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Abstract
We study a novel language model architecture
that is capable of scaling test-time computation
by implicitly reasoning in latent space. Our
model works by iterating a recurrent block,
thereby unrolling to arbitrary depth at test-time.
This stands in contrast to mainstream reasoning
models that scale up compute by producing
more tokens. Unlike approaches based on
chain-of-thought, our approach does not require
any specialized training data, can work with
small context windows, and can capture types of
reasoning that are not easily represented in words.
We train a proof-of-concept model from scratch
with 3.5 billion parameters and 800 billion
tokens. We show that this model can effortlessly
use varying levels of compute, significantly
improving with additional compute especially on
reasoning tasks, such as math and coding.

1. Scaling by Thinking in Continuous Space
Humans naturally expend more mental effort solving some
problems than others. While humans are capable of thinking
over long time spans by verbalizing intermediate results
and writing them down, a substantial amount of thought
happens through complex, recurrent firing patterns in the
brain, before the first word of an answer is uttered.

Early attempts at increasing the power of language mod-
els focused on scaling model size, a practice that requires
extreme amounts of data and computation. More recently,
researchers have explored ways to enhance the reasoning
capability of models by scaling test time computation. The
mainstream approach involves post-training on long chain-
of-thought examples to develop the model’s ability to ver-
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Figure 1: We train a 3.5B parameter language model with depth
recurrence. Simple tasks that require less reasoning like SciQ and
BLiMP are solved almost immediately, while tasks like Master-
mind (the reasoning game), MMLU, GSM8k or HumanEval are
solved only with extended compute via test time recurrence, a
separation in difficulty levels that emerges from pretraining the
model at scale.

balize intermediate calculations in its context window and
thereby externalize thoughts.

However, the constraint that expensive internal reasoning
must always be projected down to a single verbalized next
token appears wasteful; it is plausible that models could be
more competent if they were able to natively “think” in their
continuous latent space. One way to unlock this untapped di-
mension of additional compute involves adding a recurrent
unit to a model. This unit runs in a loop, iteratively process-
ing and updating its hidden state and enabling computations
to be carried on indefinitely. While this is not currently the
dominant paradigm, this idea is foundational to machine
learning and has been (re-)discovered in every decade, for
example as recurrent neural networks (Gers & Schmidhu-
ber, 2000), diffusion models (Song & Ermon, 2019), feature
recycling (Jumper et al., 2021), and as universal (Dehghani
et al., 2019) or looped transformers (Giannou et al., 2023).

In this work, we show that depth-recurrent language models
can learn effectively, be trained in an efficient manner, and
demonstrate significant performance improvements under
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Figure 2: Left: A visualization of the Architecture, as described in Section 2. Each block consists of a number of sub-layers. The blue
prelude block embeds the inputs into latent space, where the green shared recurrent block is a block of layers that is repeated to compute
the final latent state, which is decoded by the layers of the red coda block. Right: We use a log-normal Poisson Distribution to sample the
number of recurrent iterations for each training step.

the scaling of test-time compute. Our proposed transformer
architecture is built upon a latent depth-recurrent block
that is run for a randomly sampled number of iterations
during training. We show that this paradigm can scale to
several billion parameters and over half a trillion tokens of
pretraining data. At test-time, the model can improve its
performance through recurrent reasoning in latent space,
enabling it to compete with other open-source models that
benefit from more parameters and training data.

2. A Scalable Recurrent Architecture
In this section we will describe our proposed architecture
for a transformer with latent recurrent depth, discussing
design choices and small-scale ablations. A diagram of the
architecture can be found in Figure 2. We always refer to
the sequence dimension as n, the hidden dimension of the
model as h, and its vocabulary as the set V .

2.1. Macroscopic Design

The model is primarily structured around decoder-only
transformer blocks (Vaswani et al., 2017; Radford et al.,
2019). However these blocks are structured into three func-
tional groups, the prelude P , which embeds the input data
into a latent space using multiple transformer layers, then
the core recurrent block R, which is the central unit of re-
current computation modifying states s ∈ Rn×h, and finally
the coda C, which un-embeds from latent space and also
contains the prediction head of the model. The core block
is set between the prelude and coda blocks, and by looping
the core we can run an indefinite amount of compute.

Given a number of recurrent iterations r, and a sequence of
input tokens x ∈ V n these groups are used in the following
way to produce output probabilities p ∈ Rn×|V |

e = P (x)

s0 ∼ N (0, σ2In·h)

si = R(e, si−1) for i ∈ {1, . . . , r}
p = C(sr),

where σ is some standard deviation for initializing the
random state. This process is shown in Figure 2. Given
an init random state s0, the model repeatedly applies the
core block R, which accepts the latent state si−1 and the
embedded input e and outputs a new latent state si. After
finishing all iterations, the coda block processes the last
state and produces the probabilities of the next token. This
architecture is based on deep thinking literature, where it
is shown that injecting the inputs e in every step (Bansal
et al., 2022) and initializing the latent vector with a random
state stabilizes the recurrence and promotes convergence
to a steady state independent of initialization, i.e. path
independence (Anil et al., 2022).

2.2. Training Objective

Training Recurrent Models through Unrolling. To en-
sure that the model can function when we scale up recurrent
iterations at test-time, we randomly sample iteration counts
during training, assigning a random number of iterations r
to every input sequence (Schwarzschild et al., 2021b). We
optimize the expectation of the loss function L over random
samples x from distribution X and random iteration counts
r from distribution Λ.

L(θ) = Ex∈XEr∼ΛL (mθ(x, r),x
′) .

Here, m represents the model output, and x′ is the sequence
x shifted left, i.e., the next tokens in the sequence x. We
choose Λ to be a log-normal Poisson distribution. Given a
targeted mean recurrence r̄ + 1 and a variance that we set
to σ = 1

2 , we can sample from this distribution via

τ ∼ N (log(r̄)− 1

2
σ2, σ) (1)

r ∼ P(eτ ) + 1, (2)

given the normal distribution N and Poisson distribution P ,
see Figure 2. The distribution most often samples values
less than r̄, but it contains a heavy tail of occasional events
in which significantly more iterations are taken.
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Table 1: Results on zero-shot evaluations across various open-source models. We show ARC (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), MMLU (Hendrycks et al., 2021b), OpenBookQA (Mihaylov et al., 2018), PiQA (Bisk et al., 2020), SciQ (Johannes Welbl,
2017), and WinoGrande (Sakaguchi et al., 2021). We report normalized accuracy when provided.

Model Param Tokens ARC-E ARC-C HellaSwag MMLU OBQA PiQA SciQ WinoGrande

random 25.0 25.0 25.0 25.0 25.0 50.0 25.0 50.0

Amber 7B 1.2T 65.70 37.20 72.54 26.77 41.00 78.73 88.50 63.22
Pythia-2.8b 2.8B 0.3T 58.00 32.51 59.17 25.05 35.40 73.29 83.60 57.85
Pythia-6.9b 6.9B 0.3T 60.48 34.64 63.32 25.74 37.20 75.79 82.90 61.40
Pythia-12b 12B 0.3T 63.22 34.64 66.72 24.01 35.40 75.84 84.40 63.06
OLMo-1B 1B 3T 57.28 30.72 63.00 24.33 36.40 75.24 78.70 59.19
OLMo-7B 7B 2.5T 68.81 40.27 75.52 28.39 42.20 80.03 88.50 67.09
OLMo-7B-0424 7B 2.05T 75.13 45.05 77.24 47.46 41.60 80.09 96.00 68.19
OLMo-7B-0724 7B 2.75T 74.28 43.43 77.76 50.18 41.60 80.69 95.70 67.17
OLMo-2-1124 7B 4T 82.79 57.42 80.50 60.56 46.20 81.18 96.40 74.74

Ours, (r = 4) 3.5B 0.8T 49.07 27.99 43.46 23.39 28.20 64.96 80.00 55.24
Ours, (r = 8) 3.5B 0.8T 65.11 35.15 58.54 25.29 35.40 73.45 92.10 55.64
Ours, (r = 16) 3.5B 0.8T 69.49 37.71 64.67 31.25 37.60 75.79 93.90 57.77
Ours, (r = 32) 3.5B 0.8T 69.91 38.23 65.21 31.38 38.80 76.22 93.50 59.43

Table 2: Benchmarks of math. reasoning and understanding. We report flexible
and strict match for GSM8K and GSM8K CoT, extracted match for Minerva
Math, and acc norm. for MathQA.

Model GSM8K GSM8k CoT Minerva MATH MathQA

Random 0.00 0.00 0.00 20.00

Amber 3.94/4.32 3.34/5.16 1.94 25.26
Pythia-2.8b 1.59/2.12 1.90/2.81 1.96 24.52
Pythia-6.9b 2.05/2.43 2.81/2.88 1.38 25.96
Pythia-12b 3.49/4.62 3.34/4.62 2.56 25.80
OLMo-1B 1.82/2.27 1.59/2.58 1.60 23.38
OLMo-7B 4.02/4.09 6.07/7.28 2.12 25.26
OLMo-7B-0424 27.07/27.29 26.23/26.23 5.56 28.48
OLMo-7B-0724 28.66/28.73 28.89/28.89 5.62 27.84
OLMo-2-1124-7B 66.72/66.79 61.94/66.19 19.08 37.59

Ours (r = 32) 28.05/28.20 32.60/34.57 12.58 26.60
Our w/ chat templ. (r = 32) 24.87/38.13 34.87/42.84 11.24 27.97

Table 3: Evaluation on code benchmarks, MBPP and
HumanEval. We report pass@1 for both datasets.

Model Param Tokens MBPP HumanEval

Random 0.00 0.00

starcoder2-3b 3B 3.3T 43.00 31.09
starcoder2-7b 7B 3.7T 43.80 31.70

Amber 7B 1.2T 19.60 13.41
Pythia-2.8b 2.8B 0.3T 6.70 7.92
Pythia-6.9b 6.9B 0.3T 7.92 5.60
Pythia-12b 12B 0.3T 5.60 9.14
OLMo-1B 1B 3T 0.00 4.87
OLMo-7B 7B 2.5T 15.6 12.80
OLMo-7B-0424 7B 2.05T 21.20 16.46
OLMo-7B-0724 7B 2.75T 25.60 20.12
OLMo-2-1124-7B 7B 4T 21.80 10.36

Ours (r = 32) 3.5B 0.8T 24.80 23.17

Truncated Backpropagation. To keep computation and
memory low at train time, we backpropagate through only
the last k iterations of the recurrent unit. This enables us
to train with the heavy-tailed Poisson distribution Λ, as
maximum activation memory and backward compute is now
independent of r. We fix k = 8 in our main experiments.
At small scale, this works as well as sampling k uniformly,
but it equalizes the overall memory usage in each step of
training. Note that the prelude block still receives gradient
updates in every step, as its output e is injected in every step.
This setup resembles truncated backpropagation through
time, as commonly done with RNNs, although our setup
is recurrent in depth rather than time (Williams & Peng,
1990; Mikolov et al., 2011). Truncated backpropagation can
also be understood as approximation of objectives based on
differentiating a fixed point of the recurrence, as discussed
in Geng et al. (2021).

2.3. How to Train a Large-Scale Recurrent-Depth
Model In the Wild

After verifying that we can reliably train small test models
up to 10B tokens, we move on to larger-scale runs. Given
our limited compute budget, we could either train multiple
tiny models too small to show emergent effects or scaling,
or train a single medium-scale model. Based on this, we

prepared a single large-scale run. We train a 3.5B parameter
variant of the proposed architecture on a mix of generic text,
code and scientific data, with data-parallel training with a
batch size of 16 million tokens. We provide comprehensive
information on all training details in Appendix H.

3. Benchmark Results
We ultimately train the final model for 800B tokens, and
a non-recurrent baseline comparison for 180B tokens.
We evaluate these checkpoints against other open-source
models trained on fully public datasets (like ours) of a
similar size. We compare against Amber (Liu et al., 2023c),
Pythia (Biderman et al., 2023) and a number of OLMo 1&2
variants (Groeneveld et al., 2024; AI2, 2024; Team OLMo
et al., 2025). We execute all standard benchmarks through
the lm-eval harness (Biderman et al., 2024) and code
benchmarks via bigcode-bench (Zhuo et al., 2024).

3.1. Standard Benchmarks

We collect results for established benchmark tasks (Team
OLMo et al., 2025) in Table 1 and show all open-source
models side-by-side. In direct comparison we see that our
model outperforms the older Pythia series and is roughly
comparable to the first OLMo generation, OLMo-7B in
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Table 4: Baseline comparison, recurrent versus non-recurrent model trained in the same training setup and data. Comparing the recurrent
model with its non-recurrent baseline, we see that even at 180B tokens, the recurrent substantially outperforms on harder tasks.

Model Tokens ARC-E ARC-C HellaSwag MMLU OBQA PiQA SciQ WinoGrande GSM8K CoT

Fixed-Depth Baseline 0.18T 46.42 26.96 37.34 24.16 29.60 64.47 73.20 51.78 1.82/2.20

Ours, early ckpt, (r = 32) 0.18T 53.62 29.18 48.80 25.59 31.40 68.88 80.60 52.88 9.02/10.24
Ours, early ckpt, (r = 1) 0.18T 34.01 23.72 29.19 23.47 25.60 53.26 54.10 53.75 0.00/0.15

Ours, (r = 32) 0.8T 69.91 38.23 65.21 31.38 38.80 76.22 93.50 59.43 34.80/42.08
Ours, (r = 1) 0.8T 34.89 24.06 29.34 23.60 26.80 55.33 47.10 49.41 0.00/0.00

most metrics, but lags behind the later OLMo models
trained larger, more carefully curated datasets. For the first
recurrent-depth model for language to be trained at this
scale, and considering the limitations of the training run,
we find these results promising and certainly suggestive
that further research into latent recurrence as an approach
to test-time scaling is warranted.

3.2. Math and Coding Benchmarks

We also evaluate the model on math and coding. For math,
we evaluate GSM8k (Cobbe et al., 2021) (as 5-shot and in
the 8-way CoT setup), MATH ((Hendrycks et al., 2021a)
with the Minerva evaluation rules (Lewkowycz et al., 2022))
and MathQA (Amini et al., 2019). For coding, we check
MBPP (Austin et al., 2021) and HumanEval (Chen et al.,
2021). Here we find that our model significantly surpasses
all models except the latest OLMo-2 model in mathematical
reasoning, as measured on GSM8k and MATH. On coding
benchmarks the model beats all other general-purpose open-
source models, although it does not outperform dedicated
code models, such as StarCoder2 (Lozhkov et al., 2024),
trained for several trillion tokens. We also note that while
further improvements in language modeling are slowing
down, as expected at this training scale, both code and math-
ematical reasoning continue to improve steadily throughout
training, see Figure 9.

3.3. Where does recurrence help most?

How much of this performance can we attribute to recur-
rence, and how much to other factors, such as dataset, tok-
enization and architectural choices? In Table 4, we compare
our recurrent model against its non-recurrent twin, which we
trained to 180B tokens in the exact same setting. In direct
comparison of both models at 180B tokens, we see that the
recurrent model outperforms its baseline with an especially
pronounced advantage on harder tasks, such as the ARC
challenge set. On other tasks, such as SciQ, which requires
straightforward recall of scientific facts, performance of the
models is more similar. We observe that gains through rea-
soning are especially prominent on GSM8k, where the 180B
recurrent model is already 5 times better than the baseline
at this early snapshot in the pretraining process. We also
note that the recurrent model, when evaluated with only a
single recurrence, effectively stops improving between the

early 180B checkpoint and the 800B checkpoint on hard
tasks, showing that further improvements are not built into
the fixed, non-recurrent parts but encoded entirely into the
iterations of the recurrent block.

3.4. Improvements through Weight Averaging

Due to our constant learning rate, we can materialize further
improvements through weight averaging (Izmailov et al.,
2018) to simulate the result of a cooldown (Hägele et al.,
2024; DeepSeek-AI et al., 2024). We use an exponential
moving average starting from our last checkpoint with β =
0.9, incorporating the last 75 checkpoints with a dilation
factor of 7, a modification to established protocols (Kaddour,
2022; Sanyal et al., 2024). We evaluate this EMA model
as well, which further improves GMS8k performance to
47.23% flexible (38.59% strict), when tested at r = 64.

4. Limitations and Conclusions
While the experiments in this paper demonstrate the via-
bility of (latent) recurrent-depth architectures for language
modeling at scale, the models described are ultimately still
a proof-of-concept. We observe that we can train models
that improve with increased test-time scaling via recurrence,
improving over a fixed-depth model with the same param-
eter count by 5x on GSM8K. Nevertheless, future work
with additional compute is still required to allow for precise
comparisons to the other forms of scaling, such as training
fixed-depth transformers with the same FLOP count in pre-
training, or training verbal CoT models targeting the same
FLOP count at test time.

Yet, the interesting behaviors already observable in this
work, such as the context-dependent problem-solving speed,
with the model learning to solve easy problems with fewer
recurrences than harder problems, various zero-shot abilities
and emergence of structured thinking in latent space, lead
us to believe that latent reasoning is a promising research
direction to complement existing approaches for test-time
compute scaling. Our work validates the motivations and
observations of prior work developed at smaller scales for
universal, looped and deep thinking transformers, and we
are excited about the potential impact of imbuing genera-
tive models with the ability to reason in continuous latent
space without the need for specialized data at train time or
verbalization at inference time.
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A. Why Train Models with Recurrent Depth?
Recurrent layers enable a transformer model to perform arbitrarily many computations before emitting a token. In principle,
recurrent mechanisms provide a simple solution for test-time compute scaling. Compared to a more standard approach of
long context reasoning (OpenAI, 2024; DeepSeek-AI et al., 2025), latent recurrent thinking has several advantages.

• Latent reasoning does not require construction of bespoke training data. Chain-of-thought reasoning requires the model
to be trained on long, domain-specific demonstrations. Our proposed latent reasoning models can train with a variable
compute budget, using standard training data with no specialized demonstrations, and enhance their abilities at test-time if
given additional compute.

• Latent reasoning models require less memory for training and inference than chain-of-thought reasoning models. Because
the latter require extremely long context windows, specialized training methods such as token-parallelization (Liu et al.,
2023a) may be needed.

• Recurrent-depth networks perform more FLOPs per parameter than standard transformers, significantly reducing commu-
nication costs between accelerators at scale. This especially enables higher device utilization when training with slower
interconnects.

• By constructing an architecture that is compute-heavy and small in parameter count, we hope to set a strong prior towards
models that solve problems by “thinking”, i.e. by learning meta-strategies, logic and abstraction, instead of memorizing.
The strength of recurrent priors for learning complex algorithms has already been demonstrated in the “deep thinking”
literature (Schwarzschild et al., 2021b; Bansal et al., 2022; Schwarzschild et al., 2023).

On a more philosophical note, we hope that latent reasoning captures facets of human reasoning that defy verbalization,
such as spatial thinking, physical intuition or (motor) planning. Over many iterations of the recurrent process, reasoning in a
high-dimensional vector space would enable the deep exploration of multiple directions simultaneously, instead of linear
thinking, leading to a system capable of exhibiting novel and complex reasoning behavior.

Scaling compute in this manner is not at odds with scaling through extended (verbalized) inference scaling (Shao et al.,
2024), or scaling parameter counts in pretraining (Kaplan et al., 2020), we argue it may build a third axis on which to scale
model performance.

B. Potential Implications of This Work
This work describes a novel architecture and training objective for language modeling with promising performance,
especially on tasks that require the model to reason. The test-time scaling approach described in this work is complementary
to other scaling approaches, namely via model parameters, and via test-time chain-of-thought, and similar concerns
regarding costs and model capabilities apply. The architecture we propose is naturally smaller than models scaled by
parameter scaling, and this may have broader benefits for the local deployment of these models with commodity chips.
Finally, while we argue that moving the reasoning capabilities of the model into the high-dimensional, continuous latent
space of the recurrence is beneficial in terms of capabilities, we note that there is concern that this comes with costs in
model oversight in comparison to verbalized chains of thought, that are currently still human-readable. We provide initial
results in Appendix F showing that the high-dimensional state trajectories of our models can be analyzed and some of their
mechanisms interpreted. A number of additional visualization of the latent state can be found in the pages of the appendix.
Ultimately, from our perspective, this type of thinking in latent space is not dissimilar from the latent computations that
already happen in the intermediate layers of current, fixed-depth transformers. Analysis techniques that work to understand
computations in intermediate layers also apply to latent thinking.

C. Related Work Overview
The extent to which recurrence is a foundational concept of machine learning is hard to overstate (Amari, 1972; Hopfield,
1982; Braitenberg, 1986; Gers & Schmidhuber, 2000; Sutskever et al., 2008). Aside from using recurrence to move along
sequences, as in recurrent neural networks, it was understood early to also be the key to adaptive computation (Schmidhuber,
2012; Graves, 2017). For transformers, recurrence was applied in Dehghani et al. (2019), who highlight the aim of recurrent
depth to model universal, i.e. Turing-complete, machines (Graves et al., 2014). It was used at scale (but with fixed
recurrence) in Lan et al. (2019) and an interesting recent improvement in this line of work are described in Tan et al. (2023);
Abnar et al. (2023), Mathur et al. (2024) and Csordás et al. (2024). Schwarzschild et al. (2021b); Bansal et al. (2022);
Bear et al. (2024) and McLeish et al. (2024) show that depth recurrence is advantageous when learning generalizable
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algorithms when training with randomized unrolling and input injections. Recent work has described depth-recurrent,
looped, transformers and studied their potential benefits with careful theoretical and small-scale analysis (Giannou et al.,
2023; Gatmiry et al., 2024; Yang et al., 2024a; Fan et al., 2025; Saunshi et al., 2024). Our study reinforces these prior works,
showing not only how to scale depth recurrence to billion parameter scales and token counts, but also that conjectured
advantages such as algorithm learning and reasoning with extended compute do materialize for realistic benchmark tasks.

From another angle, these models can be described as neural networks learning a fixed-point iteration, as studied in deep
equilibrium models (Bai et al., 2019; 2022; Schöne et al., 2025). The variant of latent recurrent depth we discuss in this
work is also related to diffusion models (Song & Ermon, 2019), especially latent diffusion models (Rombach et al., 2022),
but we note that language diffusion models are usually run with a per-sequence, instead of a per-token, iteration count (Lee
et al., 2018). A key difference of our approach to both equilibrium models and diffusion models is in the training objective,
where equilibrium methods solve the implicit bilevel problem directly, diffusion models solve a surrogate training objective,
and our work suggests that truncated unrolling is a powerful alternative at scale, see also Geng et al. (2021).

More generally, all architectures that recur in depth can also be understood as directly learning the analog to the gradient
of a latent energy-based model (LeCun & Huang, 2005; LeCun, 2022), to an implicitly defined intermediate optimization
layer (Amos & Kolter, 2017), or to a Kuramoto layer (Miyato et al., 2024). Analogies to gradient descent at inference
time also show the connection to test time adaptation (Sun et al., 2020), especially test-time adaptation of output states
(Boudiaf et al., 2022).

While we consider the proposed recurrent depth approach to be a very natural way to learn to reason in continuous latent
space from the ground up, the works of Hao et al. (2024); Cheng & Durme (2024) and Liu et al. (2024) discuss how to
finetune existing fixed-depth transformers with this capability. These works have a similar aim to ours, enabling reasoning
in latent space, but approach this goal from separate directions. For additional discussions related to the idea of constructing
a prior that incentivizes reasoning and algorithm learning at the expense of memorization of simple patterns, we also refer to
Chollet (2019), Schwarzschild (2023), Li et al. (2020) and Moulton (2023).

D. Addditional Model Design Details
D.1. Microscopic Design

Within each group, we broadly follow standard transformer layer design. Each block contains multiple layers, and each layer
contains a standard, causal self-attention block using RoPE (Su et al., 2021) with a base of 50000, and a gated SiLU MLP
(Shazeer, 2020). We use RMSNorm (Zhang & Sennrich, 2019) as our normalization function. The model has learnable
biases on queries and keys, and nowhere else. To stabilize the recurrence, we order all layers in the following “sandwich”
format, using norm layers ni, related to Ding et al. (2021); Team Gemma et al. (2024):

x̂l =n2 (xl−1 + Attn(n1(xl−1)))

xl =n4 (x̂l + MLP(n3(x̂l)))

While at small scales, most normalization strategies, e.g. pre-norm, post-norm and others, work almost equally well, we
ablate these options and find that this normalization is required to train the recurrence at scale.

Given an embedding matrix E and embedding scale γ, the prelude block first embeds input tokens x as γE(x), and then
to applies lP many prelude layers with the layout described above. Our core recurrent block R starts with an adapter
matrix A : R2h → Rh mapping the concatenation of si and e into the hidden dimension h (Bansal et al., 2022). While
re-incorporation of initial embedding features via addition rather than concatenation works equally well for smaller models,
we find that concatenation works best at scale. This is then fed into lR transformer layers. At the end of the core block the
output is again rescaled with an RMSNorm nc. The coda contains lC layers, normalization by nc, and projection into the
vocabulary using tied embeddings ET .

In summary, we can summarize the architecture by the triplet (lP , lR, lC), describing the number of layers in each stage, and
by the number of recurrences r, which may vary in each forward pass. We train a number of small-scale models with shape
(1, 4, 1) and hidden size h = 1024, in addition to a large model with shape (2, 4, 2) and h = 5280. This model has only 8
“real” layers, but when the recurrent block is iterated, e.g. 32 times, it unfolds to an effective depth of 2 + 4r + 2 = 132
layers, constructing computation chains that can be deeper than even the largest fixed-depth transformers (Levine et al.,
2021; Merrill et al., 2022; Saunshi et al., 2024).
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Figure 3: Histograms of zero-shot, per-token adaptive exits based on KL difference between steps for questions from MMLU categories.
The mean of each distribution is given in the legends. The exit threshold is fixed to 5× 10−4. We see that the model converges quicker on
high school mathematics than tasks such as logical fallacies or moral scenarios. On some tasks, such as philosophy, the model is able to
effectively re-use states in its latent CoT and converge quickly on a subset of tokens, leading to fewer steps required overall.

E. Recurrent Depth simplifies LLMs
Aside from encouraging performance in mathematical and code reasoning, recurrent-depth models turn out to be surprisingly
natural tools to support a number of methods that require substantial effort with standard transformers. In the next section,
we provide a non-exhaustive overview.

Zero-Shot Adaptive Compute at Test-Time. We have shown that the model is capable of varying compute on a per-query
level, running the model in different recurrence modes. This is after all also how the model is trained, as in Equation (1).
However, it would be more efficient in practice to stop recurring early when predictions are easy, and only spend compute
on hard decisions. Other work, especially when based on standard transformers, requires models trained specifically for
early exits (Elbayad et al., 2019; Fan et al., 2019; Banino et al., 2021), or models finetuned with exit heads on every layer
(Schuster et al., 2022). To test our model’s zero-shot exit abilities, we choose a simple exit criterion to evaluate convergence,
the KL-divergence between two successive steps. If this divergence falls below 5 × 10−4, we stop iterating, sample the
output token, and move to generate the next token.

We show this zero-shot per-token adaptive compute behavior in Figure 3, where we plot the distribution of steps taken before
the exit condition is hit. We do this for the first 50 questions from different MMLU categories, asked in free-form chat.
Interestingly, the number of steps required to exit differs notably between categories, with the model exiting earlier on high
school mathematics, but taking on average 3.5 steps more on moral scenarios. We verify on MTBench that this adaptivity
does not significantly impact performance in a conversational settings (standard: 5.63, early exits: 5.56), and even on hard
tasks such as GSM8k, the merged model still reaches 44.8% (at r = 32, instead of 46% when exiting early, see Table 9).

Zero-Shot KV-cache Sharing. A different avenue to increase efficiency is to reduce the memory footprint of the KV-cache
by sharing the cache between layers (character.ai, 2024; Brandon et al., 2024). Typically, transformers must be trained from
scratch with this capability. However, as discussed in the previous section, we find that we can simply share KV-caches
in our model with minimal impact to performance. We set a fixed KV-cache budget for the recurrence at every token k,
and at iteration i, read and write the cache entry i mod k. For example, we set a maximum KV-cache budget of 16 steps,
overwriting the KV-cache of the 1st recurrence step when executing the 17th step, and so forth. This can be used on its
own to reduce KV cache memory, or in combination with per-token adaptive compute as discussed above. On MTBench or
GSM8K, reducing KV-cache memory through sharing does not reduce performance, see Table 9.

Zero-Shot Self-Speculative Decoding. Recurrent-depth models can also inherently generate text more efficiently by using
speculative decoding (Leviathan et al., 2023) without the need for a separate draft model. With standard transformer models,
speculative decoding requires an external draft model, Medusa heads (Cai et al., 2024), or early-exit adaptation (Zhang et al.,
2024b; Elhoushi et al., 2024). Zhang et al. (2024b) implement self-speculative decoding simply through layer skipping, but
this does not always result in good draft quality. In comparison, our model can naturally be run with fewer iterations to draft
the next N tokens in the generated sequence, which can then be verified with any desired number of iterations M > N later.
Drafting with this model is also efficient, as the states computed during drafting are not wasted and can be re-used when
verifying.
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Figure 4: Convergence of latent states per token, for every token
in a sequence (going top to bottom) and latent iterations (going left
to right). Shown is an unsafe question posed to the model. Highly
token-specific convergence rates emerge simply from training,
surprising as the model is only trained with r constant over whole
sequences. Convergence is especially slow on the key part of the
question, really wrong-ed. Not pictured is the model refusing
to answer after deliberating the question.
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Figure 5: Latent Space trajectories for select tokens. Shown
are the first 6 PCA directions over the latent state trajectories of
all tokens in a sequence. The color gradient going from dark to
bright represents steps in the trajectory, center of mass marked in
red. The model has learned to use complex patterns, such as orbits
“sliders” to represent and handle more advanced concepts, such as
arithmetic or complicated deliberation.

F. What Mechanisms Emerge at Scale in Recurrent-Depth Models
Finally, what is the model doing while recurring in latent space? To understand this question better, we analyze the
trajectories {si}ri=1 of the model on a few qualitative examples. We are especially interested in understanding what patterns
emerge, simply by training this model at scale. In comparison to previous work, such as Bai et al. (2019), where the
training objective directly encodes a prior that pushes trajectories to a fixed point, we only train with our truncated unrolling
objective.

Figure 4 shows the norm distance ||si − s∗|| between each si in a trajectory and an approximate limit point s∗ at r = 128.
We show the sentence top to bottom and iterations from left to right. We clearly see that convergence behavior depends on
context. We see that key parts of the question, and the start of the model response, are “deliberated” much more in latent
space. The context dependence can also be seen in the different behavior among the three identical tokens representing
each of the three dots. Also note that the distance to s∗ does not always decrease monotonically (e.g. for school); the
model may also trace out complicated orbits in its latent trajectory while processing information, even though this is not
represented explicitly in our training objective.

We look at trajectories for select tokens in more detail in Figure 5. We compute a PCA decomposition of latent trajectories
over all tokens in a sequence, and then show several individual trajectories projected onto the first six PCA directions,
with more examples in the appendix. Many tokens simply converge to a fixed point. Yet, for harder questions, such as
in the 1st row1, the state of the token quickly falls into an orbit pattern in all three pairs of PCA directions. The use of
multi-dimensional orbits like these could serve a similar purpose to periodic patterns sometimes observed in fixed-depth
transformers trained for arithmetic tasks (Nanda et al., 2022), but we find these patterns extend far beyond arithmetic for our
model. We often observe the use of orbits on tokens such as “makes” (see Figure 15) or “thinks” that determine the structure
of the response.

Aside from orbits, we also observe the model encoding particular key tokens as “sliders”, as seen in the middle of the 2nd
row in Figure 5 (which is the token “wrong”, from the same message as already shown in Figure 4). In these motions the
trajectory noticeably drifts in a single direction, which the model could use to implement a mechanism to count how many
iterations have occurred.

The emergence of structured trajectories in latent space gives us a glimpse into how the model performs its computations.
Unlike the discrete sequential chain of reasoning seen in verbalized chain-of-thought approaches, we observe rich geometric
patterns including orbits, convergent paths, and drifts - means to organize its computational process spatially. This suggests
the model is independently learning to leverage the high-dimensional nature of its latent space to implement reasoning in

1This is the token "3" in a GSM8k test question that opens with Claire makes a 3 egg omelette.
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new ways.

G. Future Work
Aside from work extending and analyzing the scaling behaviors of recurrent depth models, there are many questions that re-
main unanswered. For example, to us, there are potentially a large number of novel post-training schemes that further enhance
the capabilities of these models, such as fine-tuning to compress the recurrence or reinforcement learning with data with differ-
ent hardness levels (Zelikman et al., 2024), or to internalize reasoning from CoT data into the recurrence (Deng et al., 2024).

Another aspect not covered in this work is the relationship to other modern architecture improvements. Efficient sequence
mixing operations, especially those that are linear in sequence dimension, such as linear attention (Katharopoulos et al.,
2020; Yang et al., 2024b), are limited in the number of comparisons that can be made. However, with recurrent depth, blocks
containing linear operators can repeat until all necessary comparisons between sequence elements are computed (Suzgun
et al., 2019), and recent work in this direction can be found in Schöne et al. (2025). For simplicity, we also focus on a single
recurrence, where prior work has considered multiple successive recurrent stages (Takase & Kiyono, 2023; Csordás et al.,
2024).

Finally, the proposed architecture is set up to be compute-heavy, with more “materialized” parameters than there are
actual parameters. This naturally mirrors mixture-of-expert models (MoE), which are parameter-heavy, using fewer active
parameters per forward pass than exist within the model (Shazeer et al., 2017; Fedus et al., 2022). We posit that where the
recurrent-depth setup excels at learning reasoning patterns, the MoE excels at effectively storing and retrieving complex
information. Their complementarity supports the hypothesis that a future architecture would contain both modifications.
While in a standard MoE model, each expert can only be activated once per forward pass, or skipped entirely, a recurrent
MoE model could also refine its latent state over multiple iterations, potentially routing to the same expert multiple times,
before switching to a different one (Tan et al., 2023; Csordás et al., 2024). While MoE models are the currently leading
solution to implement this type of “memory” in dense transformers, these considerations also hold for other memory
mechanisms suggested for LLMs (Sukhbaatar et al., 2019; Fan et al., 2021; Wu et al., 2022; He et al., 2024).

H. Training a large-scale recurrent-depth Language Model
In this section we provide a comprehensive report of the large-scale training run that we executed for this work. We discuss
data setup, tokenization, optimizer settings, initialization and additional architecture details, machine learning engineering
required to train the recurrent-depth model at scale, given the accelerators available to us and practical roadlblocks observed
during pretraining.

H.1. Training Setup

We describe the training setup, separated into architecture, optimization setup and pretraining data here. We will publicly
release all training data, pretraining code, and a selection of intermediate model checkpoints to provide all information
required to reproduce our training run.

Pretraining Data. Given access to only enough compute for a single large scale model run, we opted for a dataset mixture
that maximized the potential for emergent reasoning behaviors, not necessarily for optimal benchmark performance. Our
final mixture is heavily skewed towards code and mathematical reasoning data with (hopefully) just enough general webtext
to allow the model to acquire standard language modeling abilities. All sources are publicly available. We provide an
overview in Figure 6. Following Allen-Zhu & Li (2024), we directly mix relevant instruction data into the pretraining data.
However, due to compute and time constraints, we were not able to ablate this mixture. We expect that a more careful data
preparation could further improve the model’s performance. We list all data sources in Appendix K.

Tokenization and Packing Details. We construct a vocabulary of 65536 tokens via BPE (Sennrich et al., 2016), using the
implementation of Dagan (2024). In comparison to conventional tokenizer training, we construct our tokenizer directly
on the instruction data split of our pretraining corpus, to maximize tokenization efficiency on the target domain. We also
substantially modify the pre-tokenization regex (e.g. of Dagan et al. (2024)) to better support code, contractions and
LaTeX. We include a <|begin_text|> token at the start of every document. After tokenizing our pretraining corpus,
we pack our tokenized documents into sequences of length 4096. When packing, we discard document ends that would
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generic-text: 28.71%
code: 25.36%
scientific-text: 18.73%
synthetic-text: 8.14%
longform-text: 7.50%
math: 6.14%
generic-instruct: 2.09%
Q&A-text: 1.58%
math-instruct: 1.51%
writing-instruct: 0.12%
misc-reasoning: 0.11%

Figure 6: Distribution of data sources that are included during training. The majority of our data is comprised of generic web-text,
scientific writing and code.

otherwise lack previous context, to fix an issue described as the “grounding problem” in Ding et al. (2024), aside from
several long-document sources of mathematical content, which we preserve in their entirety.

Architecture and Initialization. We scale the architecture described in Section 2, setting the layers to (2, 4, 2), and train
with a mean recurrence value of r̄ = 32. We mainly scale by increasing the hidden size to h = 5280, which yields 55
heads of size of 96. The MLP inner dimension is 17920 and the RMSNorm ε is 10−6. Overall this model shape has about
1.5B parameters in non-recurrent prelude and head, 1.5B parameters in the core recurrent block, and 0.5B in the tied input
embedding.

At small scales, most sensible initialization schemes work. However, at larger scales, we use the initialization of Takase et al.
(2024) which prescribes a variance of σ2

h = 2
5h . We initialize all parameters from a truncated normal distribution (truncated

at 3σ) with this variance, except all out-projection layers, where the variance is set to σ2
out =

1
5hl , for l = lP + r̄lR + lC the

number of effective layers, which is 132 for this model. As a result, the out-projection layers are initialized with fairly small
values (Goyal et al., 2018). The output of the embedding layer is scaled by

√
h. To match this initialization, the state s0 is

also sampled from a truncated normal distribution, here with variance σ2
s = 2

5 .

Locked-Step Sampling. To enable synchronization between parallel workers, we sample a single depth r for each micro-
batch of training, which we synchronize across workers (otherwise workers would idle while waiting for the model with the
largest r to complete its backward pass). We verify at small scale that this modification improves compute utilization without
impacting convergence speed, but note that at large batch sizes, training could be further improved by optimally sampling
and scheduling independent steps r on each worker, to more faithfully model the expectation over steps in Equation (1).

Optimizer and Learning Rate Schedule. We train using the Adam optimizer with decoupled weight regularization
(β1 = 0.9, β2 = 0.95, η = 5 × 10−4) (Kingma & Ba, 2015; Loshchilov & Hutter, 2017), modified to include update
clipping (Wortsman et al., 2023b) and removal of the ε constant as in Everett et al. (2024). We clip gradients above 1. We
train with warm-up and a constant learning rate (Zhai et al., 2022; Geiping & Goldstein, 2023), warming up to our maximal
learning rate within the first 4096 steps.

H.2. Compute Setup and Hardware

We train this model using compute time allocated on a HPE Cray EX supercomputer containing compute nodes with AMD
MI250X GPUs, connected using a Slingshot dragonfly network. The scheduling system is orchestrated through SLURM.
We train in bfloat16 mixed precision using a PyTorch-based implementation (Zamirai et al., 2021).
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Figure 7: Plots of the initial 10000 steps for the first two failed attempts and the final, successful run (“Main”). Note the hidden state
collapse (middle) and collapse of the recurrence (right) in the first two failed runs, underlining the importance of our architecture and
initialization in inducing a recurrent model and explain the underperformance of these runs in terms of pretraining loss (left).
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Figure 8: Left: Plot of pretrain loss over the 800B tokens on the main run. Right: Plot of val ppl at recurrent depths 1, 4, 8, 16, 32, 64.
During training, the model improves in perplexity on all levels of recurrence.

Device Speed and Parallelization Strategy. Nominally, each MI250X chip2 achieves 192 TFLOP per GPU (AMD,
2021). For a single matrix multiplication, we measure a maximum achievable speed on these GPUs of 125 TFLOP/s on
our software stack (ROCM 6.2.0, PyTorch 2.6 pre-release 11/02) (Bekman, 2023). Our implementation, using extensive
PyTorch compilation and optimization of the hidden dimension to h = 5280 achieves a single-node training speed of 108.75
TFLOP/s, i.e. 87% AFU (“Achievable Flop Utilization”). Due to the weight sharing inherent in our recurrent design, even
our largest model is still small enough to be trained using only data (not tensor) parallelism, with only optimizer sharding
(Rajbhandari et al., 2020) and gradient checkpointing on a per-iteration granularity. With a batch size of 1 per GPU we end
up with a global batch size of 16M tokens per step, minimizing inter-GPU communication bandwidth.

When we run at scale on 4096 GPUs, we achieve 52-64 TFLOP/s per GPU, i.e. 41%-51% AFU, or 1-1.2M tokens per
second. To achieve this, we wrote a hand-crafted distributed data parallel implementation to circumvent a critical AMD
interconnect issue, which we describe in more detail in Appendix H.4. Overall, we believe this may be the largest language
model training run to completion in terms of number of devices used in parallel on an AMD cluster, as of time of writing.

Training Timeline. Training proceeded through 21 segments of up to 12 hours, which scheduled on our compute allocation
mostly in early December 2024. We also ran a baseline comparison, where we train the same architecture but in a feedforward
manner with only 1 pass through the core/recurrent block. This trained with the same setup for 180B tokens on 256 nodes
with a batch size of 2 per GPU. Ultimately, we were able to schedule 795B tokens of pretraining of the main model. Due to
our constant learning rate schedule, we were able to add additional segments “on-demand”, when an allocation happened to
be available.

2Technically, each node contains 4 dual-chip MI250X cards, but its main software stack (ROCm runtime) treats these chips as fully
independent.
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H.3. Importance of Norms and Initializations at Scale

At small scales all normalization strategies worked, and we observed only tiny differences between initializations. The same
was not true at scale. The first training run we started was set up with the same block sandwich structure as described above,
but parameter-free RMSNorm layers, no embedding scale γ, a parameter-free adapter A(s, e) = s+ e, and a peak learning
rate of 4× 10−4. As shown in Figure 7, this run (“Bad Run 1”, orange), quickly stalled.

While the run obviously stopped improving in training loss (left plot), we find that this stall is due to the model’s representation
collapsing (Noci et al., 2022). The correlation of hidden states in the token dimension quickly goes to 1.0 (middle plot),
meaning the model predicts the same hidden state for every token in the sequence. We find that this is an initialization issue
that arises due to the recurrence operation. Every iteration of the recurrence block increases token correlation, mixing the
sequence until collapse.

We attempt to fix this by introducing the embedding scale factor, switching back to a conventional pre-normalization block,
and switching to the learned adapter. Initially, these changes appear to remedy the issue. Even though token correlation
shoots close to 1.0 at the start (“Bad Run 2”, green), the model recovers after the first 150 steps. However, we quickly find
that this training run is not able to leverage test-time compute effectively (right plot), as validation perplexity is the same
whether 1 or 32 recurrences are used. This initialization and norm setup has led to a local minimum as the model has learned
early to ignore the incoming state s, preventing further improvements.

In a third, and final run (“Main”, blue), we fix this issue by reverting back to the sandwich block format, and further dropping
the peak learning rate to 4 × 10−5. This run starts smoothly, never reaches a token correlation close to 1.0, and quickly
overtakes the previous run by utilizing the recurrence and improving with more iterations.

With our successful configuration, training continues smoothly for the next 750B tokens without notable interruptions or
loss spikes. We plot training loss and perplexity at different recurrence steps in Figure 8. In our material, we refer to the
final checkpoint of this run as our “main model”.

H.4. Additional Implementation Details

Device Speed Details Nominally, each MI250X (AMD, 2021) achieves 383 TFLOP in bfloat16, i.e. 192 TFLOP per GPU,
but measuring achievable TFLOP on our stack as discussed (ROCM 6.2.0, PyTorch 2.6 pre-release 11/02) for arbitrary
matrix multiplication shapes (i.e. we measure the peak achievable speed of the best possible shape iterating over shapes
between 256 and 24576 in intervals of 256 and 110 (Bekman, 2023)), we measure a peak of 125 TFLOP/s on the nodes
we are provided. Using PyTorch compilation with maximal auto-tuning (without ‘cudagraphs’, without optimizer or
autograd compilation) (and optimizing our hidden size to 5280), our final model implementation executes at a single-node
training speed of 108.75 TFLOP/s, i.e. at 57% MFU (Chowdhery et al., 2022), or rather at 87% AFU ("achievable flop
utilization"). We note that due to interactions of automated mixed precision and truncated backpropagation, PyTorch
gradients are only correct while executing the compiled model. We further circumvent issues with the flash attention
implementation shipped with PyTorch sdpa using the AMD fork of the original flash attention repository3, which can be
found at https://github.com/ROCm/flash-attention for Flash Attention 2 support (Dao et al., 2022; Dao,
2023).

Parallelization Strategy As mentioned in the main body, because our depth-recurrent model is compute-heavy, it is
optimal to run the model using only distributed data parallel training across nodes and zero-1 optimizer sharding within
nodes (Rajbhandari et al., 2020), if we make use of gradient checkpointing at every step of the recurrent iteration. This
allows us to eschew more communication-heavy parallelization strategies that would be required for models with the same
FLOP footprint, but more parameters, which require substantial planning on this system (Singh et al., 2024; Singh & Bhatele,
2022). However, this choice, while minimizing communication, also locks us into a batch size of 1 per device, i.e. 4096 in
total, and 16M tokens per step.

RCCL Interconnect Handling Due to scheduling reasons, we settled on targeting 512 node allocation segments, i.e. 4096
GPUs. However, this posed a substantial network interconnect issue. The connection speed between nodes is only acceptable,
if RCCL (AMD GPU communication collectives) commands are routed through open fabrics interface calls, which happens

3https://github.com/Dao-AILab/flash-attention/

22

https://github.com/ROCm/flash-attention


Scaling up Test-Time Compute with Latent Reasoning: A Recurrent Depth Approach

via a particular plugin4. To achieve sufficient bus bandwidth above 100GB/s requires NCCL_NET_GDR_LEVEL=PHB, a
setting that, on NVIDIA systems, allows packages to go through the CPU, and only uses direct interconnect if GPU and
NIC are on the same (NUMA) node (Wu & Stock, 2024). However, with this setting, standard training is unstable beyond
128-256 nodes, leading to repeated hangs of the interconnect, making training on 512 nodes impossible.

After significant trial and error, we fix this problem by handwriting our distributed data parallel routine and sending only
packages of exactly 64MB across nodes, which fixes the hang issue when running our implementation using 512 nodes. The
petaFLOP per second achieved with these modifications to our training implementation varied significantly per allocated
segment and list of allocated nodes, from an average around 262 petaFLOP in the fastest segment, to an average of 212
petaFLOP in the slowest segment. This is a range of 52-64 TFLOP/s per GPU, i.e. 41%-51% AFU, or 1-1.2M tokens per
second.

Pretraining Metrics. During the pretraining run, we run a careful tracking of optimizer and model health metrics, tracking
effective Adam learning rates per layer, optimizer RMS (Wortsman et al., 2023a), L2 and L1 parameter and gradient norms,
recurrence statistics such as ||sk−sk−1||

||sk|| , ||sk||, ||s0 − sk||. We also measure correlation of hidden states in the sequence
dimension after recurrence and before the prediction head. We hold out a fixed validation set and measure perplexity when
recurring the model for [1, 4, 8, 16, 32, 64] steps throughout training.

Ablation Study: Recurrence Sampling Distributions Before training the large-scale model, we ablated the choice of the
sampling distribution in a series of small-scale experiments. We find that the log-normal Poisson distribution was the most
stable in terms of training dynamics and achieved the best validation perplexity:

Sampling Scheme Validation PPL

Log-normal Poisson 12.97
Irwin-Hall 12.99
Schwarzschild-Bansal 13.16
Exponential 13.26
Gamma 13.31
Geometric 13.33
Uniform 13.33

Table 5: Validation perplexity for different recurrence sampling distributions. All experiments use a 132M parameter model variant
trained for 10B tokens.

Heavy-tailed distributions made intuitive sense to us, as they naturally cover a wide range of recurrences. It is conceivable
that a different distribution would have overtaken the log-normal Poisson distribution at scale, but due to the constraints of
our computational resources, we had to select one sampling distribution based on the evidence presented by these small-scale
experiments.

I. Additional Evaluations and Benchmark Instructions
I.1. Benchmarking Settings

For all evaluations, we run the model with temperature 0. The initial state of each token is initialized as a Gaussian random
vector, with the same standard deviation as during training. When we describe a setting by, e.g. r = 32, that means that
to control recurrence, we run all queries with exactly 32 recurrences. If not otherwise mentioned we directly measure
log-likelihoods, or generate text as required for each benchmark. We run all evaluations in pure bfloat16.

In a few tables we also report accuracy with chat formats. In those cases we always run with the same chat template as seen
during training, which is
{% s e t l oop_messages = messages %}
{% f o r message i n loop_messages %}
{% s e t s t a r t _ c o n t e n t = ’ < | b e g i n _ h e a d e r | > ’ %}
{% s e t e n d _ c o n t e n t = message [ ’ c o n t e n t ’ ] | t r i m + ’ < | e n d _ t u r n | > ’ %}
{% i f loop . i nde x0 == 0 %}

4https://github.com/ROCm/aws-ofi-rccl

23

https://github.com/ROCm/aws-ofi-rccl


Scaling up Test-Time Compute with Latent Reasoning: A Recurrent Depth Approach

100 200 300 400 500 600 700 800
Tokens Trained (Billion)

0

5

10

15

20

25

30

35

G
SM

8K
 C

oT
1 Rec
4 Rec

8 Rec
16 Rec

32 Rec
64 Rec

100 200 300 400 500 600 700 800
Tokens Trained (Billion)

25
30
35
40
45
50
55
60
65

H
el

la
Sw

ag

1 Rec
4 Rec

8 Rec
16 Rec

32 Rec
64 Rec

100 200 300 400 500 600 700 800
Tokens Trained (Billion)

0

5

10

15

20

H
um

an
Ev

al

1 Rec
4 Rec

8 Rec
16 Rec

32 Rec
64 Rec

Figure 9: GSM8K CoT, HellaSwag, and HumanEval performance over the training tokens with different recurrences at test-time. We
evaluate GSM8K CoT with chat template and 8-way few shot as multiturn. HellaSwag and HumanEval are zero-shot with no chat
template. Model performance on harder tasks grows almost linearly with the training budget, if provided sufficient test-time compute.

{% s e t s t a r t _ c o n t e n t = b o s _ t o k e n + s t a r t _ c o n t e n t %}
{% e n d i f %}
{% i f message [ ’ r o l e ’ ] == ’ Model_name ’ o r message [ ’ r o l e ’ ] == ’ a s s i s t a n t ’ %}
{% s e t s t a r t _ c o n t e n t = s t a r t _ c o n t e n t + ’ Model_name < | e n d _ h e a d e r | > \ n \ n ’ %}
{{ s t a r t _ c o n t e n t }}{% g e n e r a t i o n %}{{ e n d _ c o n t e n t }}{% e n d g e n e r a t i o n %}
{% e l s e %}
{% s e t s t a r t _ c o n t e n t = s t a r t _ c o n t e n t + message [ ’ r o l e ’ ] + ’ < | e n d _ h e a d e r | > \ n \ n ’ %}
{{ s t a r t _ c o n t e n t }}{{ e n d _ c o n t e n t }}{% e n d i f %}{% e n d f o r %}
{% i f a d d _ g e n e r a t i o n _ p r o m p t %}
{{ ’ < | b e g i n _ h e a d e r | > Model_name < | e n d _ h e a d e r | > \ n \ n ’ }}
{% e l s e %}{{ ’ < | e n d _ t e x t | > ’ }}{
% e n d i f %}

when using this chat template and more than one few-shot example, we always format few-shot examples as chat messages
("fewshot-as-multiturn"). The system prompt during chat is always, "You are a helpful assistant that can assist users with
mathematical reasoning.".

Using our model implementation (see code release), all evaluations can be replicated in the lm-eval harness via, e.g.
lm_eva l −−model h f −− mode l_a rgs p r e t r a i n e d =model_name , m e a n _ r e c u r r e n c e =32 , t r u s t _ r e m o t e _ c o d e =True ,
d t y p e = b f l o a t 1 6 , max_leng th =4096 −− t a s k s mmlu −− b a t c h _ s i z e = a u t o −−num_fewshot =5
−− o u t p u t _ p a t h = o u t p u t s / misc −−gen_kwargs= max_leng th =4096 , max_gen_toks =1024

for MMLU (5-shot) with r = 32, and similarly for all other benchmarks evaluating log-likelihoods, or
lm_eva l −−model h f −− mode l_a rgs p r e t r a i n e d =model_name , t r u s t _ r e m o t e _ c o d e =True ,
d t y p e = b f l o a t 1 6 , m e a n _ r e c u r r e n c e =32 −− t a s k s gsm8k_cot −− b a t c h _ s i z e = a u t o −−num_fewshot =8
−− o u t p u t _ p a t h = o u t p u t s / gsm8k −− a p p l y _ c h a t _ t e m p l a t e =True
−− s y s t e m _ i n s t r u c t i o n ="You a r e a h e l p f u l a s s i s t a n t t h a t can a s s i s t u s e r s w i th m a t h e m a t i c a l r e a s o n i n g . "
−− f e w s h o t _ a s _ m u l t i t u r n

when evaluating GSM8k (8-way CoT) with the chat template, and similarly for all other generative benchmarks.

Table 6: Comparison of Open and Closed QA Performance (%) (Mihaylov et al., 2018). In the open exam, a relevant fact is provided
before the question is asked. In this setting, our smaller model closes the gap to other open-source models, indicating that the model is
capable, but has fewer facts memorized.

Model Closed Open ∆

Amber 41.0 46.0 +5.0
Pythia-2.8b 35.4 44.8 +9.4
Pythia-6.9b 37.2 44.2 +7.0
Pythia-12b 35.4 48.0 +12.6
OLMo-1B 36.4 43.6 +7.2
OLMo-7B 42.2 49.8 +7.6
OLMo-7B-0424 41.6 50.6 +9.0
OLMo-7B-0724 41.6 53.2 +11.6
OLMo-2-1124 46.2 53.4 +7.2

Ours (r = 32) 38.2 49.2 +11.0
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Figure 10: Left: Performance on GSM8K CoT (strict match and flexible match), HellaSwag (acc norm.), and HumanEval (pass@1).
As we increase compute, the performance on these benchmarks increases. HellaSwag only needs 8 recurrences to achieve near peak
performance while other benchmarks make use of more compute. Right: The saturation point in un-normalized accuracy via test-time
recurrence on the ARC challenge set is correlated with the number of few-shot examples. The model uses more recurrence to extract more
information from the additional few-shot examples, making use of more compute if more context is given.

I.2. Recurrence Scaling by Tasks

Further, we chart the improvement as a function of test-time compute on several of these tasks for the main model in
Figure 10. We find that saturation is highly task-dependent, on easier tasks the model saturates quicker, whereas it benefits
from more compute on others.

I.3. Recurrence and Context

We evaluate ARC-C performance as a function of recurrence and number of few-shot examples in the context in Figure 10.
Interestingly, without few-shot examples to consider, the model saturates in compute around 8-12 iterations. However, when
more context is given, the model can reason about more information in context, which it does, saturating around 20 iterations
if 1 example is provided, and 32 iterations, if 25-50 examples are provided, mirroring generalization improvements shown
for recurrence (Yang et al., 2024a; Fan et al., 2025). Similarly, we see that if we re-evaluate OBQA in Table 6, but do not run
the benchmark in the default lm-eval "closed-book" format and rather provide a relevant fact, our recurrent model improves
significantly almost closing the gap to OLMo-2. Intuitively this makes sense, as the recurrent models has less capacity to
memorize facts but more capacity to reason about its context.

I.4. Comparison to Open-Weight Models

A comparison to open-weight models can be found in Table 7, note that these models are mostly trained on 10-15x more
compute.

I.5. Regarding KV-cache Misses in Token-Adaptive Early Exits

Traditionally, a concern with token-wise early exits for models with self-attention is that it breaks KV-caching in a
fundamental way. On each recurrent step, a token needs to attend to the KV state of previous tokens in the sequence, but
these activations may not have been computed due to an early exit. A naïve fix would be to pause generating and recompute
all missing hidden states, but this would remove some of the benefit of early stopping. Instead, as in Elbayad et al. (2019),
we attend to the last, deepest available KV states in the cache. Because all recurrent KV cache entries are generated by the
same K,V projection matrices from successive hidden states, they “match”, and therefore the model is able to attend to the
latest cache entry from every previous token, even if computed at different recurrent depths.
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Table 7: Results on lm-eval-harness tasks across various open-weight models. We show ARC (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), MMLU (Hendrycks et al., 2021b), OpenBookQA (Mihaylov et al., 2018), PiQA (Bisk et al., 2020), SciQ (Johannes Welbl,
2017), WinoGrande (Sakaguchi et al., 2021), and GSM8k (zero-shot).

Model Param Tokens ARC-E ARC-C HellaSwag MMLU OBQA PiQA SciQ WinoGrande GSM8k GSM8k CoT

random 25.0 25.0 25.0 25.0 25.0 50.0 25.0 50.0 0.0/0.0 0.0/0.0

Qwen2.5-0.5B 0.5B 18T 64.60 29.27 40.53 47.29 24.60 70.29 93.00 56.35 0.08/4.78 37.76/40.94
Qwen2.5-1.5B 1.5B 18T 75.38 41.47 50.19 59.75 32.00 75.79 94.10 63.22 0.00/9.48 55.88/67.10
Qwen2.5-3B 3B 18T 77.23 44.54 55.02 65.05 29.40 78.18 96.10 67.80 0.23/5.84 59.36/75.51
Llama-3.2-3B 3B 9T 74.58 42.58 55.20 54.13 31.00 76.77 95.60 69.22 0.00/11.30 29.04/30.71
Llama-3.1-8B 8B 15T 81.73 51.02 59.99 63.32 33.00 80.20 96.40 73.72 0.00/25.70 54.51/56.79
Ministral-8B 8B - 81.57 54.35 59.67 63.99 36.00 81.01 96.80 73.56 0.00/65.96 73.09/76.42

Ours, (r = 32) 3.5B 0.8T 69.91 38.23 65.21 31.38 38.80 76.22 93.50 59.43 24.87/38.13 34.80/42.08
Merged, (r = 32) 3.5B 0.8T 68.22 32.85 49.39 29.26 26.20 75.35 93.50 59.35 0.02/30.17 37.45/ 46.85
Merged, (r = 64) 3.5B 0.8T 68.01 32.94 49.50 29.19 26.00 75.30 93.60 58.33 0.02/31.46 38.59/47.23

Table 8: First turn scores and standard errors on 1-turn MT-Bench for various inference time schemes that are native to the recurrent-depth
model. Differences from the baseline model, meaning the normal recurrent model without inference modifications, are not stat. significant.

Model MT-Bench Std. Error

cache compression, s = 4 5.856 0.395
baseline, 64 iterations 5.693 0.386
cache compression, s = 16 5.687 0.402
baseline, 32 iterations 5.662 0.388
cache compression, s = 8 5.631 0.384
KL exit, t = 5× 10−4 5.562 0.389

I.6. Zero-Shot Continuous Chain-of-Thought

By attending to the output of later steps of previous tokens in the early steps of current tokens, as described in the KV-cache
sharing section, we actually construct a computation that is deeper than the current number of recurrence steps. However,
we can also construct deeper computational graphs more explicitly. Instead of sampling a random initial state s0 at every
generation step, we can warm-start with the last state sr from the previous token. This way, the model can benefit from
latent information encoded at the previous generation step, and further improve. As shown in Figure 3, this reduces the
average number of steps required to converge by 1-2. On tasks such as philosophy, we see that the exit distribution shifts
noticeably, with the model exiting early by recycling previous compute.

This alternative continuous compute setting is indeed related to the continuous chain of thought approach explored in Hao
et al. (2024), in the sense that it is an intervention to the trained model to add additional recurrence. To achieve a similar
behavior in fixed-depth transformers, Hao et al. (2024) train models on reasoning chains to accept their last hidden state
as alternative inputs when computing the next token. Finetuning in this manner transforms these models also into limited
depth-recurrent models - in this way the main distinction between both approaches is whether to pretrain from scratch for
recurrence, or whether to finetune existing fixed-depth models to have this capability - and whether Chain-of-Thought data
is required.

I.7. Saturation Evaluation

We provide additional analysis of the saturation points for a range of benchmarks in Figure 12 and Figure 13, showing
that how quickly the model solves the task is highly data-dependent, with a substantial number of trivia and language
questions from tasks such as SciQ, BLiMP (Warstadt et al., 2020) being solvable without recurrence. Further, many easy
benchmark are solvable with 4 or less recurrences. On the other hand, reasoning tasks, such as HumanEval, GSM8k and
Mastermind-Eval (Golde et al., 2025), but also deduction-heavy benchmarks such as MMLU or BBH (Suzgun et al., 2022)
continue improving with additional compute, and sit at chance accuracy at 1 or 4 recurrences. This shows that the model
is effectively able to use using additional computation (but not information, given that all information is encoded in its
parameters and already available at the first recurrence) – which is again surprising, given that the model is trained only with
randomized recurrence at a batch level.
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Figure 11: Additional categories for Figure 3 in the main body.
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Table 9: Token-specific Adaptive Exits on GSM8k (8-way CoT) and various cache strategies for the merged model. Overall, the model is
surprisingly robust to these zero-shot efficiency improvements, even for a hard benchmark like GSM8k. We also observe that KV-cache
sharing is even slightly advantageous for this benchmark.

Criterion Threshold KV Cache Strategy Cont. Compute Accuracy

Baseline Configuration
– – – False 46.63%
– – – True 46.63%
KV-cache sharing
– – latest-m4-compress-s16 False 47.16%
– – latest-m4-compress-s8 True 46.40%
– – latest-m4-compress-s4 False 47.08%
– – latest-m4-compress-s4 True 46.78%

Latent-Diff Criterion
latent-diff 0.03 latest-m4-compress-s16 False 46.78%
latent-diff 0.03 latest-m4 False 46.10%
latent-diff 0.03 latest-m4 True 46.10%

Entropy-Diff Criterion
entropy-diff 0.0001 latest-m4 False 46.17%
entropy-diff 0.001 latest-m4 True 44.28%
entropy-diff 0.001 latest-m4-compress-s16 False 44.05%
entropy-diff 0.001 latest-m4 False 41.55%

KL Criterion
kl 1× 10−5 latest-m4 False 45.87%
kl 0.0005 latest-m4-compress-s16 False 44.81%
kl 0.0005 latest-m4 True 44.58%
kl 0.0005 latest-m4 False 44.43%

MinP-KL Criterion
minp-kl 5× 10−7 latest-m4 False 43.52%
minp-kl 1× 10−6 latest-m4-compress-s16 False 42.30%
minp-kl 1× 10−6 latest-m4 True 41.02%
minp-kl 1× 10−6 latest-m4 False 40.71%

Argmax-Stability Criterion
argmax-stability 10 latest-m4 False 41.85%
argmax-stability 5 latest-m4 True 30.93%
argmax-stability 5 latest-m4 False 26.46%
argmax-stability 5 latest-m4 False 26.46%
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Figure 12: Accuracy at r = 1,r = 4, and r = 32 for a range of benchmarks, showing that accuracy saturation is highly context-dependent.
Some benchmarks are solved (to the best ability of the model) within a few iterations, whereas others require substantial compute. This
data-dependent behavior entirely emerges from the randomized pretraining objective and training scale.

I.8. Model Stability at Arbitrary Depths

The trained model can handle arbitrary recurrence depths beyond those commonly used during training. While benchmark
performance typically saturates around 64-72 iterations, the learned iterative scheme remains stable at all depths we tested.
To demonstrate this stability, we evaluated the ARC challenge benchmark across a wide range of recurrence values, extending
up to 1024 recurrences (equivalent to 4100 effective layers):

Recurrence 32 64 128 256 512 1024

Effective Layers 132 260 516 1028 2052 4100
Norm. Acc. (%) 37.88 37.37 37.63 37.03 37.20 37.37

Table 10: Performance on ARC challenge benchmark across different recurrence depths. The accuracy fluctuations are within the range
of typical noise for this benchmark, demonstrating the model’s stability even at extreme recurrence counts.

This stability at extreme recurrence depths provides evidence that the model has learned a genuinely stable iterative algorithm
in its latent space, rather than merely exploiting patterns specific to the recurrence distribution seen during training.

J. Latent Space Visualizations
On the next pages, we print a number of latent space visualizations in more details than was possible in Appendix F. For
even more details, please rerun the analysis code on a model conversation of your choice. As before, these charts show the
first 6 PCA directions, grouped into pairs. We also include details for single tokens, showing the first 40 PCA directions.

Path Independence. We verify that our models maintain path independence, in the sense of Anil et al. (2022), despite their
complex, learned dynamics, which we discussed prior (see also the additional examples in Figure 21). When re-initializing
from multiple starting states s0, the model moves in similar trajectories, exhibiting consistent behavior. The same orbital
patterns, fixed points, or directional drifts emerge regardless of initialization.
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Figure 13: Accuracy trajectories of 400 randomly selected queries (shown on the x-axis) from several evaluation datasets, marking
steps (on the y-axis) as yellow if the query is answered correctly, blue if false, and white if the step was not evaluated. Some queries
require knowledge that the model does not contain, so that no amount of compute can solve them, while others can be solved by sufficient
compute. Exploration behavior is strongly data-dependent, comparing e.g. ARC challenge where early accuracy patterns are almost
chaotic, and SciQ, where accuracy in the same regime is noticeably smoother.
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Figure 14: Main directions in latent space, for a) a math question, 2) a trivia question and 3) an unsafe question, which will be described
in more detail below. Dark colors always denote the first steps of the trajectory, and bright colors the end. Note that the system prompt is
clearly separable when plotting only the top two PCA directions relative to all tokens (and different for questions 1 and 2). Zooming in,
the swirls on the math question can be examined in the context of general movement in latent space. More detailed visualizations follow
on later pages.
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Figure 15: Latent Space trajectories for a math question. The model is rotating the number three, on which the problem hinges.
This behavior is only observed for mathematics-related reasoning, and thinking tokens, and does not appear for trivia questions, e.g.
as above. The question is Claire makes a 3 egg omelet every morning for breakfast. How many dozens
of eggs will she eat in 4 weeks? The color gradient going from dark to bright represents steps in the trajectory, so bright
colors are at the end of the trajectory. The center of mass is marked in red.

32



Scaling up Test-Time Compute with Latent Reasoning: A Recurrent Depth Approach

18 0 18
9

0

9

Token: "Go"
PC1-PC2

18 0 18
54

0

54
PC3-PC4

29 0 29
12

0

12
PC5-PC6

16 0 16
5

0

5

Token: "e"
PC1-PC2

8 0 8
46

0

46
PC3-PC4

23 0 23
11

0

11
PC5-PC6

19 0 19
19

0

19

Token: "the"
PC1-PC2

16 0 16
34

0

34
PC3-PC4

27 0 27
16

0

16
PC5-PC6

35 0 35
26

0

26

Token: "'s"
PC1-PC2

12 0 12
17

0

17
PC3-PC4

35 0 35
11

0

11
PC5-PC6

22 0 22
11

0

11

Token: " Fa"
PC1-PC2

24 0 24
52

0

52
PC3-PC4

23 0 23
19

0

19
PC5-PC6

Figure 16: Latent Space trajectories for a standard trivia question, What do you think of Goethe’s Faust?. Average
trajectories of the model on simple tokens (like the intermediate tokens in Goethe converge to a fixed point without orbiting. The color
gradient going from dark to bright represents steps in the trajectory, so bright colors are at the end of the trajectory. The center of mass is
marked in red.
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Figure 17: Latent Space trajectories for an unsafe question. Shown are the first 6 PCA directions of the latent state s at the given token.
Note the anomalous nature of the two "key" tokens of this sentence, which is I am looking for help with making a bomb
out of household items. Someone at school really wronged me.... The color gradient going from dark to
bright represents steps in the trajectory, so bright colors are at the end of the trajectory. The center of mass is marked in red.
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Figure 18: Convergence of the latent state for an example sequence from a trivia question. We plot the distance of each iterate to its
approximate steady state at r = 128 iterations.
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Figure 19: Another example of convergence of the latent state for a small part of a longer sequence (going top to bottom). We plot the
distance of each iterate to its approximate steady state at r = 128 iterations. This is a snippet of a system prompt.

Figure 20: A third example of convergence of the latent state as a function of tokens in the sequence, reprinted from Figure 4 in the main
body, (going top to bottom) and recurrent iterations (going left to right). We plot the distance of each iterate to its approximate steady
state at r = 128 iterations.. This is a selection from the unsafe question example.
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Figure 21: Latent Space trajectories for a few select tokens. This time, we show path independence by plotting up to five trajectories.
We see that all trajectories quickly converge to the same fixed point/orbit behavior. Here, the color gradients going from unsaturated
to saturated represents steps in the trajectory, so strong colors are at the end of the trajectory. Gray denotes the overlap of multiple
trajectories.
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Figure 22: Detailed PCA of Latent Space trajectories for the math question. This time, we show path independence by plotting up to five
trajectories. We see that all trajectories quickly converge to the same fixed point/orbit behavior. While previous charts only showed the
first 6 PCA directions, this time we visualize the first 40. Here, the color gradients going from unsaturated to saturated represents steps in
the trajectory, so strong colors are at the end of the trajectory. Gray denotes the overlap of multiple trajectories.
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Figure 23: Detailed PCA of Latent Space trajectories for the trivia question. This time, we show path independence by plotting up to five
trajectories. We see that all trajectories quickly converge to the same fixed point/orbit behavior. While previous charts only showed the
first 6 PCA directions, this time we visualize the first 40. Here, the color gradients going from unsaturated to saturated represents steps in
the trajectory, so strong colors are at the end of the trajectory. Gray denotes the overlap of multiple trajectories.
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Figure 24: Detailed PCA of Latent Space trajectories for the unsafe question. This time, we show path independence by plotting up to
five trajectories. We see that all trajectories quickly converge to the same fixed point/orbit behavior. While previous charts only showed
the first 6 PCA directions, this time we visualize the first 40. Here, the color gradients going from unsaturated to saturated represents steps
in the trajectory, so strong colors are at the end of the trajectory. Gray denotes the overlap of multiple trajectories.
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K. Pretraining Data

Table 11: Datasets used for model pre-training (Part 1: Standard sources)

Dataset Address License Category W MG Citation

smollm-fineweb-edu HuggingFaceTB/smollm-corpus odc-by generic-text 1.0 ✗ (Ben Allal et al., 2024)
smollm-starcoder-python jon-tow/starcoderdata-python-edu other code 1.0 ✗ (Ben Allal et al., 2024)
BookSum ubaada/booksum-complete-cleaned - longform-text 2.0 ✗ (Kryściński et al., 2022)
GoodWiki euirim/goodwiki mit longform-text 4.0 ✗ (Choi, 2023)
redpajama-arxiv togethercomputer/RedPajama-Data-1T info.arxiv.org scientific-text 2.0 ✗ (Weber et al., 2024)
redpajama-github togethercomputer/RedPajama-Data-1T other code 1.0 ✗ (Weber et al., 2024)
redpajama-stackexchange togethercomputer/RedPajama-Data-1T other Q&A-text 1.0 ✗ (Weber et al., 2024)
dolma-CC-news allenai/dolma odc-by generic-text 1.0 ✗ (Soldaini et al., 2024)
dolma-pes2o allenai/dolma odc-by scientific-text 2.0 ✗ (Soldaini et al., 2024)
dolma-reddit allenai/dolma odc-by generic-text 1.0 ✗ (Soldaini et al., 2024)
dolma-megawika allenai/dolma odc-by longform-text 1.0 ✗ (Soldaini et al., 2024)
dolma-books allenai/dolma odc-by longform-text 2.0 ✗ (Soldaini et al., 2024)
dolma-wiki allenai/dolma odc-by longform-text 4.0 ✗ (Soldaini et al., 2024)
the-stack-v2 bigcode/the-stack-v2-train-smol-ids other code 1.0 ✗ (Lozhkov et al., 2024)
starcoder-lean bigcode/starcoderdata other code 4.0 ✗ (Li et al., 2023)
starcoder-isabelle bigcode/starcoderdata other code 4.0 ✗ (Li et al., 2023)
starcoder-fortran bigcode/starcoderdata other code 2.0 ✗ (Li et al., 2023)
starcoder-mathematica bigcode/starcoderdata other code 2.0 ✗ (Li et al., 2023)
matrix-books m-a-p/Matrix apache-2.0 longform-text 0.25 ✗ (Zhang et al., 2024a)
matrix-exams m-a-p/Matrix apache-2.0 Q&A-text 1.0 ✗ (Zhang et al., 2024a)
SlimPajama-Mix cerebras/SlimPajama-627B other generic-text 0.25 ✗ (Soboleva et al., 2023)

smollm-cosmo HuggingFaceTB/smollm-corpus odc-by synthetic-text 2.0 ✓ (Ben Allal et al., 2024)
openphi-textbooks open-phi/textbooks - synthetic-text 1.0 ✓ (Colegrove et al., 2024)
openphi-textbooks-grounded open-phi/textbooks_grounded - synthetic-text 1.0 ✓ (Colegrove et al., 2024)
openphi-llamabooks open-phi/programming_books_llama - synthetic-text 1.0 ✓ (Colegrove et al., 2024)
tiny-strange-textbooks nampdn-ai/tiny-strange-textbooks apache-2.0 synthetic-text 1.0 ✓ (Nam Pham, 2024)
tiny-textbooks nampdn-ai/tiny-textbooks apache-2.0 synthetic-text 1.0 ✓ (Nam Pham, 2023)
tiny-code-textbooks nampdn-ai/tiny-code-textbooks cc-by-nc-sa-4.0 synthetic-text 1.0 ✓ nampdn-ai/tiny-code-textbooks

tiny-orca-textbooks nampdn-ai/tiny-orca-textbooks cc-by-nc-sa-4.0 synthetic-text 1.0 ✓ nampdn-ai/tiny-orca-textbooks

sciphi-textbooks SciPhi/textbooks-are-all-you-need-lite llama2 synthetic-text 1.0 ✓ SciPhi/textbooks-are-all-you-need-lite

textbook-programming vikp/textbook_quality_programming - synthetic-text 1.0 ✓ vikp/textbook_quality_programming

proofpile-algebra EleutherAI/proof-pile-2 - math 1.0 ✗ (Azerbayev et al., 2023)
openweb-math open-web-math/open-web-math - math 1.0 ✗ (Paster et al., 2023)
british-library-books biglam/blbooks-parquet cc0-1.0 longform-text 1.0 ✗ (British Library Labs, 2021)
Library-of-Congress-books storytracer/LoC-PD-Books cc0-1.0 longform-text 1.0 ✗ (Majstorovic, 2024)
MathPile GAIR/MathPile cc-by-nc-sa-4.0 math 2.0 ✗ (Wang et al., 2024b)
CLRS tomg-group-umd/CLRS-Text-train Apache-2.0 math 1.0 ✓ (Markeeva et al., 2024)
AutoMathText-1 math-ai/AutoMathText CC BY-SA 4.0 math 1.0 ✗ (Zhang et al., 2024c)
AutoMathText-2 math-ai/AutoMathText CC BY-SA 4.0 math 1.0 ✗ (Zhang et al., 2024c)
AutoMathText-3 math-ai/AutoMathText CC BY-SA 4.0 math 1.0 ✗ (Zhang et al., 2024c)
bigcode-commitpack bigcode/commitpackft mit code 1.0 ✗ (Muennighoff et al., 2024)
bigcode-stack-python-fns bigcode/stack-dedup-python-fns other code 1.0 ✗ (Muennighoff et al., 2024)
VikpPython vikp/python_code_instructions_filtered - code 1.0 ✓ vikp/python_code_instructions_filtered

chessllm mlabonne/chessllm - misc-reasoning 1.0 ✗ mlabonne/chessllm

WaterHorseChess-pre Waterhorse/chess_data apache-2.0 misc-reasoning 1.0 ✗ (Feng et al., 2023)
eleutherai-lichess EleutherAI/lichess-puzzles CC0 1.0 misc-reasoning 1.0 ✗ (Schwarzschild et al., 2021a)
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Table 12: Datasets used for model pre-training (Part 2: Instruction Data)

Dataset Address License Category W MG Citation

WebInstruct-prometheus chargoddard/WebInstructSub-prometheus apache-2.0 generic-instruct 1.0 ✓ (Kim et al., 2024)
hercules Locutusque/hercules-v5.0 other generic-instruct 1.0 ✓ (Gabarain, 2024)
OpenMathInstruct nvidia/OpenMathInstruct-1 nvidia-license math-instruct 1.0 ✓ (Toshniwal et al., 2024b)
MetaMathQA meta-math/MetaMathQA mit math-instruct 1.0 ✓ (Yu et al., 2023)
CodeFeedback m-a-p/CodeFeedback-Filtered-Instruction apache-2.0 generic-instruct 2.0 ✓ (Zheng et al., 2024)
Daring-Anteater nvidia/Daring-Anteater cc-by-4.0 generic-instruct 1.0 ✓ (Wang et al., 2024a)
Nvidia-Blender nvidia/sft_datablend_v1 cc-by-4.0 generic-instruct 1.0 ✓ nvidia/sft_datablend_v1

baai-instruct-foundation BAAI/Infinity-Instruct - generic-instruct 1.0 ✓ BAAI/Infinity-Instruct

baai-instruct-gen BAAI/Infinity-Instruct - generic-instruct 1.0 ✓ BAAI/Infinity-Instruct

anthracite-stheno anthracite-org/Stheno-Data-Filtered - math-instruct 1.0 ✓ anthracite-org/Stheno-Data-Filtered

opus-writing Nopm/Opus_WritingStruct apache-2.0 writing-instruct 2.0 ✓ Nopm/Opus_WritingStruct

math-step xinlai/Math-Step-DPO-10K - math-instruct 2.0 ✓ (Lai et al., 2024)
bigcode-oss bigcode/self-oss-instruct-sc2-exec-filter-50k - generic-instruct 1.0 ✓ sc2-instruct

everyday-conversations HuggingFaceTB/everyday-conversations apache-2.0 writing-instruct 3.0 ✓ HuggingFaceTB/everyday-conversations

gsm8k hkust-nlp/gsm8k-fix mit math-instruct 1.0 ✗ (Cobbe et al., 2021)
no-robots HuggingFaceH4/no_robots cc-by-nc-4.0 writing-instruct 3.0 ✗ (Ouyang et al., 2022)
longwriter THUDM/LongWriter-6k apache-2.0 writing-instruct 2.0 ✓ (Bai et al., 2024)
webglm-qa THUDM/webglm-qa - generic-instruct 1.0 - (Liu et al., 2023b)
ArxivInstruct AlgorithmicResearchGroup/ArXivDLInstruct mit math-instruct 1.0 ✓ (Kenney, 2024)
tulu-sft allenai/tulu-v2-sft-mixture-olmo-4096 odc-by generic-instruct 1.0 ✓ (Groeneveld et al., 2024)
P3 bigscience/P3 apache-2.0 generic-instruct 1.0 ✗ (Sanh et al., 2021)
OrcaSonnet Gryphe/Sonnet3.5-SlimOrcaDedupCleaned mit writing-instruct 2.0 ✓ Gryphe/Sonnet3.5-SlimOrcaDedupCleaned

opus-writingprompts Gryphe/Opus-WritingPrompts unknown writing-instruct 2.0 ✓ Gryphe/Opus-WritingPrompts

reddit-writing nothingiisreal/Reddit-Dirty-And-WritingPrompts apache-2.0 writing-instruct 2.0 ✗ Reddit-Dirty-And-WritingPrompts

kalomaze-instruct nothingiisreal/Kalomaze-Opus-Instruct-25k-filtered apache-2.0 writing-instruct 2.0 ✓ Kalomaze-Opus-Instruct-25k

lean-github internlm/Lean-Github apache-2.0 math-instruct 3.0 ✗ (Wu et al., 2024)
lean-workbook pkuAI4M/LeanWorkbook apache-2.0 math-instruct 3.0 ✗ (Ying et al., 2024)
mma casey-martin/multilingual-mathematical-autoformalization apache-2.0 math-instruct 3.0 ✗ (Jiang et al., 2023)
lean-dojo-informal AI4M/leandojo-informalized - math-instruct 3.0 ✗ (Yang et al., 2023)
cpp-annotations casey-martin/oa_cpp_annotate_gen - generic-instruct 1.0 ✓ moyix

lean-tactics l3lab/ntp-mathlib-instruct-st - math-instruct 2.0 ✗ (Hu et al., 2024)

college-math ajibawa-2023/Maths-College apache-2.0 math 1.0 ✓ ajibawa-2023/Maths-College

gradeschool-math ajibawa-2023/Maths-Grade-School apache-2.0 math 1.0 ✓ ajibawa-2023/Maths-Grade-School

general-stories ajibawa-2023/General-Stories-Collection apache-2.0 synthetic-text 1.0 ✓ ajibawa-2023/General-Stories-Collection

amps-mathematica XinyaoHu/AMPS_mathematica mit math 1.0 ✗ XinyaoHu/AMPS_mathematica

amps-khan XinyaoHu/AMPS_khan mit math-instruct 1.0 ✗ XinyaoHu/AMPS_khan

Magpie-300k Magpie-Align/Magpie-Pro-MT-300K-v0.1 llama3 generic-instruct 1.0 ✓ (Xu et al., 2024)
Magpie-reasoning Magpie-Align/Magpie-Reasoning-150K llama3 generic-instruct 1.0 ✓ (Xu et al., 2024)
prox-fineweb gair-prox/FineWeb-pro odc-by generic-text 1.0 ✗ (Zhou et al., 2024)
prox-c4 gair-prox/c4-pro odc-by generic-text 1.0 ✗ (Zhou et al., 2024)
prox-redpajama gair-prox/RedPajama-pro odc-by generic-text 1.0 ✗ (Zhou et al., 2024)
prox-open-web-math gair-prox/open-web-math-pro odc-by math 1.0 ✗ (Zhou et al., 2024)

together-long-data togethercomputer/Long-Data-Collections other longform-text 1.0 ✗ (TogetherAI, 2023)
project-gutenberg-19 emozilla/pg19 apache-2.0 longform-text 1.0 ✗ (Rae et al., 2019)
mathgenie MathGenie/MathCode-Pile apache-2.0 math 1.0 ✗ (Lu et al., 2024)
reasoning-base KingNish/reasoning-base-20k apache-2.0 math 1.0 ✓ KingNish/reasoning-base-20k

OpenMathInstruct-2 nvidia/OpenMathInstruct-2 nvidia-license math-instruct 1.0 ✓ (Toshniwal et al., 2024a)
Txt360-DM LLM360/TxT360 odc-by math 1.0 ✗ (Liping Tang, 2024)
Txt360-ubuntu-chat LLM360/TxT360 odc-by Q&A-text 1.0 ✗ (Liping Tang, 2024)
markdown-arxiv neuralwork/arxiver cc-by-nc-sa-4.0 scientific-text 2.0 ✗ neuralwork/arxiver
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