
Under review as a conference paper at ICLR 2024

PRUNING NEURAL NETWORKS USING FISHLEG ESTI-
MATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In many domains, the most successful AI models tend to be the largest, indeed
often too large to be handled by AI players with limited computational resources.
To mitigate this, a number of compression methods have been developed, including
methods that prune the network down to high sparsity whilst retaining performance.
The best-performing pruning techniques are often those that use second-order cur-
vature information (such as an estimate of the Fisher information matrix) to score
the importance of each weight and to predict the optimal compensation for weight
deletion. However, these methods are difficult to scale to high-dimensional param-
eter spaces without making heavy approximations. Here, we propose the FishLeg
surgeon (FLS), a new second-order pruning method based on the Fisher-Legendre
(FishLeg) optimizer. At the heart of FishLeg is a meta-learning approach to amor-
tising the action of the inverse FIM, which brings a number of advantages. Firstly,
the parameterisation enables the use of flexible tensor factorisation techniques to
improve computational and memory efficiency without sacrificing much accuracy,
alleviating challenges associated with scalability of most second-order pruning
methods. Secondly, directly estimating the inverse FIM leads to less sensitivity
to the amplification of stochasticity during inversion, thereby resulting in more
precise estimates. Thirdly, our approach also allows for progressive assimilation
of the curvature into the parameterization. In the gradual pruning regime, this
results in a more efficient estimate refinement as opposed to re-estimation. We
revisit the autoencoder optimisation benchmark of the original FishLeg paper and
show that FLS yields highly effective one-shot and gradual pruning, better than
previous methods. We further extend FishLeg by developing new structured ap-
proximations of the inverse Fisher for convolutional layers. We find that FishLeg
greatly improves one-shot pruning accuracy over previous second-order methods
on ResNet50 (e.g. 62% accuracy at 75% sparsity, v.s. 41% for M-FAC).

1 INTRODUCTION

The current staggering growth of AI models is threatening to sideline small and medium-sized AI
contributors with limited access to compute resources who cannot afford to run the largest models.
Consequently, there is a growing need for methods that can compress these models down to a fraction
of their original size whilst retaining their performance (Liu & Wang, 2023).

Here, we focus on unstructured network pruning, i.e. the process of zeroing out as many weights
as possible without substantially impacting the quality of the model. We build on the Optimal
Brain Surgeon (OBS; LeCun et al., 1989; Hassibi & Stork, 1992), a classical approach to pruning
that approximates the network’s loss function in quadratic form to determine (i) the importance
of each weight and (ii) the optimal way of compensating for their deletion. Several recent studies
have shown that second-order importance scores are more accurate than scores derived from weight
magnitudes and/or gradients (Gale et al., 2019; Sanh et al., 2020), yielding more effective pruning in
convolutional (Theis et al., 2018; Singh & Alistarh, 2020) or transformer (Kuznedelev et al., 2022;
Kurtic et al., 2022) architectures. Moreover, second-order methods have shown some promise in
pruning benchmarks specifically chosen to “fail current sparse neural networks” (Liu et al., 2023).

Despite the promise of OBS-derived approaches, they are faced with a severe tradeoff between
scalability and accuracy that has proven hard to navigate. Specifically, both the importance scores

1

Under review as a conference paper at ICLR 2024

and the weight updates rely on estimating the action of the inverse Hessian H−1 (or, in our case, the
inverse Fisher matrix F−1) on a high-dimensional parameter space (v 7→ H−1v), which inevitably
calls for approximations. Indeed, all recent applications of the OBS framework to pruning have had
to make significant simplifications, such as (i) ignoring correlations between most weights or groups
of weights (Kurtic et al., 2022; Kuznedelev et al., 2022), or (ii) making low-rank approximations to
the Hessian (Singh & Alistarh, 2020; Frantar et al., 2021) which are as good as the memory they
consume. Note that these computational challenges also arise in second-order optimization.

In this work, we introduce the FishLeg surgeon (FLS) — a novel pruning algorithm that exploits
the inverse curvature estimation machinery of the Fisher-Legendre (FishLeg) optimizer (Garcia
et al., 2023). FishLeg attacks the scalability-accuracy dilemma by learning to directly amortize
F−1v products in an easy-to-evaluate Q(λ)v form. This is done by minimizing an auxiliary loss
A(λ) derived from Legendre duality principles, w.r.t. a set of auxiliary parameters λ (details in
Section 2). In contrast to low-rank approximations of the Fisher matrix that require hundreds of
gradients to be stored, FishLeg allows the progressive distillation of a large number of gradients
into the auxiliary parameter set λ.1 By means of low-parameter tensor factorization techniques, the
size of λ can be kept within a small multiple of the size of the model itself, enabling pruning of
large models with limited memory. Whilst such memory efficiency can also be attained through
KFAC-based methods (Martens & Grosse, 2015; Wang et al., 2019), FishLeg’s direct estimation of
the inverse Fisher is less sensitive to gradient noise (Appendix G). Moreover, the form of KFAC’s
F−1 follows rigidly from approximate mathematical derivations, whereas FishLeg’s Q(λ) can be
any user-specified positive-definite quadratic form, yielding greater flexibility and accuracy. We
use this flexibility to develop a novel variation on the well-known Kronecker-factored curvature
approximation for dense layers, as well as new approximations for the convolutional layer.

We extend FishLeg’s inverse Fisher estimation algorithm in a number of ways: (i) we modify the
auxiliary loss A(λ) to facilitate assessment of its convergence and to promote learning of the full
F−1 as required for pruning (as opposed to learning the action of F−1 on the subspace of momentary
noisy gradients, as relevant to the optimization setting of Garcia et al., 2023); (ii) we propose a new
preconditioner for this (often ill-conditioned) auxiliary loss, and show analytically that it accelerates
convergence asymptotically; and (iii) we propose a new initialization scheme for Q(λ) that leads to
better estimation of F−1 especially when it is ill-conditioned. We show that the FishLeg surgeon
results in highly effective pruning on a number of benchmarks. We first demonstrate substantial one-
shot and gradual pruning improvements over previous second-order methods on a deep autoencoder
previously studied in the context of second-order optimization; this network is known to exhibit
pathological curvature, and our results, therefore, suggest that FLS’s superior inverse curvature
estimator is key to improving pruning performance. Next, we apply FLS to the pruning of ResNet50.
We show that in the one-shot and one-shot plus fine-tuning setup we consistently outperform other
state-of-the-art second-order pruning methods, such as M-FAC and oBERT. Finally, although we do
not explore this here, our method should be readily applicable to network quantization, following the
approach traced out by Frantar et al. (2023).

2 BACKGROUND AND RELATED WORK

Unstructured vs. structured pruning Unstructured pruning reduces the number of parameters
by scoring, and subsequently perhaps removing, each weight independently. In contrast, structured
pruning scores and prunes entire components of the model, such as neurons, filters (Li et al., 2016),
channels (He et al., 2017), layers (Fan et al., 2019; Sridhar & Sarah, 2020; Sajjad et al., 2023), or
attention heads (Michel et al., 2019; Voita et al., 2019). Structured pruning therefore relies on an
implicit structural understanding of the model. Recently, semi-structured pruning methods have
gained popularity, where smaller subsets, e.g. blocks, of weights are removed together to allow the
targeted hardware to take maximum advantage of sparsity (Lagunas et al., 2021; Gordon et al., 2020;
Kurtic et al., 2022). Here, for simplicity, our experiments focus exclusively on unstructured pruning,
but our method could easily be applied to the structured pruning case too.

1Although we do not explore this here, this direct and gradual learning of F−1 in Q(λ) is particularly relevant
to the gradual pruning setting, where other methods typically have to recompute F from scratch following
pruning and re-invert it.

2

Under review as a conference paper at ICLR 2024

One-shot pruning vs. gradual pruning One-shot pruning is the challenging task of pruning a
model to some target sparsity with a single pruning iteration, and with no opportunity to recover any
accuracy lost to pruning by e.g. re-training. In gradual pruning, the weights are instead removed
progressively: each pruning step achieves some scheduled increase in sparsity and is followed by a
period of fine tuning. This approach often allows higher sparsity to be obtained for a given model
accuracy; for example, Gradual Magnitude Pruning (GMP; Gale et al., 2019; Han et al., 2016) often
provides a strong baseline. M-FAC (Frantar et al., 2021) and oBERT (Kurtic et al., 2022) are relevant
methods providing state-of-the-art results in second-order pruning in both pruning setups.

Upstream vs. downstream pruning Downstream compression directly prunes while fine-tuning
on a specific downstream task, Movement Pruning (Sanh et al., 2020) is an example. Alternatively,
it is possible to compress the model upstream on the pre-training task as in Zafrir et al. (2021),
significantly reducing the computational requirements because downstream fine-tuning on the pruned
model requires training only a fraction of the initial set of weights. Some pruning methods (Kurtic
et al., 2022; Frankle & Carbin, 2018) can be used in both upstream and downstream pruning.

Fisher information matrix Consider a neural network with weights w that parameterize a predic-
tive density p(y|x,w) over labels y conditioned on the input x. Let ℓ(w, {x,y}) ≜ − log p(y|x,w)
be the negative log-likelihood associated with data D = {x,y} (this will typically be the network’s
loss). The Fisher information matrix is defined as

F (w) ≜ ED∼p(D|w)[∇wℓ(w,D)∇wℓ(w,D)⊤] (1)

where p(D|w) is the model distribution (not the data distribution; typically, p(D|w) ≜
p(y|x,w)p⋆(x) where p⋆(x) is the input data distribution)(Rao, 1992). We will denote by F̂
any finite-sample approximation of F .

Second-order pruning: OBS-based methods Most second-order pruning methods are based on the
Optimal Brain Surgeon (OBS; Hassibi & Stork, 1992). OBS begins with a quadratic approximation
of the loss function around the pre-trained parameter set w⋆, typically assumed to be a minimum of
the loss,

δL(δw) ≜ L(w⋆ + δw)− L(w⋆) ≈ 1

2
δw⊤H(w⋆)δw, (2)

where H(w⋆) is the Hessian of the loss at w⋆. Here, we will approximate the Hessian by the Fisher
F (w⋆); most other works use the empirical Fisher matrix instead. This quadratic approximation
leads to an analytical solution to the problem of optimally compensating for the deletion of a given
weight wi:

δw⋆ = − w⋆
i

[F−1(w⋆)]ii
F−1(w⋆)ei (3)

where ei is the ith canonical basis vector (Hassibi & Stork, 1992). The corresponding (minimal)
increase in loss resulting from the deletion of weight wi is taken as its importance score:

ρi =
w2

i

2[F−1(w⋆)]ii
. (4)

These equations have also been extended to handle the semi-structured pruning setting whereby small
blocks of weights are treated as single units (Kurtic et al., 2022).

Existing second-order pruning methods mostly differ in the way they estimate F−1v products to
compute Equations 3 and 4. All scalable methods make a block-diagonal approximation for F .
WoodFisher (Singh & Alistarh, 2020) and oBERT (Kurtic et al., 2022) partition the parameter space
into small blocks assumed to be independent, and use the Woodbury identity to recursively update an
estimate of the inverse empirical Fisher F̂−1

B for each block B. These approaches have substantial
memory requirements (O(|B|n), where |B| is the block size and n is the total number of parameters
in the model). M-FAC (Frantar et al., 2021) modifies this recursion to operate directly on F̂−1

B v

products, in a way that obviates the need for storing F̂−1
B (some parts of the computation can be

cached and reused for any v). This is typically much slower but requires less memory. In our work,
FLS too approximates F−1 in block-diagonal form, but with much larger blocks corresponding to
entire layers, and with blocks structured to guarantee computational and memory efficiency.

3

Under review as a conference paper at ICLR 2024

FishLeg FishLeg (Garcia et al., 2023) is a scalable second-order optimizer that approximates the
natural gradient F−1∇wℓ(w,D) based on the following insights. Let w be a fixed set of model
parameters. Consider the regularized cross entropy between p(D|w) and p(D|w + δ),

Hγ(δ) = ED∼p(D|w)ℓ(w + δ,D) + γ

2
∥δ∥2, (5)

where γ > 0 is a small damping parameter. The Legendre-Fenchel conjugate ofHγ(δ) is defined as

H⋆
γ(u) ≜ min

δ
Hγ(δ)− u⊤δ with minimizer denoted by δ̃γ(u). (6)

Garcia et al. were able to prove that, if the negative log-likelihood ℓ(w,D) = − log p(D|w) is twice
differentiable, then the inverse damped Fisher information matrix exists and is equal to

F−1
γ ≜ [F + γI]−1 = ∇uδ̃γ(0). (7)

FishLeg meta-learns a parametric approximation δ(u,λ) of δ̃γ(u), by minimizing the auxiliary
loss A(λ,u) ≜ Hγ(δ(u,λ))− u⊤δ(u,λ) w.r.t. meta-parameters λ, as prescribed by Equation 6.
Importantly, Equation 7 shows that one only needs to learn the local behaviour of the vector field
δ̃γ(u) around small u; thus, Garcia et al. directly parameterized its (symmetric, positive definite)
Jacobian Q(λ) at u = 0, corresponding to the choice δ(u,λ) ≜ Q(λ)u. Furthermore, considering
the limit of small u and averaging over a relevant distribution (more on this below and in Appendix E),
the auxiliary loss becomes

A(λ) ≜ Eu

{
1

∥u∥2

[
1

2
u⊤Q(λ)FγQ(λ)u− u⊤Q(λ)u

]}
(8)

which can be estimated and differentiated efficiently in a number of ways (details in Section 3).

Practical note: as Q(λ) converges towards F−1
γ , the auxiliary loss as defined by Equation 8 converges

towards
〈
−u⊤F−1

γ u/∥u∥2
〉
, which is problem-dependent; this makes it hard to assess the quality of

our inverse Fisher estimation. We therefore assess convergence by computing a slightly modified
auxiliary loss where we drop the 1

2 factor; this should converge to zero.

Taking the gradient of Equation 8 w.r.t. λ makes is clear that Q(λ) will learn to approximate the action
of F−1

γ on the subspace spanned by the u’s. Given their application to natural gradient optimization,
Garcia et al. took those u’s to be stochastic gradients of the model’s primary loss function. For our
pruning purposes, however, Equation 3 suggests that we must accurately estimate the action of F on
the entire parameter space; we will therefore work with a more isotropic distribution of u (Section 3).

Directly estimating the inverse Fisher matrix, and doing so in this way, brings a number of advantages.
First, the FishLeg approach is flexible: one can specify any form of Q(λ), and in particular combine
structured approximations obtained through mathematical derivations (as in e.g. KFAC; Martens &
Grosse, 2015; Grosse & Martens, 2016; George et al., 2018) with a variety of parametric adjustments
for greater expressiveness. We give examples of such choices in Section 3.1. Second, the FishLeg
approach is less biased than KFAC and related methods. These methods start by assuming that F
has a certain structure (e.g. block diagonal), obtain a good approximation of F conforming to this
structure, and then invert it. One expects both systematic errors as well as stochasticity in the estimate
of F to propagate to F−1. In contrast, FishLeg ‘fits’ a parametric approximation to F−1 directly,
conveniently avoiding inversion. Relatedly, a key property of Equation 8 is that it is not biased by
stochasticity in the estimate of Fγ (Appendix G; Figure 4) – unlike other seemingly sensible auxiliary
loss functions such as Eu∥Q(λ)F̂γu− u∥2 or Eu∥F̂γQ(λ)u− u∥2 whose quadratic terms in F̂γ

do survive averaging.

3 FISHLEG PRUNING

In this section, we describe the FishLeg surgeon, a novel application of FishLeg for pruning large
neural networks within the OBS framework.

One-shot pruning of a pre-trained model with weights w⋆ using FishLeg is described in Algorithm 1.
We begin by learning to approximate the inverse Fisher F−1

γ (w⋆) by a positive definite matrix Q(λ)

4

Under review as a conference paper at ICLR 2024

parameterized in memory-efficient form (Section 3.1). We do so by minimizing FishLeg’s auxiliary
loss function (Equation 8) w.r.t. λ. Whilst Garcia et al. (2023) estimated the auxiliary loss function
and its gradient by sampling u as a gradient of the network’s loss on some data minibatch, here we
take u to be sampled from a standard Gaussian distribution. This promotes learning the full F−1

γ , as
opposed to learning its action on a restricted subspace dominated by the average gradient (when it is
not exactly zero perhaps due to incomplete model training).

Following auxiliary loss minimization, we follow the standard OBS recipe. We score each weight
using Equation 4 and select the bottom f% for deletion, where f is the target sparsity. We then prune
each of these weights by applying the OBS update of Equation 3. For this, we make the simplifying
assumption that following deletion of weight wi, the new (damped) inverse Fisher F−1

γ is identical to
the old one, except for the removal of its ith row and column. Operationally, this allows us to prune all
the selected weights at once (i.e. update a weight mask), and apply the update of Equation 3 restricted
to the remaining weights. We speculate that better pruning could be obtained by proceeding more
gradually, periodically updating F−1

γ (by resuming the minimization of the auxiliary loss) between
pruning steps. We have not explored this here, mainly because the methods we compare FLS to do
not update their curvature estimates in the one-shot setting either.

Gradual Pruning involves prune gradually in steps of increasing sparsity, with additional fine-tuning
between each step. As opposed to pruning to the desired sparsity level in one shot, methods of
gradually pruning a network are typically the best-performing pruning approaches. A so-called
sparsity schedule specifies the sparsity level to prune to at each step (see e.g. grey curve in Figure 2,
right). Critically, gradual second-order pruning requires re-estimation of the inverse FIM following
each intermediate pruning step, to take into account the new masked parameters. Here, we reason
that FishLeg’s parametric estimation of the inverse FIM, Q(λ), can be actively updated in a rolling
fashion between consecutive pruning steps by simply performing a certain number of auxiliary loss
minimization steps. We do this concurrently with the fine-tuning steps (for which we use the FishLeg
optimizer, also based on the running estimate Q(λ)), as outlined in Algorithm 2. Hence, unlike
previous approaches to gradual second-order pruning, we need not re-estimate and re-invert the Fisher
matrix from scratch after each pruning step – we simply refine our current estimate.

3.1 MEMORY EFFICIENT PARAMETERIZATION OF THE INVERSE FISHER APPROXIMATION

For scalability, we approximate F−1 in block-diagonal form, with each layer contributing one block.
Note that these blocks are orders of magnitude larger than the ones used in previous second-order
approaches that implemented direct inversion (e.g. Kurtic et al., 2022 used blocks of size 50). Our
choice of structure for Q(λ) is slightly more constrained by our pruning objective than it is for
the FishLeg optimizer: we require efficient evaluation of not only Qv products but also diag(Q)
(required in Equation 4). For dense layers with ni inputs and no outputs, and therefore with (ni+1)no
parameters including biases, we parameterize the corresponding inverse Fisher block as

Q(λ) ≜ D(LL⊤ ⊗RR⊤)D (9)

where D is a diagonal matrix with (ni + 1)no parameters, L ∈ Rno×no and R ∈ Rni×ni are two
parameter matrices, and ⊗ denotes the Kronecker product. This construction is such that, for
V ∈ Rno×ni ,

Q(λ)vec(V) = D ⊙ vec(LL⊤(V ⊙ D̄)RR⊤) (10)

with the (unusual) convention that vec(·) vectorizes row-wise (corresponding to a no-copy reshape in
numerical code), and ⊙ denotes elementwise (Hadamard) product. Here, D̄ ∈ Rno×(ni+1) is the un-
vectorized version of the diagonal of D. Similarly, diag(Q) = diag(D)2⊙(diag(LL⊤)⊗diag(RR⊤))
can be evaluated efficiently, with diag(LL⊤) = (L⊙ L)(1, . . . , 1)⊤. Note that the inclusion of D
makes it more expressive than the standard KFAC approximation which is limited to the Kronecker
product. For completeness in Appendix H, we compare the above parameterisation with a pure
diagonal parameterisation and also a more restrictive block diagonal structure similar to other second-
order pruning methods (i.e. oBERT & MFAC).

For convolutional layers (conv2D), we follow a similar tensor factorization strategy. Filter parameters
are tensors of dimensions no(output channels) × ni(input channels) ×K(kernel size). Whilst we
could parameterize the inverse Fisher block as a 3-way Kronecker product, Grosse & Martens
(2016)’s KFAC derivation for convolutional layers suggests lumping together the input and kernel-

5

Under review as a conference paper at ICLR 2024

−320

−220

−120

−20

80

0 20 40 60 80 100

0

400

800

0 400 800 0 400 800

au
xi

lia
ry

lo
ss

training iteration (/10)

initial Q small
initial Q large

ei
ge

nv
al

ue
of

F
−
1

γ

eigenvalue of Q

initial Q small

eigenvalue of Q

initial Q large

fast

slow

Figure 1: The initialization of Q(λ) matters much. In this toy experiment, the true Fisher matrix
(n = 100) was chosen so that its ith eigenvalue is ξi ≜ 1/i2, and the damping parameter γ was
set to 10−3. Thus, the eigenvalues of F−1

γ lie roughly in the [1 − 1000] range. The auxiliary loss
A(Q) = 1

2Tr(QFQ)− Tr(Q) (left) was minimized by gradient descent w.r.t. the Cholesky factor of
Q(λ), initialized such that Q(λ) = I (black) or Q(λ) = γ−1I = 1000× I (red). The learning rate
was optimized separately for each case. This simulation shows that it is clearly better to initialize Q to
be large rather than small. Indeed, a simple derivation shows that each eigenvalue βi of Q approaches
its target 1/(ξi+ γ) at a speed proportional to (ξi+ γ) (Equation 11). In other words, the eigenvalues
of Q that must end up large are also those that evolve the slowest. It, therefore makes sense to
initialize them to be large so they have less to travel; the eigenvalues that must end up small will
become small rapidly anyway. The right panels illustrate this behaviour by plotting the eigenvalues
of Q against their respective targets, at regular intervals during optimization (color-coded), for both
initialization schemes. The auxiliary loss is minimized when βi = 1/(ξi + γ), i.e. when the dots lie
along the identity line (dashed grey).

size dimensions. We therefore use the same structure as in Equation 9, but with R of size niK and D
of size noniK.

3.2 INITIALIZATION OF Q

Our experiments with FishLeg have revealed that the minimization of the auxiliary loss is very
sensitive to initialization – to the point that getting it wrong can yield useless estimates of F−1

γ . In
the context of neural network optimization, Garcia et al. (2023) advocated an identity initialization
Q0 = αI . To choose the value of α, they observed that this identity initialization implied that
the FishLeg update wt+1 ← wt − ηQ(λ)∇wL would initially correspond to SGD. Thus, given a
learning rate ηSGD known to work well for SGD, they set α ≜ ηSGD/η. However, in the context of
pruning this rationale no longer applies; we therefore revisited the choice of α.

We found that good pruning results could only be obtained for sufficiently large α. To understand this,
we studied the idealized dynamics of auxiliary loss gradient descent (Figure 1; see also Appendix F).
Let F = UΞU⊤ be the eigendecomposition of the Fisher matrix, with Ξ = diag(ξ1, . . . , ξn).
Assuming u ∼ N (0, In), the auxiliary loss (Equation 8) reduces to A(λ) = 1

2Tr(QFγQ)− Tr(Q)).
Expressing Q in the eigenbasis of F as Q = UβU⊤, the gradient flow for this deterministic loss
function takes the form β̇ = −(Ξ + γI)β + I with β(0) = αI . It is then easy to see that β will
remain diagonal throughout, and that the ith eigenvalue of Q has the following dynamics:

(ξi + γ)−1︸ ︷︷ ︸
time constant

dβi

dt
= −βi + (ξi + γ)−1︸ ︷︷ ︸

optimal steady state

with βi(0) = α. (11)

Thus, the eigenvalues of Q – all initially equal to α – converge at very different speeds depending
on their optimal steady states: eigenvalues that must reach large (resp. small) values evolve slowly
(resp. fast). We therefore conclude that a good initialization is to set α to be as large as the largest
eigenvalues of F−1

γ , namely (min{ξi}+ γ)−1 ≈ γ−1. This way, the eigenvalues of Q that would
normally slowly evolve towards γ−1 are positioned there from the outset, and the eigenvalues that
are set to decrease do so rapidly. Figure 1 illustrates this behaviour and shows that large initialization
of Q (with α ≈ γ−1) results in faster minimization of the auxiliary loss.

6

Under review as a conference paper at ICLR 2024

3.3 PRECONDITIONING OF THE AUXILIARY LOSS

Learning the full F−1 is a hard problem when F is ill-conditioned, as the auxiliary loss inherits this
ill-conditioning. Our theoretical analysis of this problem (Appendix F) has led to the discovery of a
good preconditioner which only costs a single additional Q(λ)v product per iteration (Algorithm 1).
This preconditioner greatly accelerates asymptotic convergence of the auxiliary loss (Figure 5A),
leading to better estimates of the inverse FIM.

4 EXPERIMENTS

The current state-of-the-art pruning approaches (Frantar et al., 2023; Kurtic et al., 2022; Liu & Wang,
2023) rely on sophisticated recipes, distillation strategies and quantization techniques to achieve
a high level of model compression (Li et al., 2016). This work and the experiments below do not
enter this level of specialization, focusing instead on (i) how using second-order pruning outperforms
the first-order methods, (ii) how having a better approximation of the Fisher information matrix
translates to better second-order importance scores and therefore to better pruning, (iii) and how by
using FishLeg, we can learn more accurate Fisher matrix approximation for the most commonly used
deep learning architectures, without resorting to complex approximations. FishLeg pruning can be
combined with any of the methods cited above, as long as they are compatible with second-order
pruning, to enhance their pruning capabilities further. Consequently, the experiments below start by
revisiting the MLP-based autoencoder benchmark used in the FishLeg paper Garcia et al. (2023). We
continue by exploring the pruning of one of the most famous CNN architectures, ResNet50 (He et al.,
2015). For both experiments, we study the one-shot pruning and one-shot pruning with fine-tuning
performance of our method and compare it with relevant baselines. For the autoencoder setup, we
also investigate the gradual pruning performance.

The following subsections will discuss the experiments described above. All experiments are deployed
on one RTX A6000 GPU with 48 Gigabytes GDDR6 RAM. In the interest of reproducibility, each
experiment has been run five times with different initialisation seeds; in every figure, we show the
mean of the five runs and the error bars corresponding to the standard deviation. If it is not possible
to see the error bars, it is because they are too small and the results are therefore very consistent. For
details of the experimental codebase see Appendix C.

4.1 MNIST AUTOENCODER

We first study second-order pruning with FishLeg in the MNIST autoencoder benchmark used in the
FishLeg optimization paper to compare this algorithm with other second-order pruning methods. The
architecture of the autoencoder is MLP-based and further details of its implementation can be found
in (Goldfarb et al., 2020).

For all MNIST experiments, we prune a dense autoencoder model pre-trained via Adam on the same
MNIST task that we use as target for pruning. In each case, the optimal hyperparameters were chosen
via a grid search. The batch size is set at 100, and the network is optimized with respect to a negative
log Bernoulli likelihood.

One-shot pruning We compare our algorithm against Global Magnitude Pruning and the SOTA
second-order methods, oBERT and M-FAC. Both oBERT and M-FAC are set to collect 1024 gradients
for their Fisher approximations, with their Fisher block sizes set to 50 and 2000 respectively (the
default values in the SparseML codebase).

The results in Figure 2 show FLS consistently matching or outperforming the other baselines at all
sparsity values. In higher sparsity regimes FLS is more robust than competing methods, with a 30%
lower test loss at 90% one-shot sparsity when compared with the next best method (oBERT).

One-shot + Fine-tuning In this section, we can observe how the FLS and the FishLeg optimizer
work in tandem to prune and retrain using the same inverse Fisher approximation. In this experiment,
we prune the model to 80% sparsity in one-shot and then fine-tune the sparse model for 20 epochs to
recover as much performance as possible. Except where indicated, Adam is used as optimizer for
fine-tuning with default PyTorch hyperparameters and weight decay set to λ = 10−5.

7

Under review as a conference paper at ICLR 2024

Figure 2: MNIST autoencoder pruning test loss (as negative log likelihood) for one-shot (left),
one-shot + fine-tune at 80% sparsity (middle) and gradual pruning (right). The fine-tuning and
gradual pruning are carried out using Adam optimizer, except for the FLS+FishLeg where the
FishLeg optimizer is used to fine-tune. In all three experiments, FLS consistently outperforms the
other baselines, especially at high sparsity values.

Figure 3: ResNet50 performance on ImageNet after one-shot pruning at different levels of sparsity.
The top-1 accuracy metric (left) and the corresponding softmax test loss (right) as a function of
sparsity are shown for each method.

From Figure 2 (middle), FLS fine-tuned with FishLeg optimizer is the only recipe that stands out and
outperforms all other baselines. Note that the starting values of test loss shown at epoch 0 are the
same values shown for one-shot pruning at 80% sparsity (see Figure 2, left) for each of the methods.

We can also observe that all second-order methods achieve a final lower loss than the original dense
model after approximately 3 epochs. This phenomenon can be partially attributed to improved
generalisation of the sparse model justified by Occam’s hill (Blumer et al., 1987; Hoefler et al., 2021),
such that the increase in performance can be explained by a reduction in learned noise.

Gradual pruning Figure 2 (right) shows the test loss as the gradual pruning progresses towards
98% sparsity (refer to the grey line and the right hand axis for sparsity schedule). FishLeg Surgeon
consistently outperforms the other methods and shows to be more reliable at higher sparsities. All
models seem to collapse above 90% sparsity, but the increase in test loss is significantly more
contained for FLS compared to other methods.

We prune by using the estimate of the inverse Fisher from the FishLeg optimizer used for fine-tuning;
this is a significant computational advantage compared to other second-order pruning methods. The
Fisher approximation Q(λ) is actively updated during the fine-tuning steps. As for other methods,
Adam is used as optimizer for fine-tuning.

4.2 RESNET50

Scaling up to larger models and problem setups, we evaluate the FishLeg Surgeon performance on
ResNet50 (He et al., 2016) pre-trained on ImageNet (Deng et al., 2009). The batch size is set at 128
and the model is optimized for classification with respect to the standard categorical likelihood.

8

Under review as a conference paper at ICLR 2024

Table 1: One-shot pruning + fine-tuning of ResNet50. Numbers denote test accuracies on ImageNet.
ResNet50 is first pruned to 80% sparsity in one-shot, and then fine-tuned for one epoch on the
ImageNet dataset.

Method Top-1 Accuracy (%) Top-5 Accuracy (%)
Dense 76.14 92.87

Global Magnitude 70.44 ± 0.12 90.15 ± 0.02
oBERT 70.32 ± 0.14 90.14 ± 0.02
M-FAC 70.35 ± 0.03 90.14 ± 0.09

FLS + Adam (ours) 70.80 ± 0.06 90.42 ± 0.06
FLS + FishLeg (ours) 71.91 ± 0.08 90.78 ± 0.04

One-shot pruning For one-shot, we prune a ResNet50 model to various levels of sparsity up to
90%. These results are summarised in Figure 3 in terms of top-1 accuracy (left) and the resulting
negative log-likelihood (right), both evaluated on ImageNet test data.

We show that the performance of FLS comfortably exceeds that of the baselines across all levels of
sparsity, with 62% accuracy at 75% sparsity, compared to 41% for M-FAC and 24% for oBERT. In
addition to this, we note that compared to the next best performing pruner (M-FAC, 42GB), FishLeg
surgeon has ×2.4 lower VRAM (17GB) consumption with our experimental setup.

One-shot + Fine-tuning Finally, we provide one-shot + fine-tuning results for ResNet50 with Ima-
geNet, where the sparse model has been fine-tuned for one full epoch after pruning (Table 1). Whilst
fine-tuning reduces the gap between FLS and other methods, FLS still yields the best performance,
indicating that some of the one-shot improvements transfer to the fine-tuning regime too.

5 DISCUSSION, LIMITATIONS AND FUTURE WORK

We have shown that FLS is a computationally efficient algorithm achieving SOTA results for second-
order pruning. FLS’s advantages are especially significant at high sparsity, and our ablation experi-
ments (Appendix H) suggest that they stem from a more accurate estimation of the inverse Fisher
matrix. We speculate that the FishLeg machinery will benefit other applications that require accurate
and tractable estimates of inverse curvature.

While the FishLeg pruning method is effective in many scenarios, it has several limitations. One of the
key assumptions in our approach is that the inverse Fisher F−1

γ (w⋆) can be well approximated by a
specific form of positive definite matrix Q(λ); however, the structure chosen for Q is largely dictated
by scalability requirements, and may not be appropriate under certain conditions. We have proposed
memory-efficient factorizations of Q which we have found effective for dense and convolutional
layers, and we leave the development of other types of neural network layers to future research.

Another noteworthy assumption is that following deletion of weight wi, the new (damped) inverse
Fisher F−1

γ is the same as the old one, save for the removal of its ith row and column. This simplifying
assumption is also used by previous approaches to pruning and leads to computational savings, but it
potentially limits the accuracy of the pruning process (see the illustrative example given in Wang
et al., 2019). To mitigate this, one could take advantage of the fact that FishLeg’s auxiliary loss
minimization enables gradual distillation of curvature information into Q(λ). Maintaining an accurate
running estimate of F−1 as the model gets pruned is therefore less costly than with previous methods
that typically require re-estimating and re-inverting F from scratch following weight deletion. We
have found this approach to be effective for gradual pruning of the MNIST autoencoder in Figure 2
(right), but leave further gradual pruning applications to larger networks for future work.

In conclusion, while the FishLeg pruning method represents a promising step forward in the efficient
and effective pruning of large neural networks, the aforementioned limitations highlight directions
for future improvements. Further research in these areas will likely extend and refine the capabilities
of the proposed method.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth. Occam’s razor.
Information processing letters, 24(6):377–380, 1987.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 CVPR, pp. 248–255, 2009. doi: 10.1109/CVPR.2009.
5206848.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. arXiv preprint arXiv:1909.11556, 2019.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv: Learning, 2018.

E Frantar, Sidak Pal Singh, and Dan Alistarh. Optimal brain compression: A framework for accurate
post-training quantization and pruning, 2023.

Elias Frantar, Eldar Kurtic, and Dan Alistarh. M-FAC: Efficient matrix-free approximations of
second-order information, 2021.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. CoRR,
abs/1902.09574, 2019.

Jezabel R Garcia, Federica Freddi, Stathi Fotiadis, Maolin Li, Sattar Vakili, Alberto Bernacchia, and
Guillaume Hennequin. Fisher-Legendre (FishLeg) optimization of deep neural networks. In The
Eleventh International Conference on Learning Representations, 2023.

Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast
approximate natural gradient descent in a Kronecker factored eigenbasis. Advances in Neural
Information Processing Systems, 31, 2018.

Donald Goldfarb, Yi Ren, and Achraf Bahamou. Practical quasi-newton methods for training deep
neural networks. Advances in Neural Information Processing Systems, 33:2386–2396, 2020.

Mitchell A. Gordon, Kevin Duh, and Nicholas Andrews. Compressing bert: Studying the effects of
weight pruning on transfer learning. In Workshop on Representation Learning for NLP, 2020.

Roger Grosse and James Martens. A Kronecker-factored approximate Fisher matrix for convolution
layers. In International Conference on Machine Learning, pp. 573–582. PMLR, 2016.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. In Yoshua Bengio and Yann LeCun (eds.),
4th ICLR 2016, 2016.

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain surgeon.
Advances in neural information processing systems, 5, 1992.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
In Proceedings of the IEEE international conference on computer vision, pp. 1389–1397, 2017.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. The Journal
of Machine Learning Research, 22(1):10882–11005, 2021.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael
Goin, and Dan Alistarh. The optimal BERT surgeon: Scalable and accurate second-order pruning
for large language models, 2022.

10

Under review as a conference paper at ICLR 2024

Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexander Matveev, John Carr, Michael Goin, William
Leiserson, Sage Moore, Bill Nell, Nir Shavit, and Dan Alistarh. Inducing and exploiting activation
sparsity for fast inference on deep neural networks. In Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research.
PMLR, 13–18 Jul 2020.

Denis Kuznedelev, Eldar Kurtic, Elias Frantar, and Dan Alistarh. oViT: An accurate second-order
pruning framework for vision transformers, 2022.

François Lagunas, Ella Charlaix, Victor Sanh, and Alexander M. Rush. Block Pruning For Faster
Transformers, September 2021. arXiv:2109.04838 [cs].

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Shiwei Liu and Zhangyang Wang. Ten lessons we have learned in the new" sparseland": A short
handbook for sparse neural network researchers. 2023.

Shiwei Liu, Tianlong Chen, Zhenyu Zhang, Xuxi Chen, Tianjin Huang, AJAY KUMAR JAISWAL,
and Zhangyang Wang. Sparsity may cry: Let us fail (current) sparse neural networks together! In
The Eleventh International Conference on Learning Representations, 2023.

James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? In Neural
Information Processing Systems, 2019.

C Radhakrishna Rao. Information and the accuracy attainable in the estimation of statistical parame-
ters. In Breakthroughs in statistics, pp. 235–247. Springer, 1992.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav Nakov. On the Effect of Dropping Layers of
Pre-trained Transformer Models. Computer Speech & Language, 77:101429, January 2023. ISSN
08852308. doi: 10.1016/j.csl.2022.101429. arXiv:2004.03844 [cs].

Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by fine-tuning.
Advances in Neural Information Processing Systems, 33:20378–20389, 2020.

Sidak Pal Singh and Dan Alistarh. WoodFisher: Efficient second-order approximation for neural
network compression, 2020.

Sharath Nittur Sridhar and Anthony Sarah. Undivided attention: Are intermediate layers necessary
for bert? ArXiv, abs/2012.11881, 2020.

Lucas Theis, Iryna Korshunova, Alykhan Tejani, and Ferenc Huszár. Faster gaze prediction with
dense networks and fisher pruning, 2018.

Charles F Van Loan and Nikos Pitsianis. Approximation with Kronecker products. Springer, 1993.

Elena Voita, David Talbot, F. Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head self-
attention: Specialized heads do the heavy lifting, the rest can be pruned. ArXiv, abs/1905.09418,
2019.

Chaoqi Wang, Roger Grosse, Sanja Fidler, and Guodong Zhang. EigenDamage: Structured pruning
in the Kronecker-factored eigenbasis, 2019.

Ofir Zafrir, Ariel Larey, Guy Boudoukh, Haihao Shen, and Moshe Wasserblat. Prune Once for All:
Sparse Pre-Trained Language Models, November 2021. arXiv:2111.05754 [cs].

11

Under review as a conference paper at ICLR 2024

A ONE-SHOT PRUNING

Algorithm 1 describes the details of the FishLeg surgeon algorithm for the one-shot pruning setup.

Algorithm 1 FishLeg surgeon (one-shot setting)
1: Goal: One-shot pruning of network with n parameters to f% sparsity.
2: Choose hyperparameters: damping factor γ, scale α, Adam parameters.
3: Initialize Q(λ0) = αIn ▷ See section 3.2
4: while not converged do
5: Sample u ∼ N (0, In) from isotropic Gaussian distribution.
6: v ← Q(λ)u ▷ Fast matrix-vector products
7: ▷ Antithetic estimator of inverse FIM vector products ◁

8: Sample one data minibatchD and estimate F̂v = 1
2ϵ

[
∇wL(w+ϵv,D)−∇wL(w−ϵv,D)

]
9: surrogate_loss← vTstop_gradient(Q(λ))

[
(F̂ + γI)v − u

]
▷ With precondi-

tioning
10: λ← Adam_update(λ,∇λsurrogate_loss).
11: Assess convergence where surrogate_loss should approach zero.
12:
13: Compute the importance score ρi of each weight wi using Equation 4, using the approximation

F−1(w⋆) ≈ Q(λ).
14: Select and prune the f% least important weights (smallest ρi).
15: Apply the pruning update to the remaining weights using Equation 3.

B GRADUAL PRUNING

Algorithm 2 describes the details of the FishLeg surgeon algorithm for the gradual pruning setup.

Algorithm 2 FishLeg surgeon (gradual-pruning setting)
1: Goal: gradual pruning to fend% sparsity.
2: Choose hyperparameters: damping factor γ, learning rate η, Adam parameters, sparsity schedule
{ft}.

3: Pretrain Q(λ0) using the same strategy as in Algorithm 1. ▷ starts with a good estimate of the
inverse FIM

4: t← 0, w0 ← w∗

5: while not finished do
6: ▷ Pruning step ◁
7: Select and prune the (ft+1 − ft)% least important weights using the latest approximation

F−1
γ (wt) ≈ Q(λt), where wt is the masked parameters from the previous sparsity level.

8: Use Equation 3 to obtain the new masked updated parameters wt+ 1
2

.

9: w̃0 ← wt+ 1
2
, λ̃0 ← λt

10: for s = 1 : S do
11: L, g ← value and gradient of loss evaluated at the masked w̃s on a data minibatch
12: ▷ Fine-tuning ◁
13: w̃s+1 ← w̃s − η[Q(λ̃s)g] ▷ masked update that preserves current sparsity
14: ▷ Update the inverse FIM approximation, taking into account the new parameters ◁
15: Perform one step of auxiliary loss minimization as in Algorithm 1, yielding a new λ̃s+1.
16: ▷ resume pruning with the fine-tuned parameters and updated inverse FIM estimate ◁
17: wt+1 ← w̃S ,λt+1 ← λ̃S , t← t+ 1

12

Under review as a conference paper at ICLR 2024

C FISHLEG SURGEON CODE

Our experimental code has been developed by introducing FishLeg surgeon in the Neural Magic
SparseML library (Kurtz et al., 2020). The code is included with the supplementary material and will
be made publicly available on acceptance of the paper.

As explained in Section 3.1, dedicated implementation of the Q(λ)v product for the convolutional
layer has been developed as part of this work. This is an extension of the original FishLeg work as
the original paper only considered the MLP case.

D EXPERIMENT HYPER-PARAMETER VALUES

Table 2 and Table 3 show the hyperparameter values used for each of the experimental setups, both
for the FishLeg optimizer and the Adam optimizer. More details of the experiments can be found in
Section 4.

Table 2: Optimal hyperparameter values for FishLeg, identified as the result of a grid search. These
hyperparameters were chosen to minimise the training loss. Any parameters not shown are left as
default values in the FishLeg optimizer library.

1-shot & 1-shot + FT Gradual
MNIST IMAGENET MNIST

Batch Size 100 128 100
η 1e-2 3e-4 2e-2
α 1e-5 1e-5 1e-5
ηaux 1e-4 1e-5 1e-4
β 0.3 0.9 0.7

Damping γ 0.5 0.5 0.5
Scale 1.0 2.0 1.0

Warmup 1e4 1e3 1e4

Table 3: Optimal hyperparameter values for Adam, identified as the result of a grid search. These
hyperparameters were chosen to minimise the training loss. Any parameters not shown are left as
default values in the PyTorch Adam optimizer.

1-shot & 1-shot + FT Gradual
MNIST IMAGENET MNIST

Batch Size 100 128 100
η 1e-3 1e-4 1e-3
α 1e-5 1e-5 1e-5

[β1, β2] [0.9, 0.999] [0.999, 0.999] [0.9, 0.999]

E AUXILIARY LOSS DERIVATION

Starting from the auxiliary loss definition given in Equation 8 and in Equation 15 of Garcia et al.
(2023), we can expand the first term with a Taylor Expansion as:

Hγ(δ(u,λ)) = Hγ(0) +∇δ̄Hγ(θ, δ)|δ̄=0δ +
1

2
δ
⊤∇2

δ̄Hγ(θ, δ)|δ̄=0δ. (12)

As stated in Appendix A.2 of Garcia et al. (2023), each term in this Taylor expansion can be expressed
as:

∇δHγ(θ, δ)|δ=0 = ED∼p(D|θ)∇θℓ(θ,D) + 0 = 0 (13)

∇2
δHγ(θ, δ)|δ=0 = ED∼p(D|θ)∇2

θℓ(θ,D) + γI = I(θ) + γI = Fγ . (14)

where the 0th order term follows from the fact that we define the minimum at δ = 0, the 1st order
term is zero since we are at a minimum and the 2nd order term characterizes the Fisher information
matrix.

13

Under review as a conference paper at ICLR 2024

Using the above definitions, one can arrive at,

A(λ,u) = 1

2
δ(u,λ)⊤Fγδ(u,λ)− u⊤δ(u,λ) (15)

where the second term in Equation 8 is unchanged.

F ANALYSIS OF FISHLEG’S AUXILIARY LOSS & PRECONDITIONING

In this section, we analyze the minimization dynamics of a generalized version of FishLeg’s auxiliary
loss:

A(Q) = ⟨1
2
u⊤Q⊤PFγQu− u⊤Q⊤Pu⟩u∼N (0,I) (16)

where F is the model’s (damped) Fisher information matrix, P is a symmetric positive definite matrix,
and Q is our approximation of F−1

γ . For simplicity, we will assume that the parameterization of Q is
non-limiting, i.e. we will consider the minimization of A directly as a function of Q.

This loss can be evaluated analytically:

A(Q) =

〈
Tr

(
1

2
Q⊤PFγQuu⊤ −Q⊤Puu⊤

)〉
u∼N (0,I)

(17)

= Tr
[(

1

2
Q⊤PFγQ−Q⊤P

)〈
uu⊤〉

u∼N (0,I)

]
(18)

= Tr
(
1

2
Q⊤PFQ−Q⊤P

)
(19)

The optimal Q⋆ must satisfy

0 =
∂A
∂Q

∣∣∣∣
Q=Q⋆

= P (FQ⋆ − I) (20)

Therefore, if P and Fγ are both invertible, then Q⋆ = F−1
γ as desired. To understand how quickly Q

will converge to this solution, it is useful to analyze the gradient flow

dQ

dt
= −P (FγQ(t)− I) (21)

with initial condition Q(0) = αI . Let F = UΛU⊤ be the eigendecomposition of the Fisher
matrix, with Λ = diagm(λ1, . . . , λn) and U⊤U = UU⊤ = I . We will assume that P has the same
eigenvectors as F , i.e. P = Udiagm(p1, . . . , pn)U

⊤. Rewriting the above gradient flow in the
eigenbasis of F , we obtain

d

dt
(U⊤Q(t)U) = −U⊤P (FγQ− I)U (22)

= −U⊤Udiagm(p1, . . . , pn)U
⊤(U(Λ + γI)U⊤Q− I)U (23)

= −diagm(p1, . . . , pn)((Λ + γI)U⊤QU − I) (24)

We see that if U⊤QU is diagonal at time t, it will remain diagonal. Given that U⊤QU = U⊤(αI)U =
αI is diagonal, we conclude that at any time t, U⊤Q(t)U = diagm(β1(t), . . . , βn(t)). Thus,
Equation 24 boils down to a set of n decoupled, scalar flows,

dβi

dt
= −pi [(λi + γ)βi − 1] with βi(0) = α (25)

These equations are more easily interpreted when rewritten as

β⋆
i

pi

dβi

dt
= −βi + β⋆

i (26)

where β⋆
i = (λi + γ)−1 is the corresponding eigenvalue of the solution Q⋆ (the “target eigenvalues”).

The solution to these dynamics is

βi(t) = β⋆
i + (α− β⋆

i) exp

(
−t
τi

)
with τi ≜

β⋆
i

pi
. (27)

14

Under review as a conference paper at ICLR 2024

For P = I , i.e. pi = 1, we recover the result of the main text (c.f. Figure 1): βi converges
exponentially to its target β⋆

i , but on a timescale τi proportional to β⋆
i itself. This is a problem when

Fγ is poorly conditioned, such that there is a broad range of β⋆
i : in this case, some βi’s will converge

rapidly, and some others will converge very slowly.

Equation 27 suggests a solution based on a judicious choice of the preconditioner P . If somehow we
could precondition the loss with P = F−1

γ , then pi = β⋆
i and therefore τi = 1 for all i – this case

we have rapid uniform convergence of the inverse Fisher in all directions. While we do not know
F−1
γ (indeed this is what we are trying to learn . . .), we do know that Q(t) is supposed to converge

(albeit slowly) towards F−1
γ . Thus, we propose a simple time-dependent preconditioner P (t) = Q(t).

Empirically, we do find that this choice leads to better asymptotic convergence of the auxiliary loss,
as illustrated in Figure 5A. Note that this only costs a single additional Qv product in every iteration.

G FISHLEG INVERSE CURVATURE ESTIMATION: FLEXIBLE AND ACCURATE

In this section, we report on a series of simple experiments that show that FishLeg’s inverse curvature
estimation is typically more accurate and flexible than more conventional approaches.

First, Figure 4A shows that – when the parameterization of FishLeg’s Q is sufficiently expressive to
include F−1

γ , Q converges to F−1
γ as desired, despite only having access to stochastic estimates of F .

This is because, using standard unbiased estimates of the Fisher matrix (or, practically, Fisher-vector
products) on mini-batches in Equation 8, FishLeg’s auxiliary loss and its gradient are also unbiased.
With sufficiently small learning rate, we therefore expect Q to converge to the inverse damped Fisher
solution. In contrast, a more naive scheme that computes an average of inverses of noisy Fisher
estimates (‘est. – inv. – avg.’ in Figure 4A) yields a bias that persists asymptotically.

Second, when F−1
γ lies outside the domain of the structured approximation (e.g. when it is not

exactly a single Kronecker product, or a block-diagonal matrix), there is an advantage to directly
approximating F−1

γ in the desired structured form Q (FishLeg’s strategy), rather than approximating
F in such a form and then inverting the result. For one, (Garcia et al., 2023) had already argued
that the former is more flexible than the latter, because one can use structured forms that need not
be easily inverted (indeed FishLeg does not invert anything). Here, we show that even when the
structured form is easily inverted, FishLeg still has a marked advantage (Figure 4B-D). In particular,
the auxiliary loss allows the specification of a distribution of vectors u (specifically, their covariance)
to promote learning the action of F−1

γ on select directions in parameter space. This is not possible in
a more conventional approach whereby the Fisher matrix is first approximated in structured form,
then averaged, and finally inverted.

H ADDITIONAL ABLATION EXPERIMENTS

For the experiments discussed in this section, a simple linear layer with n inputs and a single output
is used to perform controlled ablations and compare various approximations of the inverse Fisher
and their impact on one-shot pruning. In Figure 5A-C we choose n = 100 and in Figure 5D we
set n = 500. The layer weights are drawn from N (0, 1/n), and inputs are drawn from N (0,Σx),
where Σx is a random covariance matrix with eigenvalues {λi ∝ e−i/10}. Results are reported as
mean ± s.e.m. over random seeds. Across all experiments, a batch size of 100 is chosen along with
a damping parameter γ = 0.01. Note that in this toy example, the Fisher matrix is F = Σx, and
does not depend on the weights. Figure 5A shows the effect of preconditioning the FishLeg auxiliary
loss using the momentary approximation Q(λ) of the inverse Fisher matrix. We observe that this
preconditioning does indeed lead to faster asymptotic convergence. This is shown here for the ‘full’
approximation Q = LL⊤, which – in this case – is as expressive as the Kronecker parameterization
of dense layers we have used in the experiments from the main text.

Figure 5B displays the quality of approximation of the inverse damped Fisher matrix, as measured by
FishLeg’s auxiliary loss after convergence2, for various parameterizations of Q(λ). We compare the
‘full’ parameterization Q = LL⊤ (orange), a positive diagonal parameterization (purple), and a set of
positive-definite block-diagonal approximations with various block sizes (blues). These results show

2Where the Adam learning rate separately tuned for each approximation.

15

Under review as a conference paper at ICLR 2024

0

200

400

600

800

1000

0 300 600

0.2

0.4

0.6

0 100 200 300 0 100 200 300 0 100 200 300

d
is
ta
n
ce
to
tr
u
e
F
−
1

γ

batches consumed

est. - inv. - avg. (m = 50)
est. - inv. - avg (m = 100)
FishLeg (m = 50)
FishLeg (m = 100)

n
o
rm
.
es
ti
m
a
ti
o
n
er
r.

batches consumed

est. avg. inv.
FishLeg

diagonal

batches consumed

block-diagonal

batches consumed

Kronecker productA B C D

Figure 4: Assessing FishLeg’s inverse curvature estimation in a controlled setting. In this
figure, the true Fisher matrix F ∈ R100×100 is constructed to have a random orthonormal eigenbasis
and eigenvalues λi ∝ e−i/30. All results are averaged over 20 independent realizations of the
corresponding experiment with different random seeds. (A): standard affine-invariant Riemannian
distance between FishLeg’s Q and F−1

γ (γ = 0.01), as a function of the number of data mini-batches
of size m consumed so far. Each Adam step of auxiliary loss minimization consumes one minibatch.
In this case, we use a full parameterization Q = LL⊤ that contains the solution F−1

γ ; in that case,
FishLeg’s inverse curvature estimation is consistent and the error goes to zero. As a baseline, we show
the behaviour of a simple but biased estimator that estimates Fγ on each new minibatch, inverts that
noisy estimate, and averages the result over minibatches; inverting noisy estimates yields a bias that
persists asymptotically. (B-D): In these panels, the inverse Fisher is estimated in structured form (B:
diagonal; C: block-diagonal, 5 blocks; D: Kronecker product, (5×5)⊗ (20×20). This is done either
by FishLeg assuming a correspondingly structured form for Q (red), or by (i) approximating Fγ in
structured form for each minibatch (for the Kronecker approximation, we use a permuted SVD to find
the nearest Kronecker product in the least-squares sense; Van Loan & Pitsianis, 1993), (ii) averaging
over minibatches (for the Kronecker approximation the two factors are averaged separately, as in
KFAC), and (iii) inverting the result (black; note that in this case, the inverse inherits the structure).
We report the squared error between Qu and F−1

γ u, averaged over u ∼ N (0,Σu), and normalized
by the average norm of F−1

γ u. Here, to reflect the need of accurately estimating the action of F−1
γ

on the least salient parameter dimensions, we have chosen Σu = F−1.

very clearly that a full approximation can achieve a much lower auxiliary loss when compared to less
powerful approximations in this case.

Following from this, Figure 5C is reporting the one-shot pruning performance (test MSE) for the
various FishLeg parameterizations shown in Figure 5B, as well as for magnitude pruning (black),
MFAC (m = 10; green) and ‘exact FLS’ with F = Σx appropriately masked and inverted before each
pruning step (red). One can observe that the full approximation achieves a far closer performance
to the ‘exact’ result across all other baselines in this study. Note that in this case, the ‘exact FLS’
characterises the limit of performance for second-order pruning methods. In this setting, we therefore
find a strong correlation between the quality of the iFIM approximation (as measured by Garcia et al.
(2023)’s auxiliary loss after convergence) and one-shot pruning performance (comparing Figure 5B
and Figure 5C). In particular, block-diagonal approximations (as used by OBS/oBERT) perform
worse than the Kronecker-factored approximation (in this case also exact) and, indeed not much
better than magnitude pruning or a simple diagonal approximation of the iFIM. Likewise, FLS with a
Kronecker-factored Q performs better than MFAC (with rank parameter m generously set to 10, i.e.
10% of the parameter count, which would normally be intractable memory-wise).

Finally, Figure 5D provides a comparison between FLS with block-diagonal parameterization and
oBERT for various block sizes (5, 10, 20, 50). In particular, this ablation study shows benefits of
directly estimating the inverse FIM than estimating the FIM and inverting it. oBERT utilizies the
WSM formula for effective estimation without explicit inversion, resulting in iterative update of the
inverse of moving average for the empricial Fisher matrix. In the top panels, we present one-shot
pruning performance (test MSE) as a function of sparsity for the two methods. In the middle panels,
the standard affine-invariant Riemannian distance between the masked approximate block-diagonal
inverse and the true masked Fisher inverse are shown, for each method. In the bottom panels, the
wall-clock time as a function of sparsity is shown. For these experiments, oBERT uses 512 gradients

16

Under review as a conference paper at ICLR 2024

10−2

10−1

100

101

102

0 10000 20000

-5

-4

-3

-2

-1

0

full diag BD-4 BD-10 BD-20

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.5

1

0

20

40

0

50

100

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

a
u
xi
lia
ry
lo
ss

iteration

w/o precond.
w/ precond.

a
u
xi
lia
ry
lo
ss

te
st
M
S
E

sparsity

random
magnitude pruning
MFAC
exact

te
st
M
S
E

FLS
oBERT

BD-5 BD-10 BD-20 BD-50

d
is
ta
n
ce
to

tr
u
e
F
−
1

el
a
p
se
d
ti
m
e

sparsity sparsity sparsity sparsity

A B C

D

Figure 5: Ablation experiments on synthetic data in a toy setup to show: (A) the utility of
preconditioning the auxiliary loss, (B) the predicted quality of the approximated Fisher in different
scenario’s, (C) the one-shot pruning performance of various Fisher approximations (including other
baselines) and (D) the effect of implementing a block diagonal FishLeg approximation and it’s
comparison to oBERT at various block sizes.

at each pruning step, whereas FLS performs 20 steps of auxiliary loss minimization between pruning
updates. These results show a systematic improvement in the inverse FIM estimates when using FLS,
which implies that directly approximating the inverse Fisher in block-diagonal form (FLS) is better
than approximating the Fisher in block-diagonal form before inverting each block (oBERT).

17

	Introduction
	Background and related work
	FishLeg Pruning
	Memory efficient parameterization of the inverse Fisher approximation
	Initialization of Q
	Preconditioning of the auxiliary loss

	Experiments
	MNIST Autoencoder
	ResNet50

	Discussion, limitations and future work
	One-shot Pruning
	Gradual Pruning
	FishLeg Surgeon Code
	Experiment hyper-parameter values
	Auxiliary loss derivation
	Analysis of FishLeg's auxiliary loss & preconditioning
	FishLeg inverse curvature estimation: flexible and accurate
	Additional ablation experiments

