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Abstract

Policy network parameter sharing is a commonly used technique in advanced deep
multi-agent reinforcement learning (MARL) algorithms to improve learning effi-
ciency by reducing the number of policy parameters and sharing experiences among
agents. Nevertheless, agents that share the policy parameters tend to learn similar
behaviors. To encourage multi-agent diversity, prior works typically maximize
the mutual information between trajectories and agent identities using variational
inference. However, this category of methods easily leads to inefficient exploration
due to limited trajectory visitations. To resolve this limitation, inspired by the
learning of pre-trained models, in this paper, we propose a novel Contrastive Tra-
jectory Representation (CTR) method based on learning distinguishable trajectory
representations to encourage multi-agent diversity. Specifically, CTR maps the
trajectory of an agent into a latent trajectory representation space by an encoder
and an autoregressive model. To achieve the distinguishability among trajectory
representations of different agents, we introduce contrastive learning to maximize
the mutual information between the trajectory representations and learnable identity
representations of different agents. We implement CTR on top of QMIX and evalu-
ate its performance in various cooperative multi-agent tasks. The empirical results
demonstrate that our proposed CTR yields significant performance improvement
over the state-of-the-art methods.

1 Introduction

Cooperative multi-agent reinforcement learning (MARL) can provide effective collaboration among
agents and has shown promise for solving real-world multi-agent tasks, such as robot swarms
[Hüttenrauch et al., 2017], autonomous driving [Bhalla et al., 2020, Dinneweth et al., 2022], and
wireless communications [Li et al., 2022b]. However, effective collaboration in complex multi-agent
tasks still remains a challenge for MARL. One of the key issues is that the joint action-observation
space grows exponentially in size with the number of agents, which highlights an urgent demand for
the scalability of MARL algorithms.

To address the scalability issue, learning decentralized policies for agents has been widely adopted.
This allows agents to make action decisions based on their partial observations. However, learning a
private decentralized policy network for each agent in MARL may require training a large amount of
policy network parameters, resulting in inefficient learning. To enhance learning efficiency, many
advanced MARL algorithms adopt the parameter sharing technique, including policy gradients [Lowe
et al., 2017, Ma et al., 2021, Wang et al., 2020d, Ndousse et al., 2021, Zhang et al., 2021] and
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value-based algorithms [Iqbal et al., 2021, Yang et al., 2021, Wang et al., 2020a, Sunehag et al., 2018,
Rashid et al., 2018]. Incorporating parameter sharing enables all agents to make action decisions
using a shared policy network. This significantly reduces the number of policy network parameters.
Additionally, training a shared policy network facilitates the sharing of experiences among all agents,
alleviating the unstable learning problem arising from partial observability. These advantages of
parameter sharing dramatically improve the learning efficiency and accelerate the training speed of
MARL algorithms [Wang et al., 2020b].

However, although parameter sharing has many advantages, agents sharing the policy network
parameters tend to become homogeneous since they typically learn similar behaviors under similar
observations [Hu et al., 2022, Mahajan et al., 2019], resulting in inefficient exploration and poor
diversity. Challenging multi-agent tasks typically require extensive exploration and diverse policies
among agents. For example, in a football game, agents in a team require to play different roles such
as goalkeeper, defender, midfielder, and forward, taking diverse tactics to achieve more credits. If
they behave similarly to compete for a ball, they may not achieve satisfactory results.

One of the most common methods to encourage multi-agent diversity is to maximize the mutual
information between trajectories and agent identities by using variational inference methods [Jiang
and Lu, 2021, Li et al., 2021] that learn parameterized trajectory discriminators to distinguish the
trajectories of different agents given agent identities. However, due to the high mutual dependence
between agent identities and trajectories, the agents tend to frequently visit known trajectories that
contain more identity information, where they can achieve larger rewards than discovering new
trajectories, leading to serious overfitting of trajectories to agent identities. Consequently, despite the
emergence of diversity among agents, the agents unfortunately suffer from inefficient exploration.

To encourage multi-agent diversity while guaranteeing efficient exploration, we propose a novel
Contrastive Trajectory Representation (CTR) method based on learning distinguishable trajectory
representations, which encourages multi-agent diversity in an abstract contrastive representation space.
Our motivation is that, although the shared policy network may receive similar inputs, it can still
learn diverse representations, leading to varied behaviors. Unlike previous mutual information-based
methods using variational inference, our method adopts a novel contrastive learning lower bound
for the mutual information between trajectory representations and learnable identity representations.
Notably, the learnable identity representation introduced in our method differs entirely from the fixed
agent identity used in prior works. It is trained by minimizing the contrastive learning loss in order
to constrain the trajectory representations of different agents to be linearly classified. As a result,
the distinguishability among trajectory representations can be achieved and does not depend on any
fixed agent identity. The learned distinguishable trajectory representations can then be used in the
downstream action-decision tasks to learn more diverse and exploratory policies.

Our contributions can be summarized as follows: first, we propose a novel method for encouraging
multi-agent diversity through learning distinguishable trajectory representations, which minimizes the
contrastive learning loss between trajectory representations and identity representations of different
agents. The distinguishable trajectory representations do not rely on fixed agent identities and thus
lead to more efficient exploration; second, to reduce the gap between the contrastive learning lower
bound and the mutual information objective caused by the small size of the dataset storing trajectory
representations, we further extend the contrastive learning loss by increasing the number of negative
samples; third, we provide a practical learning framework for CTR and apply our approach to QMIX;
forth, we evaluate CTR in both grid world environments and the StarCraft Multi-Agent Challenge
(SMAC) benchmark. The empirical results demonstrate that CTR significantly outperforms the
existing state-of-the-art methods and yields more exploratory and diverse policies.

2 Backgrounds

2.1 Multi-Agent System

We consider learning in the fully cooperative multi-agent Decentralized Partially Observable
Markov Decision Process (Dec-POMDP) [Oliehoek and Amato, 2015] described as a tuple
〈A,S, U, P,R,O,Ω, γ〉, where A represents a set of |A| agents, s ∈ S is the global state of the
environment, and U is a set of agents’ actions. At the beginning of each time step, each agent a
receives an observation oa ∈ Ω according to the function O(s, a) and then selects an action ua ∈ U .
All the agents’ actions compose a joint action u, and the environment then transitions to the next
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Figure 1: Architecture of CTR model.

state s′ with the probability drawn from the transition function P (s′ | s,u). At the same time, the
environment feeds back to the agents a shared team reward r = R(s,u). γ ∈ [0, 1) is a reward
discount factor. The observation-action pairs 〈oa, ua〉 of agent a make up its trajectory τa ∈ T . Each
agent a learns its individual policy πa (ua | τa), forming a joint policy π, to maximize the joint
action-value function Qπ(s,u) = Es0:∞,u0:∞ [

∑∞
t=0 γ

trt | s0 = s,u0 = u,π].

3 Contrastive Trajectory Representation

3.1 Motivation and Intuitions

To promote multi-agent diversity, the agents need to learn diverse policies. In order to achieve this
purpose, prior works [Jiang and Lu, 2021, Li et al., 2021] have devoted to maximizing the mutual
information between trajectories and agent identities of different agents via variational inference
methods. However, this category of methods forces the agent to visit known trajectories where they
can achieve larger rewards than discovering new ones, making the learned policy prone to overfitting.
The theoretical analysis of this limitation is provided in Appendix A. To address this issue, the
intuition behind our proposed CTR is that we can instead learn diverse policies from the trajectory
representations distributed on a contrastive representation hypersphere. In this section, we show how
to learn trajectory representations and how the learned distinguishable trajectory representations can
be used to learn diverse policies in practical learning algorithms.

3.2 Contrastive Trajectory Representation

In this section, we introduce the details of our CTR model that encourages multi-agent diversity by
learning distinguishable trajectory representations.

The architecture of the CTR model is shown in Figure 1. First, a non-linear encoder Cenc maps the
input assembled by the observation of agent a at time step t oat as well as the last step action uat−1 to a
latent representation zat = Cenc(o

a
t , u

a
t−1). Next, to encode the previous action-observation sequences

of the trajectory, an autoregressive model Cgar is used to summarize all the latent representations
za≤t and generate a trajectory representation cat = Cgar(z

a
≤t). The trajectory representation cat can

empirically achieve better performance compared with the latent representation zat when used to
make action decisions in the Dec-POMDP setting since it stores additional information from the
historical trajectory that can alleviate the non-stationarity issue caused by the partially observable
constraints [Sunehag et al., 2017]. In practice, for simplicity, we adopt standard network structures
such as resnet blocks for the encoder and GRUs for the autoregressive model. It is notable that other
types of encoder and autoregressive models can also be employed in the CTR model.

Next, we introduce how to train the CTR model to learn distinguishable trajectory representations,
encouraging multi-agent diversity. It can be difficult to enlarge the distance between the trajectory
representations of different agents directly. Instead, we can introduce an additional learnable identity
representation for each agent to represent the agent identity. Unlike previous works [Jiang and Lu,
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2021, Li et al., 2021] that use fixed one-hot vectors to represent the agent identities, in this paper,
the identity representation adopted in our method is a learnable vector trained to linearly classify the
trajectory representations of different agents.

Concretely, at the beginning of the training process, we randomly initialize a learnable vector
da ∈ RH for each agent a as its identity representation that has the same dimensions as the trajectory
representation. To achieve the distinguishability between trajectory representations of different
agents, we maximize the mutual information between the trajectory representations and identity
representations of agents:

I(ct; d) = H(ct)−H(ct | d) = Ect,d
[
log

p(ct | d)

p(ct)

]
, (1)

where H is the entropy. Estimating the mutual information directly is typically intractable. In
this paper, we present a novel method to solve the objective of mutual information between the
trajectory representations and identity representations, unlike previous variational inference methods.
Concretely, inspired by contrastive learning [Chen et al., 2020], a popular self-supervised learning
method for learning representations, we use a contrastive learning loss, or the InfoNCE loss [Oord
et al., 2018], to derive and optimize a tractable lower bound for the mutual information:

I(ct; d) ≥ log(|A|)− LN , (2)

where |A| is the number of agents, and LN is the InfoNCE loss. Note that log(|A|) is a constant.
Therefore, by minimizing the LN , we maximize the mutual information I(ct; d). We next design
a practical contrastive learning loss to learn distinguishable trajectory representations. Given a set

of trajectory representations of all agents at time step t, C =
{
ca

′

t

}|A|
a′=1

, and agent a’s identity
representation da, the goal of contrastive learning is to make sure that the identity representation of
agent a da is close with its corresponding trajectory representation cat while being distant from other
trajectory representations in C \ {cat }. To achieve this goal, we minimize the contrastive learning
loss:

LN = − E
(da,C)∼D

[
log

f (cat , d
a)∑

ca
′
t ∈C

f
(
ca

′
t , d

a
)] (3)

where f (ct, d) = exp
(
ct
T d
)
∈ R. ctT d measures the similarity between the trajectory represen-

tation ct and the identity representation d. Minimizing the contrastive learning loss trains both the
CTR model and the identity representations. Here, the identity representation of each agent serves
as a linear classifier, linearly classifying the trajectory representations output by the CTR model for
minimal contrastive learning loss. As a result, the distinguishability among trajectory representations
can be achieved.

3.3 Multi-Agent Contrastive Learning Loss

One limitation of applying the contrastive learning loss given by Equation 3 to the multi-agent setting
is that the small size of dataset C, which is equal to the number of agents, induces a larger gap
between the true mutual information objective and the contrastive learning lower bound, which can
hurt the performance. The contrastive learning lower bound requires a larger number of samples
to tighten its value to the true mutual information [Oord et al., 2018]. To resolve this problem, we
consider extending the Equation 3 to the contrastive learning loss with |A| positive samples:

LmN = −E

 1

|A|

|A|∑
a=1

log
|A|f (cat , d

a)∑|A|
a′=1 f

(
ca

′
t , d

a′
)

+
∑|A|
a′=1

∑
ca

′′
t ∈C,a′′ 6=a′

f
(
ca

′′
t , da′

)
 . (4)

The contrastive leaning loss LmN shown in Equation 4 calculates the expectation over |A| positive
pairs {cat , da}

|A|
a=1 and |A|(|A| − 1) negative pairs {{ca′t , da}ca′t ∈C,a′ 6=a}

|A|
a=1. Notably, LmN actively
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increases the number of negative samples in the denominator from O(|C|) to O
(
|C|2

)
that can help

the contrastive learning loss with a smaller dataset C to lead to more stable and robust results in
challenging multi-agent tasks. By minimizing the LmN , the trajectory representations of all agents
stay close to their corresponding identity representations while being far away from other identity
representations, leading to the distinguishability among trajectory representations. We refer the reader
to Appendix C for the Pytorch-style pseudocode of our proposed CTR.

Differences to contrastive learning We note that the contrastive learning employed in our method is
quite different from its common usage in self-supervised pre-training that learns representations by
contrasting the positive and negative pairs of instances. In our method, we apply contrastive learning
to learn representations in a fully supervised manner by introducing an identity representation for
each agent. This allows the trajectory representations belonging to the same agent to be pulled
together on the trajectory representation hypersphere, while simultaneously pushing apart trajectory
representations from different agents. The fully supervised manner ensures that the minimization of
the contrastive learning loss entails increased distances between trajectory representations of different
agents.

3.4 Learning Algorithm

In this section, we discuss how to integrate CTR with existing MARL algorithms adopting the
decentralized policy, to encourage multi-agent diversity. As illustrated in Figure 1, we implement
CTR in individual policy networks of agents to learn distinguishable trajectory representations. The
overall learning framework of CTR should consist of two parts: (i) the RL loss function of the MARL
algorithm to train the decentralized policy towards maximizing the environment returns; (ii) the
contrastive learning loss of CTR as an auxiliary loss function to train the decentralized policy in order
to learn distinguishable trajectory representations. Thus, we can formulate the total loss function as
follows:

Ltotal = LRL + αLmN , (5)

where LRL is the RL loss function and LmN is the contrastive learning loss function. α is a hyperpa-
rameter adjusting the weight of contrastive learning loss LmN compared with the RL loss LRL. The
overall CTR framework is trained end-to-end in a centralized manner. In this paper, we consider
integrating CTR with the value-decomposition framework where each agent learns its policy through
optimizing an approximation of the joint action-value function, denoted by Qtot (s,u), as follows:

LTD(θ) =

b∑
i=1

[(
r + γmax

u′
Qtot

(
s′,u′; θ−

)
−Qtot(s,u; θ)

)2]
(6)

where b is the batch size of transition samples, θ and θ− represent the parameters of Qtot and target
Qtot, respectively, as in DQN [Mnih et al., 2013]. Qtot is a combination of per-agent utilities Qa
where the decentralized policies are derived. We consider using QMIX [Rashid et al., 2018] to
decompose the combination Qtot, which factors the Qtot into a monotonic nonlinear combination of
agent utilities. Thus, we can train the overall CTR framework end-to-end by minimizing:

Ltotal = LTD(θ) + αLmN . (7)

The TD loss LTD(θ) trains both the mixing network and agent utility networks. The contrastive
learning loss LmN trains both the identity representations and agent utility networks (including the
autoregressive model as well as the encoder of CTR). It is notable that CTR is a component of the
agent utility network to learn distinguishable trajectory representations via contrastive learning. Thus,
CTR won’t break the IGM rule [Rashid et al., 2018] of QMIX. Moreover, our method only adds
one linear layer (identity representation), resulting in a small overhead that would not decrease the
learning efficiency of the integrated learning algorithm. This is crucial for the parameter sharing
mechanism since we do not need to train an additional neural network at the expense of learning
efficiency (the advantage of parameter sharing) for promoting multi-agent diversity. We refer the
reader to Appendix B for the implementation of CTR on top of the policy gradient method.
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Figure 2: The performance comparison between our proposed CTR and baselines in Pac-Men.

(a) 3s5z (easy) (b) 2c_vs_64zg (hard) (c)7sz (hard)

(d) 6h_vs_8z (super hard) (e) corridor (super hard) (f)3s5z_vs_3s6z (super hard)

Figure 3: Performance comparison between our proposed CTR and baselines in SMAC scenarios.
Without loss of generality, all results are presented with the mean and standard deviation of perfor-
mance tested with five random seeds.

4 Experiments

In this section, to demonstrate the outperformance of our proposed CTR, we evaluate CTR in Pac-
Men, SMAC, and SMACv2 benchmarks. We compare our method with various state-of-the-art
algorithms: value-decomposition algorithms (QMIX [Rashid et al., 2018], QTRAN [Son et al., 2019])
and mutual information-based exploration methods (MAVEN [Mahajan et al., 2019], EOI [Jiang and
Lu, 2021], SCDS [Li et al., 2021], PMIC [Li et al., 2022a], LIPO [Charakorn et al., 2023], and FoX
[Jo et al., 2024]). To ensure a fair comparison, we set the same values for common hyperparameters
across different methods. The hyperparameters used in our experiments and training details are
provided in Appendix G. Moreover, CTR does not include the agent identity in the input of the shared
policy network to take action decisions.

4.1 Pac-Men

We first design a grid-world environment called Pac-Men, as shown in Figure 2a, to demonstrate the
effectiveness of CTR in encouraging multi-agent diversity. In Pac-Men, four agents are initialized at
the center of the maze. Each agent has a partial observation and can only observe a 4×4 grid around
them. The goal of each agent is to eat the dots randomly initialized in edge rooms. We set different
lengths for the paths towards edge rooms to improve the task difficulty and only the downward path
is within the agent’s observation scope, highlighting an urgent demand for efficient exploration. The

6



(a) terran_5_vs_5 (b) protoss_5_vs_5 (c)zerg_5_vs_5

Figure 4: Performance comparison between our proposed CTR and baselines in SMACv2 scenarios.

(a) MAVEN (b) EOI (c)SCDS (d) LIPO (e) FoX (f) CTR+QMIX

Figure 5: Visitation heatmaps of different algorithms in the terran_5_vs_5 scenario.

performance of CTR and baselines is shown in Figure 2b. We note that QMIX falls into the local
optimum and does not yield satisfactory performance in Pac-Men since some agents learned similar
policies and went to the same edge room, resulting in ineffective competition for dots among agents.
This can be verified by the visitation heatmap of QMIX shown in Figure 2c, where three agents go to
the bottom edge room. In contrast, CTR achieves significantly superior to all baselines in Pac-Men,
avoiding falling into local optimum through optimizing the objective of mutual information between
the identity representations and trajectory representations using contrastive learning loss. As shown
in Figure 2d, the diverse policies learned by CTR enable the agents to go to different edge rooms,
leading to efficient cooperation among agents. The mutual information-based baselines achieve
similar performance since they fail to find the edge room with the longest path due to inefficient
exploration.

4.2 SMAC and SMACv2

The StarCraft Multi-Agent Challenge (SMAC) [Samvelyan et al., 2019] is a common-used benchmark
for evaluating cooperative MARL algorithms. To demonstrate the effectiveness of our proposed CTR,
we conduct experiments in 6 SMAC scenarios: 3s5z (easy), 2c_vs_64zg (hard), 7sz (hard), 6h_vs_8z
(super hard), corridor (super hard), and 3s5z_vs_3s6z (super hard). Note that the performance is not
comparable between different versions of SMAC. We use the SC2.4.10 version of SMAC.

The test win rates achieved by our method and baselines in different SMAC scenarios are shown in
Figure 3, demonstrating the outperformance of our proposed CTR in the SMAC scenarios compared
to baselines. In the super hard scenarios: 6h_vs_8z, corridor, and 3s5z_vs_3s6z, where enemies
are more powerful than agents, CTR significantly outperforms all baselines. Qmix fails to learn
optimal policies in these scenarios since these scenarios typically require agents to learn to distribute
the enemies’ attack due to a large strength gap between agents and enemies, which necessitates the
emergence of diverse policies. CTR dramatically improves the final performance of QMIX by learning
distinguishable trajectory representations. Compared to other mutual information-based baselines,
CTR is more robust in promoting multi-agent diversity and achieves impressive final performance in
super hard scenarios. EOI performs poorly because its probabilistic trajectory classifier overfits to the
agent identities, hindering efficient exploration.

Moreover, homogeneous behaviors such as ‘focus fire’ are desired in the easy scenario 3s5z to quickly
defeat enemies. Note that CTR would not hinder such homogeneous behaviors that can lead to more
environmental rewards and conversely achieves satisfactory performance. We refer the reader to
Appendix E for further evaluations of our method in the scenarios requiring homogeneous behaviors.
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Figure 6: Performance comparison between CTR and ablation variants in SMAC scenarios.

(a) (b) (c) (d) (e)

Figure 7: T-SNE plots of trajectory representations of different agents learned by different variants of
CTR ((a) QMIX (b)CTR-With-One-Hot (c) CTR-With-TC-Loss (d) CTR-With-InfoNCE (e) CTR),
emerging in the corridor scenario of SMAC.

Stochasticity and Exploration Due to the fixed team compositions and initial positions in the
scenarios of SMAC, the agents can easily win the game when they master the particular action
sequences, such as ’kiting’, demonstrating that the SMAC scenarios lack efficient stochasticity to
test the exploration of MARL algorithms. We further conduct experiments on a more challenging
benchmark called SMACv2 [Ellis et al., 2022] that enables stochasticity in SMAC scenarios via
introducing random team compositions and random start positions.

We conduct experiments in three SMACv2 scenarios: terran_5_vs_5, protoss_5_vs_5, and
zerg_5_vs_5. Figure 4 shows the win rates for CTR and baselines. CTR yields more robust
performance than baselines and successfully adapts to the stochasticity from environments. We
attribute this to the efficient exploration strategies derived from distinguishable trajectory representa-
tions. The mutual information-based baselines do not achieve satisfactory performance in SMACv2
scenarios. These algorithms are prone to overfitting since they prefer to visit known trajectories that
contain more identity information than exploring new trajectories, resulting in poor exploration. This
can be verified by the visitation heatmaps provided in Figure 5, where the movements of agents
trained by the mutual information-based methods are located in the fixed partial areas of the map.
In contrast, CTR incentivizes more efficient exploration since CTR prevents overfitting by mapping
the trajectories onto a contrastive representation hypersphere, where the representations only need
to satisfy the distinguishability constraint. As a result, CTR yields more exploratory policies. The
movements of CTR agents are uniformly distributed on the map.

4.3 Ablation Study

In this section, we conduct ablation studies on the proposed CTR framework to investigate the
contributions of the main components in the CTR framework, including (A) autoregressive model, (B)
identity representation, and (C) contrastive learning loss with |A| positive samples. To test component
A, we design CTR-With-MLP that ablates the autoregressive model employed in CTR by replacing
it with multiple layer perceptions (MLPs). To test component B, we design CTR-With-One-Hot,
which ablates the learnable identity representation by using a pre-defined one-hot vector to represent
the identity of an agent. To test component C, we design two variants: CTR-With-TC-Loss and
CTR-With-InfoNCE. CTR-With-TC-Loss optimizes a trajectory classification (TC) loss that directly
predicts the corresponding agent identities given the trajectory representations regardless of negative
samples. CTR-With-InfoNCE performs the vanilla contrastive learning loss given by Equation 3 for
|A| times to distinguish the trajectory representations of all agents.

We test these variants in three SMAC scenarios: 3s5z (easy), 2c_vs_64zg (hard), and corridor (super
hard). The results are shown in Figure 6. CTR-With-One-Hot performs worst among all ablations,
with similar performance to QMIX. This performance decline indicates that the pre-defined one-hot
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vector fails to enable the agents to learn diverse behaviors. We further provide the t-SNE plots, as
shown in Figure 7, for learned trajectory representations. It becomes apparent that in the case of
CTR-With-One-Hot, the trajectory representations of different agents are mixed together as in QMIX.
Similarly, we notice the performance decrease in CTR-With-TC-Loss. This degradation arises from
the TC Loss’s primary focus on agent identity prediction, essentially learning a maximum likelihood
function over the collected trajectories given agent identities. However, it does not incorporate
constraints aimed at ensuring the separation between trajectory representations of different agents.
Consequently, trajectory representations of different agents learned by CTR-With-TC-Loss stay close
to each other without a distinct gap as demonstrated in Figure 7, making it challenging to distinguish
them efficiently. In contrast, CTR robustly constrains the trajectory representations of the same agent
to be close and those of different agents to be far apart on the trajectory representation hypersphere.

CTR-With-InfoNCE consistently achieves better performance than CTR-With-TC-Loss across all
scenarios, demonstrating the benefits brought by contrasting negative samples when learning distin-
guishable trajectory representations. However, CTR-With-InfoNCE results in obvious performance
degradation in the super hard corridor scenario. This phenomenon indicates that the contrastive
learning loss given by Equation 4 adopted in our CTR method that involves more negative samples
when learning trajectory representations leads to more stable and robust results. As illustrated in
Figure 7, the trajectory representations of different agents learned by CTR entail an increase in
distances compared to those learned by CTR-With-InfoNCE. CTR-With-MLP does not lead to an
obvious performance drop in the 3s5z (easy) and 2c_vs_64zg (hard) scenarios. However, in the super
hard corridor scenario, CTR-With-MLP yields a dramatic decrease in performance, demonstrating
that learning the context of the trajectory using an autoregressive model is beneficial for agents to
improve their performance.

5 Related Works

The diversity in MARL encourages the differences between the policies of agents. SVO [McKee et al.,
2020] studies multi-agent diversity by drawing on the social value orientation, a theory from social
psychology, to solve multi-agent social dilemmas. It verifies the utility of population heterogeneity
in cooperative MARL. SVO realizes the social value orientation via forming an intrinsic reward to
encourage diverse policies. RODE [Wang et al., 2020c] achieves multi-agent diversity by assigning
various actions to restricted roles. RODE is efficient when the agent has a small action space that can
be decomposed. It can be inefficient for RODE to be applied in continuous action with huge action
space.

MAVEN [Mahajan et al., 2019] proposes to enable the value-based agents to condition on a shared
latent variable controlled by a hierarchical policy. To learn diverse joint behaviors, MAVEN maxi-
mizes the mutual information between the latent variable and the trajectories. Another method EOI
[Jiang and Lu, 2021] proposes to encourage the individuality of agents by a supervised learning
method that trains a probabilistic classifier to learn a probability distribution over agents with regard
to their observations. CDS [Li et al., 2021] adopts the objective of mutual information to encourage
multi-agent diversity. CDS optimizes the mutual information by formulating lower bounds derived
by the Boltzmann softmax distribution and the variational inference, respectively. PMIC [Li et al.,
2022a] maximizes the mutual information associated with superior cooperative behaviors while
minimizing the mutual information related to inferior ones. CIA [Liu et al., 2023] realizes the
credit-level distinguishability of value-decomposition based methods by identifying the temporal
credits of different agents. LIPO [Charakorn et al., 2023] considers policy compatibility as a means
to learn diverse behaviors, identifying the unique behaviors of each policy by optimizing the mutual
information objective. FoX [Jo et al., 2024] presents formation-based exploration, which encourages
the exploration of various formations by guiding agents to thoroughly comprehend their current
formations. These works have shown promise in encouraging multi-agent diversity. However, they
overemphasized learning the dependence between the agent identity and trajectory, forcing the agent
to frequently visit similar observations, preventing the agents from further exploration.

6 Limitations and Future works

As our method needs to contrast all agents’ trajectories, this necessitates that the training process
should be centralized so that the trajectories of all agents can be collected. Thus, our method cannot
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be applied to fully decentralized MARL methods. Moreover, in contrastive learning, by collecting
many negative samples, the model is challenged to distinguish the positive pair from a larger pool of
negatives. This helps the model learn more robust and discriminative features. Although we developed
multi-agent contrastive learning loss to increase the number of negative samples, however, the number
of negative samples is still limited if the total number of agents in multi-agent environments is very
small. For our future work, we may develop efficient methods to augment existing trajectory samples
to increase the number of samples.

Despite the emergence of multi-agent diversity, we also note the need for homogeneous behaviors.
Although our method would not impede the learning of homogeneous behaviors that can lead to more
environmental rewards, how to control diversity automatically can be an interesting direction for our
future work.

7 Conclusion

In this paper, we consider learning distinguishable trajectory representations over raw trajectories
to encourage multi-agent diversity. Our method achieves distinguishability among trajectory repre-
sentations by maximizing the mutual information between trajectory representations and identity
representations of agents through the minimization of the contrastive learning loss. We evaluate our
method in different challenging cooperative tasks, and it demonstrates a significant performance
improvement over existing state-of-the-art methods. Our simple yet effective method reveals the
importance of representation learning in promoting efficient exploration, leading to optimal policies.
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A Theoretical analysis of limitations of existing methods

This section analyzes the limitation of existing methods that the agents tend to visit known trajectories
rather than exploring new ones from a theoretical perspective. To achieve this purpose, we calculate
the reward functions achieved by visiting known trajectories and new ones, respectively. The
theoretical results demonstrate that the agents achieve more rewards for visiting known trajectories
than exploring new ones.

Consider an objective of mutual information between the agent identity i and trajectory τ

I(i; τ) = Ei,τ [log p(i | τ)]− Ei[log p(i)]

≥ Ei,τ [log qθ(i | τ)]− Ei[log p(i)]
(8)

where the p(i | τ) is an unknown posterior distribution that is approximated by a variational
distribution qθ(i | τ) derived by the variational inference approach. qθ(i | τ) can be trained via
maximum likelihood on (i, τ)-tuples induced by the policy π of each agent. To maximize the mutual
information, the variational lower bound can be deployed in MARL as an intrinsic reward

r (τ, i′) = log qθ (i′ | τ)− log p (i′)

= log qθ (i′ | τ) + log |A|
(9)

where i′ ∼ p(i), a fixed uniform distribution. Here, − log p (i′) = log |A| since we have a total num-
ber of |A| agents. We assume a perfect variational distribution qθ(i | τ) where

∑|A|
a=1 qθ (ia | τ) = 1.

Reward for known trajectories The reward function encourages the agents to visit identity-aware
trajectories to highlight themselves from others where qθ (i′ | τ)→ 1, thus

rmax = log 1 + log |A| = log |A|. (10)

Reward for new trajectories For unseen trajectories, the value of qθ (i′ | τ) is unknown. Here,
we add a background class to the model in order to assign null probability to unseen trajectories.
Therefore, the agent receives a penalization for visiting unseen trajectories:

r′new = lim
qθ(i′|τ)→0

log qθ (i′ | τ) + log |A| = −∞ (11)

We note that the intrinsic reward enforces the agent to visit known trajectories that contain more
identity information, making the agents prone to overfitting and leading to static trajectories.

B The CTR implementation on top of MAPPO

In addition to QMIX, MAPPO is another state-of-the-art policy-based MARL algorithm on SMAC.
It learns a shared actor network updated towards maximizing expected returns. To integrate with
MAPPO, we deploy the CTR model in the actor network and introduce auxiliary gradients derived
from the contrastive learning loss to the policy gradients used to update parameters of the actor
network. Thus, we can achieve the overall objective that updates the actor network toward maximizing
expected returns while minimizing the contrastive learning loss to learn distinguishable trajectory
representations

Jtotal = Jactor − αLmN , (12)
where Jactor is the objective of MAPPO to train the actor network. Since CTR only needs to learn
distinguishable trajectory representations via training the actor network, we don’t need to change the
other components of MAPPO. The experimental results of CTR integrated with MAPPO are listed in
Table 1, demonstrating the outperformance of our method compared to baselines.

C Pseudocode for CTR

The PyTorch-style pseudocode for CTR is given in Algorithm 1.
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Algorithm 1: PyTorch-style pseudocode for CTR
# batch: collected trajectories
# H: dimension of identity representation
# |A|: number of agents
identity_representation = linear(H,|A|)
def ctr_loss(batch):

ctr_out = []
for t in range(batch.seq_length):

input_t = concat(batch["obs"][:, t], batch["actions_onehot"][:, t-1])
# Assemble the inputs
z_embedding = encoder(input_t)
c_embedding, hidden_states = autoregressive_model(z_embedding,
hidden_states)
ctr_out.append(c_embedding)

ctr_out = th.stack(ctr_out, dim=1) # Concat over time
ctr_loss = contrastive_learning_loss(identity_representation, ctr_out,
|A|) # Calculate the contrastive learning loss.
return ctr_loss

D Environmental details and Additional experimental results

This section gives the details of the experimental environments including Pac-Men, SMAC, and
SMACv2. We design a grid-world environment Pac-Men to demonstrate the effectiveness of CTR
in encouraging multi-agent diversity. In the Pac-Men environment, four agents are initialized at the
center of the maze. Each agent has a partial observation and can only observe a 4×4 grid around
them. Each edge room has some randomly initialized dots. During each episode, the agent moves to
one of the four edge rooms to eat dots. To improve the difficulty of the task, we set different path
lengths for the paths to edge rooms. The path lengths for the downward, left, right, and upward paths
are 3, 6, 6, and 10, respectively. Only one path is within the observation scope of the agent, which
further challenges the agent’s ability to explore the environment. Dots will refresh after all of them
are eaten by agents. The reward received by the agent is the number of dots eaten in each step.

SMAC and its upgraded version SMACv2 are the benchmarks for cooperative multi-agent rein-
forcement learning research. Both of them consist of a variety of fully cooperative tasks that are
implemented on top of Blizzard’s real-time strategy game StarCraft II to evaluate the effectiveness
of various MARL algorithms. SMAC realizes the agent level control using the Machine Learning
APIs provided by StarCraft II and DeepMind’s PySC2. In each task, there is a combat scenario
that involves two armies: one of the armies is controlled by the allied RL agents and the other is
controlled by the built-in non-learned game AI. The game ends when all units of any army have died
or a pre-defined timestep limit is reached. The goal of the allied agents is to learn a policy that can
maximize the win rate of the game. Therefore, the agents need to learn a sequence of actions to
collaborate with other allies to defeat the enemy forces. One example of such collaboration involves
mastering kiting skills, where all agents form formations according to their armor types, forcing
enemy units to pursue and keep enough distance from the enemies to reduce damage. We use the
SC2.4.10 version of SC2. Note that the performance is not comparable between versions.

SMACv2 is an upgraded version of SMAC that uses the same APIs as SMAC to control the game
units. Unlike SMAC, SMACv2 introduces stochasticity in the StarCraft II environment. Firstly,
the initial positions of units are random, challenging the agent to learn to defeat the enemies from
different angles. Secondly, the allied agents of each scenario have random unit types instead of
pre-specified types. These beneficial changes provide additional challenges for MARL algorithms,
as they must learn generalizable and robust policies to improve win rates. The average returns of
compared algorithms in Pac-Men, SMAC, and SMACv2 are listed in Table 1.

E Evaluations of CTR in scenarios requiring homogeneous behavior

Although behavioral diversity is crucial in the multi-agent environment, agents may sometimes find it
beneficial to act similarly in straightforward situations. For instance, allied agents might employ the
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Table 1: Average returns of compared algorithms in Pac-Men, SMAC, and SMACv2. ± denotes the
standard deviation over five random seeds.

Method Pac-Men
SMAC SMACv2

3s5z 2c_vs_64zg 7sz 6h_vs_8z corridor 3s5z_vs_3s6z terran_5_vs_5 protoss_5_vs_5 zerg_5_vs_5

QMIX 0.21±0.04 0.72±0.13 0.85±0.08 0.17±0.02 0.23±0.03 0.57±0.07 0.36±0.12 0.68±0.03 0.53±0.05 0.41±0.04

MAPPO 0.49±0.03 0.81±0.05 0.83±0.04 0.52±0.06 0.53±0.03 0.62±0.05 0.57±0.08 0.52±0.04 0.47±0.03 0.37±0.03

MAVEN 0.32±0.06 0.51±0.21 0.72±0.06 0.00±0.00 0.17±0.04 0.36±0.08 0.18±0.15 0.58±0.04 0.31±0.05 0.29±0.03

EOI 0.41±0.05 0.87±0.07 0.83±0.02 0.37±0.03 0.08±0.03 0.25±0.11 0.42±0.13 0.65±0.05 0.42±0.03 0.47±0.04

QTRAN 0.28±0.08 0.21±0.19 0.75±0.05 0.00±0.00 0.02±0.02 0.08±0.07 0.02±0.01 0.42±0.02 0.40±0.04 0.25±0.02

SCDS 0.37±0.05 0.76±0.07 0.57±0.09 0.21±0.03 0.03±0.01 0.56±0.06 0.00±0.00 0.52±0.03 0.47±0.05 0.38±0.04

LIPO 0.43±0.02 0.71±0.03 0.76±0.02 0.39±0.04 0.36±0.06 0.27±0.03 0.21±0.03 0.43±0.02 0.46±0.03 0.37±0.03

FoX 0.39±0.03 0.74±0.02 0.64±0.05 0.56±0.03 0.45±0.05 0.52±0.04 0.43±0.04 0.54±0.03 0.56±0.02 0.49±0.02

CTR+QMIX 0.78±0.04 0.95±0.03 0.87±0.03 0.82±0.05 0.79±0.03 0.82±0.07 0.85±0.06 0.83±0.03 0.75±0.05 0.73±0.03

CTR+MAPPO 0.75±0.03 0.92±0.04 0.89±0.05 0.78±0.03 0.71±0.04 0.78±0.05 0.81±0.04 0.79±0.04 0.69±0.03 0.65±0.03

Table 2: Performance of our method and QMIX in homogeneous scenarios.
Method 8m 5m_vs_6m 8m_vs_9m 10m_vs_11m

CTR+QMIX 0.95±0.03 0.93±0.04 0.94±0.02 0.91± 0.04
QMIX 0.87±0.03 0.65±0.04 0.58±0.05 0.43±0.04

same tactic to simultaneously fire at an enemy to quickly eliminate it. To demonstrate the effectiveness
of our method in learning such behaviors, we test it in four homogeneous SMAC scenarios that
benefit from the focus fire trick. The results, shown in Table 2, indicate that our method consistently
outperforms QMIX across all scenarios. The outperformance of our method demonstrates that it
supports, rather than prevents, homogeneous behaviors when these result in higher environmental
rewards. Moreover, our method is more efficient to search these optimal cooperative behaviors due to
sufficient exploration.

F Scalability

In MARL, as the number of agents increases, the state-action space grows exponentially, challenging
agents to search optimal collaborative policies. Many algorithms lack efficient exploration and may
not scale well with a large number of agents. To demonstrate the scalability of our method, we test it
in four SMACv2 scenarios with an increasing number of agents: terran_5_vs_5, terran_10_vs_10,
terran_15_vs_15, and terran_20_vs_20. The results are shown in Table 3. The performance of
QMIX decreases significantly as the number of agents increases. We believe this is because QMIX
suffers from poor exploration of the state-action space. With the help of our method, QMIX
achieves essentially better performance and exhibits robust scalability, demonstrating that learning
distinguishable trajectory representations for agents to make action decisions leads to efficient
exploration.

G Training Details and Hyperparameters

Our proposed CTR model consists of an encoder and an autoregressive model. We adopt two stacked
resnet blocks with a hidden size of 64 followed by batch normalization for the encoder and a GRU
unit for the autoregressive model. In the agent utility network of QMIX, the CTR model encodes
a trajectory to a latent representation space, which is then input to the fully connected output layer
to calculate the per-agent utilities. Similar to QMIX, in the actor network of MAPPO, the learned
trajectory representations are input to a fully connected output layer followed by a softmax function

Table 3: Performance of our method and QMIX in scenarios of SMACv2 with different number of
agents

Method terran_5_vs_5 terran_10_vs_10 terran_15_vs_15 terran_20_vs_20
CTR+QMIX 0.85±0.04 0.87 ±0.02 0.83 ±0.03 0.82 ±0.03

QMIX 0.68±0.03 0.39±0.04 0.24 ±0.06 0.11±0.05
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to output the distributions over actions. Moreover, we introduce a learnable vector for the identity
representation that has the same dimensions as trajectory representations.

We use the same policy network architecture for other baselines as in our method to guarantee a
fair comparison. In both SMAC and SMACv2, the target networks are updated via hard updates
every 200 episodes. In Pac-Men, the target networks use soft updates at a momentum rate of 0.01.
We set the evaluation interval to 10K steps followed by 32 test episodes. We run all methods for
5 million steps. The hyperparameters of CTR and baseline algorithms in Pac-Men, SMAC, and
SMACv2 are listed in Table 4. To ensure a fair comparison, we set the same values for common
hyperparameters across different methods in each multi-agent environment. Additionally, all methods
adopt the parameter-sharing technique to accelerate training speed. For generality, we report the
mean and standard deviation of the experimental results tested with five random seeds. We set the
replay buffer size to 5K. We implement our method with NumPy and PyTorch. All experiments are
performed using NVIDIA GeForce RTX 4090 GPUs.

Table 4: Hyperparameters

Pac-Men SMAC SMACv2
hidden dimension 64 128

learning rate 0.0003 0.005
optimizer Adam

target update 0.01(soft) 200(hard)
batch size 32 64

α for CTR+QMIX 0.02 0.1 for 3s5z, 2c_vs_64zg, 8m, 5m_vs_6m, 8m_vs_9m, and 10m_vs_11m,
0.02 for 7sz, 6h_vs_8z, corridor, and 3s5z_vs_3s6z 0.004

α for CTR+MAPPO 0.1 0.1 for 3s5z, 2c_vs_64zg, 8m, 5m_vs_6m, 8m_vs_9m, and 10m_vs_11m,
0.05 for 7sz, 6h_vs_8z, corridor, and 3s5z_vs_3s6z 0.02

epsilon anneal time 200,000 200,000 for 3s5z, 2c_vs_64zg, 8m, 5m_vs_6m, 8m_vs_9m, and 10m_vs_11m,
500,000 for 7sz, 6h_vs_8z, corridor, and 3s5z_vs_3s6z 500,000

H Visualization

We additionally provide visualized t-SNE plots in Figure 8, Figure 9, and Figure 10 to intuitively
compare the trajectory representations learned by QMIX, EOI, SCDS, and CTR in the super hard
corridor, 6h_vs_8z, and 3s5z_vs_3s6z scenarios. The trajectory representations of different agents
learned by CTR ultimately stay away from each other and become distinguishable while those learned
by QMIX are mixed. Moreover, although EOI and SCDS also encourage multi-agent diversity,
the distinguishability between trajectory representations of different agents learned by them is less
pronounced compared to CTR.

To intuitively demonstrate the diverse policies learned by CTR+QMIX, we present some visualization
examples of the diverse policies emerging in 6h_vs_8z, corridor, and 3s5z_vs_3s6z from initial to
final in Figure 11. Green and red shadows represent agents and enemies, respectively. Green and
red arrows represent the moving direction of agents and enemies, respectively. For example, in the
6h_vs_8z scenario, one agent first leaves the team separately to incur the attention of most enemies.
The agent keeps kiting the enemies and draws the fire to cover other agents. Then other agents move
in different directions and attack the few remaining enemies. If all the agents take similar policies
and consistently move toward the enemies, they will be killed immediately. These diverse policies
can also be observed in the other two scenarios: corridor and 3s5z_vs_3s6z. These examples suggest
that learning diverse policies by distinguishing trajectory representations of different agents finally
enables the agents to cooperatively defeat the enemies.
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QMIX

EOI

SCDS

CTR

phase 1 phase 2 phase 4phase 3

Figure 8: T-SNE plots of trajectory representations of different agents learned by CTR and baselines,
respectively, that emerge in the corridor scenario, initial (left) to final (right). Each color represents
the trajectory representations of an agent.

Figure 9: T-SNE plots of trajectory representations of different agents learned by CTR+QMIX and
baselines, respectively, that emerge in the 6h_vs_8z scenario, initial (left) to final (right). Each color
represents the trajectory representations of an agent.

17



Figure 10: T-SNE plots of trajectory representations of different agents learned by CTR+QMIX and
baselines, respectively, that emerge in the 3s5z_vs_3s6z scenario, initial (left) to final (right). Each
color represents the trajectory representations of an agent.
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6h_vs_8z

corridor

3s5z_vs_3s6z

initial final

Figure 11: Visualization examples of diverse policies emerging in 6h_vs_8z (top), corridor (medium),
and 3s5z_vs_3s6z (bottom) from initial (left) to final (right). Green and red shadows represent agents
and enemies, respectively. Green and red arrows represent the moving directions of agents and
enemies, respectively.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please refer to Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please refer to Section 6.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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and how they scale with dataset size.
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• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Please refer to the uploaded supplemental material for our code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the mean and standard deviation of the experimental results tested
with five random seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] ,

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work provides a novel exploration method for MARL methods and has no
social impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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