrienne Tran, Feng Li, Yulia Akbergenova, and
J Troy Littleton. Phosphorylation of complexin by pka regulates activity-dependent spontaneous
neurotransmitter release and structural synaptic plasticity. Neuron, 88(4):749–761, 2015.

Steven J Cooper. Donald o. hebb’s synapse and learning rule: a history and commentary. Neuro-
science & Biobehavioral Reviews, 28(8):851–874, 2005.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
web]. IEEE signal processing magazine, 29(6):141–142, 2012.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. The
Journal of Machine Learning Research, 20(1):1997–2017, 2019.

Adam Gaier and David Ha. Weight agnostic neural networks. Advances in neural information
processing systems, 32, 2019.

Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal dynamics: From
single neurons to networks and models of cognition. Cambridge University Press, 2014.

Anna Golubeva, Behnam Neyshabur, and Guy Gur-Ari. Are wider nets better given the same number
of parameters? arXiv preprint arXiv:2010.14495, 2020.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neural
networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18:1527–1554, 2006.

10

Under review as a conference paper at ICLR 2023

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Phu Khanh Huynh, M Lakshmi Varshika, Ankita Paul, Murat Isik, Adarsha Balaji, and Anup Das.
Implementing spiking neural networks on neuromorphic architectures: A review. arXiv preprint
arXiv:2202.08897, 2022.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convo-
lutional neural networks. Commun. ACM, 60(6):84–90, may 2017. ISSN 0001-0782.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10012–10022, 2021.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pp. 1310–1318. PMLR, 2013.

Priyanka A Patil and Charudatta Kulkarni. A survey on multiply accumulate unit. In 2018 Fourth
International Conference on Computing Communication Control and Automation (ICCUBEA),
pp. 1–5. IEEE, 2018.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin
Wang. A comprehensive survey of neural architecture search: Challenges and solutions. ACM
Computing Surveys (CSUR), 54(4):1–34, 2021.

Aruni RoyChowdhury, Prakhar Sharma, and Erik G. Learned-Miller. Reducing duplicate filters in
deep neural networks. 2018.

Franco Scarselli and Ah Chung Tsoi. Universal approximation using feedforward neural networks:
A survey of some existing methods, and some new results. Neural networks, 11(1):15–37, 1998.

James A Sethian and David Chopp. Motion by intrinsic laplacian of curvature. Interfaces and Free
boundaries, 1(1):107–123, 1999.

Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topolo-
gies. Evolutionary computation, 10(2):99–127, 2002.

Jörg Stork, Martin Zaefferer, and Thomas Bartz-Beielstein. Improving neuroevolution efficiency by
surrogate model-based optimization with phenotypic distance kernels. In International Confer-
ence on the Applications of Evolutionary Computation (Part of EvoStar), pp. 504–519. Springer,
2019.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826, 2016.

Steven Weinberg. The quantum theory of fields, volume 2. Cambridge university press, 1995.

Rui Zhang, Steven A Redford, Paul V Ruijgrok, Nitin Kumar, Ali Mozaffari, Sasha Zemsky,
Aaron R Dinner, Vincenzo Vitelli, Zev Bryant, Margaret L Gardel, et al. Spatiotemporal con-
trol of liquid crystal structure and dynamics through activity patterning. Nature materials, 20(6):
875–882, 2021.

11

Under review as a conference paper at ICLR 2023

APPENDIX

A SOME PRINCIPLES AND PROOFS

Theorem A.1. Principle of dynamic subsystems (the existence of global neuronal rules for the
dynamic system as a universal approximator): For every d ∈ N, k ∈ N, l ∈ N, N ∈ N, M ∈ N,
given a system of sub-models with a set of time-variant coordinates Q(t) = {q(t)i ∈ Rd|i ∈ [1, N]}
that receive and emit time-variant signals S(i;t)

in ∈ Rk and S(i;t)
out ∈ Rl, then for arbitrary sequential

mapping F : S(i;1..M)
in ∈ R(k×M) → S

(i;1. . .M)
out ∈ R(l×M), there exists A ∈ R(k×l), B ∈ R(d×l),

C ∈ R(k×l), D ∈ R(d×l), Q(t), and a 2-form φ : Rd × Rd → Rd, such that for any t ∈ [1,M]:

S
(i;t)
out = ATS

(i;t−δ)
in +BT d

dt
q
(t)
i

d

dt
q
(t)
i = CTS

(i;t−δ)
in +DT q

(t)
i

S
(i;t)
in =

N∑
j ̸=i

S
(i;t−δ)
out · φ(q(t)i , q

(t−δ)
j)

(11)

where the 2-form φ(x, y) = θ(y − x) · ∥y − x∥ denotes the path integral between x and y, and
is applied on a polar field θ : Rd → Rd that turns the translational variation of y to the angular
variation of x such that the spatial displacement of other sub-models has nonlinear effect (e.g.,
logistic activation function) on the given sub-model as an observer.

Proof. According to Lemma A.2 and Lemma A.3, an arbitrary linear transformation requires finite
distinct subsystems, and an arbitrary nonlinear transformation can be achieved by a universal rule of
dynamics H obeyed by each sub-model q(t)i :

S
(t+δ)
ii , q

(t+δ)
i = H(Σ

(t)
i , q

(t)
i) (12)

where S(t)
ii is the signal emitted from the sub-model q(t)i itself, and Σ

(t)
i is the resultant signals

received by q(t)i from all the other sub-models; note that S(t)
ij refers to the signal emitted from q

(t)
i

and received by q(t)j . The Eq. 12 can be regarded as the static form of Theorem A.1. The dynamic
form will be proved by induction: given a set of signals S(t) received by the DyN system and an
arbitrary 2-form F : Q(t)×S(t) → Q(t+1)×S(t+1), there exists a set of static states of sub-models
Q(t) such that

F (S(t+1), Q(t+1)) = H(Σ(t), Qt) (13)

Eq. 13 is obviously consistent with Eq. 12 based on Lemma A.3. This fact implies that the sub-
models with specific dynamic states can approximate arbitrary instant nonlinear transformation, and
such specified dynamic states can be obtained by a specific predecessor states under the constraint
that the received signals are provided. This recursive step finally constructs a complete dynamic
form of Lemma A.3.

Lemma A.2. The weighted sum of H distinct distance matrices is sufficient to approximate any
matrix T ∈ Rm×n in any degree of precision. Specifically, the upper-bound of an optimized H is
given by

Hoptimized ≤ mn

d · (m+ n)
+ 1 (14)

where d refers to the dimension of units (sub-models) whose relative distances are computed to
generate those distance matrices.

Proof. First we count the number of possibilities an arbitrary matrix might be. The elements of
the matrix T range from 0 to 1 with a precision scale ϵ that divides the domain into ϵ partitions.
Then the total number of possibilities is Φ(T) = ϵmn. Likewise, the permutations of m sub-models

12

Under review as a conference paper at ICLR 2023

Qrow ∈ Rm×d and n sub-models Qcol ∈ Rn×d are Φ(Qrow) = ϵmd and Φ(Qcol) = ϵnd, implying
that the number of combinations of Qrow and Qcol is Φ([Qrow;Qcol]) = Φ(Q) = ϵd(m+n). Then
we need to eliminate the duplicate states of Q, which can be categorized into three cases, i.e., self-
permutation (SP), transitional invariance (TI) and rotational invariance (RI).

ΦSP (Q) = (m! · n!)d

ΦTI(Q) = ϵ ·
d∏

k=1

(1− Lrow
k Lcol

k)

ΦRI = S(d)(max(Lrow
k Lcol

k) · ϵ)

(15)

where Lrow
k = max(Qrow[:, k]) − min(Qrow[:, k]) measures the maximum range of Qrow in the

k-th dimension, and S(d) is the spherical area of d-sphere. Therefore, each pair of Qrow and Qcol

covers Ψ(Q) non-duplicate states, which are given by

Ψ(Q) =
Φ(Q)

ΦSP (Q) · ΦTI(Q) · ΦRI(Q)

Then the total number of non-duplicate states achieved by H subsystems is

Φ([Q(1);Q(2)...Q(H)]) = ΦH(Q) =
(Ψ(Q))

H

(H!)
d

Our goal is to find a proper H such that ΦH(Q) = Φ(T), yielding

lim
ϵ→∞

H =
mn

d · (m+ n)
≤ mn

d · (m+ n)
+ 1 (16)

which is consistent with Eq. 14.

Lemma A.3. Existence of universal rule for static subsystems: given a DyN system composed
of sub-models whose rules of dynamics determine their successive states interacted with emitted or
received signals, for any continuous function that maps the receival signals to the emitted signals
of all the sub-models, there exists a universal rule of dynamics followed by every sub-model, en-
suring that the relation between the receival signals and the emitted signals of all the sub-models
approximates the provided continuous function. The universal rule of dynamics is mathematically
equivalent to a set of linear transformations.

Proof. Suppose there exists a fake sub-model q(t)∗ that complements the signals received by each
real sub-model, and an expected universal rule H if it exists. Each real sub-model q(t)i is equipped
with an exclusive rule of dynamics ψi that might be different from H , we have

S
(t+δ)
ii , q

(t+δ)
i = ψi(Σ

(t)
i , q

(t)
i) = H(Σ

(t)
i + S

(t)
∗i , q

(t)
i) (17)

Taking the total derivatives over time on the middle and right sides of Eq. 17

∂ψi

∂q
(t)
i

· ∂q
(t)
i

∂t
+

∂ψi

∂Σ
(t)
i

· ∂Σ
(t)
i

∂t
=

∂H

∂q
(t)
i

· ∂q
(t)
i

∂t
+

∂H

∂Σ
(t)
i

· ∂Σ
(t)
i

∂t
+

∂H

∂S
(t)
∗i

· ∂S
(t)
∗i
∂t

(18)

The signal emitted from the fake sub-model is expected to be a zero constant, therefore,(
∂ψi

∂q
(t)
i

− ∂H

∂q
(t)
i

)
· ∂q

(t)
i

∂t
=
(∂H

∂Σ
(t)
i

− ∂Σ
(t)
i

∂t

)
· ∂Σ

(t)
i

∂t
(19)

since q(t)i and Σ
(t)
i cannot be constant variables, the Eq. 19 is satisfied for all cases if and only if

∂ψi

∂q
(t)
i

− ∂H

∂q
(t)
i

=
∂H

∂Σ
(t)
i

− ∂Σ
(t)
i

∂t
= 0 (20)

which implies that

H(Σ
(t)
i , q

(t)
i) =Wq · q(t)i +WΣ · Σ(t)

i + b = ψi(Σ
(t)
i , q

(t)
i) + b

′
(21)

Hence, if each sub-model’s rule of dynamics refers to its exclusive linear transformation ψi, then
there exists a universal linear transformation substituting for each specified ψi such that the expected
nonlinear transformation of the DyN system remains unchanged based on Lemma A.4.

13

Under review as a conference paper at ICLR 2023

Lemma A.4. If each sub-model’s rule of dynamics is a linear transformation, then the configured
system can approximate any continuous function to the expected precision.

Proof. According to Lemma A.2, the configured system can approximate any normalized matrix,
which corresponds to the neural weights according to the universal approximation theorem, by ma-
nipulating the states of sub-models. The combination of each sub-model’s linear transformation
and the overall weights between each pair of sub-models is equivalent to a feedforward neural net-
work with arbitrary width as illustrated in the universal approximation theorem (Scarselli & Tsoi,
1998).

B PATH INTEGRAL FORMULATION FOR NEUROMORPHIC SYSTEM

Recall that the emitting signals are denoted by E(l,t)
i ∈ Rd, and the receiving signals are denoted

by R(l,t)
i = Σj ̸=iE

(l,t)
ji , where E(l,t)

ji represents the signal emitted from a sub-model q(l,t
∗)

j and then

arrived at q(l,t)i at time-step t. Note that the emitting time t∗ is irrelevant since we only care about
the arriving states; there might be a case that a single signal currently received by a sub-model is the
result of the signals emitted by another sub-model at different time steps. Each subsystem refers to
a time-variant global field H(l,t) : Rd → Rd that assigns each possible dynamic state with a scalar-
valued vector. Then an easy-to-compute formulation of path integral between E(l,t∗)

i and E(l,t)
ij can

be evaluated by:

E
(l,t)
ij =

∑
t∗∈U

(l,t)
ij

∫ t

t∗
H(l,δ)

(
r
(l,δ)
ij

)
· E(l,t∗)

i dδ (22)

where U (l,T)
ij is the collection of all the admissible time-steps t∗ such that the signal emitted from

q
(l,t∗)
i will eventually arrive at q(l,t)j , and r

(l,t)
ij represents the intermediate dynamic state on the

specified path from q
(l,t∗)
i to q(l,t)j .

C PINCIPLE OF HIERARCHICAL STRUCTURES

Let’s define S(k,t)
ij as the signals emitted from q

(l,t∗)
i at an unspecified time-step t∗ and received

by q
(k,t)
j at a specified time-step t. Then the directed edge from P (l) to P (k) means that there

exists a linear mapping W (lk) : S
(l,t)
i × q(l,t)i × q(k,t+1)

j → S
(k,t+1)
ij and a linear mapping V (k) :

q
(k,t)
j × S(k,t)

ij → q
(k,t+1)
j such that

S
(k,t+1)
j =

∑
i ̸=j

W (lk)(S
(l,t)
i , q

(l,t)
i , V (k)(q

(k,t)
j ,W (lk)(S

(l,t−1)
i , q

(l,t−1)
i , q

(k,t)
j)))

According to Lie algebra homomorphism, there exists a nonlinear mapping U (lk) such that

∂

∂t
S
(k,t+1)
j ,

∂

∂t
q
(k,t)
j =

∑
i ̸=j

U (lk)(
∂

∂t
S
(l,t−1)
i ,

∂

∂t
q
(l,t)
i) (23)

The Eq. 23 is called the principle of hierarchical structures (PoHS). Suppose there is a tree-based
structure that describe the recursive relations between the root system and its subsystems, sub-
subsystems, ... etc.. Then PoHS states that this tree-based structure is equivalent to a linearly
hierarchical structure containing a set of subsystems. Furthermore, Eq. 23 reveals that a well-formed
neuromorphic system does not require a specified set of discrete trainable units that are isolated from
each other.

D CONSISTENCY WITH BACK-PROPAGATION

First let’s deduce Eq. 5 using approaches applied in back-propagation. This equation is initially
derived from a dynamics-inspired view in the main paper. Specifically, we will deduce Eq. 5 by

14

Under review as a conference paper at ICLR 2023

computing the gradient of the loss function with respect to each trainable parameter by the chain
rule. The loss function between two arbitrary sub-models q(l)i;k and q(l+1)

j;k of distinct subsystems is
defined as

Eij = (Aij −D(l;l+1)
ij)2

Ei =

M∑
j=1

Eij

(24)

whereAij ∈ RM×N andDij ∈ RM×N are, respectively, the target matrix and the weighted distance
between sub-models (defined in Eq. 4). Then calculating the partial derivative of the loss function
Eij with respect to a sub-model q(l)i;k.

∂Eij

∂q
(l)
i;k

= 2fij;k · h(l;l+1)
k · vij;k

∥vij;k∥ (25)

where vij;k = q
(l)
i;k − q

(l+1)
j;k , and the stress force between sub-models under a target A is denoted by

fij;k = Aij − ∥q(l)i;k − q
(l+1)
j;k ∥. Since the collective loss function for a sub-model q(l)i;k is Ei, thus,

∂q
(l)
i;k

∂t
= −

M∑
j=1

∂Eij

∂q
(l)
i;k

= −h(l;l+1)
k ·

M∑
j=1

vij;k
∥vij;k∥

· fij;k (26)

which is consistent with Eq. 5. Similarly, the update rules for q(l+1)
j;k and h(l;l+1)

k are accessible via
computing the gradient of the relevant loss function. These facts guarantee that these dynamics-
inspired update rules are consistent with the rules derived via computing gradient descent with re-
spect to a specified loss function like back-propagation does. Therefore, we can extend Eq. 5 to a
detailed formulation by applying back-propagation on the stress force fij;k, which is replaced with
the gradient of loss function with respect to the sub-models rather than the neural weights.

Given a multilayer perceptron that contains two tensor-formed weights W (ih) ∈ RNin×Nh and
W (ho) ∈ RNh×Nou . The transmitting signals along with each layer are defined using a sequence:
[S(in), σ(S(in)), S(h), σ(S(h)), S(ou)]. First, we define a computation-friendly formulation of inte-
gral path between two arbitrary sub-models q(x)i and q(y)j as follows

I
(xy)
ij =

1

2
(q

(x)
i − q(y)j)

2
=

1

2
v
(xy)
ij

2
=

1

2

H∑
k

λk · v(xy)ij;k

2
(27)

where H is the number of shared coefficients required for converting non-linearity into proper set
of linearity. The number of H is discussed in Lemma A.2. Recall that the signals along with each
layer are computed as follows

S
(h)
j =

∑
i

σ(S
(in)
i) · I(in;h)ij

S
(ou)
k =

∑
j

σ(S
(h)
j) · I(h;ou)jk

(28)

The loss function is defined by

L =
∑
k

1

2
(S

(ou)
k − T (ou)

k)
2
=
∑
k

1

2
ε2k (29)

The resultant signals received by different sub-models are defined by

Φ
(xy)
j =

∑
i

E
(xy)
ij =

∑
i

σ(S
(x)
i) · v(xy)ij

Φ
(in)
i = σ(S

(in)
i)

Φ
(ou)
k = T

(out)
k − S(ou)

k

(30)

15

Under review as a conference paper at ICLR 2023

Instead of computing the gradient of loss function with respect to the weights (path integral Iij), we
compute the gradients with respect to the dynamic states of sub-models, e.g., q(ou)k

∂q
(ou)
k

∂t
=

∂L

∂q
(ou)
k

=
∑
j

∂L

∂I
(h;ou)
jk

∂I
(h;ou)
jk

∂q
(ou)
k

= εk ·
∑
j

σ(S
(h)
j) · v(h;ou)jk

= Φ
(ou)
k · Φ(h;ou)

k

(31)

Similarly, we compute the gradient of loss function with respect to q(in)i ,

∂q
(in)
i

∂t
=

∂L

∂q
(in)
i

=
∑
j

∂L

∂I
(in;h)
ij

∂I
(in;h)
ij

∂q
(in)
i

=
∑
j

∂L

∂S
(ou)
k

∂S
(ou)
k

∂S
(h)
j

∂S
(h)
j

∂I
(in;h)
ij

∂I
(in;h)
ij

∂q
(in)
i

=
∑
j

∑
k

εk · I(h;ou)jk ·
∂σ(S

(h)
j)

∂S
(h)
j

· σ(S(in)
i) · v(in;h)ij

= σ(S
(in)
i) ·

∑
j

v
(in;h)
ij ·

∂σ(S
(h)
j)

∂S
(h)
j

·
∑
k

εk · I(h;ou)jk

= Φ
(in)
i ·

∑
j

v
(h;in)
ji · σ(S(h)

j) · (1− σ(S(h)
j)) · Φ(ou;h)

j

(32)

In the equilibrium state (meaning that the feedback signal Φ(ou;h)
j is extremely weak and stable),

term (1 − σ(S(h)
j)) · Φ(ou;h)

j is degenerated to a specific constant independent of index j, so that
Eq. 32 can be approximated as

∂q
(in)
i

∂t
∝ Φ

(in)
i ·

∑
j

v
(h;in)
ji · σ(S(h)

j)

= Φ
(in)
i · Φ(h;in)

i

(33)

this Eq. 33 is obviously consistent with Eq. 6. Now we have the dynamical forms of update rules
for sub-models toward a specific loss function. In the other word, we can approximate arbitrary
nonlinear function via training the sub-models rather than the neural weights connecting them.

E GENERALIZED RULES OF DYNAMICS IN DyN SYSTEMS

The neuromorphic dynamics are derived from the Hamilton’s principle and the Euler-Lagrange
equation:

d

dt

∂L
(l,t)
i

∂
˙

q
(l,t)
i

− ∂L
(l,t)
i

∂q
(l,t)
i

= 0 (34)

where the Lagrangian L(l,t)
i = S

(l,t)
i · ψ(l,t)

i measures the energy distribution of signals S(l,t)
i and

structural entropy ψ(l,t)
i . According to Lagrangian mechanics described in Eq. 34, where the non-

relativistic Lagrangian L for sub-models in a specific subsystem is defined by

L = T − V = T =
1

2
m0ṙ

2 (35)

where r represents the dynamic state of a sub-model. Thus

∂L

∂q̇
=
∂L

∂ṙ
= m0

∂r

∂t
(36)

16

Under review as a conference paper at ICLR 2023

Then substitute Eq. 36 into Eq. 34, obtaining

m0
∂r

∂t

∂2r

∂t2
=
∂L

∂t
(37)

Summing both sides of Eq. 38

m0 ·
∑
k ̸=x

∂r
(t)
xk

∂t
·
∂2r

(t)
xk

∂t2

=
m0

2
·
∑
k ̸=x

∂

∂t

(
∂r

(t)
xk

∂t

)2

=
∑
k ̸=x

∂L
(t)
xk

∂t

(38)

To satisfy the conservation of momentum and Newton’s third law derived from Rule a), we have

∑
k ̸=x

(
∂r

(t)
xk

∂t

)2

=

(
∂r

(t)
xx

∂t

)2

∑
k ̸=x

∂

∂t

(
∂r

(t)
xk

∂t

)2

= − ∂

∂t

(
∂r

(t)
xx

∂t

)2
(39)

Then the middle term of Eq. 38 can be simplified to

m0

2
·
∑
k ̸=x

∂

∂t

(
∂r

(t)
xk

∂t

)2

= −m0

2
· ∂
∂t

(
∂r

(t)
xx

∂t

)2

= −m0 ·
∂r

(t)
xx

∂t
· ∂

2r
(t)
xx

∂t2

(40)

Summing both sides of Eq. 35

∑
k ̸=x

L
(t)
xk =

m0

2
·
∑
k ̸=x

(
∂r

(t)
xk

∂t

)2

(41)

Then according to Eq. 39, Eq. 41 can be simplified to

∑
k ̸=x

L
(t)
xk =

m0

2
·

(
∂r

(t)
xx

∂t

)2

(42)

Then we substitute Eq. 42 into Eq. 40 to eliminate m0, obtaining

∂2r
(t)
xx

∂t2
= −1

2
·
Σk ̸=x

∂
∂tL

(t)
xk

Σk ̸=xL
(t)
xk

· ∂r
(t)
xx

∂t

= −Λ
(t)
x

2
· ∂r

(t)
xx

∂t

(43)

Note that L can be approximated as time-invariant when ∂t→ 0 since L varies with the combination
of all sub-models and signals, whose overall dynamics are relatively static with respect to a particular
sub-model. Then we solve the differential equation 43, which yields

∂r
(t)
xx

∂t
= ηx · exp

(
− Λ

(t)
x

2
· t

)
(44)

where the entropy indicator Λ
(t)
x measures the structural entropy (can be evaluated via methods

similar to Eq. 9) of L over the system of sub-models, and ηx is a constant value related to its
corresponding sub-model q(t)x .

17

Under review as a conference paper at ICLR 2023

(a) Frame-id=1 (b) Frame-id=5 (c) Frame-id=10

Figure 5: Equivalence between neuromorphic learning and entropy reduction. As presented
by Eq. 45, the sub-models tend to move toward the region with lower structural entropy, which is
visualized by colored spatial distribution.

The comprehensive form of Eq. 44 is as follows:

∂r
(L,t)
i

∂t
= ηi · exp

(
−

Σk ̸=i
∂
∂tL

(L,t)
ik

Σk ̸=iL
(L,t)
ik

· t

)
= ηi · exp

(
− Λ

(L,t)
i · t

)
(45)

where r(L,t)
i is the positional vector of a sub-model, and ηi is a constant related to q(L,t)

i . This
equation is equipped with an unspecific Lagrangian L, for instance, L(L,t)

ik = S
(L,t)
ik Φ

(L,t)
i , where

S
(L,t)
ik is emitted from q

(L,t∗)
i and received by q(L,t)

k , being influenced by the resultant potential
field Φ

(L,t)
i around q(L,t)

i . The signals S(L,t)
ik refers to the feedback control correlated with the loss

function for current task, and the potential field Φ
(L,t)
i is a trainable parameter related to distinct sub-

models; note that we can simplify Φ
(L,t)
i as a constant field by adding shared coefficients applied in

Eq. 4.

F CONSERVATION OF WORKLOAD AND COMPUTATIONAL COMPLEXITY AS
THE NUMBER OF SUB-MODELS INCREASES

(a) (b)

Figure 6: a. The ratio of output Cv to input Cv as the number of layers increases with different
number of sub-models in the hidden layer (width). b. The horizontal axis measures the logarithm of
the ratio of parameters’ size and resolution (LRPR); the vertical axis measures the testing accuracy
of the truncated models with Wtr corresponding to each specific LRPR.

18

Under review as a conference paper at ICLR 2023

By Rule a), the variables in Eq. 43 and Eq. 44 should have several restrictions, including∑
x

ηx = Cη∑
x

∑
k ̸=x

L
(t)
xk = CL

∑
x

∑
k ̸=x

∂

∂t
L
(t)
xk = C∂L

(46)

where Cη , CL and C∂L are time-invariant constants. Therefore, the summation of the entropy
indicator Λ(t)

x can also be approximated as a time-invariant constant

lim
N→∞

N∑
x=1

Λ(t)
x ≈

C∂L

CL
= N · Λ̄ (47)

where N is defined as the total number of sub-models, and Λ̄ is a defined to be a constant refer-
ring to the averaged entropy indicator. Therefore, the total path length of all sub-models can be
approximated in terms of Eq. 43 as a time-variant function I(t)

I(t) =

N∑
x=1

∂r
(t)
x

∂t
=

N∑
x=1

ηx · exp (−Λ(t)
i · t) ≈ Cη · exp (−Λ̄ · t) (48)

The time-step t is a small value since the sub-models of a DyN system generate signals almost
instantaneously. The total workload W (T) that is linearly correlated with the computational com-
plexity is evaluated

W (T) =

∫ T

0

I(t)dt =
NCηCL

C∂L
· (1− e−Λ̄T) (49)

where T is the total time cost required to reach an equilibrium state. Based on Eq. 49, as the required
number of sub-models increases largely to deal with an increasingly complicated computational task,
the total workload and the computational complexity does not increase accordingly, but gradually
approaches a specific value. This fact also implies a neuro-biological correlation that when the brain
arises a concept, the power of the cortical regions related to the concept remains unchanged after
several learning events that supply more specified knowledge on this concept.

G LEARNING WITH MORE SUBSYSTEMS AND MORE SUB-MODELS

To boost up the computational power of a DyN system without explosive growth of computational
complexity, we apply interactive mechanism on the current architecture. The principle of hierarchi-
cal structures (Eq. 23) implies that a well-formed neuromorphic system does not require a specified
set of discrete trainable units that are isolated from each other. Besides, inspired by the phase space
density representation (Abarbanel & Rouhi, 1987), a dynamic system represented by infinite inter-
active particles can be treated as a linear combination of many shallow layers, each of which is
interpreted as an isolated dynamic system of different density. Specifically, each layer of density
ρi refers to a subsystem with specific shared coefficient hi, which disassembles the overall neu-
romorphic system into several partially independent subsystems. Therefore, a discrete sub-model
q
(l;t)
i;ki

is equivalent to an interactive region with density of hki ; the variational density is denoted by
gij = ρki − ρkj = hki − hkj , which measures the potential energy generated by the interaction
(receiving or emitting signals) between sub-models.

mi
∂

∂t
q
(l,t)
i;ki

=

∫
q
(l,t)
j;kj

∈P (l)

ψ(v
(l,t)
ij , f

(l,t)
ij , g

(l,t)
ij)dP (l)

(50)

where mi is a constant related to the density hki
, and ψ is a linear transformation that concatenates

the variational dynamics of sub-models. The notations here are consistent with that of Eq. 5. There-
fore, a DyN system with infinite sub-models can be approximated as the one with finite subsystems
in which the dynamic states of sub-models are interactively correlated with other sub-models from
all subsystems. The increase of the number of computing units has lead to some burden in the soft-
ware implementation process, it leads to no increase in the overall computational complexity. This
fact is validated experimentally and mathematically (Appendix F).

19

Under review as a conference paper at ICLR 2023

H ALGORITHMS WITH PSEUDO-CODES

Algorithm 1 Update sub-models based on stress force

Require: H,M,N,D > 0
Ensure: Qin ∈ RH×M×D, Qou ∈ RH×N×D, h ∈ RH , Mst ∈ RM×N , Sthres ∈ R+

function UPDATEQ(Qin, Qou, h, Mst, Sthres)
V ∈ RH×M×N×D ← rV (Qin, Qou) ▷ relative vectors between each Qin and Qou

D ∈ RM×N ← ∥h · V ∥ ▷ distance matrix between Qin and Qou

S ∈ RM×N ←Mst −D ▷ stress force between target matrix and distance matrix
while

∑
i,j Si,j > MN · Sthres do

∆ ∈ RH×M×N×D ← h · V · S
Qin ← Qin −

∑H
k=1 hk ·

∑N
i=1 ∆:,:,i,:

Qou ← Qou +
∑H

k=1 hk ·
∑M

j=1 ∆:,j,:,:

h←
∑

i,j,k{V · S}:,i,j,k ▷ update Qin, Qou, and h via Eq. 5
S ←Mst−∥h · rV (Qin, Qou)∥ ▷ update current stress force

end while
end function

Algorithm 2 Forward an ANN via dynamics of sub-models

Require: L > 0, H > 0,M > 0, N > 0, D > 0
Ensure: λ ∈ RL×H , Q0 ∈ RH×M×D, QL ∈ RH×N×D, Φ(in) ∈ RM

function FORWARDDYN([Ql, l ∈ [0, L]],λ,Φ(in))
S ← Φ(in) ▷ initialize S as input signal
for l ∈ (0, L) do

S ← σ(S · ∥λl · rV (Ql, Ql+1)∥) ▷ transmitting signal with relations between Qs
end for
return S

end function

Algorithm 3 Train an ANN via dynamics of sub-models

Require: L > 0, H > 0,M > 0, N > 0, D > 0
Ensure: λ ∈ RL×H , Q0 ∈ RH×M×D, QL ∈ RH×N×D, Φ(in) ∈ RM , T (ou) ∈ RM

function LEARNDYN([Ql, l ∈ [0, L]],λ,Φ(in),T (ou))
Φ(ou) ← FORWARDDYN([Ql, l ∈ [0, L]], λ,Φ(in))
Φ(ou) ← Φ(ou) − T (ou)

for l ∈ (0, L) do
I(l;l+1) ← ∥λl · rV (Ql, Ql+1)∥ ▷ evaluate relative vectors amongst Qs as hidden states
UPDATEQ(Ql, Ql+1,

∂Φ(ou)

∂I(l;l+1))
end for

end function

20

Under review as a conference paper at ICLR 2023

Algorithm 4 Train a Convolutional layer (filter size F ×F with Nin input channels and Nou output
channels) via dynamics of sub-models

Require: F > 0, D > 0, H > 0, Nin > 0, Nou > 0, N > 0

Ensure: P (in) ∈ RF×F×H×Nin×D, P (ou) ∈ RF×F×H×Nou×D, Φ(in) ∈ RN2×Nin , λ ∈ RF 2×H ,
T (ou) ∈ RN2×Nou

function LEARNCONV(P (in),P (ou),Φ(in),T (ou),λ)
C ∈ RF×F×Nou×Nin

C[i, j, :, :]← ∥λ · rV (P
(in)
ij , P

(ou)
ij)∥ ▷ Initialize RNin → RNou for each element of a filter

Φ(ou) ∈ RN2×Nou ← Conv(Φ(in), C) ▷ output signal via a convolutional layer
Φ(ou) ← Φ(ou) − T (ou)

for i, j ∈ [1, F] do
UPDATEQ(P

(in)
ij , P

(ou)
ij , ∂Φ(ou)

∂C[i,j,:,:])

end for
end function

Algorithm 5 Train an Attention layer (WQ,WK ,WV ∈ RN×N) via dynamics of sub-models

Require: N > 0, D > 0, H > 0
Ensure: P (Qin), P (Kin), P (V in), P (ou) ∈ RH×N×D, λ ∈ R3×H , T (ou) ∈ RN×N

function LEARNATTN(P (Qin),P (Kin),P (V in),P (ou),Φ(in),T (ou),λ)
AQ ← ∥λ[0] · rV (P (Qin), P (ou))∥ ▷ initialize the Query matrix
AK ← ∥λ[1] · rV (P (Kin), P (ou))∥ ▷ initialize the Key matrix
AV ← ∥λ[2] · rV (P (V in), P (ou))∥ ▷ initialize the Value matrix
Φ(ou) ← Attn(AQ, AK , AV ,Φ

(in))

Φ(ou) ← Φ(ou) − T (ou)

UPDATEQ(P (Qin), P (ou), ∂Φ
(ou)

∂AQ
)

UPDATEQ(P (Kin), P (ou), ∂Φ
(ou)

∂AK
)

UPDATEQ(P (V in), P (ou), ∂Φ
(ou)

∂AV
)

end function

21

	Introduction
	Preliminaries
	The DyN mechanism
	Experiments
	Evaluation metrics and datasets
	Visual classification
	Correlation with structural entropy

	Conclusion
	Some Principles and Proofs
	Path integral formulation for neuromorphic system
	Pinciple of hierarchical structures
	Consistency with back-propagation
	Generalized rules of dynamics in DyN systems
	Conservation of workload and computational complexity as the number of sub-models increases
	Learning with more subsystems and more sub-models
	Algorithms with pseudo-codes

