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Abstract

We develop an approach for improving the trustworthiness and overall ac-
curacy of program synthesizers based on large language models for source
code. Given a natural language description of a programming problem,
our method samples both candidate programs as well as candidate predi-
cates specifying how the program should behave. We learn to analyze the
agreement between programs and predicates to judge both which program
is most likely to be correct, and also judge whether the language model
is able to solve the programming problem in the first place. This latter
capacity allows favoring high precision over broad recall: fostering trust by
only proposing a program when the system is certain that it is correct.

1 The importance of trust

Picture a future where AI systems attempt to close GitHub issues by generating source code
given only the natural language of the GitHub issue. Such systems might not come out next
year, but when or if they ever do, they will likely leverage large neural network language
models for source code (Chen et al., 2021; Austin et al., 2021). These neural systems are
good, but not perfect. Suppose 75% of the time, such systems propose a correct fix to the
GitHub issue. The other 25% of the time, they produce plausible looking code containing
subtle bugs. Would you use this system?
Most engineers would be reluctant to use such a system, because it fails to build trust with
the user. When it fails, it cannot detect its own failure. When it succeeds, it cannot construct
a human-comprehensible certificate of its success. In this paper we seek steps towards
rectifying this lack of trust. Concretely, our goal is to build natural-language conditioned
neural program synthesizers that are more trustworthy along several dimensions:

• We want systems that, when they cannot solve a programming problem, simply return
no answer, rather than return a (possibly subtly) incorrect program. We conjecture
that it is better to fall back on the human programmer, rather than risk introducing
bugs. Contrast the situation with natural language translation: Unlike natural language,
programs are brittle, and so must be exactly correct. And debugging bad code, unlike
proofreading language, can be more difficult then just writing it yourself.

• We want systems that can produce a human-understandable certificate of the correctness
of the synthesized code. This activity is common among human engineers, who often
write test harnesses for new code. Similarly, our system proposes predicates testing its
solutions, which act as a human-comprehensible signal of the code’s (in)correctness.

• Ideally, trustworthy systems should be more accurate overall, solving more programming
problems. This goal would seem to be in tension with the previous two. Surprisingly
we find our methods for building trust also serve to boost overall accuracy on natural
language to code generation problems as well.

Our high-level approach has a neural network propose candidate program solutions and
independently propose predicates that correct solutions should satisfy, known as specifi-
cations (‘specs’, Fig. 1). We consider two kinds of specs: (1) input-output test cases, and
(2) test harnesses specifying logical relations between inputs and outputs, also known as
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functional specifications (Solar-Lezama, 2008). In general, a spec can be any mechanically
checkable property. We check the programs against the specs, and learn to use this checking
to predict if the system knows how to solve the problem at all, and if so, which program(s)
are probably the right solution. Intuitively, we ask the language model to ‘check its work’ by
generating specs. We call our approach speculyzer, short for ‘Specification Synthesizer’,
because in addition to synthesizing programs, it synthesizes specs.
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Figure 1: Our speculyzer system inputs a natural language description of a programming
problem. It uses large language models to independently sample candidate programs, and
candidate specifications of what the program should do. Because natural language is infor-
mal, we cannot verify programs against it, but logical relations and input-outputs can be
mechanically checked against. The result of this verification is fed to a learned model which
predicts whether the problem can be solved; if so, which program is correct; and which specs
best certify whether that program is correct or incorrect.

2 Related Work

Program synthesis. Automatically constructing software has been a longstanding goal of
computer science (Manna & Waldinger, 1979; Gulwani et al., 2017). Classic program syn-
thesizers input a formal specification of what the program should do, and then either search
or logically derive a program guaranteed to satisfy that formal specification (Alur et al.,
2013). This formal specification could come from a rich, expressive logic (e.g. Polikarpova
et al. (2016)) or less precise, but still formal modalities such as input-output examples (Gul-
wani, 2011). Classic program synthesizers assume it is possible to verify the correctness
of a candidate program. This verification assumption allows a generate-and-test approach
to always eventually find a satisfying program, though practical program synthesizers are
more clever in how they search for programs (Solar-Lezama, 2008), including incorporating
guidance from neural networks (Chaudhuri et al., 2021; Ellis et al., 2021).
Large language models for source code. Our work uses large language models for
source code (Chen et al., 2021; Austin et al., 2021). These neural networks generate source
code conditioned or ‘prompted’ by a mix of code and natural language (the natural language
is usually represented as code comments). Such language models are typically implemented
as very large transformers (Vaswani et al., 2017; Brown et al., 2020).
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Following the introduction of large transformer-based language models for source code, there
has been work on how to boost the accuracy of those models. Here, accuracy means the
probability of sampling a correct program conditioned on a natural-language prompt. Ac-
curacy is often measured by functional correctness with the pass@k metric, which considers
drawing k IID samples from the language model and testing if any of those samples pass a
set of holdout test cases. Toward boosting pass@k, researchers have considered clustering
sampled programs according to the outputs they produce on test inputs (Shi et al., 2022;
Li et al., 2022). For example, AlphaCode prioritizes large ‘clusters’ of samples with the
exact same input-output behavior (Li et al., 2022), effectively reranking the samples from
the language model according to how likely they are to solve the task. A complementary
reranking strategy is to train a second neural network to predict program correctness, as
explored in Inala et al. (2022). Another approach is to ask the language model to ‘show
its work’ by prompting it to generate/use intermediate evaluation states, known as ‘chain-
of-thought-prompting’ (Wei et al., 2022) and ‘scratch pads’ (Nye et al., 2021). Our goal of
having our model not make predictions when it doesn’t think it can get it right is related
to the recent Grammformer introduced by Guo et al. (2022), which is a Codex-like model
outputting regex patterns containing wildcards where the model is uncertain.
The closest work to ours is the concurrently developed CodeT system (Chen et al., 2022).
CodeT independently proposed generating programs as well as input-output test cases,
with the goal of boosting pass@k. The qualitative difference between our systems is that we
designed speculyzer to build trust by synthesizing specifications–only boosting pass@k as
a side effect–and incorporated input-output test cases as a special case of specs in general.
Engineering safe, trustworthy language models has received considerable attention by the
AI safety (Thoppilan et al., 2022) and AI alignment communities (Kadavath et al., 2022).
These works find that one can train classifiers which predict the truthfulness or safety of lan-
guage outputs by inspecting the hidden activations of the model or even by simply ‘asking’
the model if its output is correct or safe. We see this family of efforts as complementary: For
programs, it is possible to formally specify correctness properties, which is not generally true
in NLP, so we focus on formal properties (specifications) here. Nonetheless, one can train
statistical predictors of program correctness (Inala et al., 2022), and in fact these synergize
with formal notions of correctness (Chen et al., 2022). Broadly however, we think that
program synthesis offers unique opportunities for building trust through symbolic methods.
Although statistically reranking language model outputs via a second neural network im-
proves raw performance, we believe it is a suboptimal trust-builder: an inscrutable neural
network cannot guarantee the correctness of another inscrutable network. Here we advocate
that properties which are symbolically verifiable and human-comprehensible should play a
role, and examine certain specifications as basic examples of such properties.
Verification. Specifying and certifying the correctness of software is the traditional goal
of formal verification methods (Pierce et al., 2022; Baier & Katoen, 2008). We seek trust in
slightly different ways: There are no prospects of truly verifying against natural language,
so we use less precise, but more human-understandable, kinds of specifications. Rather than
specifying exact program semantics in a rich logic, we use unit-test harnesses. A language
model generates inputs on which to run those harnesses, instead of verifying across all
possible inputs. In principle nothing precludes applying more sophisticated verification
techniques to the specifications our system elicits. See Appendix A.2 for further discussion.

3 Methods

Given a natural-language prompt describing a programming problem, our goal is to construct
a ranked list of candidate program solutions, or to output an empty list whenever the
system cannot solve the programming problem. Our approach independently samples a set
of candidate programs P and a set of candidate specs S. Specs can be either input-output
testcases, or logical relations (Fig. 1). We write T for the set of test cases and R for the
set of logical relations, so S = T ∪ R. Each program p ∈ P is checked against each spec
s ∈ S, and basic statistics of program-spec agreement are computed. These statistics are
aggregated by a learned model into a confidence score for each program. Programs whose
confidence score falls below a threshold are discarded. Any remaining programs are sorted
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by confidence score and returned to the user as possible solutions, together with certain
specs they pass. Returning specifications allows the user to verify that the code has the
intended behavior. This architecture lets the system learn how to predict when it cannot
solve a problem, and also learn to rank candidate solutions and their corresponding specs.

3.1 Sampling programs and tests

Given a string prompt describing a programming problem, we sample n = 100 candidate pro-
grams (the set P) and candidate specs (the set S). Both sets are sampled using a pretrained
language model, which can probabilistically generate program source code conditioned on
a prompt. We write P LM(·|prompt) for the conditional distribution over programs, given
prompt. If a program p ∈ P, then p ∼ P LM(·|prompt). To sample specs, we deterministi-
cally transform the prompt as in Fig. 2 and Appendix A.10, then draw iid samples from the
language model to construct relations R and input-output test cases T .

Generating Programs
def sub_list (nums1 : list , nums2 : list) -> list:

"""
Write a function to subtract two lists element -

wise.
"""
return list(map(lambda x, y: x-y, nums1, nums2))

Generating Input-Output Specifications
def sub_list (nums1 : list , nums2 : list) -> list:

"""
Write a function to subtract two lists element -

wise.
"""
pass # To -do: implement

# Check if sub_list works
assert sub_list ([2, 3, 1], [1, 1, 1]) == [1, 2, 0]

Generating Logical-Relation Specifications
[Two-Shot Examples]

...
# Problem 3

# Write a function to subtract two lists element -wise.
def sub_list (nums1 , nums2):

pass # To -do: implement

# Test 3

def test sub list(nums1 : list, nums2 : list):
"""
Given two lists ‘nums1‘ and ‘nums2‘, test whether function ‘sub list‘ is implemented correctly.
"""
output list = sub list(nums1, nums2)
# check if the length of the output list is the same as the lengths of the input lists
assert len(output list) == len(nums1) == len(nums2)
# check if the output list has the expected elements
for i in range(len(output list)):

assert output list[i] == nums1[i] - nums2[i]

# run the testing function ‘test sub list‘ on a new testcase
test sub list([1, 2, 3, 4], [10, 9, 8, 7])

Figure 2: Our systems uses different prompts to generate programs, input-output tests, and
logical relations. Here we also show the example completion from the model in blue.

3.2 Scoring and analyzing test coverage

Given programs P and specs S, we compute a confidence score for each p ∈ P measuring
how likely p is correct. Assuming, on average, specs correctly formalize the informal natural-
language intention, satisfying more specs should increase our confidence in a program.
Additionally, if many sampled programs exhibit identical behavior on the specs, then we
should increase our confidence in those programs, because this indicates high marginal
probability of that behavior under P LM(·|prompt). This ‘clustering’ of candidate solutions
according to their execution behavior, and prioritizing large clusters, has been successfully
used by AlphaCode (Li et al., 2022), Minerva (Lewkowycz et al., 2022), and others (Shi et al.,
2022). It is also related to observational equivalence from classic program synthesis (Udupa
et al., 2013), which treats programs as identical if they have the same outputs on test inputs.
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While cluster size and spec pass rate give confidence in individual programs, global fea-
tures of the distribution of sampled programs can indicate whether this system might be
able to solve the problem in the first place. So, we also compute the entropy over cluster
assignments: diffuse clusterings could suggest lack of confidence.
Finally, we compute a real-valued score for each program p ∈ P using a logistic regressor over
features ϕ(p, P, S).1 The features ϕ(p, P, S) include testcase pass rate (fraction of input-
output specifications passed), relation pass rate (fraction of logical-relation test-harness
specifications passed), cluster size (fraction of other programs with the same behavior
on the specifications), the ordinal rank2 and logarithms of the preceding features, and the
entropy of cluster assignment distributions for both input-output and logical-relation spec-
ifications, for a total of 18 features. We clarify the meaning of those features below:

scoreθ(p|P, S) = θ · ϕ(p, P, S) + θ0 learned θ, features ϕ

Components of ϕ(p, P, S), plus logs and ordinal ranks: (1)

testPass(p, P, T ∪ R) = 1
|T |

∑
s∈T

1 [p ⊢ s] p ⊢ t means prog. p satisfies s

relationPass(p, P, T ∪ R) = 1
|R|

∑
s∈R

1 [p ⊢ s]

clusterSize(p, P, S) =
∑

p′∈P

∏
s∈S

1 [(p ⊢ s) = (p′ ⊢ s)] # progs. w/ same spec behavior

clusterEntropy(p, P, S) = H [A] cluster assignment A : S → {0, 1}

where P [A] ∝
∑

p′∈P

∏
s∈S

1 [(p ⊢ s) = A(s)] cluster assignment distribution

We fit θ via maximum likelihood on a corpus D containing triples ⟨P, S, G⟩ of programs P
and specifications S, both sampled from the same prompt, and ground-truth testcases G,
which serve as a proxy for program correctness. The ground-truth testcases G are assumed
to be unavailable at test time, because our goal is synthesis from informal specifications like
natural language. We use gradient ascent to maximize the log likelihood, L:

L =
∑

⟨P,S,G⟩∈D
p∈P

1 [p ⊢ G] log σ (scoreθ(p|P, S)) + 1 [p ̸ ⊢ G] log (1 − σ (scoreθ(p|P, S))) (2)

where σ(·) is the logistic sigmoid function.

3.3 Test time metrics

Precision-Recall. Ultimately our goal is a trustworthy system that proposes program
solutions whenever it can, but avoids proposing buggy code. Toward those ends, we seek
high precision without sacrificing recall. High precision means that when the system suggests
a program, it is probably correct. Precise systems foster trust because they don’t propose
wrong answers, though they may decline to provide an answer in the first place. High recall
means a correct program achieves the top rank: In other words, the system can solve a lot
of programming problems, though it might make more mistakes in the process.
The tradeoff between precision and recall can be tuned by a thresholding parameter, τ .
A candidate program is discarded if its score falls below the threshold τ . If all programs
are discarded, the system declines to provide an output for the programming problem, and
otherwise the system outputs a ranked list of programs sorted by score.
We define Precision@k and Recall@k, which respectively measure (1) whether a correct
program is in the top k whenever any program scores above τ and (2) how often a correct

1We also tried a small multilayer perceptron, which underperformed logistic regression (A.7)
2Ordinal rank compared to other clusters
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program scoring above τ is in the top k:

Precision@k = TruePositives@k

PredictedPositives Recall@k = TruePositives@k

ActualPositives (3)

TruePositives@k =
∑

⟨P,S,G⟩∈D

1

[
∃p ∈ P : p ⊢ G and τ ≤ scoreθ(p|P, S) and

p ∈ top-kp′∈Pscore(p′|P, S)

]
(4)

PredictedPositives =
∑

⟨P,S,G⟩∈D

1 [∃p ∈ P : τ ≤ scoreθ(p|P, S)] (5)

ActualPositives =
∑

⟨P,S,G⟩∈D

1 [∃p ∈ P : p ⊢ G] (6)

We sweep possible values for τ to compute a precision-recall curve. Generically, there is no
‘true’ best trade-off between these desiderata.
Pass rate. The pass@k metric (Austin et al., 2021; Chen et al., 2021) measures the prob-
ability of k samples from P LM(·|prompt) passing the ground-truth test cases, G:

pass@k = Ep1,··· ,pk∼P LM(·|prompt)1 [∃pi : pi ⊢ G] (7)

Note that pass@k is proportional to ActualPositives (Eq. 6): The (fraction of) problems
where there is at least one correct answer in the sampled programs.
It is also conventional to combine pass@k with a scoring function that reranks the sampled
programs. This generalizes pass@k to pass@k,n, which measures the probability that, after
generating n candidate programs, a correct one is in the top-k under our scoring function:

pass@k,n = E⟨P,T ,G⟩∼D1
[
∃p ∈ top-kp′∈Pscoreθ(p′|P, T ) where p ⊢ G

]
(8)

Ranking and clustering. When the programs are grouped into clusters, we can also define
pass@k,n by ranking the clusters and predicting a program from each of the top k clusters.
This works well when all programs in each cluster have the exact same score, and when
clusters tend to be either 100% correct or 0% correct. We report pass@k,n, when reranking
clusters, but also analyze scoring/reranking individual programs in Appendix A.8.

4 Results

We study our approach on two popular datasets while using Codex models (Chen et al.,
2021), seeking to answer the following research questions:

• How does our learned reranking impact raw rate of success (pass@k,n)?
• How trustworthy and safe can we make the system (precision), and how much does

that require sacrificing coverage (recall)?
• How does our learned scoring function generalize across datasets?
• How can we use the synthesized specifications to certify program correctness?

We evaluate on programming problems from the Mostly Basic Python Prob-
lems (MBPP:Austin et al. (2021), sanitized version) and HumanEval datasets (Chen et al.,
2021). Each of these datasets contains natural language descriptions of programming prob-
lems, and holdout tests to judge program correctness. An important difference between
them is that HumanEval sometimes includes example input-outputs as part of the natural
language description, while MBPP does not. Having I/O examples in the problem de-
scription makes spec generation easier: some specs are given for free. On the other hand,
humans sometimes spontaneously mix natural language and examples (Acquaviva et al.,
2021). Therefore, using both MBPP and HumanEval gives a more robust evaluation, but
we note this qualitative difference between them. Appendix Sec. A.1 gives further experi-
mental setup details, such as hyperparameters and example prompts.
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4.1 Raw accuracy improvement from reranking

To understand how well speculyzer learns to predict the best program—independent of
predicting when it doesn’t know the answer—we measure pass@k,n (Fig. 3). We assess our
system using cross validation, and consider ablations (1) using only input-output testcases;
and (2) using only logical relations. We use as baselines (1) AlphaCode’s ranking function,
which ranks based on cluster size (“cluster”); (2) CodeT’s ranking function, which ranks
based on (testcase pass rate)

√
cluster size; (3) a random baseline, which ranks all programs

equally; and (4) an oracle, which always chooses a correct programs, if it exists. We also
quote numbers from Inala et al. (2022) (which ranks programs using a separate neural net)
and Chen et al. (2022) (CodeT). We see that both varieties of specification are valuable,
but that input-outputs work better on their own than logical relations on their own.
Overall, speculyzer achieves 76.5% pass@1 on HumanEval and 73.7% pass@1 on MBPP.
To the best of our knowledge these are the highest pass@1 rates reported so far on these
datasets. On HumanEval we improve over CodeT by 11% absolute (65.8%→76.5%), and
on MBPP by 5% (67.7%→73.7%) (Chen et al., 2022); we also obtain a larger improvement
over Inala et al. (2022). (Different nucleus sampling parameters (Holtzman et al., 2019)
cause Inala et al. (2022) to underperform the random baseline.)
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Figure 3: Solve rate of different models while varying k, the # guesses allowed per problem.
Calculated using n = 100 samples. Inala et al. (2022) does not report k = 10. See Fig. 7
for analogous results on other language models and sampling hyperparameters.

4.2 Trading off between trustworthiness and coverage

Trustworthy systems should avoid predicting any programs at all when they cannot solve
a problem. Doing so increases precision, the fraction of outputs which are correct, but at
the expense of recall, the fraction of solvable problems where we output a correct solution.
Fig. 4 illustrates how one can adjust this trade-off. For example, we can achieve 100%
precision on HumanEval (zero error rate), in exchange for dropping our recall from 82% to
33%. Note this zero error rate does not come from our learned score function memorizing
the data: we use cross validation to test each program using weights trained on other folds.
Less extreme tradeoffs are possible, such as 90% precision in exchange for 51% recall.
Our method quantitatively outperforms the alternatives on precision/recall statistics (Fig. 4,
bottom), but as with pass@k, our advantage is largest on HumanEval. We hypothesize
that this is because HumanEval is a much cleaner dataset compared to MBPP, and not
because HumanEval often includes input-outputs in the prompt. Our CodeT replication
controls for that difference across datasets, because it too sees input-outputs in HumanEval
prompts, yet it underperforms speculyzer by a wider margin on HumanEval compared to
MBPP. Although the best balance between precision and recall depends on the downstream
application, we hope that our study invites further progress on systems that optimize this
trade off, in addition to optimizing the popular pass@k.
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AUC max F1 R@ R@
P=.9 P=1

ours 0.79 0.82 0.51 0.33
CodeT 0.68 0.75 0.44 0.19
Cluster 0.47 0.57 0.21 0.16
random 0.14 0.37 0.00 0.00

AUC max F1 R@ R@
P=.9 P=1

ours 0.76 0.81 0.48 0.042
CodeT 0.72 0.78 0.46 0.029
Cluster 0.63 0.72 0.20 0.00
random 0.28 0.52 0.00 0.00

Figure 4: Top: Precision-Recall curves with k = 1. Bottom: Statistics of these curves,
measuring Area Under Curve (AUC), max F1 (harmonic mean of precision and recall),
recall in the high-trust regime: R@P=.9 is recall when precision=90%, and R@P=1 is recall
at perfect precision. Left: HumanEval. Right: MBPP. Fig. 8 gives further results.

4.3 Generalization across datasets

Unlike recent heuristics for reranking solutions proposed by a large language model, our
scheme involves learning real-valued parameters (θ in Eq. 2). To understand how learned
parameters generalize across datasets, we compute the pass@1 rate and precision-recall stats
for models trained on MBPP, but tested on HumanEval (and vice versa). These statistics are
essentially unchanged by training on different datasets (Fig. 5), varying by 4% absolute and
6% relative, indicating generalization across similar, but not identical, data distributions.

test HumanEval MBPP
train HumanEval MBPP both HumanEval MBPP both

pass@1 0.78 0.76 0.76 0.72 0.74 0.73
AUC 0.79 0.75 0.76 0.73 0.76 0.75

max F1 0.82 0.80 0.80 0.79 0.81 0.80

Figure 5: Generalization when test/train data are drawn from the same corpus of problems,
vs. drawn from different corpora, vs. from the union of both datasets.

4.4 Certifying (In)correctness

No natural language program synthesizer will always produce correct programs: Therefore,
the system needs to communicate what a synthesized program p computes, so that the user
can confidently accept or discard it. speculyzer does this by outputting a specification
that certifies p’s (in)correctness while being maximally informative as to p’s behavior.
Whenever speculyzer ranks p∗ ∈ P as the best solution to a problem, it selects a spec
s∗ ∈ S to certify the behavior of p∗. The certificate s∗ must be a true fact about p∗,
so p∗ ⊢ s∗, but should also constrain the behavior of p∗. For example, the specification
∀x : p∗(x) = p∗(x) is vacuously true for any p∗, and so makes a poor certificate.
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We formalize this as a rational-communication model of program synthesis (Pu et al., 2020),
which means first defining a joint probability distribution over programs and specifications:
P [p, s] ∝ 1 [p ⊢ s]1 [p ∈ P]1 [s ∈ S]. Then, we score each specification s by the conditional
probability of p∗ given s, i.e. P [p∗|s]. Applying Bayes’ Rule and simplifying, we find that this
is equivalent to ranking specs by how few other programs satisfy them, i.e. their selectivity:

s∗ = arg max
s∈S

P [p∗|s] = arg min
s∈S
p∗⊢s

∑
p∈P

1 [p ⊢ s] (9)

Fig. 6 illustrates a representative programming problem and its top specification compared
with a random specification. Appendix A.11 illustrates 20 further examples.

def derivative(xs: list):

    """ xs represent coefficients of a polynomial.

    xs[0] + xs[1] * x + xs[2] * x^2 + ....

     Return derivative of this polynomial in the same form.

    >>> derivative([3, 1, 2, 4, 5])

    [1, 4, 12, 20]

    >>> derivative([1, 2, 3])

    [2, 6]

    """

    return [x * i for i, x in enumerate(xs) if i != 0]

PROGRAM

def test_derivative(xs: list):

    """ Given an input `xs`, test whether the function 
`derivative` is implemented correctly.

    """

    ys = derivative(xs)

    assert len(ys) == len(xs) - 1

    for i in range(len(ys)):

        assert ys[i] == xs[i+1] * (i + 1)



# run `test_derivative` on a new testcase        

test_derivative([3, 1, 2, 4, 5])

DISTINGUISHING 
LOGICAL

RELATION

def test_derivative(xs):

    """ Test function derivative().

    """

    # TODO

    pass

    

# run `test_derivative` on a new testcase

test_derivative([2, 3, 4, 10, -12])

RANDOM 
LOGICAL

RELATION

Figure 6: Representative certificate of program (in)correctness. Our probabilistic model
favors selective specs as certificates, which we contrast with a random spec.

5 Contributions and Outlook

We have contributed a program synthesizer that learns to predict when it cannot solve a
problem and learns to construct its own specifications that communicate what each program
does. We intend for these elements of speculyzer to increase the trust and safety of
neural program synthesis and to serve as a modest step toward program synthesizers that
could better collaborate with software engineers. For this idea of better human-machine
collaboration, writing correct code and documenting its correctness are paramount. In
the process, we have also improved the state-of-the-art pass@k accuracy for the HumanEval
dataset, and we have laid out basic trust and safety statistics, namely recall at high precision,
which we hope springboards further investigation in language model safety for source code.
Our work has important limitations. Because speculyzer wraps around a large language
model, it inherits some of their limitations, such as expensive sampling times. Since we also
run the executed code, we incur additional cost and impose security risks if that execution
is not appropriately sandboxed. Fundamentally, an approach like ours can never truly
provide the same level of trust as a classic program synthesizer working from human-crafted
formal-logic specifications; however, formal logic is less accessible than natural language.
Many directions remain open. Conceptually, the idea of formal specifications as a liaison
between programs and informal natural language opens up the possibility of using richer
kinds of specs and verifiers. This would allow tapping many years of effort from the pro-
gramming languages community (D’silva et al., 2008; Baldoni et al., 2018), at least if we can
interface such formalisms with large language models. Using a sophisticated verifier instead
of executing candidate programs could also address the security concerns and performance
hit from our additional code executions. Another direction is to combine our ideas with
recent advances in HCI for program synthesis, such as Peleg et al. (2020), which develops
powerful human interaction paradigms for program synthesis.
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A Appendix

A.1 Experimental setup

Sampling from language models. We used Codex models to draw samples using a max-
token size of 580 for our generation of programs and specifications for both HumanEval
and MBPP. We used "\ndef", "\n#", "\nclass", "\nif", "\nassert", and "\nprint"
as stop tokens for our generation of programs and input-output test cases, and we used
"\n# Problem" as the stop token for our generation of the logical relations test cases. We
used zero-shot prompting for program and input-output test case generation, and few-shot
prompting for the logical relations specifications generation.
In the main text we report results on the flagship Davinci Codex model, but we also obtain
qualitatively similar results with the smaller Cushman Codex model (Fig. 7-8). We drew
samples from these models using nucleus sampling with temperature = 0.8, TopP = 0.95,
and also tried TopP = 1 on the Davinci model. The main text gives pass@k for Davinci
w/ TopP = 0.95 to give a fair comparison with CodeT, which used the same sampling
parameters. In practice, these hyperparameters would be tuned to maximize the number
of problems where there is at least one correct sampled program. For Davinci Codex, this
is TopP = 0.95 for MBPP and TopP = 1 for HumanEval, which we use to produce the
precision-recall curves in the main text. Appendix Fig. 7-8 illustrate pass@k and precision-
recall results for every model and parameter setting considered in this work.
Logistic regressor. We used the Adam optimizer with 10−3 as the learning rate and 10−4

as the weight decay. We used 10-fold cross-validation for in-domain testing (training on
HumanEval and evaluating on HumanEval, training on MBPP and evaluating on MBPP),
and we trained for 1500 epochs. We trained for 2000 epochs for domain generalization
testing (training on HumanEval and evaluating on MBPP, training on HumanEval and
evaluating on MBPP). For training, we standardize all input features to have a mean of 0
and a standard deviation of 1.
Verification. We verify input-output specifications to see if they hold for each program
by executing the program on the input and comparing it with the output. Logical relations
specifications require sample input(s) on which to test the relation; our prompt for logical
relations causes the language model to construct such inputs, but in general one could use
a fuzzer or verification tool, which we also explore (see next paragraph). This causes veri-
fication of logical relation specifications to also reduce to program execution. We executed
generated programs and test case in a Oracle Virtual Machine as a sandbox.
We also consider checking logical relations using the property-based tester Hypothesis, which
systematically probes the input space of each logical relation based on analyzing the under-
lying source code. This allows us check whether a logical relation might hold on all inputs
instead of just those considered by Codex. Depending on experimental condition, this is
true for about 40%-70% of the logical relations (Tbl. 1). When a logical relation is true
over the whole space of inputs, we can return a stronger spec to the user which asserts the
synthesized predicate holds for all inputs, instead of simply showing the inputs on which
the relation was verified.

Codex Davinci Codex Cushman
HumanEval MBPP HumanEval MBPP

top 5 specs 0.42 0.47 0.4 0.47
all specs 0.72 0.56 0.72 0.63

Table 1: Fraction of logical relations which property-based testing finds true across the
whole input space. Top 5 specs are the top 5 most selective logical relations which are true
about a candidate program.
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A.2 Supplemental Discussion: Soundness & Completeness

The formal methods community has traditionally sought methods that are sound and com-
plete Baier & Katoen (2008). Soundness means that whenever a program satisfies a spec,
we identify it as such. Completeness means that every spec we identify as valid for a
program is indeed entailed by that program. Generally, speculyzer’s verification step to
overapproximates the set of specs a program satisfies, achieving completeness at the ex-
pense of soundness. This overapproximation only occurs for logical relations: we’re sound
and complete for input-outputs, because they assert a property of the program only on a
single input. But because the language model constructs specific inputs on which to run the
logical relations, we cannot assert that they hold generically for every single possible input,
unless we perform more sophisticated verification steps such as the property-based methods
described in the preceding section.
The practical impact of this unsoundness for logical relations is that a human user has to
inspect the candidate inputs on which the language model probes the relation. In practice,
we find that the neural network generates fairly representative inputs (Appendix A.11),
something that AlphaCode (Li et al., 2022) also found.
In principle, nothing precludes running a model checker or solver to check that the logical
relations hold over every single possible input, which would make the method sound and
complete w.r.t. the programs and specifications. However, this would not eliminate the
need for a human to examine the AI-generated specifications: ultimately, the true spec is
in natural language, and there is no sound and complete verifier against informal language.

A.3 Dataset Statistics

Below we show representative dataset statistics for Davinci Codex with temperature 0.8 and
topP=1.

Input-Output Logical Relations
HumanEval MBPP HumanEval MBPP

cluster size (# of test cases) 4.55 4.27 4.46 5.02
stddev 10.64 10.75 10.15 12.10

average # of test cases per program 102.33 230.62 94.73 94.77
stddev 62.11 93.95 3.54 2.72

% of programs that
satisfy at least one test 84.2% 82.8% 98.1% 96.3%

A.4 Example Zero-Shot Prompts for program generation

For MBPP, to generate programs, we converted the natural language prompt to a function
by adding in the prompt as a docstring for a function with the name of the function called
in the ground-truth test cases. We used the HumanEval prompts as is.
Two examples of zero-shot prompts used for program generation are as follows:

A.4.1 HumanEval

First example:

def is_happy(s):
"""You are given a string s.
Your task is to check if the string is happy or not.
A string is happy if its length is at least 3 and every 3 consecutive

letters are distinct↪→

For example:
is_happy(a) => False
is_happy(aa) => False
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Figure 7: Evaluating different approaches on pass@k, while varying language model and
nucleus sampling parameters. Davinci is the largest, flagship Codex model. Cushman is a
smaller budget model.
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Figure 8: Evaluating different approaches on precision vs. recall, while varying language
model and nucleus sampling parameters. Davinci is the largest, flagship Codex model.
Cushman is a smaller budget model.
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is_happy(abcd) => True
is_happy(aabb) => False
is_happy(adb) => True
is_happy(xyy) => False
"""

Second example:

def fix_spaces(text):
"""
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -

fix_spaces("Example") == "Example"
fix_spaces("Example 1") == "Example_1"
fix_spaces(" Example 2") == "_Example_2"
fix_spaces(" Example 3") == "_Example-3"
"""

A.4.2 MBPP

First example:

def sum_range_list(list1 : list, m : int, n : int) -> int:
"""
Write a function to find the sum of numbers in a list within a range

specified by two indices.↪→

"""

Second example:

def diff_even_odd(list1 : list) -> int:
"""
Write a function to find the difference of the first even and first

odd number of a given list.↪→

"""

A.5 Example Zero-Shot Prompts for input-output generation

We extracted input-output test cases by generating n = 100 times per HumanEval/MBPP
prompt, then extracting each distinct single-line test case from each generation. We do this
because each generation may produce multiple test cases, and we aimed to test each program
on a single test case. For our test case prompts, we used the prompts to generate programs
from MBPP and HumanEval, and we added in a pass # To-do: implement statement,
a line with a comment asking Codex to # Check if func name works and another line to
asking Codex to assert func name(.

A.5.1 HumanEval

First example:

def is_happy(s):
"""You are given a string s.
Your task is to check if the string is happy or not.
A string is happy if its length is at least 3 and every 3 consecutive

letters are distinct↪→

For example:
is_happy(a) => False
is_happy(aa) => False
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is_happy(abcd) => True
is_happy(aabb) => False
is_happy(adb) => True
is_happy(xyy) => False
"""

pass # To-do: implement

# Check if is_happy works
assert is_happy(

Second example:

def fix_spaces(text):
"""
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -

fix_spaces("Example") == "Example"
fix_spaces("Example 1") == "Example_1"
fix_spaces(" Example 2") == "_Example_2"
fix_spaces(" Example 3") == "_Example-3"
"""

pass # To-do: implement

# Check if fix_spaces works
assert fix_spaces(

A.5.2 MBPP

First example:

def sum_range_list(list1 : list, m : int, n : int) -> int:
"""
Write a function to find the sum of numbers in a list within a range

specified by two indices.↪→

"""
pass # To-do: implement

# Check if sum_range_list works
assert sum_range_list(

Second example:

def diff_even_odd(list1 : list) -> int:
"""
Write a function to find the difference of the first even and first

odd number of a given list.↪→

"""
pass # To-do: implement

# Check if diff_even_odd works
assert diff_even_odd(

A.6 Few-Shot Prompt for logical relations spec generation

We use two-shot examples prompting to guide the model to tests various kinds of properties.
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A.6.1 HumanEval

# Problem 1

from typing import List

def filtered_even_integers(input_list: List([int]) -> List[int]:
""" Given a list of integers, return a list that filters out the even

integers.↪→

>>> filtered_even_integers([1, 2, 3, 4])
[1, 3]
>>> filtered_even_integers([5, 4, 3, 2, 1])
[5, 3, 1]
>>> filtered_even_integers([10, 18, 20])
[]
"""
# TODO
pass

# Test 1

def test_filtered_even_integers(input_list: List()):
""" Given an input `input_list`, test whether the function

`filtered_even_integers` is implemented correctly.↪→

"""
output_list = filtered_even_integers(input_list)
# check if the output list only contains odd integers
for integer in output_list:

assert integer % 2 == 1
# check if all the integers in the output list can be found in the

input list↪→

for integer in output_list:
assert integer in input_list

# run the testing function `test_filtered_even_integers` on a new testcase
test_filtered_even_integers([31, 24, 18, 99, 1000, 523, 901])

# Problem 2

def repeat_vowel(input_str: str) -> str:
""" Return a string where the vowels (`a`, `e`, `i`, `o`, `u`, and

their capital letters) are repeated twice in place.↪→

>>> repeat_vowel('abcdefg')
'aabcdeefg'
>>> repeat_vowel('Amy Emily Uber')
'AAmy EEmiily UUbeer'
"""
# TODO
pass

# Test 2

def test_repeat_vowel(input_str: str) :
""" Given an input `input_str`, test whether the function

`repeat_vowel` is implemented correctly.↪→

"""
output_str = repeat_vowel(input_str)
vowels = ['a', 'A', 'e', 'E', 'i', 'I', 'o', 'O', 'u', 'U']
# check if the number of vowels in the output string is doubled
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# First get the number of vowels in the input
number_of_vowels_input = sum([input_str.count(vowel) for vowel in

vowels])↪→

# Then get the number of vowels in the output
number_of_vowels_output = sum([output_str.count(vowel) for vowel in

vowels])↪→

assert number_of_vowels_input * 2 == number_of_vowels_output

# run the testing function `test_repeat_vowel` on a new testcase
test_repeat_vowe('ABCDEabcdeABCDE YOUUOY')

A.6.2 MBPP

# Problem 1

from typing import List

# Given a list of integers, return a list that filters out the even
integers.↪→

def filtered_even_integers(input_list: List([int]) -> List[int]:
pass # To-do: Implement

# Test 1

def test_filtered_even_integers(input_list: List()):
""" Given an input `input_list`, test whether the function

`filtered_even_integers` is implemented correctly.↪→

"""
output_list = filtered_even_integers(input_list)
# check if the output list only contains odd integers
for integer in output_list:

assert integer % 2 == 1
# check if all the integers in the output list can be found in the

input list↪→

for integer in output_list:
assert integer in input_list

# run the testing function `test_filtered_even_integers` on a new testcase
test_filtered_even_integers([31, 24, 18, 99, 1000, 523, 901])

# Problem 2

# Return a string where the vowels (`a`, `e`, `i`, `o`, `u`, and their
capital letters) are repeated twice in place↪→

def repeat_vowel(input_str: str) -> str:
pass # To-do: Implement

# Test 2

def test_repeat_vowel(input_str: str) :
""" Given an input `input_str`, test whether the function

`repeat_vowel` is implemented correctly.↪→

"""
output_str = repeat_vowel(input_str)
vowels = ['a', 'A', 'e', 'E', 'i', 'I', 'o', 'O', 'u', 'U']
# check if the number of vowels in the output string is doubled
# First get the number of vowels in the input
number_of_vowels_input = sum([input_str.count(vowel) for vowel in

vowels])↪→
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Figure 9: Comparing cross-validated pass@k for our linear model and a small MLP.

# Then get the number of vowels in the output
number_of_vowels_output = sum([output_str.count(vowel) for vowel in

vowels])↪→

assert number_of_vowels_input * 2 == number_of_vowels_output

# run the testing function `test_repeat_vowel` on a new testcase
test_repeat_vowe('ABCDEabcdeABCDE YOUUOY')

A.7 Multilayer Perceptron Model

In the main text we describe a linear model that computes confidence scores for each program
based on features of the verification results. We also tried a multilayer perceptron with a
single hidden layer and five hidden units: a small model, because we have a low dimensional
problem with at most a few hundred training problems. As shown in Fig. 9, the multilayer
perceptron does not actually do better on held out data, as measured by pass@k.

A.8 Ranking individual programs vs ranking clusters

In the main text we describe pass@k results based on first clustering the programs according
to which specifications they pass, and drawing k programs from the top k clusters. A simpler
approach is to simply return the top k ranked programs. Overall this gives inferior pass@k
for k > 1, and by design has no effect when k = 1 (Fig. 10).

A.9 Threshold Calibration

Our scoring function comes from logistic regression, which is a probabilistic discrimina-
tive model. Maximum likelihood training encourages it to be well-calibrated. Calibration
means that the classifier not only discriminates positive/negative examples correctly but
also, whenever it predicts probability x of a positive label, approximately x of the examples
are actually positive examples. In our setting, this means when the model predicts 90%
confidence that a program is correct, then about 90% of the time the program actually is
correct. We experimentally confirmed this calibration property, which allows tuning the
threshold τ to achieve the desired precision. The free parameter τ acts as a threshold on
the confidence score needed to output a program. Because our scoring function comes from
logistic regression, the threshold τ also acts as a threshold on how high the predicted proba-
bility that a program is correct has to be before we consider it to be a candidate solution. In
particular, the logistic regressor predicts the probability of program correctness as σ(score),
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Figure 10: Comparing cross-validated pass@k for our model ranking clusters compared to
our model ranking programs.

so thresholding score by τ corresponds to thresholding probability by σ−1(τ). Thus, if our
classifier is well-calibrated, we can set the threshold τ to the desired precision. Indeed, our
model is out-of-the-box well-calibrated, as illustrated in Fig. 11.
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Figure 11: Comparing the calibration of our probabilistic scoring function against CodeT’s
scoring function. Note that, at high predicted certainty (rightward on horizontal axis), our
method remains well calibrated, while the non-probabilistic scoring approach adopted by
CodeT overestimates its success probability. speculyzer natively estimates probabilities, so
we plot the raw output of our system. CodeT’s ranking function is mapped to probabilities
via the Platt transform–a linear mapping followed by sigmoid–which is standard practice
for calibration curves (Platt et al., 1999). Because the Platt transform introduces two free
parameters for its linear mapping, cross validation is used to estimate CodeT’s calibration
curve.

A.10 Transformation of input problems to logical relations prompts

Here we show how to transform the input problem to the prompt used for generating logical
relations.
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MBPP transformation First we parse the input problems from MBPP dataset and
get the string representation of library imports, function name, function parameters, re-
turn type, and English problem description. We denote them as imports, func name,
parameter format, return type, and description respectively.
Then we use the template shown in Figure 13 and Figure 12 for input-output and logical
relations respectively. The parsed string from the input problem would then be inserted to
the placeholder accordingly.

# Problem 3
{imports}
def {func_name}({", ".join(parameter_format)}) -> {return_type}:

"""
{description}
"""
pass # To-do: implement

# Test 3

def test_{func_name}(

Figure 12: Template for MBPP logical relation prompt

{imports}

def {func_name}({", ".join(parameter_format)}) -> {return_type}:
"""
{description}
"""
pass # To-do: implement

# Check if {func_name} works
assert {func_name}('

Figure 13: Template for MBPP input-output prompt

Then, for the logical relations, we prepend the resulting string with the few shot example
string shown in A.6.2. For the input-output, we strip out the blank lines prefix if import is
empty.

HumanEval Transformation Similar to the above MBPP transformation, we parse
the input problems from HumanEval dataset and get the string representation of
function definition plus English description and function name. We denote them as
function definition with description and func name. Then we insert these into the
template shown in Figure 14 and Figure 15 for input-output and logical relations respec-
tively.

{function_definition_with_description}
pass

# Check if {func_name} works
assert {func_name}(

Figure 14: Template for HumanEval input-output prompt
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# Problem 3
{function_definition_with_description}

pass # To-do: implement

# Test 3

def test_{func_name}(

Figure 15: Template for HumanEval logical relation prompt

Finally, we prepend the resulting string with the few shot example string shown in A.6.1.

A.11 Examples of Top Certificates versus Random Certificates

Below we show example HumanEval problems, our top ranked sample, our top ranked
specification certifying the (in)correctness of that sample, and a random specification. There
are 20 such examples, randomly chosen; half show input-output specifications, and the other
half show logical relations.

Example synthesized program 1 (sample is correct)
from typing import List

def mean_absolute_deviation ( numbers : List[float ]) -> float:
""" For a given list of input numbers , calculate Mean Absolute

Deviation
around the mean of this dataset .
Mean Absolute Deviation is the average absolute difference between
each

element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
>>> mean_absolute_deviation ([1.0 , 2.0, 3.0, 4.0])
1.0
"""
mean = sum( numbers ) / len( numbers )
mad = 0
for number in numbers :

mad += abs( number - mean)
return mad / len( numbers )
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Top ranked relational spec for program 1

def test_mean_absolute_deviation ( numbers : List[float ]):
""" Given an input list `numbers `, test whether the function `
mean_absolute_deviation ` is implemented correctly .
"""
output = mean_absolute_deviation ( numbers )
# check if the result of mean_absolute_deviation is the same as
numpy.mean(np.abs( numbers - np.mean( numbers )))
try:

import numpy as np
# use this boolean variable to determine whether the test is

passed
test_pass = output == np.mean(np.abs( numbers - np.mean( numbers

)))
except ImportError :

print('make sure you have numpy installed ')
# if numpy is not installed , the test will not be run
test_pass = False

assert test_pass

# run the testing function `test_mean_absolute_deviation ` on a new
testcase

test_mean_absolute_deviation ([48.35 , 48.45 , 48.85 , 49.15 , 49.35 ,
49.55 , 50.15 , 50.55 , 51.55 , 54.45])

Random relational spec for program 1
def test_mean_absolute_deviation ( numbers : List[float ]) -> float:

""" Given an input `numbers `, test whether the function `
mean_absolute_deviation ` is implemented correctly .
"""
# TODO
pass

# run the testing function `test_mean_absolute_deviation ` on a new
testcase

test_mean_absolute_deviation ([1.0 , 2.0, 3.0, 4.0])

Example synthesized program 2 (sample is correct)
from typing import List

def filter_by_substring ( strings : List[str], substring : str) -> List[
str ]:
""" Filter an input list of strings only for ones that contain

given substring
>>> filter_by_substring ([], 'a ')
[]
>>> filter_by_substring ([' abc ', 'bacd ', 'cde ', 'array '], 'a ')
['abc ', 'bacd ', 'array ']
"""
return [s for s in strings if substring in s]
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Top ranked relational spec for program 2
def test_filter_by_substring ( input_list : List[str], input_substring :

str):
""" Given an input `input_list ` and `input_substring `, test

whether the function `filter_by_substring ` is implemented
correctly .
"""
output_list = filter_by_substring (input_list , input_substring )
# check if all the elements in the output list do contain the
given substring
for string in output_list :

assert input_substring in string

# run the testing function `test_filter_by_substring ` on a new
testcase

test_filter_by_substring ([ 'ABCDE ', 'BACDE ', 'CDE ', 'ARRAY '], 'BC ')

Random relational spec for program 2

def test_filter_by_substring ( strings : List[str], substring : str) ->
List[str ]:
""" Given a list of `strings ` and an input `substring `, test

whether the function `filter_by_substring ` is implemented
correctly .
"""
output_strings = filter_by_substring (strings , substring )
# check if every element returned in the output list contains the
given substring
for element in output_strings :

assert substring in element

# run the testing function `test_filter_by_substring ` on a new
testcase

test_filter_by_substring ([ 'abc ', 'bcd ', 'cde ', 'adb ', 'aed '], 'ae ')

Example synthesized program 3 (sample is incorrect)
from typing import List , Tuple

def rolling_max ( numbers : List[int ]) -> List[int ]:
""" From a given list of integers , generate a list of rolling

maximum element found until given moment
in the sequence .
>>> rolling_max ([1, 2, 3, 2, 3, 4, 2])
[1, 2, 3, 3, 3, 4, 4]
"""
result : List[int] = []
current_max : int = numbers [0]
for i in numbers :

if i > current_max :
current_max = i

result . append ( current_max )
return result
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Top ranked relational spec for program 3

def test_rolling_max ( input_list : List[int ]):
""" Given an input list `input_list `, test whether the function `

rolling_max ` is implemented correctly .
"""
output_list = rolling_max ( input_list )
# check if the length of the output list is correct
assert len( output_list ) == len( input_list )
# check if the last element of the output list is the maximum of
the input list
assert output_list [-1] == max( input_list )

# Check if the the the element at index i ( starting from 0) in the
output list

# is the maximum of the elements at index 0 through index i (
inclusive ) of the input list.
for i in range(len( output_list )):

assert output_list [i] == max( input_list [0: i + 1])

# run the testing function `test_rolling_max ` on a new testcase
test_rolling_max ([-1, 2, 7, 10, -5, 10, 9, 5, 4, 8, 9, 8, -10])

Random relational spec for program 3
import random

def test_rolling_max ( numbers : List[int ]):
""" Given an input `numbers `, test whether the function `

rolling_max ` is implemented correctly .
"""
rolling_max_list = rolling_max ( numbers )
# check if the length of the output list is correct
assert len( rolling_max_list ) == len( numbers )
# check if the output list is correct
for i in range(len( rolling_max_list )):

assert rolling_max_list [i] == max( numbers [:i + 1])

# run the testing function `test_rolling_max ` on a new testcase
test_rolling_max ( numbers = [ random . randint (0, 1000) for i in range

(100) ])

Example synthesized program 4 (sample is correct)

def count_upper (s):
"""
Given a string s, count the number of uppercase vowels in even

indices .

For example :
count_upper (' aBCdEf ') returns 1
count_upper (' abcdefg ') returns 0
count_upper ('dBBE ') returns 0
"""
upper_count = 0
upper_vowels = ['A', 'E', 'I', 'O', 'U']
for i in range (0, len(s), 2):

if s[i] in upper_vowels :
upper_count += 1

return upper_count
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Top ranked relational spec for program 4

def test_count_upper ():
"""
Test whether the count_upper function is implemented correctly
"""
assert count_upper ('aBCdEf ') == 1
assert count_upper ('abcdefg ') == 0
assert count_upper ('dBBE ') == 0
assert count_upper ('Aa') == 1
# add your own test cases here!

# run the testing function `test_count_upper `
test_count_upper ()

Random relational spec for program 4

def test_count_upper (s):
"""
Given a string s, test whether the function `count_upper ` is

implemented correctly .
"""
# TODO
pass

# run the testing function `test_count_upper ` on a new testcase
test_count_upper ('ABCDEabcdeABCDE YOUUOY ')
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Example synthesized program 5 (sample is incorrect)

def get_max_triples (n):
"""
You are given a positive integer n. You have to create an integer

array a of length n.
For each i (1 <= i <= n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i <

j < k,
and a[i] + a[j] + a[k] is a multiple of 3.

Example :
Input: n = 5
Output : 1
Explanation :
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).

"""
if n < 3:

return 0
cache = {}
for i in range (3, n+1):

residue = i*i - i + 1 % 3
if residue == 0:

cache[ residue ] = 1
else:

if residue in cache:
cache[ residue ] += 1

else:
cache[ residue ] = 1

res = 0
for i in cache:

if cache[i] >= 2:
res += get_combinations (cache[i], 2)

return res

Top ranked relational spec for program 5

def test_get_max_triples (n):
""" Given an input `n`, test whether the function `get_max_triples

` is implemented correctly .
"""
output = get_max_triples (n)
# check if the output is of the correct type
assert isinstance (output , int)
a = [i * i - i + 1 for i in range (1, n+1)]
# check if the output is of the correct value
number_of_valid_triples = 0
for i in range (1, n):

for j in range(i+1, n):
if a[i] + a[j] % 3 == 0:

number_of_valid_triples += 1
assert number_of_valid_triples == output

# run the testing function `test_get_max_triples ` on a new testcase
test_get_max_triples (n=10)
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Random relational spec for program 5

def test_get_max_triples (n: int):
""" Given an input `input_str `, test whether the function `

get_max_triples ` is implemented correctly .
"""
# TODO
pass

test_get_max_triples (34) # should print 92
test_get_max_triples (24) # should print 37
test_get_max_triples (14) # should print 18
test_get_max_triples (23) # should print 39
test_get_max_triples (35) # should print 96
test_get_max_triples (43) # should print 124
test_get_max_triples (2) # should print 0
test_get_max_triples (32) # should print 78
test_get_max_triples (15) # should print 18
test_get_max_triples (21) # should print 28
test_get_max_triples (36) # should print 99

Example synthesized program 6 (sample is incorrect)
from typing import List

def separate_paren_groups ( paren_string : str) -> List[str ]:
""" Input to this function is a string containing multiple groups

of nested parentheses . Your goal is to
separate those group into separate strings and return the list of

those.
Separate groups are balanced (each open brace is properly closed )

and not nested within each other
Ignore any spaces in the input string .
>>> separate_paren_groups ('( ) (( )) (( )( )) ')
[ '() ', '(())', '(()()) ']
"""
return []
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Top ranked relational spec for program 6
def test_separate_paren_groups ( input_str : str) -> None:

""" Given an input `input_str `, test whether the function `
separate_paren_groups ` is implemented correctly .
"""
output_str_list = separate_paren_groups ( input_str )
# Check if all the entries in the output list are valid
for input_str in output_str_list :

assert validate_paren_group ( input_str )

# Test 3
def test_separate_paren_groups ( input_str : str) -> None:

""" Given an input `input_str `, test whether the function `
separate_paren_groups ` is implemented correctly .
"""
output_str_list = separate_paren_groups ( input_str )
# Check if all the entries in the output list are valid
for input_str in output_str_list :

assert validate_paren_group ( input_str )

def validate_paren_group ( input_str : str) -> bool:
""" Check if an input string is a valid parenthesis group.
"""
# check if the number of opening and closing parentheses are the
same
# check that the character at each position is a closed
parentheses if the number of opening parentheses so far
# is greater than the number of closing parentheses so far
# check that the character at each position is a opening
parentheses if the number of opening parentheses so far
# is greater than the number of closing parentheses so far
pass

# run the testing function `test_separate_paren_groups ` on a new
testcase

test_separate_paren_groups ('() ((())(()))')

Random relational spec for program 6

def test_separate_paren_groups ( paren_string : str) -> List[str ]:
""" Given an input `paren_string `, test whether the function `

separate_paren_groups ` is implemented correctly .
"""
output_list = separate_paren_groups ( paren_string )
# first check if the output is a list
assert isinstance ( output_list , list)
for individual_group in output_list :

# check if each individual group has the same number of open
and close brackets

assert individual_group .count('(') == individual_group .count('
)')

# check if separate groups are not nested within each other
assert individual_group .count('() ') == 0

# run the testing function `test_separate_paren_groups ` on a new
testcase

test_separate_paren_groups ('( ) (( )) (( )( ))')
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Example synthesized program 7 (sample is correct)

def compare_one (a, b):
"""
Create a function that takes integers , floats , or strings

representing
real numbers , and returns the larger variable in its given

variable type.
Return None if the values are equal.
Note: If a real number is represented as a string , the floating

point might be . or ,

compare_one (1, 2.5) -> 2.5
compare_one (1, "2 ,3") -> "2 ,3"
compare_one ("5 ,1" , "6") -> "6"
compare_one ("1" , 1) -> None
"""
# create a list of all variables without types
list_of_vars = [a, b]
list_of_vars = [str(i) for i in list_of_vars ]
# remove commas
for i, val in enumerate ( list_of_vars ):

if ',' in val:
list_of_vars [i] = val. replace (",", ".")

# compare variables and return
if float( list_of_vars [0]) < float( list_of_vars [1]):

return b
elif float( list_of_vars [0]) > float( list_of_vars [1]):

return a
else:

return None

Top ranked relational spec for program 7

def test_compare_one ():
"""
Test whether the function `compare_one ` is implemented correctly .
"""
assert compare_one (1, 2.5) == 2.5
assert compare_one (1, "2,3") == "2,3"
assert compare_one ("5,1", "6") == "6"
assert compare_one ("1", 1) == None

test_compare_one ()
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Random relational spec for program 7

def test_compare_one (a, b):
""" Given an inputs `a` and `b`, test whether the function `

compare_one ` is implemented correctly .
"""
output = compare_one (a, b)
if a > b:

assert output == a
elif a < b:

assert output == b
elif a == b:

assert output == None

# run the testing function `test_compare_one ` on a new testcase
test_compare_one (1, 2.5)

Example synthesized program 8 (sample is correct)

def is_prime (n):
""" Return true if a given number is prime , and false otherwise .
>>> is_prime (6)
False
>>> is_prime (101)
True
>>> is_prime (11)
True
>>> is_prime (13441)
True
>>> is_prime (61)
True
>>> is_prime (4)
False
>>> is_prime (1)
False
"""

if n == 2:
return True

if n < 2 or (n % 2) == 0:
return False

return not any(n % i == 0 for i in range (3, int(n ** 0.5) + 1, 2))
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Top ranked relational spec for program 8

def test_is_prime (n):
""" Given an input `n`, test whether the function `is_prime ` is

implemented correctly .
"""
# check if the function return value is either `True ` or `False `
assert is_prime (n) in [True , False]
# check if the function returns `True ` if `n` is a prime number ,
otherwise returns `False `.
if n < 2:

assert not is_prime (n)
else:

for i in range (2, n):
if n % i == 0:

assert not is_prime (n)
else:

assert is_prime (n)

# run the testing function `test_is_prime ` on a new testcase
test_is_prime (1579)

Random relational spec for program 8

def test_is_prime (n):
""" Given an input `n`, test whether the function `is_prime ` is

implemented correctly .
"""
# test if `n` is a prime number
if is_prime (n):

# check if `n` is divisible by any number other than 1 and `
num `

for i in range (2, n):
assert n % i == 0

else:
# check if `n` is not a prime number
assert n == 1 or n % 2 == 0

pass

# run the testing function `test_is_prime ` on a new testcase
test_is_prime (10)
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Example synthesized program 9 (sample is incorrect)

def closest_integer (value):
'''
Create a function that takes a value ( string ) representing a

number
and returns the closest integer to it. If the number is

equidistant
from two integers , round it away from zero.

Examples
>>> closest_integer ("10")
10
>>> closest_integer ("15.3")
15

Note:
Rounding away from zero means that if the given number is

equidistant
from two integers , the one you should return is the one that is

the
farthest from zero. For example closest_integer ("14.5") should
return 15 and closest_integer (" -14.5") should return -15.
'''
return round(float(value))

Top ranked relational spec for program 9

def test_closest_integer (value):
'''
Given a value , test whether the function `closest_integer ` is
implemented correctly .
'''
output_val = closest_integer (value)
assert type( output_val ) is int and round(float(value)) ==

output_val
# run the testing function `test_closest_integer ` on a new testcase
test_closest_integer ("14.5")
test_closest_integer (" -14.5")
test_closest_integer ("14.4")
test_closest_integer (" -14.4")

Random relational spec for program 9

def test_closest_integer (value):
'''
Test whether the function `closest_integer ` is implemented

correctly .
'''
# TODO
pass

test_closest_integer ("10.1")
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Example synthesized program 10 (sample is correct)

def can_arrange (arr):
""" Create a function which returns the largest index of an element
which

is not greater than or equal to the element immediately preceding
it. If
no such element exists then return -1. The given array will not
contain
duplicate values .

Examples :
can_arrange ([1 ,2 ,4 ,3 ,5]) = 3
can_arrange ([1 ,2 ,3]) = -1
"""
for i in range(len(arr) -1, 0, -1):

if arr[i -1] > arr[i]:
return i

return -1

Top ranked relational spec for program 10

def test_can_arrange (arr):
""" Given an input `arr `, test whether the function `can_arrange `

is implemented correctly .
"""
output = can_arrange (arr)
# Check if the function returns -1 when there are no elements that
are not greater than or

# equal to the element immediately preceding it.
if (all(arr[i] >= arr[i -1] for i in range (1, len(arr)))):

assert output == -1
# Check if the function returns the largest index of an element
which is not greater
# than or equal to the element immediately preceding it.
else:

assert output == max ([i for i in range (1, len(arr)) if arr[i]
< arr[i -1]])

# run the testing function `test_can_arrange ` on a new testcase
test_can_arrange ([1, 2, 4, 3, 5])
test_can_arrange ([1, 2, 3])
test_can_arrange ([5, 2, 3])
test_can_arrange ([5, 2, 2, 2, 2])
test_can_arrange ([9, 8, 7, 6, 5, 4, 3, 2, 1])
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Random relational spec for program 10

def test_can_arrange (arr):
""" Given an array `arr `, test whether the function `can_arrange `

is
implemented correctly .
"""
output = can_arrange (arr)
if output == -1:

assert len(arr) == 0 or all(arr[i + 1] <= arr[i] for i in
range(len(arr) - 1))
else:

assert 0 <= output < len(arr)
assert output == 0 or arr[ output ] < arr[ output - 1]
assert output == len(arr) - 1 or arr[ output ] >= arr[ outpus +

1]

# run the testing function `test_can_arrange ` on a new testcase
test_can_arrange ([7, 6, 5, 4, 3, 2, 1])

Example synthesized program 11 (sample is correct)

def specialFilter (nums):
""" Write a function that takes an array of numbers as input and

returns
the number of elements in the array that are greater than 10 and

both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example :
specialFilter ([15 , -73, 14, -15]) => 1
specialFilter ([33 , -2, -3, 45, 21, 109]) => 2
"""
return len ([ num for num in nums if (num > 10 and (num % 10 in {1,

3, 5, 7, 9} and num // 10 ** (len(str(num)) - 1) in {1, 3, 5, 7,
9}))])

return len(list( filter ( lambda x: bool(x > 10 and (x % 10 in {1, 3,
5, 7, 9} and x // 10 ** (len(str(x)) - 1) in {1, 3, 5, 7, 9})),

nums)))

Top ranked input-output spec for program 11
assert specialFilter ([33 , 23, 75, 21, -1, 109]) == 3

Random input-output spec for program 11
assert specialFilter ([1, 2, 3, 4]) == 0
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Example synthesized program 12 (sample is correct)

def make_a_pile (n):
"""
Given a positive integer n, you have to make a pile of n levels of
stones .

The first level has n stones .
The number of stones in the next level is:

- the next odd number if n is odd.
- the next even number if n is even.

Return the number of stones in each level in a list , where element
at index

i represents the number of stones in the level (i+1).

Examples :
>>> make_a_pile (3)
[3, 5, 7]
"""
stones = []
for level in range (1, n + 1):

stones . append (n + 2 * level - 2)
return stones

Top ranked input-output spec for program 12
assert make_a_pile (9) == [9, 11, 13, 15, 17, 19, 21, 23, 25]

Random input-output spec for program 12
assert make_a_pile (4) == [4, 6, 8, 10], "Wrong implementation "
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Example synthesized program 13 (sample is correct)

def do_algebra (operator , operand ):
"""
Given two lists operator , and operand . The first list has basic

algebra operations , and
the second list is a list of integers . Use the two given lists to

build the algebric
expression and return the evaluation of this expression .

The basic algebra operations :
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )

Example :
operator ['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9

Note:
The length of operator list is equal to the length of operand

list minus one.
Operand is a list of of non - negative integers .
Operator list has at least one operator , and operand list has

at least two operands .

"""
if len( operator ) > 0 and len( operand ) > 1:

expression = [str( operand [0])]
for i in range(len( operator )):

expression . append ( operator [i])
expression . append (str( operand [i+1]))

expression = ' '.join( expression )
return eval( expression )

else:
return None

Top ranked input-output spec for program 13
assert do_algebra ([ '+', '*'], [2, 3, 4, 5]) == 14

Random input-output spec for program 13
assert do_algebra ([ '+', '*', '-'], [2, 3, 4, 5]) == 9
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Example synthesized program 14 (sample is correct)

def modp(n: int , p: int):
""" Return 2ˆn modulo p (be aware of numerics ).
>>> modp (3, 5)
3
>>> modp (1101 , 101)
2
>>> modp (0, 101)
1
>>> modp (3, 11)
8
>>> modp (100 , 101)
1
"""
# Explanation of the strategy :
# if n == 0: return 1 because 2ˆ0 = 1
# if n == 1: return 2 because 2ˆ1 = 2 % p = 2
# if n == 2: return 4 because 2ˆ2 = 4 % p = 4
# if n == 3: return 3 because 2ˆ3 = 8 % p = 3 (p is prime , so 2ˆp

= 2)
# if n == 4: return 1 because 2ˆ4 = 16 % p = 1
# if n == 5: return 2 because 2ˆ5 = 32 % p = 2
# if n == 6: return 4 because 2ˆ6 = 64 % p = 4
# if n == 7: return 3 because 2ˆ7 = 128 % p = 3 (p is prime , so 2ˆ

p = 2)
# if n == 8: return 1 because 2ˆ8 = 256 % p = 1
# if n == 9: return 2 because 2ˆ9 = 512 % p = 2
# ...
# if n == 2k: return 2ˆ{2k} = 2ˆ{k}ˆ2 % p = (2ˆk % p)ˆ2 % p
# if n == 2k + 1: return 2ˆ{2k+1} = 2 * 2ˆ{2k} = 2 * (2ˆk % p)ˆ2 %
p = 2 * (2ˆk % p)ˆ2 % p

# if n == 2k + 1: 2ˆn % p = 2 * 2ˆ{2k} % p = 2 * (2ˆk % p)ˆ2 % p
# if n == 2k: 2ˆn % p = (2ˆk % p)ˆ2 % p
if n == 0:

return 1
else:

if n % 2 == 0:
half = modp(n / 2, p)
return (half ** 2) % p

else:
return (2 * modp(n - 1, p)) % p

Top ranked input-output spec for program 14
assert modp (3**3**3 , 20) == 8

Random input-output spec for program 14
assert modp (0, 101) == 1
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Example synthesized program 15 (sample is correct)

def triangle_area (a, h):
""" Given length of a side and high return area for a triangle .
>>> triangle_area (5, 3)
7.5
"""
return (a * h) / 2

Top ranked input-output spec for program 15
assert triangle_area (1.5 , 1.5) == 1.125

Random input-output spec for program 15
assert triangle_area (5, 3) == 7.5, 'Test failed '

Example synthesized program 16 (sample is correct)

def fibfib (n: int):
""" The FibFib number sequence is a sequence similar to the

Fibbonacci sequnece that 's defined as follows :
fibfib (0) == 0
fibfib (1) == 0
fibfib (2) == 1
fibfib (n) == fibfib (n -1) + fibfib (n -2) + fibfib (n -3).
Please write a function to efficiently compute the n-th element of
the fibfib number sequence .

>>> fibfib (1)
0
>>> fibfib (5)
4
>>> fibfib (8)
24
"""
if n < 2:

return 0
elif n == 2:

return 1
else:

f0 = 0
f1 = 0
f2 = 1
for i in range (3, n+1):

f0 , f1 , f2 = f1 , f2 , f0+f1+f2
return f2

Top ranked input-output spec for program 16
assert fibfib (8) == 24, " fibfib 8" ''' 6. Write a function to return

the most common character in a string . Inputs : str: string to be
evaluated Outputs : character that occurs most frequently in the
string Notes: This problem can be solved in O(n) time using a hash

map. Examples : - "hello world" -> 'l' - " aabbcc " -> 'a' - "
mississippi " -> 'i' '''
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Random input-output spec for program 16
assert fibfib (5) == 4, "Did you implement fibfib (n) correctly ?"

Example synthesized program 17 (sample is correct)

def fib(n: int):
""" Return n-th Fibonacci number .
>>> fib (10)
55
>>> fib (1)
1
>>> fib (8)
21
"""
"*** YOUR CODE HERE ***"
a, b = 0, 1
while n > 0:

a, b = b, a + b
n -= 1

return a

Top ranked input-output spec for program 17
assert fib (1000) ==

43466557686937456435688527675040625802564660517371780402481729089536555417949051890403879840079255169295922593080322634775209689623239873322471161642996440906533187938298969649928516003704476137795166849228875

Random input-output spec for program 17
assert fib (10) == 55, fib (10)

Example synthesized program 18 (sample is incorrect)

def prime_length ( string ):
""" Write a function that takes a string and returns True if the

string
length is a prime number or False otherwise
Examples
prime_length ('Hello ') == True
prime_length (' abcdcba ') == True
prime_length (' kittens ') == True
prime_length (' orange ') == False
"""
length_str = len( string )
for i in range (2, length_str - 1):

if length_str % i == 0:
return False

return True
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Top ranked input-output spec for program 18
assert prime_length ('v') == True , " Failed prime_length test 5"

Random input-output spec for program 18
assert prime_length ('orange ') == False , 'Check function definition !'

Example synthesized program 19 (sample is correct)
from typing import List

def remove_duplicates ( numbers : List[int ]) -> List[int ]:
""" From a list of integers , remove all elements that occur more

than once.
Keep order of elements left the same as in the input.
>>> remove_duplicates ([1, 2, 3, 2, 4])
[1, 3, 4]
"""
num_count = {}
for num in numbers :

num_count [num] = num_count .get(num , 0) + 1

new_list = []
for num in numbers :

if num_count [num] == 1:
new_list . append (num)

return new_list

Top ranked input-output spec for program 19
assert remove_duplicates ([1, 2, 1, 2, 1, 2, 3]) == [3]

Random input-output spec for program 19
assert remove_duplicates ([1, 2, 1, 2]) == []
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Example synthesized program 20 (sample is incorrect)

def is_bored (S):
"""
You 'll be given a string of words , and your task is to count the

number
of boredoms . A boredom is a sentence that starts with the word "I

".
Sentences are delimited by '.', '?' or '!'.

For example :
>>> is_bored (" Hello world ")
0
>>> is_bored (" The sky is blue. The sun is shining . I love this

weather ")
1
"""
boredoms = 0
# replace . or ! or ? with . to simplify this problem
S = S. replace ('.','. ')
S = S. replace ('!','! ')
S = S. replace ('?','? ')
sentences = S.split(' ')
for sentence in sentences :

if sentence . startswith ('I'):
boredoms = boredoms + 1

return boredoms

Top ranked input-output spec for program 20
assert is_bored ("I have no idea what I'm doing") == 2

Random input-output spec for program 20
assert is_bored ("I love this weather .") == 1
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